2.3 等差数列的前n项和练习题及答案解析 必修5
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.若一个等差数列首项为0,公差为2,则这个等差数列的前20项之和为( )
A .360
B .370
C .380
D .390
答案:C 2.已知a 1=1,a 8=6,则S 8等于( )
A .25
B .26
C .27
D .28
答案:D
3.设等差数列{a n }的前n 项和为S n ,若a 6=S 3=12,则{a n }的通项a n =________.
解析:由已知⎩⎪⎨⎪⎧ a 1+5d =123a 1+3d =12⇒⎩⎪⎨⎪⎧
a 1=2,
d =2.
故a n =2n . 答案:2n
4.在等差数列{a n }中,已知a 5=14,a 7=20,求S 5.
解:d =a 7-a 57-5
=20-142=3, a 1=a 5-4d =14-12=2,
所以S 5=5(a 1+a 5)2=5(2+14)2
=40. 一、选择题
1.(2011年杭州质检)等差数列{a n }的前n 项和为S n ,若a 2=1,a 3=3,则S 4=( )
A .12
B .10
C .8
D .6
解析:选C.d =a 3-a 2=2,a 1=-1,
S 4=4a 1+4×32
×2=8. 2.在等差数列{a n }中,a 2+a 5=19,S 5=40,则a 10=( )
A .24
B .27
C .29
D .48 解析:选C.由已知⎩⎪⎨⎪⎧ 2a 1+5d =19,
5a 1+10d =40.
解得⎩⎪⎨⎪⎧
a 1=2,d =3.
∴a 10=2+9×3=29. X k b 1 . c o m 3.在等差数列{a n }中,S 10=120,则a 2+a 9=( )
A .12
B .24
C .36
D .48
解析:选B.S 10=10(a 1+a 10)2
=5(a 2+a 9)=120.∴a 2+a 9=24. 4.已知等差数列{a n }的公差为1,且a 1+a 2+…+a 98+a 99=99,则a 3+a 6+a 9+…+a 96+a 99=( )
A .99
B .66
C .33
D .0
解析:选B.由a 1+a 2+…+a 98+a 99=99,
得99a 1+99×982
=99. ∴a 1=-48,∴a 3=a 1+2d =-46.
又∵{a 3n }是以a 3为首项,以3为公差的等差数列.
∴a 3+a 6+a 9+…+a 99=33a 3+33×322
×3 =33(48-46)=66.
5.若一个等差数列的前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列有( )
A .13项
B .12项
C .11项
D .10项
解析:选A.∵a 1+a 2+a 3=34,①
a n +a n -1+a n -2=146,②
又∵a 1+a n =a 2+a n -1=a 3+a n -2,
∴①+②得3(a 1+a n )=180,∴a 1+a n =60.③
S n =(a 1+a n )·n 2
=390.④ 将③代入④中得n =13. 6.在项数为2n +1的等差数列中,所有奇数项的和为165,所有偶数项的和为150,则n 等于( )
A .9
B .10
C .11
D .12
解析:选B.由等差数列前n 项和的性质知S 偶S 奇=n n +1
,即150165=n n +1,∴n =10. 二、填空题
7.设数列{a n }的首项a 1=-7,且满足a n +1=a n +2(n ∈N *),则a 1+a 2+…+a 17=________.
解析:由题意得a n +1-a n =2,
∴{a n }是一个首项a 1=-7,公差d =2的等差数列.
∴a 1+a 2+…+a 17=S 17=17×(-7)+17×162
×2=153. 答案:153
8.已知{a n }是等差数列,a 4+a 6=6,其前5项和S 510,则其公差为d =__________. 解析:a 4+a 6=a 1+3d +a 1+5d =6.①
S 5=5a 1+12
×5×(5-1)d =10.② 由①②得a 1=1,d =12
. 答案:12
9.设S n 是等差数列{a n }的前n 项和,a 12=-8,S 9=-9,则S 16=________. 解析:由等差数列的性质知S 9=9a 5=-9,∴a 5=-1.
又∵a 5+a 12=a 1+a 16=-9,
∴S 16=16(a 1+a 16)2
=8(a 1+a 16)=-72. 答案:-72
三、解答题
10.已知数列{a n }的前n 项和公式为S n =n 2-23n -2(n ∈N *).
(1)写出该数列的第3项;
(2)判断74是否在该数列中.
解:(1)a 3=S 3-S 2=-18.
(2)n =1时,a 1=S 1=-24,
n ≥2时,a n =S n -S n -1=2n -24,
即a n =⎩⎪⎨⎪⎧
-24,n =1,2n -24,n ≥2,
由题设得2n -24=74(n ≥2),解得n =49.
∴74在该数列中.
11.(2010年高考课标全国卷)设等差数列{a n }满足a 3=5,a 10=-9.
(1)求{a n }的通项公式;
(2)求{a n }的前n 项和S n 及使得S n 最大的序号n 的值.
解:(1)由a n =a 1+(n -1)d 及a 3=5,a 10=-9得 ⎩⎪⎨⎪⎧ a 1+2d =5,a 1+9d =-9,可解得⎩⎪⎨⎪⎧
a 1=9,d =-2,
所以数列{a n }的通项公式为a n =11-2n .
(2)由(1)知,S n =na 1+n (n -1)2
d =10n -n 2. 因为S n =-(n -5)2+25,
所以当n =5时,S n 取得最大值.
12.已知数列{a n }是等差数列.
(1)前四项和为21,末四项和为67,且各项和为286,求项数;
(2)S n =20,S 2n =38,求S 3n .
解:(1)由题意知a 1+a 2+a 3+a 4=21,a n -3+a n -2+a n -1+a n =67, 所以a 1+a 2+a 3+a 4+a n -3+a n -2+a n -1+a n =88.
所以a 1+a n =884
=22. 因为S n =n (a 1+a n )2
=286,所以n =26. (2)因为S n ,S 2n -S n ,S 3n -S 2n 成等差数列,
所以S 3n =3(S 2n -S n )=54.