HCPL-M453中文资料

合集下载

HCPL-2530中文资料

HCPL-2530中文资料
元器件交易网
Single-channel: 6N135, 6N136 , HCPL-2503, HCPL-4502 Dual-Channel: HCPL-2530, HCPL-2531 High Speed Transistor Optocouplers
July 2005
Single-channel: 6N135, 6N136, HCPL-2503, HCPL-4502 Dual-Channel: HCPL-2530, HCPL-2531 High Speed Transistor Optocouplers
Features
■ ■ ■ ■ ■ ■ High speed-1 MBit/s Superior CMR-10 kV/µs Dual-Channel HCPL-2530/HCPL-2531 Double working voltage-480V RMS CTR guaranteed 0-70°C U.L. recognized (File # E90700)
8 VCC
+ 1 V
F1
8 VCC
8
+ 2 7 VB
_
2
7 V01
1
VF _ 3 6 VO _ 3 6 V02
VF2 N/C 4 5 GND + 4 5 GND
8 1
8 1
6N135, 6N136, HCPL-2503, HCPL-4502 Pin 7 is not connected in Part Number HCPL-4502 HCPL-2530/HCPL-2531
Logic low output voltage output voltage
(IF = 16 mA, IO = 1.1 mA) (VCC = 4.5 V, TA =25°C) (IF = 16 mA, IO = 3 mA) (VCC = 4.5 V, TA =25°C) (IF = 16 mA, IO = 0.8 mA) (VCC = 4.5 V) (IF = 16 mA, IO = 2.4 mA) (VCC = 4.5 V)

HCPL-0530中文资料

HCPL-0530中文资料

These dual channel optocouplers are available in an 8 Pin DIP and in an industry standard SO-8 package. The following is a cross reference table listing the 8 Pin DIP part number and the electrically equivalent SO-8 part number.SO-88 Pin DIP PackageHCPL-2530HCPL-0530HCPL-2531HCPL-0531HCPL-4534HCPL-0534The SO-8 does not require“through holes” in a PCB. Thispackage occupies approximatelyone-third the footprint area of thestandard dual-in-line package.The lead profile is designed to becompatible with standard surfacemount processes.The HCPL-2530/0530 is for use inTTL/CMOS, TTL/LSTTL or widebandwidth analog applications.Current transfer ratio (CTR) forthe HCPL-2530/0530 is 7%minimum at I F = 16 mA.The HCPL-2531/0531 is designedfor high speed TTL/TTLapplications. A standard 16 mATTL sink current through theinput LED will provide enoughoutput current for 1 TTL load anda 5.6 kΩ pull-up resistor. CTR ofthe HCPL-2531/0531 is 19%minimum at I F = 16 mA.The HCPL-4534/0534 is anHCPL-2531/0531 with increasedcommon mode transient immunityof 15,000 V/µs minimum atV CM=1500 V guaranteed.*Technical data for these products are on separate HP publications.Ordering InformationSpecify Part Number followed by Option Number (if desired).Example:HCPL-2531#XXX020 = UL 5000 V rms/1 Minute Option*300 = Gull Wing Surface Mount Option†500 = Tape and Reel Packaging OptionOption data sheets available. Contact your Hewlett-Packard sales representative or authorized distributor for information.*For HCPL-2530/1 and HCPL-4534 only.†Gull wing surface mount option applies to through hole parts only.SchematicV CCV O1V O2GNDUSE OF A 0.1 µF BYPASS CAPACITOR CONNECTEDBETWEEN PINS 5 AND 8 IS RECOMMENDED.Package Outline Drawings8-Pin DIP Package (HCPL-2530/2531/4534)8-Pin DIP Package with Gull Wing Surface Mount Option 300 (HCPL-2530/2531/4534)(0.025 ± 0.005)MAX.(0.100)BSCDIMENSIONS IN MILLIMETERS (INCHES).LEAD COPLANARITY = 0.10 mm (0.004 INCHES).+ 0.076 - 0.051+ 0.003) - 0.002)DATE CODEDIMENSIONS IN MILLIMETERS AND (INCHES).OPTION CODE*ULRECOGNITION0.254+ 0.076- 0.051(0.010+ 0.003)- 0.002)* MARKING CODE LETTER FOR OPTION NUMBERS."L" = OPTION 020OPTION NUMBERS 300 AND 500 NOT MARKED.Small Outline SO-8 Package (HCPL-0530/0531/0534)Note: Use of nonchlorine activiated fluxes is highly recommended.240TIME – MINUTEST E M P E R A T U R E – °C220200180160140120100806040200260Solder Reflow Temperature Profile (HCPL-0530/0531/0534 and Gull Wing Surface Mount Option Parts)Regulatory InformationThe devices contained in this data sheet have been approved by the following organizations:ULRecognized under UL 1577,Component Recognition Program, File E55361.CSAApproved under CSA Component Acceptance Notice #5, File CA 88324.0.228 ± 0.025 (0.012)MIN.5.207 ± 0.254 (0.205 ± 0.010) DIMENSIONS IN MILLIMETERS (INCHES).LEAD COPLANARITY = 0.10 mm (0.004 INCHES) MAX.*Absolute Maximum RatingsParameterSymbol DeviceMin.Max.Units NoteStorage Temperature T S -55125°C Operating TemperatureT A -55100°C Average Forward Input Current I F(AVG)25mA (each channel)Peak Forward Input Current (each channel)I F(PEAK)50mA (50% duty cycle, 1 ms pulse width)Peak Transient Input Current (each channel)I F(TRANS)1A (≤1 µs pulse width, 300 pps)Reverse LED Input Voltage (each channel)V R 5V Input Power Dissipation (each channel)P IN 45mW Average Output Current (each channel)I O(AVG)8mA Peak Output Current I O(PEAK)16mA Supply Voltage (Pin 8-5)V CC -0.530V Output Voltage (Pins 7-5, 6-5)V O -0.520V Output Power Dissipation (each channel)P O35mW13Lead Solder Temperature (Through-Hole Parts Only)1.6 mm below seating plane, 10 seconds T LS 8 Pin DIP 260°CReflow Temperature ProfileT RPSO-8 and Option 300Insulation and Safety Related Specifications8-Pin DIP (300 Mil)SO-8Parameter Symbol Value Value Units ConditionsMinimum External L(101)7.14.9mm Measured from input terminals to output toAir Gap (External to output terminals, shortest distance through Clearance)air.Minimum External L(102)7.4 4.8mm Measured from input terminals to outputTracking (External terminals, shortest distance path along body.Creepage)Minimum Internal 0.080.08mmThrough insulation distance, conductor to Plastic Gapconductor, usually the direct distance(Internal Clearance)between the photoemitter and photodetector inside the optocoupler cavity.Minimum Internal NA NA mmMeasured from input terminals to output Tracking (Internal terminals, along internal cavity.Creepage)Tracking Resistance CTI 200200VoltsDIN IEC 112/VDE 0303 Part 1(Comparative Tracking Index)Isolation GroupIIIa IIIa Material Group (DIN VDE 0110, 1/89, Table 1)Option 300 - surface mount classification is Class A in accordance with CECC 00802.See Package Outline Drawings sectionElectrical Specifications (DC)Over recommended temperature (T A = 0°C to 70°C) unless otherwise specified. See note 9.*All typicals at T A = 25°C.Switching Specifications (AC)Over recommended temperature (T A = 0°C to 70°C), V CC = 5 V, I F = 16 mA unless otherwise specified.DeviceParameter Sym.HCPL-Min.Typ.*Max.Units Test Conditions Fig.Note Propagation t PHL2530/05300.2 1.5µs T A = 25°C R L = 4.1 kΩ5, 9,6, 7 Delay Time 2.011to Logic Low2531/0531/0.20.8T A = 25°C R L = 1.9 kΩat Output4534/0534 1.0Propagation t PLH2530/0530 1.3 1.5µs T A = 25°C R L = 4.1 kΩ5, 9,6, 7 Delay Time 2.011High to Logic2531/0531/0.60.8T A = 25°C R L = 1.9 kΩat Output4534/0534 1.0Common|CM H|2530/0530110kV/µs R L = 4.1 kΩI F = 0 mA,105, 6, Mode Transient2531/0531110R L = 1.9 kΩT A = 25°C,7 Immunity at4534/05341530R L = 1.9 kΩV CM = 10 V p-pLogic HighLevel OutputCommon|CM L|2530/0530110kV/µs R L = 4.1 kΩI F = 0 mA,105, 6, Mode Transient2531/0531110R L = 1.9 kΩT A = 25°C,7 Immunity at4534/05341530R L = 1.9 kΩV CM = 10 V p-pLogic LowLevel OutputBandwidth BW3MHz R L = 100 kΩ7, 8*All typicals at T A = 25°C.Package Characteristics*All typicals at T A = 25°C.**The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous voltage rating. For the continuous voltage rating refer to the VDE 0884 Insulation Characteristics Table (if applicable), your equipment level safety specification or HP Application Note 1074 entitled “Optocoupler Input-Output Endurance Voltage,”publication number 5963-2203E.Notes:1. Each channel.2. CURRENT TRANSFER RATIO is defined as the ratio of outputcollector current, I O , to the forward LED input current, I F , times 100%.3. Device considered a two-terminal device: pins 1, 2, 3, and 4 shorted together and pins 5, 6, 7, and 8shorted together.4. Measured between pins 1 and 2shorted together, and pins 3 and 4shorted together.5. Common mode transient immunity in a Logic High level is the maximum tolerable (positive) dV CM /dt on the rising edge of the common mode pulse, V CM , to assure that the output will remain in a Logic High state (i.e.,V O > 2.0 V). Common mode transient immunity in a Logic Low level is the maximum tolerable (negative)dV CM /dt on the falling edge of the common mode pulse signal, V CM , to assure that the output will remain in a Logic Low state (i.e., V O < 0.8 V).6. The 1.9 k Ω load represents 1 TTL unit load of 1.6 mA and the 5.6 k Ωpull-up resistor.7. The 4.1 k Ω load represents 1 LSTTL unit load of 0.36 mA and the 6.1 k Ωpull-up resistor.8. The frequency at which the ac output voltage is 3 dB below the low frequency asymptote.9. Use of a 0.1 µF bypass capacitor connected between pins 5 and 8 is recommended.10. In accordance with UL 1577, eachoptocoupler is proof tested by applying an insulation test voltage ≥3000 V rms for 1 second (leakage detection current limit, I I-O ≤5 µA).11. In accordance with UL 1577, eachoptocoupler is proof tested by applying an insulation test voltage ≥6000 V rms for 1 second (leakage detection current limit, I I-O ≤5 µA).12. Measured between the LED anode andcathode shorted together and pins 5through 8 shorted together.13. Derate linearly above 90°C free-airtemperature at a rate of 3.0 mW/°C for the SOIC-8 package.Figure 1. DC and Pulsed TransferCharacteristics.Figure 2. Current Transfer Ratio vs.Input Current.Figure 3. Input Current vs. Forward Voltage.V O – OUTPUT VOLTAGE – VI O – O U T P U T C U R R E N T – m A1051.51.00.50.1N O R M A L I Z E D C U R R E N T T R A N S F E R R A T I OI F – INPUT CURRENT – mA V F – FORWARD VOLTAGE – VOLTS10010I F – F O R W A R D C U R R E N T – m AFigure 4. Current Transfer Ratio vs.Temperature.Figure 5. Propagation Delay vs.Temperature.Figure 6. Logic High Output Current vs.Temperature.Figure 8. Frequency Response.Figure 7. Small-Signal Current Transfer Ratio vs. Quiescent Input Current.T A – TEMPERATURE – °CI O H – L O G I C H I G H O U T P U T C U R R E N T – n A10-210-110010+110+210+310+4T – TEMPERATURE – °C A t – P R O P A G A T I O N D E L AY – n sP f – FREQUENCY – MHzN O R M A L I Z E D R E S P O N S E –d B0.25 Vp-p ac+5 VV O1.00.90.80.70.6N O RM A L I Z E D C U R R E N T T R A N S F E R R A T I OT A – TEMPERATURE – °C∆ I F ∆ I O – S M A L L S I G N A L C U R R E N T T R A N S F E R R A T I O0.100.200.30I F – QUIESCENT INPUT CURRENT – mA111.0R L – LOAD RESISTANCE – k Ωt P – P R O P A G A T I O N D E L A Y – µsFigure 11. Propagation Delay Time vs. Load Resistance.Figure 10. Test Circuit for Transient Immunity and Typical Waveforms.Figure 9. Switching Test Circuit.O F= 1.5 pFt V I F OV 5 VOLV OV SWITCH AT A: I = 0 mA F SWITCH AT B: I = 16 mA FOFor technical assistance or the location of your nearest Hewlett-Packard sales office, distributor or representative call: Americas/Canada: 1-800-235-0312 or 408-654-8675Far East/Australasia: Call your local HP sales office.Japan: (81 3) 3335-8152Europe: Call your local HP sales office. Data subject to change.Copyright © 1998 Hewlett-Packard Co. Obsoletes 5966-1272EPrinted in U.S.A. 5968-1090E (7/98)。

6N136数据手册

6N136数据手册

PACKAGING INFORMATIONOrderable DeviceStatus (1)Package Type Package DrawingPins Package Qty Eco Plan (2)Lead/Ball FinishMSL Peak Temp (3)6N135OBSOLETE PDIP N 8TBD Call TI Call TI 6N136OBSOLETE PDIP N 8TBD Call TI Call TI HCPL4502OBSOLETEPDIPN8TBDCall TICall TI(1)The marketing status values are defined as follows:ACTIVE:Product device recommended for new designs.LIFEBUY:TI has announced that the device will be discontinued,and a lifetime-buy period is in effect.NRND:Not recommended for new designs.Device is in production to support existing customers,but TI does not recommend using this part in a new design.PREVIEW:Device has been announced but is not in production.Samples may or may not be available.OBSOLETE:TI has discontinued the production of the device.(2)Eco Plan -The planned eco-friendly classification:Pb-Free (RoHS)or Green (RoHS &no Sb/Br)-please check /productcontent for the latest availability information and additional product content details.TBD:The Pb-Free/Green conversion plan has not been defined.Pb-Free (RoHS):TI's terms "Lead-Free"or "Pb-Free"mean semiconductor products that are compatible with the current RoHS requirements for all 6substances,including the requirement that lead not exceed 0.1%by weight in homogeneous materials.Where designed to be soldered at high temperatures,TI Pb-Free products are suitable for use in specified lead-free processes.Green (RoHS &no Sb/Br):TI defines "Green"to mean Pb-Free (RoHS compatible),and free of Bromine (Br)and Antimony (Sb)based flame retardants (Br or Sb do not exceed 0.1%by weight in homogeneous material)(3)MSL,Peak Temp.--The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications,and peak solder temperature.Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided.TI bases its knowledge and belief on information provided by third parties,and makes no representation or warranty as to the accuracy of such information.Efforts are underway to better integrate information from third parties.TI has taken and continues totake reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.TI and TI suppliers consider certain information to be proprietary,and thus CAS numbers and other limited information may not be available for release.In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s)at issue in this document sold by TI to Customer on an annual basis.PACKAGE OPTION ADDENDUM8-Apr-2005Addendum-Page 1IMPORTANT NOTICETexas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. T esting and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. T o minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions:Products ApplicationsAmplifiers Audio /audioData Converters Automotive /automotiveDSP Broadband /broadbandInterface Digital Control /digitalcontrolLogic Military /militaryPower Mgmt Optical Networking /opticalnetwork Microcontrollers Security /securityTelephony /telephonyVideo & Imaging /videoWireless /wirelessMailing Address:Texas InstrumentsPost Office Box 655303 Dallas, Texas 75265Copyright 2005, Texas Instruments Incorporated。

A4503

A4503

Single Channel, High Speed Optocouplers Technical DataFeatures• 15 kV/µs Minimum Common Mode Transient Immunity at V CM = 1500 V (4503/0453)• High Speed: 1 Mb/s • TTL Compatible• Available in 8-Pin DIP, SO-8,Widebody Packages • Open Collector Output • Guaranteed Performance from Temperature: 0°C to 70°C• Safety ApprovalUL Recognized – 3750 V rms for 1 minute (5000 V rms for 1 minute for HCNW and Option 020 devices) per UL1577CSA ApprovedIEC/EN/DIN EN 60747-5-2Approved–V IORM = 630 V peak for HCPL-4503#060–V IORM = 1414 V peak for HCNW devices• Dual Channel VersionAvailable (253X/4534/053X/0534)• MIL-PRF-38534 Hermetic Version Available (55XX/65XX/4N55)Applications• High Voltage Insulation • Video Signal Isolation• Power Transistor Isolation in Motor Drives • Line Receivers• Feedback Element in Switched Mode Power Supplies• High Speed Logic Ground Isolation – TTL/TTL, TTL/CMOS, TTL/LSTTL• Replaces Pulse Transformers • Replaces SlowPhototransistor Isolators • Analog Signal Ground IsolationDescriptionThese diode-transistor optocoup-lers use an insulating layerbetween a LED and an integrated photodetector to provide elec-trical insulation between input and output. Separate connections for the photodiode bias and output-transistor collector increase the speed up to ahundred times that of a conven-tional phototransistor coupler by reducing the base-collector capacitance.Functional Diagram6N135/6HCNW135/6HCNW4502/3HCPL-2502HCPL-0452/3HCPL-0500/1HCPL-4502/3CAUTION: It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD.A 0.1 µF bypass capacitor must be connected between pins 5 and 8.V CC V B V O GND** NOTE: FOR 4502/3, 0452/3,PIN 7 IS NOT CONNECTED.TRUTH TABLE (POSITIVE LOGIC)LEDONOFFV O LOW HIGHGNDV CCOANODECATHODEB* NOTE: FOR HCPL-4502/-3, HCPL-0452/3, HCNW4502/3, PIN 7 IS NOT CONNECTED.Ordering InformationSpecify Part Number followed by Option Number (if desired).Example:HCPL-4503#XXXX020 =UL 5000 V rms/1 Minute Option*060 =IEC/EN/DIN EN 60747-5-2 V IORM = 630 V peak Option**300 =Gull Wing Surface Mount Option†500 =Tape and Reel Packaging Option XXXE = Lead Free OptionOption data sheets available. Contact your Agilent sales representative or authorized distributor for information.*For 6N135/6 and HCPL-4502/3 only.**For HCPL-4503 only. Combination of Option 020 and Option 060 is not available.†Gull wing surface mount option applies to through hole parts only.*Technical data for these products are on separate Agilent publications.†Pin 7, transistor base, is not connected.output current for 1 TTL load and a 5.6 k Ω pull-up resistor. CTR for these devices is 19% minimum at I F =16mA.The HCPL-4502, HCPL-0452,and HCNW4502 provide the electrical and switching performance of the 6N136,HCPL-0501, and HCNW136 with increased ESD protection.The HCPL-4503, HCPL-0453,and HCNW4503 are similar to the HCPL-4502, HCPL-0452, and HCNW4502 optocouplers but have increased common mode transient immunity of 15 kV/µs minimum at V CM =1500V guaranteed.These single channel optocoup-lers are available in 8-Pin DIP,SO-8 and Widebody package configurations.The 6N135, HCPL-0500, and HCNW135 are for use in TTL/CMOS, TTL/LSTTL or wide bandwidth analog applications.Current transfer ratio (CTR) for these devices is 7% minimum at I F =16mA.The 6N136, HCPL-2502,HCPL-0501, and HCNW136 are designed for high speed TTL/TTL applications. A standard 16 mA TTL sink current through the input LED will provide enoughRemarks: The notation “#” is used for existing products, while (new) products launched since 15th July 2001 and lead free option will use “-”Package Outline Drawings8-Pin DIP Package (6N135/6, HCPL-4502/3, HCPL-2502)8-Pin DIP Package with Gull Wing Surface Mount Option 300 (6N135/6, HCPL-4502/3)0.254+ 0.076- 0.051(0.010+ 0.003)- 0.002)DIMENSIONS IN MILLIMETERS AND (INCHES).*MARKING CODE LETTER FOR OPTION NUMBERS "L" = OPTION 020"V" = OPTION 060OPTION NUMBERS 300 AND 500 NOT MARKED.NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.(0.025 ± 0.005)(0.100)BSCDIMENSIONS IN MILLIMETERS (INCHES).LEAD COPLANARITY = 0.10 mm (0.004 INCHES).NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.+ 0.076- 0.051+ 0.003)- 0.002)Small Outline SO-8 Package (HCPL-0500/1, HCPL-0452/3)8-Pin Widebody DIP Package (HCNW135/6, HCNW4502/3)(0.012)MIN.5.207 ± 0.254 (0.205 ± 0.010)DIMENSIONS IN MILLIMETERS (INCHES).LEAD COPLANARITY = 0.10 mm (0.004 INCHES) MAX.*1.78 ± 0.15NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.0.254+ 0.076- 0.0051+ 0.003)- 0.002)8-Pin Widebody DIP Package with Gull Wing Surface Mount Option 300 (HCNW135/6,HCNW4502/3)Solder Reflow Temperature ProfileTIME (SECONDS)T E M P E R A T U R E (°C )ROOM1.78 ± 0.15MAX.BSCDIMENSIONS IN MILLIMETERS (INCHES).LEAD COPLANARITY = 0.10 mm (0.004 INCHES).NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.Regulatory InformationThe devices contained in this data sheet have been approved by the following organizations:ULRecognized under UL 1577,Component Recognition Program, File E55361.CSAApproved under CSA Component Acceptance Notice #5, File CA 88324.Insulation and Safety Related Specifications8-Pin DIP Widebody (300 Mil)SO-8(400 Mil)Parameter Symbol Value Value Value Units ConditionsMinimum External L(101)7.14.99.6mmMeasured from input terminals Air Gap (External to output terminals, shortest Clearance)distance through air.Minimum External L(102)7.4 4.810.0mmMeasured from input terminals Tracking (External to output terminals, shortest Creepage)distance path along body.Minimum Internal 0.080.08 1.0mmThrough insulation distance,Plastic Gapconductor to conductor, usually (Internal Clearance)the direct distance between the photoemitter and photodetector inside the optocoupler cavity.Minimum Internal NA NA 4.0mmMeasured from input terminals Tracking (Internal to output terminals, along Creepage)internal cavity.Tracking Resistance CTI 200200200VoltsDIN IEC 112/VDE 0303 Part 1(Comparative Tracking Index)Isolation GroupIIIa IIIa IIIaMaterial Group(DIN VDE 0110, 1/89, Table 1)Option 300 - surface mount classification is Class A in accordance with CECC 00802.IEC/EN/DIN EN 60747-5-2Approved underIEC 60747-5-2:1997 + A1:2002EN 60747-5-2:2001 + A1:2002DIN EN 60747-5-2 (VDE 0884 Teil 2):2003-01(HCNW and Option 060 only)Recommended Pb-Free IR Profile°C of ACTUAL NOTES:THE TIME FROM 25 °C to PEAK TEMPERATURE = 8 MINUTES MAX.T smax = 200 °C, T smin = 150 °CIEC/EN/DIN EN 60747-5-2 Insulation Related Characteristics(HCPL-4503 OPTION 060 ONLY)IEC/EN/DIN EN 60747-5-2 Insulation Related Characteristics (HCNW135/6, HCNW4502/3 ONLY)*Refer to the front of the optocoupler section of the current catalog, under Product Safety Regulations section IEC/EN/DIN EN60747-5-2, for a detailed description.Note: Isolation characteristics are guaranteed only within the safety maximum ratings which must be ensured by protective circuits in application.*Data has been registered with JEDEC for the 6N135/6N136.Electrical Specifications (DC)Over recommended temperature (T A = 0°C to 70°C) unless otherwise specified. See note 13.Parameter Symbol Device Min.Typ.**Max.Units Test Conditions Fig.Note Current CTR*6N13571850%T A = 25°C V O = 0.4 V I F = 16 mA,1, 2,5, 11 Transfer Ratio HCPL-0500V CC = 4.5 V4HCNW135519V O = 0.5 VHCPL-25021522T A = 25°C V O = 0.4 V1525V O = 0.5 V6N136192450T A = 25°C V O = 0.4 VHCPL-4502/3HCPL-05011525V O = 0.5 VHCPL-0452/3HCNW136HCNW4502/3Logic Low V OL6N1350.10.4V T A = 25°C I O = 1.1 mA I F = 16 mA,Output Voltage HCPL-0500V CC = 4.5 VHCNW1350.10.5I O = 0.8 mA6N1360.10.4T A = 25°C I O = 3.0 mAHCPL-2502HCPL-4502/30.10.5I O = 2.4 mAHCPL-0501HCPL-0452/3HCNW136HCNW4502/3Logic High I OH*0.0030.5µA T A = 25°C V O = V CC = 5.5 V I F = 0 mA7Output Current0.011T A = 25°C V O = V CC = 15 V50V O = V CC = 15 VLogic Low I CCL50200µA I F = 16 mA, V O = Open, V CC = 15 V13 Supply CurrentLogic High I CCH*0.021µA T A = 25°C I F = 16 mA, V O = Open,13 Supply Current2V CC = 15 VInput Forward V F*8-Pin DIP 1.5 1.7V T A = 25°C I F = 16 mA3Voltage SO-8 1.8Widebody 1.45 1.68 1.85T A = 25°C I F = 16 mA1.35 1.95Input Reverse BV R*8-Pin DIP5V I R = 10 µABreakdown SO-8Voltage Widebody3I R = 100 µATemperature∆V F/8-Pin DIP-1.6mV/°C I F = 16 mACoefficient of∆T A SO-8Forward Voltage Widebody-1.9Input C IN8-Pin DIP60pF f = 1 MHz, V F = 0 VCapacitance SO-8Widebody90Transistor DC h FE8-Pin DIP150V O = 5 V, I O = 3 mACurrent Gain SO-8130V O = 0.4 V, I B = 20 µAWidebody180V O = 5 V, I O = 3 mA160V O = 0.4 V, I B = 20 µA*For JEDEC registered parts.**All typicals at T A = 25°C.Parameter Sym.Device Min.Typ.**Max.Units Test ConditionsFig.Note Propagation t PHL *6N1350.2 1.5µs T A = 25°C R L = 4.1 k Ω5, 6,8, 9HCPL-0500 2.011HCNW1356N1360.20.8T A = 25°C R L = 1.9 k ΩHCPL-2502HCPL-4502/3HCPL-0501HCPL-0452/3 1.0HCNW136HCNW4502/3Propagation t PLH *6N135 1.3 1.5µsT A = 25°C R L = 4.1 k Ω5, 6,8, 9HCPL-0500 2.011HCNW1356N1360.60.8T A = 25°C R L = 1.9 k ΩHCPL-2502HCPL-4502/3HCPL-0501HCPL-0452/3 1.0HCNW136HCNW4502/3Common Mode |CM H |6N1351kV/µs R L = 4.1 k ΩI F = 0 mA, T A = 25°C,127, 8,HCPL-0500V CM = 10 V p-p 9HCNW135C L = 15 pF6N1361R L = 1.9 k ΩHCPL-2502HCPL-4502HCPL-0501HCPL-0452HCNW4502HCPL-45031530R L = 1.9 k ΩI F = 0 mA, T A = 25°C,HCPL-0453V CM = 1500 V p-p ,HCNW4503C L = 15 pFCommon Mode |CM L |6N1351kV/µs R L = 4.1 k ΩI F = 16 mA, T A = 25°C,127, 8,HCPL-0500V CM = 10 V p-p 9HCNW135C L = 15 pF6N1361R L = 1.9 k ΩHCPL-2502HCPL-4502HCPL-0501HCPL-0452HCNW4502HCPL-45031530R L = 1.9 k ΩI F = 16 mA, T A = 25°C,HCPL-0453V CM = 1500 V p-p ,HCNW4503C L = 15 pFBandwidth BW 6N135/69MHzSee Test Circuit8, 1010HCPL-2502HCPL-0500/1HCNW135/611*For JEDEC registered parts.**All typicals at T A = 25°C.Switching Specifications (AC)Over recommended temperature (T A = 0°C to 70°C), V CC = 5 V, I F = 16 mA unless otherwise specified.Delay Time to Logic Low at OutputDelay Time to Logic High at OutputTransient Immunity at Logic High Level OutputTransient Immunity at Logic Low Level OutputPackage CharacteristicsOver recommended temperature (T A = 0°C to 70°C) unless otherwise specified.*All typicals at T A = 25°C.**The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous voltage rating. For the continuous voltage rating refer to the IEC/EN/DIN EN 60747-5-2 Insulation Related Characteristics Table (if applicable), your equipment level safety specification or Agilent Application Note 1074 entitled “Optocoupler Input-Output Endurance Voltage,” publication number 5963-2203E.Notes:1.Derate linearly above 70°C free-air temperature at a rate of 0.8 mA/°C (8-Pin DIP).Derate linearly above 85°C free-air temperature at a rate of 0.5 mA/°C (SO-8).2.Derate linearly above 70°C free-air temperature at a rate of 1.6 mA/°C (8-Pin DIP).Derate linearly above 85°C free-air temperature at a rate of 1.0 mA/°C (SO-8).3.Derate linearly above 70°C free-air temperature at a rate of 0.9 mW/°C (8-Pin DIP).Derate linearly above 85°C free-air temperature at a rate of 1.1 mW/°C (SO-8).4.Derate linearly above 70°C free-air temperature at a rate of 2.0 mW/°C (8-Pin DIP).Derate linearly above 85°C free-air temperature at a rate of 2.3 mW/°C (SO-8).5.CURRENT TRANSFER RATIO in percent is defined as the ratio of output collector current, I O, to the forward LED input current, I F,times 100.6.Device considered a two-terminal device: Pins 1, 2, 3, and 4 shorted together and Pins 5, 6, 7, and 8 shorted together.mon mode transient immunity in a Logic High level is the maximum tolerable (positive) dV CM/dt on the leading edge of thecommon mode pulse signal, V CM, to assure that the output will remain in a Logic High state (i.e., V O > 2.0 V). Common mode transient immunity in a Logic Low level is the maximum tolerable (negative) dV CM/dt on the trailing edge of the common mode pulse signal, V CM, to assure that the output will remain in a Logic Low state (i.e., V O < 0.8 V).8.The 1.9 kΩ load represents 1 TTL unit load of 1.6 mA and the 5.6 kΩ pull-up resistor.9.The 4.1 kΩ load represents 1 LSTTL unit load of 0.36 mA and 6.1 kΩ pull-up resistor.10.The frequency at which the ac output voltage is 3 dB below its mid-frequency value.11.The JEDEC registration for the 6N136 specifies a minimum CTR of 15%. Agilent guarantees a minimum CTR of 19%.12.See Option 020 data sheet for more information.e of a 0.1 µf bypass capacitor connected between pins 5 and 8 is recommended.14.In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage ≥ 4500 V rms for 1 second(leakage detection current limit, I I-O≤ 5 µA). This test is performed before the 100% Production test shown in the IEC/EN/DIN EN 60747-5-2 Insulation Related Characteristics Table if applicable.15.In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage ≥ 6000 V rms for 1 second(leakage detection current limit, I I-O≤ 5 µA). This test is performed before the 100% Production test shown in the IEC/EN/DIN EN 60747-5-2 Insulation Related Characteristics Table if applicable.16.This rating is equally validated by an equivalent ac proof test.Figure 2. Current Transfer Ratio vs. Input Current.Figure 3. Input Current vs. Forward Voltage.Figure 1. DC and Pulsed Transfer Characteristics.105V O – OUTPUT VOLTAGE – VI O – O U T P U T C U R R E N T – m A8 PIN DIP, SO-8128V O – OUTPUT VOLTAGE – VI O – O U T P U T C U R R E N T – m A416WIDEBODY1.51.00.5N O R M A L I Z E D C U R R E N T T R A N S F E R R A T I OI F – INPUT CURRENT – mA8 PIN DIP, SO-80N O R M A L I Z E D C U R R E N T T R A N S F E R R A T I OI F – INPUT CURRENT – mA1.50.51.0WIDEBODYV F – FORWARD VOLTAGE –VOLTS I F – F O R W A R D C U R R E N T – m A8 PIN DIP, SO-8V F –FORWARD VOLTAGE – VOLTS1000100101.00.10.001I F – F O R W A R D C U R R E N T – m AWIDEBODYFigure 6. Propagation Delay Time vs. Load Resistance.Figure 5. Propagation Delay vs. Temperature.Figure 4. Current Transfer Ratio vs. Temperature.1.00.90.80.70.6N O R M A L I Z E D C U R R E N T T R A N S F E R R A T I OT A – TEMPERATURE – °C 8 PIN DIP, SO-81.11.00.90.80.70.660N O R M A L I Z E D C U R R E N T T R A N S F E R R A T I OT A – TEMPERATURE – °C0.50.4WIDEBODY1.0R L – LOAD RESISTANCE – (k Ω)t P – P R O P A G A T I O N D E L A Y – µs8 PIN DIP, SO-8R L – LOAD RESISTANCE – (k Ω)t P – P R O P A G A T I O N D E L A Y – µs6.04.01.00.60.40.2WIDEBODY150010005000t p – P R O P A G A T I O N D E L A Y – n sT A – TEMPERATURE – °C 8 PIN DIP, SO-81000800600400200T A – TEMPERATURE – °CWIDEBODYt p – P R O P A G A T I O N D E L A Y – n sFigure 9. Thermal Derating Curve, Dependence of Safety Limiting Value with Case Temperature per IEC/EN/DIN EN 60747-5-2.Figure 8. Small-Signal Current Transfer Ratio vs. Quiescent Input Current.Figure 7. Logic High Output Current vs. Temperature.T A – TEMPERATURE – °C10+410101001010+210+3I O H – L O G I C H I G H O U T P U T C U R R E N T – n A8 PIN DIP, SO-8I O H– L O G I C H I G H O U T P U T C U R R E N T – n AT A – TEMPERATURE – °C10101010WIDEBODY∆ I F∆I O – S M A L L S I G N A L C U R R E N T T R A N S F E R R A T I O I F – QUIESCENT INPUT CURRENT – mA 8 PIN DIP, SO-80.30∆ I F ∆ I O– S M A L L S I G N A L C U R R E N T T R A N S F E R R A T I OI F – QUIESCENT INPUT CURRENT – mAWIDEBODYO U T P U TP O W E R – P S , I N P U T C U R R E N T – I ST S – CASE TEMPERATURE – °C O U T P U T P OW E R – P S , I N P U T C U R R E N T – I S0T S – CASE TEMPERATURE – °C1000400600800200100300500700900Figure 10. Frequency Response.HCNW135/6HCNW135/60.11.010100-20-15-10-5+5T A = 25 °Cf - FREQUENCY - MHzN O R M A L I Z E D R E S P O N S E - d B6N135/6, HCPL-0500/1, HCPL-2502V TYPICAL I = 9 mA FO6N135/6, HCPL-0500/1, HCPL-2502Figure 12. Test Circuit for Transient Immunity and Typical Waveforms.Figure 11. Switching Test Circuit.OF= 1.5 µFt V I F OVOV O/semiconductorsFor product information and a complete list ofdistributors, please go to our web site.For technical assistance call:Americas/Canada: +1 (800) 235-0312 or (916) 788-6763Europe: +49 (0) 6441 92460China: 10800 650 0017Hong Kong: (+65) 6756 2394India, Australia, New Zealand: (+65) 6755 1939Japan: (+81 3) 3335-8152 (Domestic/Interna-tional), or 0120-61-1280 (Domestic Only)Korea: (+65) 6755 1989Singapore, Malaysia, Vietnam, Thailand,Philippines, Indonesia: (+65) 6755 2044Taiwan: (+65) 6755 1843Data subject to change.Copyright © 2004 Agilent Technologies, Inc.Obsoletes 5989-0305EN December 20, 20045989-2112EN。

453 维修手册

453 维修手册

453 维修手册一、引言本维修手册是为453设备的用户和维修人员编写的,提供了设备日常维护、故障排除、高级维修技术等方面的指导和建议。

通过阅读本手册,您将能够更好地理解并操作453设备,同时掌握常见的维修技能和方法,以确保设备的正常运行和使用寿命。

二、设备概述453设备是一种高效、可靠的机械设备,广泛应用于各种工业领域。

本设备具有较高的精度和稳定性,能够满足各种生产需求。

为了更好地了解设备的结构和功能,请参阅设备附带的用户手册或相关技术文档。

三、维修工具与备件在进行维修时,您需要准备以下工具和备件:1. 螺丝刀:用于拆卸和安装设备的外壳和内部组件。

2. 扳手:用于固定和拆卸螺栓和螺母。

3. 润滑油:用于设备的润滑,保持设备运转顺畅。

4. 备件:根据设备的故障情况,可能需要更换的零部件,如轴承、密封圈等。

四、日常维护流程为了确保设备的正常运行和使用寿命,建议您按照以下日常维护流程进行操作:1. 定期检查设备的运行情况,如声音、温度、振动等,确保设备正常运转。

2. 定期清洁设备表面,保持设备整洁。

3. 检查设备的紧固件是否松动,如螺栓、螺母等,如有需要应及时固定。

4. 检查设备的润滑情况,定期加注润滑油,保持设备润滑良好。

5. 定期更换易损件,如密封圈、滤芯等,以保证设备的性能和使用寿命。

五、常见故障与排除在使用过程中,设备可能会出现各种故障。

以下是一些常见的故障与排除方法:1. 设备无法启动:检查电源是否正常,检查设备连接是否牢固。

如有问题,请及时沟通专业人员进行检查和维修。

2. 设备运行异常:可能是由于零部件损坏、润滑不足等原因引起的。

您可以检查设备的零部件是否损坏,同时加注润滑油,保持设备润滑良好。

如果问题无法解决,请及时沟通专业人员进行检查和维修。

3. 设备精度下降:可能是由于设备长时间使用或维护不当引起的。

您可以对设备进行校准和调整,以确保其精度。

如果问题无法解决,请及时沟通专业人员进行检查和维修。

IPM专用光耦4504

IPM专用光耦4504
安捷伦 IPM 专用光耦数据手册
高速,高共模比的 IPM 接口专用光耦
HCPL-4504
产品特点:
极短的寄生延时适合于 IPM 使用 瞬时共模为 15KV/uS IPM 专用的电气隔离 TTL 兼容 开路输出 真值表
发光管状态 脚 6 输出状态

低电平

高电平
原理图
应用:
变频及逆变器电路中使用 IPM(智能功率模块)之接口信号的隔离。瞬间共模比大于
变频设计中的死区时间和寄生延时的说明:
该款产品提供了一些规格来帮助工程师“最小化死区时间”,这就是“寄生延时”误差规格。 (公式:tPLH-PHL)该公式不仅定义了光耦需要多少时间延时来防止直通短路,而且还能 设置最佳死区状态。
Tel: 021-64764189 Fax: 021-64764248
上海嘉尚电子科技有限公司
评估电路:
最小值 25
5
2500 1012
典型值
32 0.2 0.01 50 0.02 1.5
60 0.2 0.3
最大值
60 0.Leabharlann 1 200 1 1.70.3 0.5
单位
% V μA μA μA V V PF μS μS V Ω
最大值 125 100 25 50 1 5 45 8 16 30 20 100
10KV/uS.
产品概述:
该款光耦是美国安捷伦公司(原惠普公司)专为 IPM 等功率器件设计的光电隔离接口 芯片 内部集成高灵敏度光传感器 极短的寄生延时为 IPM 应用中的高速开关的死区时间确保了安全。是功率器件接口的 完美解决方案 通过了 UL,CSA,VDE 的安全认证 所有 IPM 数据手册均推荐该款芯片作为接口 封装尺寸:

电子元器件芯片

电子元器件芯片

深圳市明烽威电子有限公司HCPL-4506-300E AVAGO HCPL-0600-500E AVAGOHCPL-4506-500E AVAGO HEDS-9701#C54AVAGOHCPL-4534-000E AVAGO TLC04CP TIHCPL-4534-300E AVAGO X9313WSZ-3T1INTERSILHCPL-4534-500E AVAGO TMS320LF2402APGA TIHCPL-4562-000E AVAGO TMS320LF2406APZA TIHCPL-4562-300E AVAGO AD9910BSVZ ADIHCPL-4562-500E AVAGO AD9957BSVZ ADIHCPL-4661-000E AVAGO TLV320AIC33IRGZ TIHCPL-4661-300E AVAGO TLV320AIC33IZQER TIHCPL-4661-500E AVAGO TPS54616PWPR TIHCPL-4731-000E AVAGO OPA551PA TIHCPL-4731-300E AVAGO DS1813R-15+DALLASHCPL-4731-500E AVAGO TPS7333QDR TIHCPL-7510-000E AVAGO OPA277UA TIHCPL-7510-300E AVAGO LM1877MX-9NSHCPL-7510-500E AVAGO ISO7221BDR TIHCPL-7520-000E AVAGO TL16C550CIPTR TIHCPL-7520-300E AVAGO MAX9324EUP+MAXIMHCPL-7520-500E AVAGO MAX1706EEE-T MAXIMHCPL-7560-000E AVAGO TPS75733KTTR TIHCPL-7560-300E AVAGO LM2674MX-ADJ NSHCPL-7560-500E AVAGO ADS8321EB TIHCPL-7611-000E AVAGO ADS8320EB TIHCPL-7611-300E AVAGO W29C040T-90B WINBONDHCPL-7611-500E AVAGO ISO124U TIHCPL-7710-000E AVAGO FM25L04B-GTR RAMTRONHCPL-7710-300E AVAGO TLE2084CN TIHCPL-7710-500E AVAGO TL317CDR TIHCPL-7720-000E AVAGO MAX354CPE+MAXIMHCPL-7720-300E AVAGO MAX354EPE+MAXIMHCPL-7720-500E AVAGO DEI0429-WMB DEIHCPL-7721-000E AVAGO AT91SAM7SE512-AU atmelHCPL-7721-300E AVAGO EL1881CSZ-T7INTERSILHCPL-7721-500E AVAGO SN74ACT2440FNR TIHCPL-7723-000E AVAGO MT4LC8M8C2P-5MICRONHCPL-7723-300E AVAGOHCPL-7800-000E AVAGOHCPL-7800-300E AVAGOHCPL-7800-500E AVAGOHCPL-7800A-000E AVAGOHCPL-7800A-300E AVAGOHCPL-7800A-500E AVAGOHCPL-7840-000E AVAGOHCPL-7840-300E AVAGOHCPL-7840-500E AVAGOHCPL786J-000E AVAGO HCPL-786J-000E AVAGO HCPL786J-300E AVAGO HCPL-786J-300E AVAGO HCPL786J-500E AVAGO HCPL-786J-500E AVAGO HCPL788J-000E AVAGO HCPL-788J-000E AVAGO HCPL788J-300E AVAGO HCPL-788J-300E AVAGO HCPL788J-500E AVAGO HCPL-788J-500EHCPL-817-000EHCPL-817-00AEHCPL-817-00BEHCPL-817-00CEHCPL-817-00DEHCPL-817-00LEHCPL-817-060EHCPL-817-06AEHCPL-817-06BEHCPL-817-06CEHCPL-817-06DEHCPL-817-06LEHCPL-817-300EHCPL-817-30AEHCPL-817-30BEHCPL-817-30CEHCPL-817-30DEHCPL-817-30LEHCPL-817-360EHCPL-817-36AEHCPL-817-36BEHCPL-817-36CEHCPL-817-36DEHCPL-817-36LEHCPL-817-500EHCPL-817-50AEHCPL-817-50BEHCPL-817-50CEHCPL-817-50DEHCPL-817-50LEHCPL-817-560EHCPL-817-56AEHCPL-817-56BEHCPL-817-56CEHCPL-817-56DEHCPL-817-56LEHCPL-9000-000E AVAGO DRV101FKTWT TIHCPL-9000-300E AVAGO DRV101F TIHCPL-9000-500E AVAGO UCC5638FQPR TIHCPL-902J-000E AVAGO TLV320AIC3204IRHBT TIHCPL-902J-300E AVAGO TLV320AIC3204IRHBR TIHCPL-902J-500E AVAGO TLV5625CDR TIHCPL-J312-000E AVAGO TLV5625IDR TIHCPL-J312-300E AVAGO TLV320AIC3104IRHBT TIHCPL-J312-500E AVAGO TLV320AIC3104IRHBR TIHCPL-J456-000E AVAGO AT45DB041D-SU ATMEL HCPL-J456-300E AVAGO MAX6657MSA+T MAXIM HCPL-J456-500E AVAGO HCPL-J454-000E AVAGO HCPL-M453-000E AVAGO HCPL-J454-300E AVAGO HCPL-M453-300E AVAGO HCPL-J454-400E AVAGO HCPL-M453-500E AVAGO HCPL-J454-500E AVAGO HCPL-M454-000E AVAGO HCPL-J454-600E AVAGO HCPL-M454-300E AVAGO TC7660IJA MICROCHIP HCPL-M454-500E AVAGO TC7660MJA MICROCHIP HCPL-M456-000E AVAGO ADT7460ARQZ ADIHCPL-M456-300E AVAGO ADSP-21065LKCA264ADIHCPL-M456-500E AVAGO ADSP-21065LKCAZ264ADI HCPL-M600-000E AVAGO AD7859ASZ ADI HCPL-M600-300E AVAGO MJD45H11G ONHCPL-M600-500E AVAGO TPD3E001DRLR TIHCPL-M601-000E AVAGO XTR116U TIHCPL-M601-300E AVAGO DS1233-5+DALLAS HCPL-M601-500E AVAGO TRU050GALGA32.0000/16.00Vectron HCPL-M611-000E AVAGO TRU050GACCA28.7040/14.35Vectron HCPL-M611-300E AVAGO AD9516-3BCPZ ADI HCPL-M611-500E AVAGO REF3125AIDBZT TIHCPL-M700-000E AVAGO REF3125AIDBZR TIHCPL-M700-300E AVAGO AD8592ARMZ ADI HCPL-M700-500E AVAGO QCPL-034H-500E AVAGOHD6413079F18HIT AD9865BCPZ ADI HDMP1636A AVAGO QCPL-312H-500E AVAGO HDMP-1636A AVAGO M74VHC1G135DFT1G ONHDMP-1637A AVAGO HSMD-A100-J00J1AVAGO HDMP1638AVAGO LT1587CT LTHDMP-1638AVAGO AD827JRZ-16ADI HEDS9710-R50AVAGO HSMP-389F-BLKG AVAGO HEDS-9710-R50AVAGO HSMP-389F-TR1G AVAGO HEL22MICREL HSMP-389F-TR2G AVAGO HEL23MICREL XC3064A-7PC84C XILINX HFBR-1414Z AVAGO XC3064A-7PC84I XILINX HFBR-1414TZ AVAGO Si7703EDN-T1-E3VISHAY HFBR-1521Z AVAGO Si7703EDN-T1-GE3VISHAYT-1521Z AVAGO Si7703EDN-T1-GE3ADIT-1521ETZ AVAGO AD605ARZ ADIHFBR-1521ETZ AVAGO MACH110-15JC AMDT-1522Z AVAGO MACH210-20JC AMDT-1522ETZ AVAGO LTC4213IDDB LINEAR HFBR-1522ETZ AVAGO DS1233-15+DALLAS HFBR1522Z AVAGO LTC3412EFE LINEAR HFBR-1522Z AVAGO MAX513ESD+T MAXIM HFBR1523Z AVAGO MAX3681EAG+MAXIM HFBR-1523Z AVAGO ICS1893CKILF IDT HFBR1528Z AVAGO TMS32C6416DGLZA5E0TI HFBR-1528Z AVAGO TMS32C6416EGLZ5E0TI HFBR-1531Z AVAGO TMS32C6416EGLZ6E3TI HFBR-1531ETZ AVAGO TMS32C6416EGLZ7E3TI HFBR-2531ETZ AVAGO TMS32C6416EGLZA5E0TI 1531ETZ AVAGO TMS32C6416EGLZA6E3TI 2531ETZ AVAGO AD829JRZ ADI HFBR1532Z AVAGO MAX14830ETM+MAXIM HFBR-1532Z AVAGO MX69GL128EAXGW-90G MXIC HFBR-1532ETZ AVAGO AD7811YRUZ ADI HFBR1533Z AVAGO TPS76318DBVR TI HFBR-1533Z AVAGO ADMP421ACEZ ADI HFBR-2412TZHFBR-2412ZHFBR2416TZHFBR-2416TZHFBR-2521Z AVAGO LT1304CS8Linear R-2521Z AVAGO MAX16801BEUA+T maxim R-2521ETZ AVAGO ACPL-M61L-500E AVAGO HFBR-2521ETZ AVAGO DS26503LN+DALLAS HFBR-2522Z AVAGO MAX9205EAI+T MAXIM R-2522Z AVAGO TMP105YZCT TIR-2522ETZ AVAGO TMP105YZCR TI HFBR-2522ETZ AVAGO AD5821BCBZ ADI HFBR-2523Z AVAGO PM5347-RI PMC HFBR-2528Z AVAGO PM73121-RI PMC HFBR-2531Z AVAGO TPA4411RTJT TI HFBR-2532Z AVAGO TPA4411RTJR TI HFBR-2532ETZ AVAGO LTC1438CG-ADJ Linear HFBR-2533Z AVAGO LTC1438IG-ADJ Linear HFBR-4501Z AVAGO DS1318E+DALLAS HFBR-4503Z AVAGO TMS320DM643AGDK5TI HFBR-4506Z AVAGO ACPL-M75L-000E AVAGO HFBR-4511Z AVAGO ACPL-M75L-060E AVAGO HFBR-4513Z AVAGO ACPL-M75L-500E AVAGO HFBR-4516Z AVAGO ACPL-M75L-560E AVAGO HFBR-4525Z AVAGO ACPL-T350-000E AVAGO HFBR-4526Z AVAGO ACPL-T350-060E AVAGO HFBR-4531Z AVAGO ACPL-T350-300E AVAGO HFBR-4532Z AVAGO ACPL-T350-360E AVAGOHFBR-4533Z AVAGO ACPL-T350-500E AVAGO HFBR-4535Z AVAGO ACPL-T350-560E AVAGO HFBR-4593Z AVAGO ADXRS620BBGZ ADI HFBR-4597Z AVAGO LT1521CS8Linear HFBR-EUD100Z AVAGO LT1521CS8-3.3Linear HFBR-EUD500Z AVAGO LT1521IS8Linear HFBR-EUS100Z AVAGO LT1521IS8-3.3Linear HFBR-EUS500Z AVAGO MAX6835VXSD3+T MAXIM HFBR-RUD100Z AVAGO AD9059BRSZ ADI HFBR-RUD500Z AVAGO HFBR-4515Z AVAGO HFBR-RUS100Z AVAGO HFBR-57E0PZ AVAGO HFBR-RUS500Z AVAGO HFCT-53D5EMZ AVAGO HG88510MITEL HFCT-5611AVAGOHI1-508-5HAR LT1242CS8Linear HI1-509-5HAR LT1242IS8Linear HM628512ALFP-5日立LT1140ACSW LinearHM628512BLFP-5日立AFBR-2419TZ AVAGO HS1101HUMIREL AD7156BCPZ ADIHS6118MACONICS ADP151ACBZ-2.8ADI HSDL-3201#021AVAGO DS1805Z-010+MAXIM HSDL-3201#001AVAGO TLP285-4GB TOSHIBA HSDL-3209-021AVAGO AD421BRZ ADI HSDL-7001#100AVAGO OPA2336PA TI HSDL-7002AVAGO ADUC812BSZ ADI HSMP-3814-BLKG AVAGO STPS6045CW ST HSMP-3814-TR1G AVAGO SG-3030JF EPSON HSMP-3814-TR2G AVAGO MPC8313VRAFFB FREESCAL HSMP-3822-BLKG AVAGO MAX1617AMEE+T maxim HSMP-3822-TR1G AVAGO MCP809M3X-4.63NS HSMP-3822-TR2G AVAGO MCP809M3X-4.38NS HSMP-3823-BLKG AVAGO MCP809M3X-4.00NS HSMP-3823-TR1G AVAGO MCP809M3X-3.08NS HSMP-3823-TR2G AVAGO MCP809M3X-2.93NS HSMP-3824-BLKG AVAGO MCP809M3X-2.63NS HSMP-3824-TR1G AVAGO MCP810M3X-4.63NS HSMP-3824-TR2G AVAGO MCP810M3X-4.38NS HSMP-3832-BLKG AVAGO MCP810M3X-4.00NS HSMP-3832-TR1G AVAGO MCP810M3X-3.08NS HSMP-3832-TR2G AVAGO MCP810M3X-2.93NS HSMP-3860-BLKG AVAGO MCP810M3X-2.63NS HSMP-3860-TR1G AVAGO LT1317BCS8Linear HSMP-3860-TR2G AVAGO LT1317BIS8Linear HSMP-3862-BLKG AVAGO LTC1757A-1EMS8Linear HSMP-3862-TR1G AVAGO ACPL-K342-000E AVAGO HSMP-3862-TR2G AVAGO ACPL-K342-500E AVAGO HSMP-3880-BLKG AVAGO AFBR-57M5APZ AVAGO HSMP-3880-TR1G AVAGO CY7C144AV-25AIT CY HSMP-3880-TR2G AVAGO CY7C144AV-25ACT CYHSMP-3892-BLKG AVAGO CY7C144AV-25AXIT CY HSMP-3892-TR1G AVAGO CY7C144AV-25AXCT CY HSMP-3892-TR2G AVAGO ABA-54563-TR1G AVAGO HSMP-389L-BLKG AVAGO ABA-54563-TR2G AVAGO HSMP-389L-TR1G AVAGO ABA-54563-BLKG AVAGO HSMP-389L-TR2G AVAGO LT1138ACG Linear HSMS-2812-BLKG AVAGO LT1138AIG Linear HSMS-2812-TR1G AVAGO ISL8120IRZ INTERSIL HSMS-2812-TR2G AVAGO ISL8120CRZ INTERSIL HSMS-2817-BLKG AVAGO LTC1421IG-2.5Linear HSMS-2817-TR1G AVAGO LTC1421CG-2.5Linear HSMS-2817-TR2G AVAGO MSC1212Y5PAGT TI HSMS-282K-BLKG AVAGO MSC1212Y5PAGR TI HSMS-282K-TR1G AVAGO TPS7330QDR TI HSMS-282K-TR2G AVAGO ADP3110KRZ ADI HSMS-2850-BLKG AVAGO MAX3263CAG MAXIM HSMS-2850-TR1G AVAGO MAX1729EUB MAXIM HSMS-2850-TR2G AVAGO MAX1651CSA MAXIM HSMS-8202-BLKG AVAGO AD876JR ADI HSMS-8202-TR1G AVAGO MAX1701EEE MAXIM HSMS-8202-TR2G AVAGO Si4201-BMR silicon HT2012-PL SMAR DS12C887+DALLAS HY62256ALT1-70HY LM236DR-2.5TIHY628100BLLG-70HY DS1722U DALLAS HY628100BLLG-70I HY LM7372MRX NSHY628400ALLG-55HY MAX490ESA+T MAXIM HY628400ALLG-70HY HSMS-2822-TR1G AVAGO HY62WT08081E-DG70C HY HSMP-389C-TR1G AVAGO HY62WT08081E-DG70I HY HSMP-389C-BLKG AVAGO ICL232IPE HAR HSMP-389C-TR2G AVAGO ICS8432DY-101ICS MC33375D-3.3R2G ONICS85322AM ICS AFBR-1529Z AVAGO ICS9112M-16ICS AFBR-2529Z AVAGO IDT75K62134S200BB IDT AFBR-1629Z AVAGO ILX139K SONY HSMS-2828-TR1G AVAGO IMP560ESA IMP TPS7101QDR TIIMP809JEUR-T IMP AFBR-57R5APZ AVAGO IMP809LEUR-T IMP UC3875DWPTR TIIMP809MEUR-T IMP ASSR-1510-503E AVAGO IMP809REUR-T IMP ASSR-1510-003E AVAGO IMP809SEUR-T IMP CY7B9514V-AC CYIMP809TEUR-T IMP MAX4450EXK+T MAXIM IMP810JEUR-T IMP SN75976A1DLR TIIMP810LEUR-T IMP ADUC831BSZ ADIIMP810MEUR-T IMP LTC1348IG LINEAR IMP810REUR-T IMP MSA-2111-TR1G AVAGO IMP810SEUR-T IMP DS1621S+T DALLAS IMP810TEUR-T IMP MAX485EESA+T MAXIMIMP811JEUS-T IMP MAX9669ETI+T MAXIM IMP811LEUS-T IMP MSA-0711-TR1G AVAGO IMP811MEUS-T IMP ACPL-P480-500E AVAGO IMP811REUS-T IMP HSMS-2800-TR1G AVAGO IMP811SEUS-T IMP LTC1622IS8LINEAR IMP811TEUS-T IMP MAX2102CWI MAXIM ACPL-312T-500E AVAGO X24165S-2.7T1XICOR ACPL-H342-560E AVAGO X84129SI-2.5T1XICOR ACPL-H342-500E AVAGO HCNW4502-500E AVAGO ACPL-H342-060E AVAGO HCNW4502-300E AVAGO ACPL-H342-000E AVAGO AD811ARZ-16ADI ACPL-K63L-500E AVAGO TOCP155TOSHIBA ACPL-K63L-560E AVAGO TOCP200TOSHIBA ACPL-K63L-000E AVAGO HFBR-14E4Z AVAGO AFBR-5803AQZ AVAGO HFBR-24E2Z AVAGO ASSR-4128-502E AVAGO ALM-2412-TR1G AVAGO HSMH-C680AVAGO TLV320DAC23GQER TIWS1403-TR1AVAGO CY2509ZXC-1T CYLST2825-T-SC AGILENT ACPL-312T-300E AVAGO MAX853ESA+T MAXIM MAX3814CHJ+T MAXIM。

HCPL-2630W中文资料

HCPL-2630W中文资料

Single-channel: 6N137, HCPL-2601, HCPL-2611 Dual-Channel: HCPL-2630, HCPL-2631 High Speed-10 MBit/s Logic Gate Optocouplers
Features
■ ■ ■ ■ ■ ■ ■ ■
Description
Applications
■ ■ ■ ■ ■ ■ ■ Ground loop elimination LSTTL to TTL, LSTTL or 5-volt CMOS Line receiver, data transmission Data multiplexing Switching power supplies Pulse transformer replacement Computer-peripheral interface
2 Single-channel: 6N137, HCPL-2601, HCPL-2611 Dual-Channel: HCPL-2630, HCPL-2631 Rev. 1.0.3

元器件交易网
Single-channel: 6N137, HCPL-2601, HCPL-2611 Dual-Channel: HCPL-2630, HCPL-2631 High Speed-10 MBit/s Logic Gate Optocouplers
Symbol
TSTG TOPR TSOL
Value
-55 to +125 -40 to +85 260 for 10 sec
Units
°C °C °C
45
Recommended Operating Conditions

BM3453

BM3453

版本: A:A版本 B:B版本
S16:代表SOP16封装 T16:代表TSSOP16封装
过流2与短路
放电过流1与充电过流
BM3453系列产品
过放阈值
图2
过充阈值
2. 产品目录
原厂技术支持:136 3262 6608 张先生(报价、样品、技术问题请电话咨询) 过充电 过充电 过放电 过放电 放电过 放电过
表2
说明书
WI-D06-J-0303 Rev.A/0
4/17
BYD Microelectronics Co., Ltd.
BM3453 系列
绝对最大额定值 项目
符号
适用端子
绝对最大额定值
单位
电源电压
VCC
-
GND-0.3 ~ GND+30
V
各节电池电压
VCELL
Vcell3、Vcell2、 Vcell1
s
过充电 解除阈值 VREL1
V1=V2=3.5V V3=4.4V→3.5V
VREL1 -0.05
VREL1
VREL1 +0.05
V
解除延时 TREL1
V1=V2=3.5V V3=4.4V→3.5V
20
30
40
ms
2
温度系数 1 KU1
Ta= -40℃ to 85℃
-0.6
0
0.6 mV/℃
保护阈值 过放电
BM3453TNDA-T16A 4.250V 4.130V 2.800V 3.000V 0.100V 0.200V 0.400V
BM3453TJDA-T16A 4.250V 4.130V 2.500V 2.700V 0.100V 0.200V 0.400V 表1

Richtek RT4533 A LED 驱动器 IC 说明书

Richtek RT4533 A  LED 驱动器 IC 说明书

RT4533/A®DS4533/A-01 July 20151©Copyright 2015 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation.Marking InformationOrdering InformationNote :Richtek products are :❝ RoHS compliant and compatible with the current require-ments of IPC/JEDEC J-STD-020.❝ Suitable for use in SnPb or Pb-free soldering processes.Simplified Application CircuitApplications●Cellular Phones ●Digital Cameras●Probable InstrumentsAsynchronous Boost Converter for 10 WLEDsGeneral DescriptionThe RT4533/A is a highly integrated LED driver IC capable of driving 10 WLEDs in series. It is composed of a current mode Boost converter integrated with a 36.5V/1.2A power switch.The RT4533/A supports a wide input voltage range from 2.5V to 5.5V and runs at a fixed frequency of 1.1MHz.The LED current is set via an external resistor and the feedback voltage is regulated to 200mV / 300mV.For brightness dimming, the RT4533/A supports PWM dimming which determines the feedback reference voltage.Features●2.5V to 5.5V Input Voltage Range●36.5V Open LED Protection for 10 WLEDs ●PWM Dimming Brightness Control●200mV / 300mV Reference Voltage with ±2%Accuracy●1.1MHz Switching Frequency ●Built-In Soft-Start●Over-Temperature Protection ●Internal Compensation ●Current Limit●RoHS Compliant and Halogen Free0R= : Product CodeDNN : Date CodeV 1L= : Product Code DNN : Date CodeRT4533 : 200mV RT4533A : 300mV2RT4533/ADS4533/A-01 July 2015©Copyright 2015 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation.Functional Pin DescriptionTSOT-23-6(TOP VIEW)Pin Configurations3RT4533/ADS4533/A-01 July 2015©Copyright 2015 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation.Function Block DiagramOperationThe RT4533/A is a constant frequency, current mode Boost LED driver. In normal operation, the N-MOSFET is turned on when the PWM Control circuit is set by the oscillator and is turned off when the current comparator resets the PWM Control circuit. While the N-MOSFET is turned off, the inductor current conducts through the external diode.UVLOWhen the input voltage is lower than the UVLO threshold (2.37V typ.), the driver will turn off. There is a 80mV for the UVLO hysteresis control.Soft-StartWhen the device is enabled, the Comp ramps up to the target voltage in a specific time. This ensures that the output voltage rises slowly to reduce the input inrush current.EN DimmingThe EN pin is used for the control input for both PWM dimming mode and digital dimming mode. Shutdown delay when the EN voltage is logic low for more than specific time, the driver will be shut down.GNDVOUTOCPThe driver provides cycle-by-cycle current limit function to control the current on power switch. The boost switch turns off when the inductor current reaches this current threshold and it remains off until the beginning of the next switching cycle. This protects the RT4533/A and external component under overload conditions.OVPThe Over Voltage Protection is detected by a resistor divider circuit from VOUT .Once VOUT goes over the OVP voltage, LX pin stops switching and the power N-MOSFET will be turned off.Then, the VOUT will be discharged by external resistor.OVP will be released until EN goes from Lo to Hi again.OTPAs the die temperature is higher than 160°C, the chip also will enter protection mode. The power MOSFET will be turned off during protection mode to prevent abnormal operation. The device is released from shutdown automatically when the junction temperature decreases by 15°C.4RT4533/ADS4533/A-01 July 2015©Copyright 2015 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation.Electrical CharacteristicsRecommended Operating Conditions (Note 4)●Supply Input Voltage, V IN ------------------------------------------------------------------------------------------2.5V to 5.5V ●Junction T emperature Range -------------------------------------------------------------------------------------- −40°C to 125°C ●Ambient T emperature Range -------------------------------------------------------------------------------------- −40°C to 85°CAbsolute Maximum Ratings (Note 1)●VIN ---------------------------------------------------------------------------------------------------------------------- −0.3V to 6V●EN, FB to GND ------------------------------------------------------------------------------------------------------- −0.3V to (V IN + 0.3V)●LX to GND ------------------------------------------------------------------------------------------------------------- −0.3V to 38V ●Power Dissipation, P D @ T A = 25°CTSOT-23-6-------------------------------------------------------------------------------------------------------------0.5W●Package Thermal Resistance (Note 2)TSOT-23-6, θJA -------------------------------------------------------------------------------------------------------197.4°C/W ●Junction T emperature -----------------------------------------------------------------------------------------------150°C ●Lead Temperature (Soldering, 10 sec.)-------------------------------------------------------------------------260°C●Storage T emperature Range -------------------------------------------------------------------------------------- −65°C to 150°C ●ESD Susceptibility (Note 3)HBM (Human Body Model)----------------------------------------------------------------------------------------2kV MM (Machine Model)-----------------------------------------------------------------------------------------------200V5RT4533/ADS4533/A-01 July 2015©Copyright 2015 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation.Note 1. Stresses beyond those listed “Absolute Maximum Ratings ” may cause permanent damage to the device. These arestress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may affect device reliability.Note 2. θJA is measured at T A = 25°C on a high effective thermal conductivity four-layer test board per JEDEC 51-7.Note 3. Devices are ESD sensitive. Handling precaution is recommended.Note 4. The device is not guaranteed to function outside its operating conditions.6RT4533/ADS4533/A-01 July 2015©Copyright 2015 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation.Typical Application CircuitTiming DiagramLV Duty1 : on-time1/Period1Duty2 : on-time2/Period27RT4533/ADS4533/A-01 July 2015©Copyright 2015 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation.Oscillator Frequency vs. Temperature1.001.051.101.151.201.25-50-25255075100125Temperature (°C)O s c i l l a t o r F r e q u e n c y (M H z )Typical Operating CharacteristicsOperating Quiescent Current vs. Input Voltage0.600.700.800.901.001.101.202.52.83.13.43.744.34.64.95.25.5Input Voltage (V)Q u i e s c e n t C u r r e n t (m A)Efficiency vs. Input Voltage01020304050607080901002.533.544.555.5Input Voltage (V)E f f i c i e n c y (%)Efficiency vs. Output Current010203040506070809010000.0050.010.0150.020.0250.03Output Current (A)E f f i c i e n c y (%)I LED vs. Duty051015202530350102030405060708090100Duty (%)I L E D (m A )Reference Voltage vs. Output Current199.8199.9200200.1200.2200.3200.4200.536912151821242730Output Current (mA)R e f e r e n c e V o l t a g e (m V )8RT4533/ADS4533/A-01 July 2015©Copyright 2015 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation.Application InformationSoft-StartThe RT4533/A includes a soft-start function to avoid high inrush current during start-up. The soft-start function is achieved by clamping the output voltage of the error amplifier with another voltage source that is increased slowly from zero to near VIN.LED CurrentThe loop control of the Boost converter keeps VFB equal to a reference voltage, V REF . Therefore, when R SET is connected between the FB pin and GND, the LED current will be determined by the current through R SET , which is equal to V FB / R SET .Current LimitThe current flowing through the inductor during a charging period is detected by a current sensing circuit. If the value exceeds the current limit, the N-MOSFET will be turned off. The inductor will then be forced to leave charging stage and enter discharging stage. Therefore, the inductor current will not increase to reach current limit.Shutdown DelayWhen the EN voltage is in logic low for 20ms during PWM dimming, the system will enter shutdown.PWM DimmingWhen the EN pin is constantly high, the FB voltage is regulated to 200mV / 300mV typically. The RT4533/A allows a PWM signal from EN pin to reduce the regulation voltage; and achieve LED brightness dimming. The relationship between the duty cycle and FB voltage is given by ⨯FB REF V = Duty V WhereDuty = duty cycle of the PWM signal V REF = internal reference voltage (200mV / 300mV typ.)The RT4533/A choose the internal 200mV reference voltage via the duty cycle of the PWM signal. Therefore, although a PWM signal is used for brightness dimming, only the LED DC current is modulated, which is often referred as analog dimming. This eliminates the audible noise whichoften occurs when the LED current is pulsed in replica of the frequency and duty cycle of PWM control. For optimum performance, use the PWM dimming frequency in the range of 5kHz to 100kHz, and the PWM dimming frequency is strongly suggested to be over than 20kHz to avoid audio noise.Inductor SelectionThe recommended value of inductor for 10 LEDs or high brightness LED applications is 10μH to 22μH. Smaller size and better efficiency are the major concerns for portable devices. The inductor should have low core loss at 1MHz and low DCR for better efficiency. The inductor saturation current rating should be considered to cover the inductor peak current. Table 1 lists the recommended inductor for the RT4533/A.Capacitor SelectionFor low ripple voltage, ceramic capacitors with low ESR are recommended. X5R and X7R types are suitable because of their wide voltage range and good operating temperature characteristics. For the application of the RT4533/A to drive 10 LEDs in series, a 4.7μF for input capacitor, an 1μF / 50V for output capacitor.Thermal ConsiderationsFor continuous operation, do not exceed absolute maximum operation junction temperature. The maximum power dissipation depends on the thermal resistance of IC package, PCB layout, the rate of surroundings airflow and temperature difference between junction to ambient.The maximum power dissipation can be calculated by following formula :Table 19RT4533/ADS4533/A-01 July 2015©Copyright 2015 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation.Figure 1. Derating Curve of Maximum Power Dissipation0.00.10.20.30.40.50.6255075100125Ambient Temperature (°C)M a x i m u m P o w e r D i s s i p a t i o n (W )Layout ConsiderationFor best performance of the RT4533/A, the following guide lines must be strictly followed.❝Input and Output capacitors should be placed close to the IC and connected to ground plane to reduce noise coupling.❝The GND and Exposed Pad should be connected to a strong ground plane for heat sinking and noise protection.❝Keep the main current traces as possible as short and wide.❝LX node of DC/DC converter is with high frequency voltage swing. It should be kept at a small area.❝Place the feedback components as close as possible to the IC and keep away from the noisy devices.P D(MAX) = ( T J(MAX) − T A ) / θJAWhere T J(MAX) is the maximum operation junction temperature, T A is the ambient temperature and the θJA is the junction to ambient thermal resistance.For recommended operating condition specifications, the maximum junction temperature is 125°C. The junction to ambient thermal resistance, θJA , is layout dependent. For TSOT-23-6 package, the thermal resistance, θJA , is 197.4°C/W on the standard JEDEC 51-7 four-layer thermal test board. The maximum power dissipation at T A = 25°C can be calculated by following formula :P D(MAX) = (125°C − 25°C) / (197.4°C/W) = 0.5W for TSOT-23-6 packageThe maximum power dissipation depends on operating ambient temperature for fixed T J(MAX) and thermal resistance θJA . The derating curve in Figure 1 of derating curves allows the designer to see the effect of rising ambient temperature on the maximum power allowed.10RT4533/ADS4533/A-01 July 2015©Copyright 2015 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation.Figure 2. PCB Layout GuideWLEDsThe inductor should be placed as close as possible to the switch pin to minimize the noise coupling into other circuits.LX node copper area should be minimized minimized and keep far away from noise sources (LX pin) and RS should be as close as possible to FB pin.C IN to VIN pin for good filtering.The C OUT should be connected directly from the output schottky diode to ground rather than between IC's V OUT and WLED's anode for improving system ESD level.11RT4533/ADS4533/A-01 July 2015Richtek Technology Corporation14F, No. 8, Tai Yuen 1st Street, Chupei CityHsinchu, Taiwan, R.O.C.Tel: (8863)5526789Richtek products are sold by description only. Richtek reserves the right to change the circuitry and/or specifications without notice at any time. Customers should obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Richtek product. Information furnished by Richtek is believed to be accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries.Outline DimensionTSOT-23-6 Surface Mount PackageA1HL。

HCPL中文资料

HCPL中文资料
应用:
IGBT/MOSFET驱动
交流电机直流无刷驱动
变频器
开关电源
真值表:
LED发光管
VCC-VEE正偏压
VCC-VEE负偏压
输出VO
OFF
0-30V
0-30V
低电位
ON
0-11V
0-9.5V
低电位
ON
11-13.5V
9.5-12V
转换
ON
13.5-30V
12-30V
高电位
封装图:
最大额定值:
参数
符号
V
输入电容
CIN
60
pF
UVLO阈值
VUVLO
11.0
12.3
13.5
V
开关特性:
参数
符号
最小值
典型值
最大值
单位
输入到高电位输出延时
tPLH
0.10
0.30
0.50
uS
输入到低电位输出延时
tPHL
0.10
0.30
0.50
脉宽失真
PWD
0.30
10%-90%上升时间
tr
0.1
90%-10%下降时间
tf
HCPL-3120
输出高达2A的IGBT驱动光耦
产品特点:
l2A最小峰值电流输出
l15KV绝缘耐压
l0.5V最大低电位输出(负偏压除外)
l5mA供电电流
l欠压锁定
l500nS最大开关时间
l15-30V宽压工作环境,-40-150度工作温
l工业级温度范围:-40-100度
l安全认证:UL,VDE0884
0.1
DESAT到保护输出延时

HCPL-4503中文资料

HCPL-4503中文资料

Small Outline, 5 Lead, High Speed Optocouplers Technical DataHCPL-M452HCPL-M453Features• Surface Mountable• Very Small, Low Profile JEDEC Registered Package Outline• Compatible with Infrared Vapor Phase Reflow and Wave Soldering Processes • Very High Common Mode Transient Immunity:15000 V/µs at V CM = 1500 V Guaranteed (HCPL-M453)• High Speed: 1 Mb/s • TTL Compatible• Guaranteed AC and DC Performance overTemperature: 0°C to 70°C • Open Collector Output • Recognized Under the Component Program of U.L. (File No. E55361) for Dielectric Withstand Proof Test Voltage of 3750 Vac, 1Minute• Lead Free OptionCAUTION: The small device geometries inherent to the design of this bipolar component increase the component's susceptibility to damage from electrostatic discharge (ESD). It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD.The SO-5 JEDEC registered (MO-155) package outline does not require “through holes” in a PCB. This package occupies approximately one-fourth the footprint area of the standard dual-in-line package. The lead profile is designed to be compatible with standard surface mount processes.These diode-transistoroptocouplers use an insulating layer between the light emitting diode and an integrated photon detector to provide electrical insulation between input and output. Separate connections for the photodiode bias and output transistor collector increase the speed up to a hundred timesSO-5 Package Standard DIP SO-8 Package HCPL-M452HCPL-4502HCPL-0452HCPL-M453HCPL-4503HCPL-0453(Note: These devices equivalent to 6N135/6N136 devices but without the base lead.)DescriptionThese small outline high CMR,high speed, diode-transistor opto-couplers are single channel devices in a five lead miniature footprint. They are electrically equivalent to the following Agilent optocouplers:tions. A standard 16 mA TTL sink current through the input LED will provide enough output current for 1 TTL load and a 5.6 k Ω pull-up resistor. CTR of the HCPL-M452 is 19%minimum at I F = 16 mA.over that of a conventional photo-transistor coupler by reducing the base-collector capacitance.The HCPL-M452 is designed for high speed TTL/TTL applica-The HCPL-M453 is an HCPL-M452 with increased common mode transient immunity of 15,000 V/µs minimum at V CM =1500 V guaranteed.Applications• Line Receivers -High common mode transient immunity (>1000V/µs) and low input-output capacitance (0.6 pF).• High Speed Logic Ground Isolation - TTL/TTL, TTL/LTTL, TTL/CMOS, TTL/LSTTL.• Replace Slow Phototran-sistor Optocouplers • Replace PulseTransformers - Save board space and weight• Analog Signal Ground Isolation -Integrated photon detector provides improved linearity over phototransistor type.Land Pattern RecommendationDIMENSIONS IN MILLIMETERS AND (INCHES)Outline Drawing (JEDEC MO-155)SchematicGNDV CCV OANODECATHODEDIMENSIONS IN MILLIMETERS (INCHES)* MAXIMUM MOLD FLASH ON EACH SIDE IS 0.15 mm (0.006)NOTE: FLOATING LEAD PROTRUSION IS 0.15 mm (6 mils) MAX.MAX.= 0.102 (0.004)Absolute Maximum Ratings(No Derating Required up to 85°C)Storage Temperature .................................................-55°C to +125°C Operating Temperature .............................................-55°C to +100°C Average Input Current - I F .....................................................25 mA [1]Peak Input Current - I F ...........................................................50 mA [2](50% duty cycle, 1 ms pulse width)Peak Transient Input Current - I F ..............................................1.0 A(≤1 µs pulse width, 300 pps)Reverse Input Voltage - V R (Pin3-1)...............................................5 V Input Power Dissipation ........................................................45 mW [3]Average Output Current - I O (Pin 5)...........................................8 mA Peak Output Current .................................................................16 mA Output Voltage - V O (Pin 5-4)........................................-0.5 V to 20 V Supply Voltage - V CC (Pin 6-4).......................................-0.5 V to 30 V Output Power Dissipation....................................................100 mW [4]Infrared and Vapor Phase Reflow Temperature..................see belowSolder Reflow Thermal ProfileRecommended Pb-Free IR ProfileTIME (SECONDS)T E M P E R A T U R E (°C )ROOM°C of ACTUAL NOTES:THE TIME FROM 25 °C to PEAK TEMPERATURE = 8 MINUTES MAX.T smax = 200 °C, T smin = 150 °CInsulation Related SpecificationsParameter Symbol Value Units ConditionsMin External Air Gap L(IO1)≥ 5mm Measured from input terminals (Clearance)to output terminalsMin. External Tracking Path L(IO2)≥ 5mm Measured from input terminals (Creepage)to output terminalsMin. Internal Plastic Gap0.08mm Through insulation distance (Clearance)conductor to conductor Tracking Resistance CTI175V DIN IEC 112/VDE 0303 Part 1 Isolation Group (per DIN VDE 0109)IIIa Material Group DIN VDE 0109Electrical SpecificationsOver recommended temperature (T A = 0°C to 70°C) unless otherwise specified. (See note 11.)*All typicals at T A = 25°C.Switching SpecificationsOver recommended temperature (T A = 0°C to 70°C) V CC = 5 V, I F = 16 mA unless otherwise specified.All typicals at T A = 25°C.Notes:1. Derate linearly above 85°C free-air temperature at a rate of 0.5 mA/°C.2. Derate linearly above 85°C free-air temperature at a rate of 1.0 mA/°C.3. Derate linearly above 85°C free-air temperature at a rate of 1.1 mW/°C.4. Derate linearly above 85°C free-air temperature at a rate of 2.3 mW/°C.5. CURRENT TRANSFER RATIO in percent is defined as the ratio of output collector current, I O, to the forward LED inputcurrent, I F, times 100.6. Device considered a two terminal device: pins 1 and 3 shorted together, and pins 4, 5 and 6 shorted together.7. In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage ≥4500 V RMS for 1 second(leakage detection current limit, I I-O≤ 5 µA).8. Common transient immunity in a Logic High level is the maximum tolerable (positive) dV CM/dt on the rising edge of thecommon mode pulse, V CM, to assure that the output will remain in a Logic High state (i.e., V O > 2.0 V). Common mode transient immunity in a Logic Low level is the maximum tolerable (negative) dV CM/dt on the falling edge of the common mode pulse signal, V CM to assure that the output will remain in a Logic Low state (i.e., V O < 0.8 V).9. The 1.9 kΩ load represents 1 TTL unit load of 1.6 mA and the 5.6 kΩ pull-up resistor.10. The frequency at which the ac output voltage is 3 dB below its mid-frequency value.11. Use of a 0.1 µF bypass capacitor connected between pins 4 and 6 is recommended.Figure 7. Logic High Output Current vs. Temperature.Figure 8. Small-Signal CurrentTransfer Ratio vs. Quiescent Input Current.Figure 4. Current Transfer Ratio vs.Temperature.Figure 5. Propagation Delay vs.Temperature.Figure 6. Propagation Delay Time vs. Load Resistance.Figure 1. dc and Pulsed Transfer Characteristics.Figure 2. Current Transfer Ratio vs.Input Current.Figure 3. Input Current vs. Forward Voltage.105V O – OUTPUT VOLTAGE – VI O – O U T P U T C U R R E N T – m A1.51.00.50.1N O R M A L I Z E D C U R R E N T T R A N S F E R R A T I OI F – INPUT CURRENT – mA V F – FORWARD VOLTAGE – VOLTSI F – F O R W A R D C U R R E N T – m A1.11.00.90.80.70.6N O R M A L I Z E D C U R R E N T T R A N S F E R R A T I OT A – TEMPERATURE – °C200015001000500T A – TEMPERATURE – °C t P – P R O P A G A T I O N D E L A Y – n s3.02.01.00.60.40.20.8R L – LOAD RESISTANCE – k Ωt P – P R O P A G A T I O N D E L A Y – µsT A – TEMPERATURE – °C101010100101010I O H – L O G I C H I G H O U T P U T C U R R E N T – n A∆I F ∆I O – S M A L L S I G N A L C U R R E N T T R A N S F E R R A T I O0.100.200.30I F – QUIESCENT INPUT CURRENT – mAFigure 11. Test Circuit for Transient Immunity and Typical Waveforms.Figure 10. Switching Test Circuit.Figure 9. Frequency Response.f – FREQUENCY – MHzN O R M A L I Z E D R E S P O N S E –d BAC INPUTOOI F = 15 pFt V I FOV V 0 VSWITCH AT B: I = 1.6 mA FV CMCCt r , t f = 16 ns/semiconductors For product information and a complete list of distributors, please go to our web site.For technical assistance call:Americas/Canada: +1 (800) 235-0312 or (916) 788-6763Europe: +49 (0) 6441 92460China: 10800 650 0017Hong Kong: (+65) 6756 2394India, Australia, New Zealand: (+65) 6755 1939 Japan: (+81 3) 3335-8152 (Domestic/Interna-tional), or 0120-61-1280 (Domestic Only) Korea: (+65) 6755 1989Singapore, Malaysia, Vietnam, Thailand, Philippines, Indonesia: (+65) 6755 2044 Taiwan: (+65) 6755 1843Data subject to change.Copyright © 2004 Agilent Technologies, Inc. Obsoletes 5989-0792ENDecember 28, 20045989-2117EN。

HCPL4504中文资料

HCPL4504中文资料

高速,高共模比的IPM 接口专用光耦 HCPL-4504产品特点:极短的寄生延时适合于IPM 使用 瞬时共模为15KV/uS IPM 专用的电气隔离 TTL 兼容 开路输出 真值表原理图应用:变频及逆变器电路中使用IPM (智能功率模块)之接口信号的隔离。

瞬间共模比大于10KV/uS.产品概述:该款光耦是美国安捷伦公司(原惠普公司)专为IPM 等功率器件设计的光电隔离接口芯片内部集成高灵敏度光传感器极短的寄生延时为IPM 应用中的高速开关的死区时间确保了安全。

是功率器件接口的完美解决方案通过了UL ,CSA ,VDE 的安全认证所有IPM 数据手册均推荐该款芯片作为接口 封装尺寸:发光管状态脚6输出状态 开 低电平 关高电平最大额定值:参数符号最小值最大值单位储存温度 TS -55 125 ℃ 工作温度 TA -55 100 ℃ 正向输入电流 IF 25 mA 输入电流峰值@1mS IF1 50 mA 输入电流峰值<1uS IF2 1 A 输入信号电压(脚3-2) VR5V输入功率 PIN 45 mA 输出电流 IO 8 mA 输出峰值电流 IOF 16 mA 控制电压(脚8-5) Vcc0.530V输出电压(脚6-5) V o 0.5 20 V 输出功率 PO 100 mW电气特性:参数符号最小值 典型值最大值单位 测试条件电流传输比 CTR 25 32 60 % IF =16mA, Vcc = 4.5V 输出低电平时 VOL 0.2 0.4 V IF =16mA, Vcc = 4.5V , IO =4mA 输出高电平时 IOH 0.01 1 μA IF=0mA, Vcc=15V , IO=4mA低电平时电源 ICCL50 200 μAIF=16mA, Vcc=15V 高电平时电源 ICCH 0.02 1 μA IF=0mA, Vcc=15V 输入正向压降 VF 1.5 1.7 V IF =16mA 输入反向电压 BVR 5VIR =10uA输入电容 Cin 60 PF F =1MHZ, VF =0V 下降沿延时 TPHL 0.2 0.3 μS F=20K,If=16mA 上升沿延时 TPLH 0.3 0.5 μS F=20K,IF=16mA 隔离耐压 VISO 2500 V 1分钟@25C隔离电阻RIO 1012Ω评估电路:1. IF :输入电流信号,假设为16mA;2. V o:输出电压信号;3. tPHL, tPLH :输入输出之间的延时;4. RL 的选择建议在10K-20K之间;5. CL的选择建议在10pF-100pF之间;6. 建议在5与8脚之间加0.1uF去偶电容;7. 7脚和8脚需要短路连接;变频设计中的死区时间和寄生延时的说明:该款产品提供了一些规格来帮助工程师“最小化死区时间”,这就是“寄生延时”误差规格。

HGT4530-2013氢氧化铝阻燃剂

HGT4530-2013氢氧化铝阻燃剂

氢氧化铝阻燃剂1 范围本标准规定了氢氧化铝阻燃剂的分型、要求、试验方法、检验规则、标志、标签、包装、运输和贮存。

本标准适用于以铝土矿为原料制得的氢氧化铝阻燃剂,该产品用于橡胶、塑料、化工、电线电缆、建材等领域。

3 分子式和相对分子质量分子式:Al(OH)3相对分子质量:77.99(按2011年国际相对原子质量)4 分型氢氧化铝阻燃剂根据产品的粒径不同分为四型:ATH-1、ATH—2、ATH—3、ATH-4。

5 要求5。

1 外观:白色粉末5。

2 氢氧化铝阻燃剂按本标准规定的试验方法检测应符合表1技术要求。

表1技术要求6 试验方法6。

1 警告本试验方法中使用的部分试剂具有腐蚀性,操作时须小心谨慎!如溅到皮肤上应立即用水冲洗,严重者应立即就医.6.2 一般规定本标准所用的试剂和水,在没有注明其他要求时,均指分析纯试剂和GB/T6682 2008中规定的三级水。

试验中所用的标准滴定溶液、制剂和制品,在没有注明其他规定时,均按HG/T3696.1、HG/T3696.3的规定制备。

6。

3 外观检验在自然光下,于白色衬底的表面皿或白瓷板上用目视法判定外观。

6.4 氧化铝含量的测定 6.4。

1 方法提要在试液中先加入已知过量的乙二胺四乙酸二钠标准滴定溶液,与被测组分络合完全,剩余的乙二胺四乙酸二钠用硝酸铅标准滴定溶液滴定,根据硝酸铅标准滴定溶液的消耗量,即可求得氧化铝的含量。

6。

4.2 试剂和材料 6.4。

2。

1 盐酸。

6.4.2。

2 乙醇。

6.4.2。

3 氨水溶液:1+10。

6。

4.2。

4 盐酸溶液:1+100。

6.4.2.5 乙酸—乙酸钠缓冲溶液:pH ≈5.5;称取200g 乙酸钠,溶于水,加入10mL 冰乙酸,稀释至1000mL 。

6.4.2。

6 乙二胺四乙酸二钠标准滴定溶液:c (EDTA )≈0。

05mol/L 。

6。

4。

2.7 硝酸铅标准滴定溶液:c (Pb (NO 3)2)≈0.05mol/L 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Small Outline, 5 Lead, High Speed Optocouplers Technical DataHCPL-M452HCPL-M453Features• Surface Mountable• Very Small, Low Profile JEDEC Registered Package Outline• Compatible with Infrared Vapor Phase Reflow and Wave Soldering Processes • Very High Common Mode Transient Immunity:15000 V/µs at V CM = 1500 V Guaranteed (HCPL-M453)• High Speed: 1 Mb/s • TTL Compatible• Guaranteed AC and DC Performance overTemperature: 0°C to 70°C • Open Collector Output • Recognized Under the Component Program of U.L. (File No. E55361) for Dielectric Withstand Proof Test Voltage of 3750 Vac, 1Minute• Lead Free OptionCAUTION: The small device geometries inherent to the design of this bipolar component increase the component's susceptibility to damage from electrostatic discharge (ESD). It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD.The SO-5 JEDEC registered (MO-155) package outline does not require “through holes” in a PCB. This package occupies approximately one-fourth the footprint area of the standard dual-in-line package. The lead profile is designed to be compatible with standard surface mount processes.These diode-transistoroptocouplers use an insulating layer between the light emitting diode and an integrated photon detector to provide electrical insulation between input and output. Separate connections for the photodiode bias and output transistor collector increase the speed up to a hundred timesSO-5 Package Standard DIP SO-8 Package HCPL-M452HCPL-4502HCPL-0452HCPL-M453HCPL-4503HCPL-0453(Note: These devices equivalent to 6N135/6N136 devices but without the base lead.)DescriptionThese small outline high CMR,high speed, diode-transistor opto-couplers are single channel devices in a five lead miniature footprint. They are electrically equivalent to the following Agilent optocouplers:tions. A standard 16 mA TTL sink current through the input LED will provide enough output current for 1 TTL load and a 5.6 k Ω pull-up resistor. CTR of the HCPL-M452 is 19%minimum at I F = 16 mA.over that of a conventional photo-transistor coupler by reducing the base-collector capacitance.The HCPL-M452 is designed for high speed TTL/TTL applica-The HCPL-M453 is an HCPL-M452 with increased common mode transient immunity of 15,000 V/µs minimum at V CM =1500 V guaranteed.Applications• Line Receivers -High common mode transient immunity (>1000V/µs) and low input-output capacitance (0.6 pF).• High Speed Logic Ground Isolation - TTL/TTL, TTL/LTTL, TTL/CMOS, TTL/LSTTL.• Replace Slow Phototran-sistor Optocouplers • Replace PulseTransformers - Save board space and weight• Analog Signal Ground Isolation -Integrated photon detector provides improved linearity over phototransistor type.Land Pattern RecommendationDIMENSIONS IN MILLIMETERS AND (INCHES)Outline Drawing (JEDEC MO-155)SchematicGNDV CCV OANODECATHODEDIMENSIONS IN MILLIMETERS (INCHES)* MAXIMUM MOLD FLASH ON EACH SIDE IS 0.15 mm (0.006)NOTE: FLOATING LEAD PROTRUSION IS 0.15 mm (6 mils) MAX.MAX.= 0.102 (0.004)Absolute Maximum Ratings(No Derating Required up to 85°C)Storage Temperature .................................................-55°C to +125°C Operating Temperature .............................................-55°C to +100°C Average Input Current - I F .....................................................25 mA [1]Peak Input Current - I F ...........................................................50 mA [2](50% duty cycle, 1 ms pulse width)Peak Transient Input Current - I F ..............................................1.0 A(≤1 µs pulse width, 300 pps)Reverse Input Voltage - V R (Pin3-1)...............................................5 V Input Power Dissipation ........................................................45 mW [3]Average Output Current - I O (Pin 5)...........................................8 mA Peak Output Current .................................................................16 mA Output Voltage - V O (Pin 5-4)........................................-0.5 V to 20 V Supply Voltage - V CC (Pin 6-4).......................................-0.5 V to 30 V Output Power Dissipation....................................................100 mW [4]Infrared and Vapor Phase Reflow Temperature..................see belowSolder Reflow Thermal ProfileRecommended Pb-Free IR ProfileTIME (SECONDS)T E M P E R A T U R E (°C )ROOM°C of ACTUAL NOTES:THE TIME FROM 25 °C to PEAK TEMPERATURE = 8 MINUTES MAX.T smax = 200 °C, T smin = 150 °CInsulation Related SpecificationsParameter Symbol Value Units ConditionsMin External Air Gap L(IO1)≥ 5mm Measured from input terminals (Clearance)to output terminalsMin. External Tracking Path L(IO2)≥ 5mm Measured from input terminals (Creepage)to output terminalsMin. Internal Plastic Gap0.08mm Through insulation distance (Clearance)conductor to conductor Tracking Resistance CTI175V DIN IEC 112/VDE 0303 Part 1 Isolation Group (per DIN VDE 0109)IIIa Material Group DIN VDE 0109Electrical SpecificationsOver recommended temperature (T A = 0°C to 70°C) unless otherwise specified. (See note 11.)*All typicals at T A = 25°C.Switching SpecificationsOver recommended temperature (T A = 0°C to 70°C) V CC = 5 V, I F = 16 mA unless otherwise specified.All typicals at T A = 25°C.Notes:1. Derate linearly above 85°C free-air temperature at a rate of 0.5 mA/°C.2. Derate linearly above 85°C free-air temperature at a rate of 1.0 mA/°C.3. Derate linearly above 85°C free-air temperature at a rate of 1.1 mW/°C.4. Derate linearly above 85°C free-air temperature at a rate of 2.3 mW/°C.5. CURRENT TRANSFER RATIO in percent is defined as the ratio of output collector current, I O, to the forward LED inputcurrent, I F, times 100.6. Device considered a two terminal device: pins 1 and 3 shorted together, and pins 4, 5 and 6 shorted together.7. In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage ≥4500 V RMS for 1 second(leakage detection current limit, I I-O≤ 5 µA).8. Common transient immunity in a Logic High level is the maximum tolerable (positive) dV CM/dt on the rising edge of thecommon mode pulse, V CM, to assure that the output will remain in a Logic High state (i.e., V O > 2.0 V). Common mode transient immunity in a Logic Low level is the maximum tolerable (negative) dV CM/dt on the falling edge of the common mode pulse signal, V CM to assure that the output will remain in a Logic Low state (i.e., V O < 0.8 V).9. The 1.9 kΩ load represents 1 TTL unit load of 1.6 mA and the 5.6 kΩ pull-up resistor.10. The frequency at which the ac output voltage is 3 dB below its mid-frequency value.11. Use of a 0.1 µF bypass capacitor connected between pins 4 and 6 is recommended.Figure 7. Logic High Output Current vs. Temperature.Figure 8. Small-Signal CurrentTransfer Ratio vs. Quiescent Input Current.Figure 4. Current Transfer Ratio vs.Temperature.Figure 5. Propagation Delay vs.Temperature.Figure 6. Propagation Delay Time vs. Load Resistance.Figure 1. dc and Pulsed Transfer Characteristics.Figure 2. Current Transfer Ratio vs.Input Current.Figure 3. Input Current vs. Forward Voltage.105V O – OUTPUT VOLTAGE – VI O – O U T P U T C U R R E N T – m A1.51.00.50.1N O R M A L I Z E D C U R R E N T T R A N S F E R R A T I OI F – INPUT CURRENT – mA V F – FORWARD VOLTAGE – VOLTSI F – F O R W A R D C U R R E N T – m A1.11.00.90.80.70.6N O R M A L I Z E D C U R R E N T T R A N S F E R R A T I OT A – TEMPERATURE – °C200015001000500T A – TEMPERATURE – °C t P – P R O P A G A T I O N D E L A Y – n s3.02.01.00.60.40.20.8R L – LOAD RESISTANCE – k Ωt P – P R O P A G A T I O N D E L A Y – µsT A – TEMPERATURE – °C101010100101010I O H – L O G I C H I G H O U T P U T C U R R E N T – n A∆I F ∆I O – S M A L L S I G N A L C U R R E N T T R A N S F E R R A T I O0.100.200.30I F – QUIESCENT INPUT CURRENT – mAFigure 11. Test Circuit for Transient Immunity and Typical Waveforms.Figure 10. Switching Test Circuit.Figure 9. Frequency Response.f – FREQUENCY – MHzN O R M A L I Z E D R E S P O N S E –d BAC INPUTOOI F = 15 pFt V I FOV V 0 VSWITCH AT B: I = 1.6 mA FV CMCCt r , t f = 16 ns/semiconductors For product information and a complete list of distributors, please go to our web site.For technical assistance call:Americas/Canada: +1 (800) 235-0312 or (916) 788-6763Europe: +49 (0) 6441 92460China: 10800 650 0017Hong Kong: (+65) 6756 2394India, Australia, New Zealand: (+65) 6755 1939 Japan: (+81 3) 3335-8152 (Domestic/Interna-tional), or 0120-61-1280 (Domestic Only) Korea: (+65) 6755 1989Singapore, Malaysia, Vietnam, Thailand, Philippines, Indonesia: (+65) 6755 2044 Taiwan: (+65) 6755 1843Data subject to change.Copyright © 2004 Agilent Technologies, Inc. Obsoletes 5989-0792ENDecember 28, 20045989-2117EN。

相关文档
最新文档