2016年10月自考线性代数04184真题解析课程
最新全国自考04184线性代数(经管类)答案
2015年4月高等教育自学考试全国统一命题考试线性代数(经管类)试题答案及评分参考(课程代码 04184)一、单项选择题(本大题共5小题,每小题2分类,共10分)1.C2.A3.D4.C5.B二、填空题(本大题共10小题,每小题2分,共20分)6. 97.⎪⎪⎭⎫ ⎝⎛--2315 8.⎪⎪⎭⎫⎝⎛--031111 9. 3 10. -2 11. 0 12. 2 13.()()T T 1,1,1311,1,131---或14. -1 15.a >1三、计算题(本大题共7小题,每小题9分,共63分)16.解 D=40200320115011315111141111121131------=- (5分) =74402032115=-- (9分) 17.解 由于21=A ,所以A 可逆,于是1*-=A A A (3分) 故11*12212)2(---+=+A A A A A (6分) =2923232112111=⎪⎭⎫ ⎝⎛==+----A A A A (9分) 18.解 由B AX X +=,化为()B X A E =-, (4分)而⎪⎪⎪⎭⎫ ⎝⎛--=-201101011A E 可逆,且()⎪⎪⎪⎭⎫ ⎝⎛--=--110123120311A E (7分) 故⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛--=11021335021111012312031X (9分) 19.解 由于()⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛----→00007510171101751075103121,,,4321αααα (5分) 所以向量组的秩为2,21,αα是一个极大线性无关组,并且有214213717,511αααααα-=+-= (9分)注:极大线性无关组不唯一。
20. 解 方程组的系数行列式 D=()()()b c a c a b c c b b a a ---=222111因为a,b,c 两两互不相同,所以0≠D ,故方程有唯一解。
自考本科_线性代数_历年真题[1]
第 1 页全国2010年1月自考线性代数(经管类)试题课程代码:04184说明:本卷中,A T 表示矩阵A 的转置,αT 表示向量α的转置,E 表示单位矩阵,|A |表示方阵A 的行列式,A -1表示方阵A 的逆矩阵,r (A )表示矩阵A 的秩.一、单项选择题(本大题共10小题,每小题2分,共30分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将代码填写在题后的括号内。
错选、多选或未选均无分。
1.设行列式==1111034222,1111304z y x zy x则行列式( ) A.32B.1C.2D.38 2.设A ,B ,C 为同阶可逆方阵,则(ABC )-1=( ) A. A -1B -1C -1 B. C -1B -1A -1 C. C -1A -1B -1D. A -1C -1B -13.设α1,α2,α3,α4是4维列向量,矩阵A =(α1,α2,α3,α4).如果|A |=2,则|-2A |=( ) A.-32 B.-4 C.4D.324.设α1,α2,α3,α4 是三维实向量,则( ) A. α1,α2,α3,α4一定线性无关 B. α1一定可由α2,α3,α4线性表出 C. α1,α2,α3,α4一定线性相关D. α1,α2,α3一定线性无关5.向量组α1=(1,0,0),α2=(1,1,0),α3=(1,1,1)的秩为( ) A.1 B.2 C.3D.46.设A 是4×6矩阵,r (A )=2,则齐次线性方程组Ax =0的基础解系中所含向量的个数是( )A.1B.2C.3D.47.设A 是m ×n 矩阵,已知Ax =0只有零解,则以下结论正确的是( ) A.m ≥n B.Ax =b (其中b 是m 维实向量)必有唯一解 C.r (A )=mD.Ax =0存在基础解系第 2 页8.设矩阵A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---496375254,则以下向量中是A 的特征向量的是( ) A.(1,1,1)T B.(1,1,3)T C.(1,1,0)TD.(1,0,-3)T9.设矩阵A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--111131111的三个特征值分别为λ1,λ2,λ3,则λ1+λ2+λ3 = ()A.4B.5C.6D.710.三元二次型f (x 1,x 2,x 3)=233222312121912464x x x x x x x x x +++++的矩阵为( )A.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡963642321 B.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡963640341 C.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡960642621 D.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡9123042321 二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。
04184线性代数(经管类)
1【单选题】与矩阵合同的矩阵是()。
A、B、C、D、您的答案:B参考答案:B纠错查看解析2【单选题】设α1,α2,α3是齐次线性方程组Ax=0的一个基础解系,则下列解向量组中,可以作为该方程组基础解系的是A、α1+α2,α2+α3,α3+α1B、α1-α3,α1-α2,α2+α3-2α1C、α1-α2,α2-α3,α3-α1D、α1,α2,α1-α2您的答案:A参考答案:A纠错查看解析3【单选题】设行列式,则A、B、C、D、您的答案:未作答参考答案:C纠错查看解析4【单选题】已知是三阶可逆矩阵,则下列矩阵中与等价的是()。
A、B、C、D、您的答案:未作答参考答案:D纠错查看解析5【单选题】设A为3阶方阵,B为4阶方阵,且行列式|A|=1,|B|=-2,则行列式||B|A|之值为()A、-8B、-2C、2D、8您的答案:未作答参考答案:A纠错查看解析6【单选题】已知A是一个3×4矩阵,下列命题中正确的是()A、若矩阵A中所有三阶子式都为0,则秩(A)=2B、若A中存在二阶子式不为0,则秩(A)=2C、若秩(A)=2,则A中所有三阶子式都为0D、若秩(A)=2,则A中所有二阶子式都不为0您的答案:未作答参考答案:C纠错查看解析7【单选题】设则的特征值为1,2,3,则A、-2B、2C、3D、4您的答案:未作答参考答案:D纠错查看解析8【单选题】二次型的正惯性指数为()A、0B、1C、2D、3您的答案:未作答参考答案:C纠错查看解析9【单选题】设为3阶矩阵,将的第三行乘以得到单位矩阵,则A、-2B、C、D、2您的答案:未作答参考答案:A纠错查看解析10【单选题】矩阵有一个特征值为()。
A、-3B、-2C、1D、2您的答案:未作答参考答案:B纠错查看解析11【单选题】设为3阶矩阵,且,将按列分块为,若矩阵,则A、0B、C、D、您的答案:未作答参考答案:C纠错查看解析12【单选题】n维向量组α1,α2,…,αs(s≥2)线性相关充要条件A、α1,α2,…,αs中至少有两个向量成比例B、α1,α2,…,αs中至少有一个是零向量C、α1,α2,…,αs中至少有一个向量可以由其余向量线性表出D、α1,α2,…,αs中第一个向量都可以由其余向量线性表出您的答案:未作答参考答案:C纠错查看解析13【单选题】若矩阵中有一个阶子式等于零,且所有阶子式都不为零,则必有().A、B、C、D、您的答案:未作答参考答案:B纠错查看解析14【单选题】设三阶实对称矩阵的全部特征值为1,-1,-1,则齐次线性方程组的基础解系所含解向量的个数为()。
自考线性代数(04184)经管类复习提纲内含经典例题分类讲解
线性代数复习提纲第一部分:基本要求(计算方面)四阶行列式的计算;N阶特殊行列式的计算(如有行和、列和相等);矩阵的运算(包括加、减、数乘、乘法、转置、逆等的混合运算);求矩阵的秩、逆(两种方法);解矩阵方程;含参数的线性方程组解的情况的讨论;齐次、非齐次线性方程组的求解(包括唯一、无穷多解);讨论一个向量能否用和向量组线性表示;讨论或证明向量组的相关性;求向量组的极大无关组,并将多余向量用极大无关组线性表示;将无关组正交化、单位化;求方阵的特征值和特征向量;讨论方阵能否对角化,如能,要能写出相似变换的矩阵及对角阵;通过正交相似变换(正交矩阵)将对称矩阵对角化;写出二次型的矩阵,并将二次型标准化,写出变换矩阵;判定二次型或对称矩阵的正定性。
第二部分:基本知识一、行列式1.行列式的定义用n^2个元素aij组成的记号称为n阶行列式。
(1)它表示所有可能的取自不同行不同列的n个元素乘积的代数和;(2)展开式共有n!项,其中符号正负各半;2.行列式的计算一阶|α|=α行列式,二、三阶行列式有对角线法则;N阶(n>=3)行列式的计算:降阶法定理:n阶行列式的值等于它的任意一行(列)的各元素与其对应的代数余子式乘积的和。
方法:选取比较简单的一行(列),保保留一个非零元素,其余元素化为0,利用定理展开降阶。
特殊情况上、下三角形行列式、对角形行列式的值等于主对角线上元素的乘积;(2)行列式值为0的几种情况:Ⅰ行列式某行(列)元素全为0;Ⅱ行列式某行(列)的对应元素相同;Ⅲ行列式某行(列)的元素对应成比例;Ⅳ奇数阶的反对称行列式。
二.矩阵1.矩阵的基本概念(表示符号、一些特殊矩阵――如单位矩阵、对角、对称矩阵等);2.矩阵的运算(1)加减、数乘、乘法运算的条件、结果;(2)关于乘法的几个结论:①矩阵乘法一般不满足交换律(若AB=BA,称A、B是可交换矩阵);②矩阵乘法一般不满足消去律、零因式不存在;③若A、B为同阶方阵,则|AB|=|A|*|B|;④|kA|=k^n|A|3.矩阵的秩(1)定义非零子式的最大阶数称为矩阵的秩;(2)秩的求法一般不用定义求,而用下面结论:矩阵的初等变换不改变矩阵的秩;阶梯形矩阵的秩等于非零行的个数(每行的第一个非零元所在列,从此元开始往下全为0的矩阵称为行阶梯阵)。
【讲义】04184线性代数
学习本课程,要求考生具备高中数学的基础知识.本课程是经济管理类(本科)各专业 的公共基础课程,学习本课程又为经济管理类的各专业的后继课程(如经济学等)奠定必要 的数学基础.
四、课程的重点和难点
本课程的重点和难点内容如下: (1)行列式的性质,计算行列式; (2)矩阵的各种运算; (3)判定向量组的线性相关与线性无关,向量组的秩和矩阵的秩的概念及其关系; (4)线性方程组解的结构和求解方法; (5)实方阵的特征值和特征向量,方阵对角化的条件,方阵对角化的计算方法; (6)实二次型的概念和正定二次型的判别方法.
第五章 特征值与特征向量 ------------------------------------------------------------------------------ 50 第一节 特征值与特征向量 ------------------------------------------------------------------------ 51 第二节 方阵的相似变换 --------------------------------------------------------------------------- 53 第三节 向量内积与正交矩阵 --------------------------------------------------------------------- 57 第四节 实对称矩阵的相似标准形 --------------------------------------------------------------- 58
第二章 矩阵------------------------------------------------------------------------------------------------- 9 第一节 线性方程组与矩阵的定义 --------------------------------------------------------------- 10 第二节 矩阵运算------------------------------------------------------------------------------------ 11 第四节 分块矩阵------------------------------------------------------------------------------------ 18 第五节 矩阵的初等变换与初等方阵------------------------------------------------------------- 21 第六节 矩阵的秩------------------------------------------------------------------------------------ 25 第七节 矩阵与线性方程组 ------------------------------------------------------------------------ 27
10月自考线性代数真题与答案
10月自考线性代数真题与答案全国20XX年10月高等教育自学考试线性代数(经管类)试题课程代码:04184一、单项选择题(本大题共1 0小题,每小题2分,共20分)a11.设行列式a2b1a11,b2a2 c1a11,则行列式c2a2D. 22b1 c1=()b2 c2A. -1B. 0C. 12.设A是n阶矩阵,O是n阶零矩阵,且A E O,则必有()1A. A EB. A EC. A AD. A 10a03.A= 101 为反对称矩阵,则必有()bc0A. a b 1,c 0B. a c 1,b 0C. a c 0,b 1D. b c 1,a 0 4.设向量组1=(2,0,0)T,2=(0,0, 1)T,则下列向量中可以由1,2线性表示的是() A.( 1, 1, 1)T B. (0, 1, 1)T C. ( 1, 1,0)T D. ( 1,0, 1)T 5.已知4×3矩阵A 的列向量组线性无关,则r(AT)= () A.1 B.2 C.3D.46.设1,2是非齐次线性方程组Ax=b的两个解向量,则下列向量中为方程组解的是() A.1-2 B. 1+ 2 C. 1+ 2 D.1211 1+ 2 227.齐次线性方程组x1 x3 x4 0的基础解系所含解向量的个数为()x2 x3 2x4 0D.4A.1B.2C.31 21A8.若矩阵A与对角矩阵D= 相似,则=()1A.EB.AC.-E29.设3阶矩阵A的一个特征值为-3,则-A必有一个特征值为()A.-9B.-3C.3222D.910.二次型f(x1,x2,x3)=x1 x2 x3 2x1x2 2x1x3 2x2x3的规范形为()*****A.z1B.z1C.z1 -z2 z2222D.z1 z2 z3二、填空题(本大题共10小题,每小题2分,共20分)12311.行列式111的值为_________.32143 01 212.设矩阵A= ,P= ,则PAP=_________.21 1013.设向量=(1,2,1)T,=( 1, 2, 3)T,则3 -2 =_________. 14.若A为3阶矩阵,且|A|=,则(3A)=_________. 9EO15.设B是3阶矩阵,O是3阶零矩阵,r(B)=1,则分块矩阵的秩为_________.B B16.向量组1=(k, 2,2)T,2=(4,8, 8)T线性相关,则数k=_________.x1+2x2+3x3=117.若线性方程组2x2+ x3= 2无解,则数=_________.(λ+1)x= λ318.已知A为3阶矩阵,1, 2为齐次线性方程组Ax=0的基础解系,则|A|=_________.19.设A为3阶实对称矩阵,则数x=_________. 2=(1,2,x)T分别为A的对应于不同特征值的特征向量,1=(0,1,1)T,00120.已知矩阵A= 01 1 ,则对应的二次型f(x1,x2,x3)=_________.1 12三、计算题(本大题共6小题,每小题9分,共54分)a b21.计算行列式D=aaa bb的值. ba b100 11222.设矩阵A= 210 ,B= 022 ,求满足方程AX=BT的矩阵X.222 0461 12 1214 223.设向量组1 , 2 , 3 , 4 ,求该向量组的秩和一个极大线性无关组.3 0 6 14 43 1x1 x2 x3 x4 124.求解非齐次线性方程组2x1 x2 x3 x4 4.(要求用它的一个特解和导出组的基础解系表示)4x 3x x x 6234 1 01025.求矩阵A= 001 的全部特征值和特征向量.00026.确定a, b的值,使二次型f(x1,x2,x3) ax1 2x2 2x3 2bx1x3的矩阵A的特征值之和为1,特征值之积为-12. 四、证明题(本题6分)27.设A,B均为n阶(n 2)可逆矩阵,证明(AB)*=B*A*.22全国20XX年10月高等教育自学考试线性代数(经管类)试题答案代码:04184一、单项选择题(本大题共1 0小题,每小题2分,共20分)1.B 2. C 3. B 4. D 5. C 6. D 7. B 8. A 9. A 10. C 二、填空题(本大题共10小题,每小题2分,共20分)21 1T13.14. 15.4 (5,10,9) 34322 16.-1 17.-1 18.0 19.-220.x2 2x3 2x1x3 2x2x311.0 12.三、计算题(本大题共6小题,每小题9分,共54分)a b21.解:D=abab1abaaa bb (2a 2b)a bb (2a 2b)0b0 2ab(a b) ba bba b0b aa00124 426 1***** 100T22.解:(A,B) ***** 010***** 0223 1 11 12123.解:( 1, 2, 3, 4)304 421 1 121 1 14 2 030 4 03006 1030 431 00 5 3 0020501 43 0该向量组的秩为3,一个极大线性无关组为1, 2, 3. 24.解:1(A,b) 24 10 1 1 11 11114 03 1 16 00000 01 1 111332 133202231 3 32 0000x1 2x3 2x4 3,x3,x4是自由未知量,特解* (3, 2,0,0)T 同解方程组为x2 3x3 3x4 2 x1 2x3 2x4,x3,x4是自由未知量,导出组同解方程组为x 3x 3x34 2基础解系1 ( 2,3,1,0)T, 2 ( 2,3,0,1)T,通解为* k1 1 k2 2,k1,k2 R.10325.解:特征方程E3 A 0 1 0,特征值为1 2 3 0001 2 3 0对应齐次线性方程组为0 10 x1 0 x 0 00 12 0 000 x31 x2 0,x1是自由未知量,特征向量为p 0 ,同解方程组为x3 0 0全部特征向量为kp,k Ra 1 tr(A) a 126.解:对称矩阵A 020 ,易知,解得. 2b 2 A 2( 2a b) 12 b0 2四、证明题(本题6分)27.证明:A,B均为n阶(n 2)可逆矩阵,则A AA,B BB,且AB可逆故(AB) AB(AB)。
《线性代数(经管类)》历年真题及参考答案
20XX年10月高等教育自学考试全国统一命题考试线性代数(经管类)试卷(课程代码 04184)一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设3阶方阵A的行列式为2,则= 【】A.-1 B.-C. D.12.设,则方程的根的个数为【】A.0 B.1C.2 D.33.设A为n阶方阵,将A的第1列与第2列交换得到方阵B,若|A|≠|B|,则必有A.|A|=0 B.|A+B|≠0C.|A|≠0 D.|A-B|≠04. 设A、B是任意的n阶方阵,下列命题中正确的是【】A. B.C. D.5.设A= ,其中,则矩阵A的秩为【】A.0 B.1C.2 D.36.设6的阶方阵A的秩为4,则A的伴随矩阵的秩为【】A.0 B.2C.3 D.47.设向量a=(1,-2,3),与=(2,k,6)A.-10 B.-4C.4 D.108.已知线性方程组无解,则数a= 【】A.- B.0C. D.19.设3阶方阵A的特征多项式为,则|A|= 【】10.若3阶实对称矩阵A=( )是正定矩阵,则4的3个特征值可能为【】二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。
错填、不填均无分。
11.设行列式D=,其第三行各元素的代数余子式之和为.12设A=,B=,则AB:.13设A是4x3矩阵且r(A)=2,B=,则r(AB).14.向量组(1,2),(2,3),(3,4)的秩为15设线性无关的向量组可由向量组线性表示,则r与s的关系为16.设方程组有非零解,且数,则= .17.设4元线性方程组Ax=b的三个解,已知,.则方程组的通解是.19.设矩阵有一个特征值=2,对应的特征向量为,则数20.设实二次型,已知A的特征值为-1,1,2,则该二次型的规范形为三、计算题(本大题共6小题,每小题9分,共54分)21.设矩阵,,其中口,均为3维列向量,且 |A|=18,|B|=2.求|A-B|.22.解矩阵方程23.设向量组,,问P为何值时,该向量组线性相关?并在此时求出它的秩和一个极大无关组.24.设3元线性方程组(1)确定当取何值时,方程组有惟一解、无解、有无穷多解?(2)当方程组有无穷多解时,求出该方程组的通解(要求用其一个特解和导出组的基础解系表示)25.已知2阶方阵A的特征值为,方阵.(1)求B的特征值;(2)求B的行列式.。
历年自考04184线性代数试题真题及答案分析解答
全国2010年度4月高等教育自学考试线性代数(经管类)试题答案一、单项选择题(本大题共10小题,每小题2分,共20分) 1.已知2阶行列式m b b a a =2121,n c c b b =2121,则=++221121c a c a b b ( B )A .n m -B .m n -C .n m +D .)(n m +-2.设A , B , C 均为n 阶方阵,BA AB =,CA AC =,则=ABC ( D ) A .ACBB .CABC .CBAD .BCA3.设A 为3阶方阵,B 为4阶方阵,且1||=A ,2||-=B ,则行列式||||A B 之值为( A ) A .8-B .2-C .2D .84.⎪⎪⎪⎭⎫⎝⎛=333231232221131211a a aa a a a a a A ,⎪⎪⎪⎭⎫⎝⎛=333231232221131211333a a a a a a a a a B ,⎪⎪⎪⎭⎫ ⎝⎛=100030001P ,⎪⎪⎪⎭⎫⎝⎛=100013001Q ,则=B ( B )A .PAB .APC .QAD .AQ5.已知A 是一个43⨯矩阵,下列命题中正确的是( C ) A .若矩阵A 中所有3阶子式都为0,则秩(A )=2 B .若A 中存在2阶子式不为0,则秩(A )=2 C .若秩(A )=2,则A 中所有3阶子式都为0 D .若秩(A )=2,则A 中所有2阶子式都不为0 6.下列命题中错误..的是( C ) A .只含有1个零向量的向量组线性相关B .由3个2维向量组成的向量组线性相关C .由1个非零向量组成的向量组线性相关D .2个成比例的向量组成的向量组线性相关 7.已知向量组321,,ααα线性无关,βααα,,,321线性相关,则( D ) A .1α必能由βαα,,32线性表出 B .2α必能由βαα,,31线性表出 C .3α必能由βαα,,21线性表出D .β必能由321,,ααα线性表出8.设A 为n m ⨯矩阵,n m ≠,则方程组Ax =0只有零解的充分必要条件是A 的秩( D ) A .小于mB .等于mC .小于nD .等于n9.设A 为可逆矩阵,则与A 必有相同特征值的矩阵为( A ) A .T AB .2AC .1-AD .*A10.二次型212322213212),,(x x x x x x x x f +++=的正惯性指数为( C ) A .0 B .1 C .2 D .3二、填空题(本大题共10小题,每小题2分,共20分)11.行列式2010200920082007的值为_____________. 12.设矩阵⎪⎪⎭⎫ ⎝⎛-=102311A ,⎪⎪⎭⎫ ⎝⎛=1002B ,则=B A T_____________.14.设A 为n 阶可逆矩阵,且nA 1||-=,则|=-||1A _____________.15.设A 为n 阶矩阵,B 为n 阶非零矩阵,若B 的每一个列向量都是齐次线性方程组Ax =0的解,则=||A _____________.16.齐次线性方程组⎩⎨⎧=+-=++0320321321x x x x x x 的基础解系所含解向量的个数为_____________.17.设n 阶可逆矩阵A 的一个特征值是3-,则矩阵1231-⎪⎭⎫⎝⎛A必有一个特征值为_________.18.设矩阵⎪⎪⎪⎭⎫⎝⎛----=00202221x A 的特征值为2,1,4-,则数=x _____________.19.已知⎪⎪⎪⎪⎫⎛=10002/102/1b a A 是正交矩阵,则=+b a _____________.三、计算题(本大题共6小题,每小题9分,共54分)21.计算行列式333222c c b b a a c b a cb a D +++=的值. 解:222333222333222111c b a c b a abc c b a c b a c b a c c b b a a c b a c b aD ==+++= 2222222200111a c a b ac ab abc a c a b a c ab abc ----=----=))()((11))((b c a c a b abc ac a b a c a b abc ---=++--=.22.已知矩阵)3,1,2(=B ,)3,2,1(=C ,求(1)C B A T =;(2)2A .解:(1)⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛==963321642)3,2,1(312C B A T;(2)注意到13312)3,2,1(=⎪⎪⎪⎭⎫⎝⎛=T CB ,所以131313)())((2=====A C B C CB B C B C B A T T T T T ⎪⎪⎪⎭⎫ ⎝⎛963321642.23.设向量组T 4T 3T 2T 1(1,1,1,1),)0,3,1,1(,(1,2,0,1),(2,1,3,1)=--===αααα,求向量组的秩及一个极大线性无关组,并用该极大线性无关组表示向量组中的其余向量.解:⎪⎪⎪⎪⎪⎭⎫⎝⎛--==1011130311211112),,,(4321ααααA →⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--1112130311211011→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------1110233001101011 →⎪⎪⎪⎪⎪⎭⎫⎝⎛--1000200001101011→⎪⎪⎪⎪⎪⎭⎫⎝⎛0000100001101011→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-0000100001101101,向量组的秩为3,421,,ααα是一个极大无关组,213ααα+-=.24.已知矩阵⎪⎪⎪⎭⎫ ⎝⎛=100210321A ,⎪⎪⎪⎭⎫⎝⎛--=315241B .(1)求1-A ;(2)解矩阵方程B AX =. 解:(1)⎪⎪⎪⎭⎫ ⎝⎛=100010001100210321),(E A →⎪⎪⎪⎭⎫ ⎝⎛--100210301100010021→⎪⎪⎪⎭⎫ ⎝⎛--100210121100010001,1-A ⎪⎪⎪⎭⎫⎝⎛--=100210121;(2)==-B A X 1⎪⎪⎪⎭⎫ ⎝⎛--100210121⎪⎪⎪⎭⎫⎝⎛---=⎪⎪⎪⎭⎫ ⎝⎛--3111094315241.25.问a 为何值时,线性方程组⎪⎩⎪⎨⎧=++=+=++63222243232132321x x x ax x x x x 有惟一解?有无穷多解?并在有解时求出其解(在有无穷多解时,要求用一个特解和导出组的基础解系表示全部解).解:⎪⎪⎪⎭⎫ ⎝⎛=63222204321),(a b A →⎪⎪⎪⎭⎫ ⎝⎛---23202204321a →⎪⎪⎪⎭⎫ ⎝⎛-03002204321a a .3≠a 时,3)(),(==A r b A r ,有惟一解,此时→),(b A ⎪⎪⎪⎭⎫ ⎝⎛010********a →⎪⎪⎪⎭⎫⎝⎛010********* →⎪⎪⎪⎭⎫ ⎝⎛010*********→⎪⎪⎪⎭⎫ ⎝⎛010*********,⎪⎩⎪⎨⎧===012321x x x ; 3=a 时,n A r b A r <==2)(),(,有无穷多解,此时→),(b A ⎪⎪⎪⎭⎫⎝⎛000023204321→⎪⎪⎪⎭⎫ ⎝⎛000023202001→⎪⎪⎪⎭⎫ ⎝⎛000012/3102001,⎪⎪⎩⎪⎪⎨⎧=-==333212312x x x x x ,通解为⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛12/30012k ,其中k 为任意常数.26.设矩阵⎪⎪⎪⎭⎫ ⎝⎛=3030002a a A 的三个特征值分别为5,2,1,求正的常数a 的值及可逆矩阵P ,使⎪⎪⎪⎭⎫ ⎝⎛=-5000200011AP P .解:由521)9(23323030002||2⨯⨯=-===a a aa a A ,得42=a ,2=a .=-A E λ⎪⎪⎪⎭⎫ ⎝⎛-----320230002λλλ.对于11=λ,解0)(=-x A E λ:=-A E λ⎪⎪⎪⎭⎫ ⎝⎛-----220220001→⎪⎪⎪⎭⎫ ⎝⎛000110001,⎪⎩⎪⎨⎧=-==333210x x x x x ,取=1p ⎪⎪⎪⎭⎫ ⎝⎛-110;对于22=λ,解0)(=-x A E λ:=-A E λ⎪⎪⎪⎭⎫ ⎝⎛----120210000→⎪⎪⎪⎭⎫ ⎝⎛000100010,⎪⎩⎪⎨⎧===003211x x x x ,取=2p ⎪⎪⎪⎭⎫⎝⎛001;对于53=λ,解0)(=-x A E λ:=-A E λ⎪⎪⎪⎭⎫ ⎝⎛--220220003→⎪⎪⎪⎭⎫ ⎝⎛-000110001,⎪⎩⎪⎨⎧===333210x x x x x ,取=3p ⎪⎪⎪⎭⎫ ⎝⎛110.令⎪⎪⎪⎭⎫ ⎝⎛-==101101010),,(321p p p P ,则P 是可逆矩阵,使⎪⎪⎪⎭⎫⎝⎛=-5000200011AP P .四、证明题(本题6分)27.设A ,B ,B A +均为n 阶正交矩阵,证明111)(---+=+B A B A .证:A ,B ,B A +均为n 阶正交阵,则1-=A A T ,1-=B B T ,1)()(-+=+B A B A T ,所以111)()(---+=+=+=+B A B A B A B A T T T .全国2010年7月高等教育自学考试线性代数(经管类)试题答案一、单项选择题(本大题共10小题,每小题2分,共20分)1.设3阶方阵),,(321ααα=A ,其中i α(3,2,1=i )为A 的列向量,若=||B 6|),,2(|3221=+αααα,则=||A ( C )A .12-B .6-C .6D .122.计算行列式=----32320200051020203( A )A .180-B .120-C .120D .1803.若A 为3阶方阵且2||1=-A ,则=|2|A ( C ) A .21B .2C .4D .84.设4321,,,αααα都是3维向量,则必有( B ) A .4321,,,αααα线性无关B .4321,,,αααα线性相关C .1α可由432,,ααα线性表示D .1α不可由432,,ααα线性表示5.若A 为6阶方阵,齐次方程组Ax =0基础解系中解向量的个数为2,则=)(A r ( C ) A .2B .3C .4D .56.设A 、B 为同阶方阵,且)()(B r A r =,则( C ) A .A 与B 相似B .||||B A =C .A 与B 等价D .A 与B 合同7.设A 为3阶方阵,其特征值分别为0,1,2,则=+|2|E A ( D ) A .0B .2C .3D .24..A .2-B .0C .2D .410.设3阶实对称矩阵A 的特征值分别为0,1,2,则( B ) A .A 正定B .A 半正定C .A 负定D .A 半负定二、填空题(本大题共10小题,每小题2分,共20分)11.设⎪⎪⎪⎭⎫ ⎝⎛-=421023A ,⎪⎪⎭⎫⎝⎛--=010112B ,则=AB ______________.12.设A 为3阶方阵,且3||=A ,则=-|3|1A ______________.13.三元方程1321=++x x x 的通解是______________.14.设)2,2,1(-=α,则与α反方向的单位向量是______________.15.设A 为5阶方阵,且3)(=A r ,则线性空间}0|{==Ax x W 的维数是______________.17.若A 、B 为5阶方阵,且0=Ax 只有零解,且3)(=B r ,则=)(AB r ______________.18.实对称矩阵⎪⎪⎪⎭⎫ ⎝⎛--110101012所对应的二次型=),,(321x x x f ______________.19.设3元非齐次线性方程组b Ax =有解⎪⎪⎪⎭⎫ ⎝⎛=3211α,⎪⎪⎪⎭⎫⎝⎛-=3 2 12α,且2)(=A r ,则b Ax =的通解是______________.20.设⎪⎪⎪⎭⎫ ⎝⎛=321α,则T A αα=的非零特征值是______________.三、计算题(本大题共6小题,每小题9分,共54分)21.计算5阶行列式2000102000002000002010002=D .解:连续3次按第2行展开,243821128201020102420010200002010022=⨯=⨯=⨯=⨯=D . 22.设矩阵X 满足方程⎪⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-021102341010100001200010002X ,求X .解:记⎪⎪⎪⎭⎫ ⎝⎛-=200010002A ,⎪⎪⎪⎭⎫ ⎝⎛=010100001B ,⎪⎪⎪⎭⎫⎝⎛---=021102341C ,则C AXB =,⎪⎪⎪⎭⎫ ⎝⎛-=-2/100010002/11A ,⎪⎪⎪⎭⎫ ⎝⎛=-010*******B ,11--=CB A X ⎪⎪⎪⎭⎫ ⎝⎛-=10002000121⎪⎪⎪⎭⎫ ⎝⎛---021102341⎪⎪⎪⎭⎫⎝⎛010100001⎪⎪⎪⎭⎫ ⎝⎛---=021********⎪⎪⎪⎭⎫ ⎝⎛010100001⎪⎪⎪⎭⎫⎝⎛---=20102443121. 23.求非齐次线性方程组⎪⎩⎪⎨⎧=--+=+--=--+0895443313432143214321x x x x x x x x x x x x 的通解.解:=),(b A ⎪⎪⎪⎭⎫ ⎝⎛------089514431311311→⎪⎪⎪⎭⎫⎝⎛------176401764011311→⎪⎪⎪⎭⎫⎝⎛---000001764011311 →⎪⎪⎪⎭⎫ ⎝⎛---0000017640441244→⎪⎪⎪⎭⎫ ⎝⎛--000001764053604→⎪⎪⎪⎭⎫ ⎝⎛----000004/14/72/3104/54/32/301,⎪⎪⎪⎩⎪⎪⎪⎨⎧==++-=-+=4433432431472341432345x x x x x x x x x x ,通解为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-104/74/3012/32/3004/14/521k k ,21,k k 都是任意常数. 24.求向量组)4,1,2,1(1-=α,)4,10,100,9(2=α,)8,2,4,2(3---=α的秩和一个极大无关组.解:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----=844210141002291),,(321TT T ααα→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----21121012501291→⎪⎪⎪⎪⎪⎭⎫⎝⎛--08001900410291 →⎪⎪⎪⎪⎪⎭⎫⎝⎛-000000010291→⎪⎪⎪⎪⎪⎭⎫⎝⎛-000000010201,向量组的秩为2,21,αα是一个极大无关组.25.已知⎪⎪⎪⎭⎫⎝⎛---=2135212b a A 的一个特征向量T )1,1,1(-=ξ,求b a ,及ξ所对应的特征值,并写出对应于这个特征值的全部特征向量.解:设λ是ξ所对应的特征值,则λξξ=A ,即⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛---1111112135212λb a ,从而⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛++-λλλ121b a ,可得3-=a ,0=b ,1-=λ; 对于1-=λ,解齐次方程组0)(=-x A E λ:=-A E λ=⎪⎪⎪⎭⎫ ⎝⎛+-+---201335212λλλ⎪⎪⎪⎭⎫ ⎝⎛----101325213→⎪⎪⎪⎭⎫⎝⎛----213325101→⎪⎪⎪⎭⎫ ⎝⎛110220101→⎪⎪⎪⎭⎫ ⎝⎛000110101,⎪⎩⎪⎨⎧=-=-=333231x x x x x x ,基础解系为⎪⎪⎪⎭⎫⎝⎛--111,属于1-=λ的全部特征向量为k ⎪⎪⎪⎭⎫⎝⎛--111,k 为任意非零实数.26.设⎪⎪⎪⎭⎫ ⎝⎛----=22111212112a A ,试确定a 使2)(=A r .解:⎪⎪⎪⎭⎫ ⎝⎛----=22111212112a A →⎪⎪⎪⎭⎫ ⎝⎛----a 12121122211→⎪⎪⎪⎭⎫ ⎝⎛----233023302211a →⎪⎪⎪⎭⎫⎝⎛--a 00023302211,0=a 时2)(=A r . 四、证明题(本大题共1小题,6分)27.若321,,ααα是b Ax =(0≠b )的线性无关解,证明,12αα-13αα-是对应齐次线性方程组0=Ax 的线性无关解.证:因为321,,ααα是b Ax =的解,所以12αα-,13αα-是0=Ax 的解;设0)()(132121=-+-ααααk k ,即0)(3221121=++--αααk k k k ,由321,,ααα线性无关,得⎪⎩⎪⎨⎧===--0002121k k k k ,只有零解021==k k ,所以,12αα-13αα-线性无关.全国2011年1月高等教育自学考试线性代数(经管类)试题课程代码:04184说明:本卷中,A -1表示方阵A 的逆矩阵,r (A )表示矩阵A 的秩,(βα,)表示向量α与β的内积,E 表示单位矩阵,|A |表示方阵A 的行列式.一、单项选择题(本大题共10小题,每小题2分,共20分)1.设行列式333231232221131211a a a a a a a a a =4,则行列式333231232221131211333222a a a a a a a a a =( ) A.12 B.24 C.36D.482.设矩阵A ,B ,C ,X 为同阶方阵,且A ,B 可逆,AXB =C ,则矩阵X =( ) A.A -1CB -1B.CA -1B -1C.B -1A -1CD.CB -1A -13.已知A 2+A -E =0,则矩阵A -1=( ) A.A -E B.-A -E C.A +ED.-A +E4.设54321,,,,ααααα是四维向量,则( )A.54321,,,,ααααα一定线性无关B.54321,,,,ααααα一定线性相关C.5α一定可以由4321,,,αααα线性表示D.1α一定可以由5432,,,αααα线性表出 5.设A 是n 阶方阵,若对任意的n 维向量x 均满足Ax =0,则( ) A.A =0 B.A =E C.r (A )=nD.0<r (A )<(n )6.设A 为n 阶方阵,r (A )<n ,下列关于齐次线性方程组Ax =0的叙述正确的是( ) A.Ax =0只有零解B.Ax =0的基础解系含r (A )个解向量C.Ax =0的基础解系含n -r (A )个解向量D.Ax =0没有解7.设21,ηη是非齐次线性方程组Ax =b 的两个不同的解,则( ) A.21ηη+是Ax =b 的解B.21ηη-是Ax =b 的解C.2123ηη-是Ax =b 的解D.2132ηη-是Ax =b 的解8.设1λ,2λ,3λ为矩阵A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡200540093的三个特征值,则321λλλ=( )A.20B.24C.28D.309.设P 为正交矩阵,向量βα,的内积为(βα,)=2,则(βαP P ,)=( ) A.21B.1C.23 D.210.二次型f (x 1,x 2,x 3)=323121232221222x x x x x x x x x +++++的秩为( ) A.1 B.2C.3D.4二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。
历年自考04184线性代数试题真题及答案分析解答推荐文档
全国2010年度4月高等教育自学考试线性代数(经管类)试题答案A .只含有1个零向量的向量组线性相关B .由3个2维向量组成的向量组线性相关一、单项选择题(本大题共 10小题,每小题 1.已知2阶行列式a 〔 a 2 m ,b 1 b 2t h b 2C 1 C 2A . m nB. nm2分,共20分)bi b 2n ,贝U( B )a i C i a2 C 2C. m nD. (m n)2 .设 A , B , C 均为 n 阶方阵,AB BA , AC CA ,则 ABC ( D )ABC (AB)C (BA)C B(AC) B(CA) BCA .3 .设A 为3阶方阵,B 为4阶方阵,且|A| 1, |B| 2,则行列式||B|A|之值为(A ) A.8 B.2C. 2D. 8an a 12 a 13 an 3a 12 a 131 0 01 0 04. Aa 21 a 22 a 23 ,Ba 21 3a 22 a 23 , P0 3 0 , Q 3 1 0,则 B ( B )a 31a 32a 33a 313a 32 a 330 0 10 01 A . PAB. APC. Q AD. AQ5.已知A 是一个3 4矩阵,下列命题中正确的是( C )A. 若矩阵A 中所有3阶子式都为0,则秩(A )=2B. 若A 中存在2阶子式不为0,则秩(A )=2C. 若秩(A )=2,则A 中所有3阶子式都为0D. 若秩(A )=2,则A 中所有2阶子式都不为0 6 .下列命题中错误的是(C )b 1 b 2 C i a ?C 2b 1 b 2b i b 2C 1 C 2A . ACBB. CABC. CBAD. BCAC.由1个非零向量组成的向量组线性相关D. 2个成比例的向量组成的向量组线性相关7. 已知向量组 1,2,3线性无关,1 ,2 ,3 ,线性相关,则 (D)A . 1必能由2, 3,线性表出 B . 2必能由1, 3,线性表出C. 3必能由 1, 2,线性表出D.必能由1 , 2, 3线性表出注:1,2, 3是1,2, 3,的一个极大无关组.8 .设A 为m n 矩阵,m n ,则方程组Ax =0只有零解的充分必要条件是 A 的秩(D ) A .小于 mB.等于 mC.小于nD.等于n注:方程组 Ax =0有n 个未知量.9 .设A 为可逆矩阵,则与 A 必有相同特征值的矩阵为( AT21A. AB. AC. AD. A| E A T | | ( E A )T | | E A|,所以A 与A T 有相同的特征值.10.二次型 f (X 「X 2,X 3) X ; X ; x f 2X 1X 2 的正惯性指数为(C ) A . 0 B. 1C. 2D. 32 2 2 2f (X 1,X 2,X 3) (X 1 X 2) X 3 y 1 y 2,正惯性指数为 2.二、填空题(本大题共 10小题,每小题2分,共20分)1 1 32 012.设矩阵 A 20 1,B 0 1,则 A T B -----------------------------------A T B十T T13.设 (3, 1,0,2) ,(3,1, 1,4),若向量 满足 2 3 ,贝U ___________ .11.行列式2007 2009 2008 2010的值为2007 20082009 20102000 2000 2000 2000 7 89 1014•设 A 为n 阶可逆矩阵,且| A| 1,则| | A 1 | _____________________n15.设A 为n 阶矩阵,B 为n 阶非零矩阵,若B 的每一个列向量都是齐次线性方程组Ax =0的解,则 |A| _____________ n 个方程、n 个未知量的Ax =0有非零解,则|A| 0.x 1 x 2 x 30 16•齐次线性方程组123的基础解系所含解向量的个数为 _________________ .2x 1 x 2 3x 3 01 1 1 1 1 1 A,基础解系所含解向量的个数为 n r 3 2 1 .21 30 3 1117.设n 阶可逆矩阵A 的一个特征值是3,则矩阵 1A 2 必有一个特征值为3 111 1A 有特征值 3,则A 2有特征值(3)2 3, A 2 有特征值 . 33 3 31 2 2 18 .设矩阵A 2x0 的特征值为4,1, 2,则数x ____________________________20 0由 1x0412,得 x 2.a 1 /、219•已知 A 1/--2b0是正交矩阵,则 a b ________________ . 011由第1、2列正交,即它们的内积(a b ) 0,得a b 0.20.二次型 f (x 1 ,x 2, x 3) 4x 1x 2 2XM 3 6x 2x 3 的矩阵是 ___________________IA 1 |1|A|3计算题(本大题共 6小题,每小题 共 54 分)bb 2 3a bca b c1 1 1解:D2.22a bc2 .2 2a b cabcabca ab bc c3 .33a b c2 .2 2abc1 1 1b a caabc 0b ac aabc ,2 2220 .2 22 2b ac ab ac a11abc(ba)(c a)b a cabc(ba)(c a)(ca22. 已知矩阵B (2,1,3), (1,2,3)(1)AB TC ; (2) A 2 .解: (1)A B T C1 3(1,2,3) (2) 注意到CB T(1,2,3)13 所以A 2 (B T C)(B T C)计算行列式 的21 .3 b b a c 2aa 32 c3 cb).23•设向量组 i (2,1,3,1)T , 2 (1,2,0,1)T , 3 (1,1, 3,0)T , 4 (1,1,1,1)T ,求向量组的秩2 1 1 1 解:A (1 2 1 1 1, 2, 3, 4) 3 0 3 1 1 1 0 1 1 1 0 1 1 1 0 1 0 1 1 0 0 1 1 0 0 0 0 2 0 0 0 1 0 0 0 1 0 0 0 0 及一个极大线性无关组,并用该极大线性无关组表示向量组中的其余向量. 一个极大无关组, 1 1 0 1 110 11 2 1 1 0 110 3 0 3 1 0 3 3 22 1 1 1 0 111 1 0 1 10 1 1 0,向量组的秩为 3,1, 2,4是 0 0 0 10 0 0 01 2 3 1 24 •已知矩阵A 0 1 2 , B 2 0 0 1 1 3 1 2・ 45・(1 )求A 1 ; (2)解矩阵方程AX B ・ 3 1 2 3 1 0 0 解:(1) (A, E) 0 1 2 0 1 0 0 0 1 0 0 1 12 010 3 0 10 0 1 2 0 0 10 0110 0 1 0 10 0 0 0 1012 1 1 4 1(2) X A 1B0 1 2 2 511325 •问a 为何值时,线性方程组 4 9 0 11 1 3x 1 2x 2 3x 342x 2 ax 3 2有惟一解?有无穷多解?并在有解时求出 2x 1 2x 2 3x 3 6 1 2 3 4 1 2 3 4 1 2 3 4 解:(A,b)0 2 a 20 2 a 2 0 2 a 22 23 60 2320 0 a 3 0其解(在有无穷多解时,要求用一个特解和导出组的基础解系表示全部解)P 1AP 0 23 a 2 222(9 a 2) 1 2 5,得 a 2 4, a 2 .a 320 0 E A 03 2 023对于 1 1,解(E A)x 0 : 1 0 0 11 2 3 4 1 2 0 4 a 3时,r(A,b) r(A) 3,有惟一解,此时(A,b)0 2 a 2 0 2 0 20 1 00 0 1 010 0 21 2 3 4 a 3时,r(A,b) r(A) 2 n ,有无穷多解,此时 (A,b)0 2 3 20 0 00 0 101 0 02 捲 2 0101 , x 21 ; 0 010 x 31 0 0 21 00 2X 1 0 2 3 2 0 1 3/2 1 , X 2 0 0 0 00 0X 3意吊21 3 x 3,通解为21 k 3/2 ,其中k 为任2 01X 32 0 026 .设矩阵A 03 a 的三个特征值分别为 0 a 31,2,5,求正的常数 a 的值及可逆矩阵 P,使解:由|A| 2 0 0 0 3a 0 a 3E A0 2 20 2 2 0 0 0X 1 0 01 1 , X2 X3 ,取 P 1 1 ;0 0X 3X 311 0 0对于 22,解(E A)x 0 :B. 63 0 2 02 10 5 00 0 2 02 3 2 3C. 120D. 12 D. 1800 0 0 0 1 0 X1 X1 1E A 0 1 2 0 0 1 ,X2 0,取p20 ;0 2 1 0 0 0 X3 0 0对于 3 5,解( E A)x 0 :3 0 0 1 0 0 x0 0E A 0 2 2 0 1 1 ,X2 X3,取P3 1 •0 2 2 0 0 0 X3 X3 10 1 0 1 0 0令P (P i,P2,P3) 1 0 1 ,则P是可逆矩阵,使P 1AP 0 2 01 0 1 0 0 5四、证明题(本题6分)27•设A, B, A B均为n阶正交矩阵,证明(A B) 1 A 1 B 1.证:A, B,A B均为n阶正交阵,则A T A 1,B T B 1,(A B)T(A B) 1,所以(A B) 1 (A B)T A T B T A 1 B 1•全国2010年7月高等教育自学考试线性代数(经管类)试题答案一、单项选择题(本大题共10小题,每小题2分,共20分)1 •设3阶方阵A ( 1,2,3),其中i ( i 1,2,3 )为A的列向量,若|B| |( 1 2 2, 2, 3)1 6,则| A|| A| |( 1, 2, 3)| |( 1 2 2, 2, 3)| 6 •A. 122 •计算行列式C. 6(A )B. 120A. 1803 •若A 为3阶方阵且| A 1 | 2,则|2A|( C )1A . _B. 2C. 4D. 82 1 31 |A|, |2A| 2 |A| 84 .224 •设1 , 2, 3, 4都是3维向量,则必有(B ) A . 1, 2,3,4线性无关 B . 1, 2,3,4线性相关C 1可由2, 3,4线性表示D.1不可由2, 3, 4线性表示5 .若A 为6阶方阵,齐次方程组 Ax =0基础解系中解向量的个数为 2,则r(A) ( C ) A . 2B. 3C. 4D. 5由 6 r(A) 2,得 r(A) 4.6 .设A B 为同阶方阵,且r(A) r(B),则(C ) A . A 与B 相似B. | A| |B|C. A 与B 等价D. A 与B 合同注:A 与B 有相同的等价标准形.7 .设A 为3阶方阵,其特征值分别为 2,1,0,贝U |A 2E| ( D ) A . 0B. 2C. 3D. 24A 2E 的特征值分别为4,3,2,所以| A 2E| 4 3 224 .8 .若A B 相似,则下列说法错误.的是(B ) A . A 与B 等价B. A 与B 合同C. |A||B|D. A 与B 有相同特征值注:只有正交相似才是合同的.3 0 2 10 0 02 33(2) 30 180 •2 0 5 0 2 0 2 33 0 2 109.若向量(1,2,1)与(2,3,t)正交,则t ( D )A. 2B. 0C. 2D. 416.125-17•若A 、B 为5阶方阵,且Ax 0只有零解,且r(B) 3,则r(AB) _______________________ Ax 0只有零解,所以 A 可逆,从而r(AB) r(B) 3 • 18 •实对称矩阵 2 1 0 1 0 1所对应的二次型f (x 1 ,x 2 ,x 3) 0 1 1 2 2 f(X 1,X 2,X 3) 2X 1 X 3 2X 1X 2 2X 2X 3 • 1 19 .设3元非齐次线性方程组 Ax b 有解1 2 , 2312,且r(A) 2,则Ax b 的通 3解是 _______________ 1 1 1 1 -(1 2) 0是Ax 0的基础解系,Ax b 的通解是 2 k 0 2 03 01 20 •设 2,则A T的非零特征值是 ________________ .3 三、计算题(本大题共 6小题,每小题9分,共54分) 21 •计算5阶行列式D2 0 0 0 1 0 2 0 0 00 0 2 0 0 0 0 0 2 0 1 0 0 0 2解: 连续3次按第2行展开, 22. 设矩阵X满足方程解:23.解:2 0 1 2 14 0 2 0 81 21 0 20 13,求X.28 31/21CB1/2求非齐次线性方程组(A,b)120 1 0 0 1 40X0 0 1 2 02 0 1 0 1 21 0 0 1 4 30 0 1 ,C 2 00 1 0 1 2 01 0 0B10 0 1 ,0 1 00 1 4 3 1 0 00 2 0 1 0 0 11 12 0 0 1 00 011 3 40 1 — 4 2 0 .21 0 1 0 2X2 3x3 x4 1X2 3X34x4 4 的通解.5x29X38X4 01 1 1 1 3 14 0 4 6 70 0 4 6 74 0 6 35 10 4 6 7 1 00 0 0 0 0 01 0 0 21 10 0则B 1211 1148 11X13x1AXB3/23/23/4 5/47/4 1/4出对应于这个特征值的全部特征向量.21 2 1 1解:设 是所对应的特征值,则A,即 5a 3 11 ,从而1b211a 1 2可得a 3 ,b 0 ,1 ;b 1对于1, 解齐次方程组(E A)X 0 :2 1 23 1 2 1 0 1 1 0 1 E A5 33 5 2 3 5 2 3 0 2 21 02 11 013 120 111 0 1X 1 X 3110 1 1X 2X 3,基础解系为1 ,属于1的全部特征向量为k1k 为任意0 0 0X 3 X 3 115 3 3x 1 4 X32 35/4 3/2 3/4 1 371/4 3/27/4 X 2 4 X 32 3 X 4,通解为 4 40 k11k 2 0 , k 1, k 2都是任意常数X 3X 31X 4X 424.求向量组 1 (1,2, 1,4),2(9,100,10,4),1 92 解:(;,T 2 ,T )2 10041 10 244 8 1 9 2 1 0 2 0 1 0 0 1 0 0 0 0 0 0 0 0 00 0 025.已知A192 1 92 1 50 2 0 41 0 1 10 2 0 19 01128 0向量组的秩为 2,1,曰 2是 「个极大无关组3( 2, 4,2, 8)的秩和一个极大无关组.2 1 25 a 3 的一个特征向量(1,1, 1)T ,求a,b 及所对应的特征值,并写非零实数. 2 11 2 26. 设A1 2 1 a ,试确定a 使r (A ) 2 .1 12221 1 21 12 21 12 2 解: A1 2 1a 2 1 1 2 0 3 3211 22121a3 3a 21 12 20 3 3 2 a0 时 r(A) 2 .0 00 a四、 证明题 (本大题共 1 小 、题,6分)27. 若1, 2 , 3是Ax b (b 0)的线性无关解,证明 21,31 是对应齐次线性方程组Ax 0的线性无关解.证:因为1, 2, 3是Ax b 的解,所以21 , 3k 1 k 2 0关,得k 10 ,只有零解k 1 k 2 0,所以21, 3k 2 0设 k 1 ( 21)k 2( 31) 0 ,即(k 1 k 2) 1k 1 2 k 2 3,由 1,2 ,3 线性无1是Ax 0的解;1线性无关.全国2011年1月高等教育自学考试线性代数(经管类)试题 课程代码:04184|A 表示方阵A 的行列式•10小题,每小题2分,共20 分)ana 12a 131.设行列式a21 a22a23=4,a 31 a 32a33A.122a 112a 122a 13则行列式a21 a22 a23=(3a 31 3a 32 3a 33B.24C.36A .A 1CB C.B 1A 1C3. 已知 A"+A - E =0,则矩阵 A -1=( A. A E C.A +E4. 设1 , 2, 3, 4, 5是四维向量,A. 1 ,2,3,4,5 —定线性无关B. cA B 1D .CB 1A 1) B. -A -E D.-A +E则( )B. 1,2 ,3 ,4 ,5 —定线性相关5. 设A 是n 阶方阵,若对任意的 n 维向量x 均满足Ax =0,则( )A.A =0B.A =EC.r (A )= n D.0<r (A )<( n )6. 设A 为n 阶方阵,r ( A )< n ,下列关于齐次线性方程组 Ax =0的叙述正确的是(A.Ax =0只有零解B.Ax =0的基础解系含r (A )个解向量C. Ax =0的基础解系含n -r (A )个解向量D.Ax =0没有解7. 设1, 2是非齐次线性方程组Ax =b 的两个不同的解,则()说明:本卷中, A 1表示方阵A 的逆矩阵,r(A 表示矩阵A 的秩,表示向量 与 的内2.设矩阵A, B, C, X 为同阶方阵,且 A, B 可逆,AXE =C,则矩阵X =(C. 5 —疋可以由1 , 2, 34线性表示 D. 1 —疋可以由 2 , 3 4, 5线性表出A. 2是Ax =b 的解B. 12是Ax =b 的解积,E 表示单位矩阵, 、单项选择题(本大题共D.48C. 3 i 2 2 是 Ax =b 的解D. 2 1 3 2 是 Ax =b 的解19. 设向量(-1 , 1,-3 ),(2, -1 ,)正交,则3 9 08.设1 ,2 , 3为矩阵A = 04 5的三个特征值,则 1 2 3=()0 0 2A.20B.24C.28D.309.设P 为正交矩阵,向量 ,的内积为(,)=2,则(P ,P )=( )A. 1B.12C.-D.2210.二次型 f (X 1, X 2, X 3)= x j2 2X 2 X 3 2X 1X 22X 1 X 3 2X 2X 3 的秩为( )A.1B.2C.3D.4、填空题(本大题共 10小题,每小题2分,共20 分) 请在每小题的空格中填上正确答案。
《线性代数(经管类)》(课程代码04184)校考试题答案
《线性代数(经管类)》(课程代码04184)第一大题:单项选择题1、设行列式=1 , =2, 则= ( D )•错误!未找到引用源。
A.—3•错误!未找到引用源。
B.—1•错误!未找到引用源。
C.1•错误!未找到引用源。
D.32、设A为3阶方阵,且已知|-2A|=2,则|A|=( B )•错误!未找到引用源。
A.—1•错误!未找到引用源。
B.•错误!未找到引用源。
C.•错误!未找到引用源。
D.13、设矩阵A,B,C为同阶方阵,则=__B__•错误!未找到引用源。
A.•错误!未找到引用源。
B.•错误!未找到引用源。
C.•错误!未找到引用源。
D.4、设A为2阶可逆矩阵,且已知= ,则A=( D )•错误!未找到引用源。
A.•错误!未找到引用源。
B.•错误!未找到引用源。
C.•错误!未找到引用源。
D.5、设A为m×n矩阵,则齐次线性方程组=0仅有零解的充分必要条件是( A )•错误!未找到引用源。
A.A的列向量组线性无关•错误!未找到引用源。
B.A的列向量组线性相关•错误!未找到引用源。
C.A的行向量组线性无关•错误!未找到引用源。
D.A的行向量组线性相关6、已知,是非齐次线性方程组=b的两个不同的解,,是其导出组=0的一个基础解系,,为任意常数,则方程组=b的通解可以表为( A )•错误!未找到引用源。
A.•错误!未找到引用源。
B.•错误!未找到引用源。
C.•错误!未找到引用源。
D.7、设3阶矩阵A与B相似,且已知A的特征值为2,2,3 则 ||= ( A )•错误!未找到引用源。
A.•错误!未找到引用源。
B.•错误!未找到引用源。
C.7•错误!未找到引用源。
D.128、设A为3阶矩阵,且已知|3A+2E|=0,则A必有一个特征值为( A )•错误!未找到引用源。
A.•错误!未找到引用源。
B.•错误!未找到引用源。
C.•错误!未找到引用源。
D.9、二次型的矩阵为( C )•错误!未找到引用源。
04184 线性代数(经管类)习题集及答案
西华大学自学考试省考课程习题集课程名称:《线性代数》课程代码:04184专业名称:工商企业管理专业代码:Y020202目录第一部分习题一、选择题 3二、填空题8三、计算题11四、证明题15第二部分标准答案一、选择题16二、填空题16三、计算题16四、证明题31第一部分 习题 一、选择题1、若n 阶方阵A 的秩为r ,则结论( )成立。
A. 0||≠A B. 0||=A C. r >n D. n r ≤2、下列结论正确的是( )A. 若AB=0,则A=0或B=0.B. 若AB=AC,则B=CC.两个同阶对角矩阵是可交换的.D. AB=BA 3、下列结论错误的是( )A. n+1个n 维向量一定线性相关.B. n 个n+1维向量一定线性相关C. n 个n 维列向量n ααα,,,21 线性相关,则021=n αααD. n 个n 维列向量n ααα,,,21 ,若021=n ααα 则n ααα,,,21 线性相关,4、若m c c c b b b a a a =321321321,则=321321321333222c c c b b b a a a ( ) A. 6m B.-6m C. m 3332 D. m 3332- 5、设A,B,C 均为n 阶方阵,AB=BA,AC=CA,则ABC=( ) A. ACB B. CAB C. CBA D. BCA6、二次型3221222132124),,(x x x x x x x x x f -++=的秩为( )A 、0B 、1C 、2D 、3 7、若A 、B 为n 阶方阵,下列说法正确的是( ) A 、若A ,B 都是可逆的,则A+B 是可逆的 B 、若A ,B 都是可逆的,则AB 是可逆的 C 、若A+B 是可逆的,则A-B 是可逆的 D 、若A+B 是可逆的,则A ,B 都是可逆的8、设2阶矩阵⎪⎪⎭⎫ ⎝⎛=d c b a A ,则=*A ( ) A 、⎪⎪⎭⎫ ⎝⎛--a c b d B 、⎪⎪⎭⎫ ⎝⎛--a b c dC 、⎪⎪⎭⎫ ⎝⎛--a c b dD 、⎪⎪⎭⎫⎝⎛--a b c d 9、关于初等矩阵下列结论成立的是( )A. 都是可逆阵B. 所对应的行列式的值为1C. 相乘仍为初等矩阵D. 相加仍为初等矩阵10、设2阶矩阵⎪⎪⎭⎫ ⎝⎛=4321A ,则=*A ( )A 、⎪⎪⎭⎫⎝⎛--1324 B 、⎪⎪⎭⎫ ⎝⎛--1234 C 、⎪⎪⎭⎫ ⎝⎛--1324 D 、⎪⎪⎭⎫⎝⎛--1234 11、设21,ββ是非齐次线性方程组β=AX 的两个解,则下列向量中仍为方程组β=AX 解的是( )A 、21ββ+B 、21ββ-C 、3221ββ+ D 、32321ββ- 12、向量组)2(,,,21≥m m ααα 线性相关的充要条件是( ) A 、m ααα,,,21 中至少有一个是零向量 B 、m ααα,,,21 中至少有一个向量可以由其余向量线性表示 C 、m ααα,,,21 中有两个向量成比例 D 、m ααα,,,21 中任何部分组都线性相关13、向量组)2(,,,21≥m m ααα 线性相关的充要条件是( ) A 、m ααα,,,21 中至少有一个是零向量 B 、m ααα,,,21 中至少有一个向量可以由其余向量线性表示 C 、m ααα,,,21 中有两个向量成比例 D 、m ααα,,,21 中任何部分组都线性相关14、0=AX 是非齐次方程组β=AX 的对应齐次线性方程组,则有( ) A 、0=AX 有零解,则β=AX 有唯一解 B 、0=AX 有非零解,则β=AX 有无穷多解 C 、β=AX 有唯一解,则0=AX 只有零解 D 、β=AX 有无穷多解,则0=AX 只有零解15、设A ,B ,C 均为二阶方阵,且AC AB =,则当( )时,可以推出B=CA 、⎪⎪⎭⎫ ⎝⎛=0101AB 、⎪⎪⎭⎫ ⎝⎛=0011AC 、⎪⎪⎭⎫ ⎝⎛=0110AD 、⎪⎪⎭⎫⎝⎛=1111A16、若m c c c b b b a a a =321321321,则=231231231333222c c c b b b a a a ( )A. 6mB.-6mC. m 3332D. m 3332- 17、如果矩阵A 的秩等于r ,则( )。
2016年10月线性代数(经管类)04184自考试题及解答
解:二次型的矩阵 A
1 1 1 1
由
E A
1
1
1 ( 1) 0 , 得 A 的特征值为 1 2 , 2 0 1
T
T
1 1 , 对 2 ,解 (2 E A) x 0 ,得基础解系 1 ( 1,1) ,单位化得1 , 2 2
三、计算题:本大题共有 7 小题,每小题 9 分,共 63 分。
a1 b1 16.计算行列式 D a2 b1 a3 b1 a1 b1 a1 b2 解: D a2 b1 a2 b2 a3 b1 a3 b2
a1 b2 a2 b2 a3 b2
a1 b3 a2 b3 a3 b3
5
1 1 , 对 0 ,解 (0 E A) x 0 ,得基础解系 1 (1,1) ,单位化得 2 2 2
T
T
令 Q 1 , 2
1 2 1 1 2 1
2 ,则 Q 为正交矩阵,从而经正交变换 2
x1 1 2 1 x2 1 2 1
2 y1 2 y2
将二次型化为标准型 f 2 y12 四、证明题(本题 7 分) 23. 设
1 , 2 是 齐 次 线 性 方 程 组 Ax 0 的 一 个 基 础 解 系 , 证 明 1 1 2 2 ,
2 21 2 也是方程组 Ax 0 的一个基础解系。
3
使 PA B, BQ E , 即 PAQ E
1 0 0 1 0 0 1 0 0 所以 A P EQ P Q 0 1 0 0 0 1 0 0 1 2 0 1 0 1 0 2 1 0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江西省南昌市2015-2016学年度第一学期期末试卷(江西师大附中使用)高三理科数学分析一、整体解读试卷紧扣教材和考试说明,从考生熟悉的基础知识入手,多角度、多层次地考查了学生的数学理性思维能力及对数学本质的理解能力,立足基础,先易后难,难易适中,强调应用,不偏不怪,达到了“考基础、考能力、考素质”的目标。
试卷所涉及的知识内容都在考试大纲的范围内,几乎覆盖了高中所学知识的全部重要内容,体现了“重点知识重点考查”的原则。
1.回归教材,注重基础试卷遵循了考查基础知识为主体的原则,尤其是考试说明中的大部分知识点均有涉及,其中应用题与抗战胜利70周年为背景,把爱国主义教育渗透到试题当中,使学生感受到了数学的育才价值,所有这些题目的设计都回归教材和中学教学实际,操作性强。
2.适当设置题目难度与区分度选择题第12题和填空题第16题以及解答题的第21题,都是综合性问题,难度较大,学生不仅要有较强的分析问题和解决问题的能力,以及扎实深厚的数学基本功,而且还要掌握必须的数学思想与方法,否则在有限的时间内,很难完成。
3.布局合理,考查全面,着重数学方法和数学思想的考察在选择题,填空题,解答题和三选一问题中,试卷均对高中数学中的重点内容进行了反复考查。
包括函数,三角函数,数列、立体几何、概率统计、解析几何、导数等几大版块问题。
这些问题都是以知识为载体,立意于能力,让数学思想方法和数学思维方式贯穿于整个试题的解答过程之中。
二、亮点试题分析1.【试卷原题】11.已知,,A B C 是单位圆上互不相同的三点,且满足AB AC →→=,则AB AC →→⋅的最小值为( )A .14-B .12-C .34-D .1-【考查方向】本题主要考查了平面向量的线性运算及向量的数量积等知识,是向量与三角的典型综合题。
解法较多,属于较难题,得分率较低。
【易错点】1.不能正确用OA ,OB ,OC 表示其它向量。
2.找不出OB 与OA 的夹角和OB 与OC 的夹角的倍数关系。
【解题思路】1.把向量用OA ,OB ,OC 表示出来。
2.把求最值问题转化为三角函数的最值求解。
【解析】设单位圆的圆心为O ,由AB AC →→=得,22()()OB OA OC OA -=-,因为1OA OB OC ===,所以有,OB OA OC OA ⋅=⋅则()()AB AC OB OA OC OA ⋅=-⋅-2OB OC OB OA OA OC OA =⋅-⋅-⋅+ 21OB OC OB OA =⋅-⋅+设OB 与OA 的夹角为α,则OB 与OC 的夹角为2α所以,cos 22cos 1AB AC αα⋅=-+2112(cos )22α=--即,AB AC ⋅的最小值为12-,故选B 。
【举一反三】【相似较难试题】【2015高考天津,理14】在等腰梯形ABCD 中,已知//,2,1,60AB DC AB BC ABC ==∠= ,动点E 和F 分别在线段BC 和DC 上,且,1,,9BE BC DF DC λλ==则AE AF ⋅的最小值为 .【试题分析】本题主要考查向量的几何运算、向量的数量积与基本不等式.运用向量的几何运算求,AE AF ,体现了数形结合的基本思想,再运用向量数量积的定义计算AE AF ⋅,体现了数学定义的运用,再利用基本不等式求最小值,体现了数学知识的综合应用能力.是思维能力与计算能力的综合体现. 【答案】2918【解析】因为1,9DF DC λ=12DC AB =,119199918CF DF DC DC DC DC AB λλλλλ--=-=-==, AE AB BE AB BC λ=+=+,19191818AF AB BC CF AB BC AB AB BC λλλλ-+=++=++=+,()221919191181818AE AF AB BC AB BC AB BC AB BCλλλλλλλλλ+++⎛⎫⎛⎫⋅=+⋅+=+++⋅⋅ ⎪ ⎪⎝⎭⎝⎭19199421cos1201818λλλλ++=⨯++⨯⨯⨯︒2117172992181818λλ=++≥+= 当且仅当2192λλ=即23λ=时AE AF ⋅的最小值为2918. 2.【试卷原题】20. (本小题满分12分)已知抛物线C 的焦点()1,0F ,其准线与x 轴的交点为K ,过点K 的直线l 与C 交于,A B 两点,点A 关于x 轴的对称点为D . (Ⅰ)证明:点F 在直线BD 上; (Ⅱ)设89FA FB →→⋅=,求BDK ∆内切圆M 的方程. 【考查方向】本题主要考查抛物线的标准方程和性质,直线与抛物线的位置关系,圆的标准方程,韦达定理,点到直线距离公式等知识,考查了解析几何设而不求和化归与转化的数学思想方法,是直线与圆锥曲线的综合问题,属于较难题。
【易错点】1.设直线l 的方程为(1)y m x =+,致使解法不严密。
2.不能正确运用韦达定理,设而不求,使得运算繁琐,最后得不到正确答案。
【解题思路】1.设出点的坐标,列出方程。
2.利用韦达定理,设而不求,简化运算过程。
3.根据圆的性质,巧用点到直线的距离公式求解。
【解析】(Ⅰ)由题可知()1,0K -,抛物线的方程为24y x =则可设直线l 的方程为1x my =-,()()()112211,,,,,A x y B x y D x y -,故214x my y x =-⎧⎨=⎩整理得2440y my -+=,故121244y y m y y +=⎧⎨=⎩则直线BD 的方程为()212221y y y y x x x x +-=--即2222144y y y x y y ⎛⎫-=- ⎪-⎝⎭令0y =,得1214y yx ==,所以()1,0F 在直线BD 上.(Ⅱ)由(Ⅰ)可知121244y y m y y +=⎧⎨=⎩,所以()()212121142x x my my m +=-+-=-,()()1211111x x my my =--= 又()111,FA x y →=-,()221,FB x y →=-故()()()21212121211584FA FB x x y y x x x x m →→⋅=--+=-++=-,则28484,93m m -=∴=±,故直线l 的方程为3430x y ++=或3430x y -+=213y y -===±,故直线BD 的方程330x -=或330x -=,又KF 为BKD ∠的平分线,故可设圆心()(),011M t t -<<,(),0M t 到直线l 及BD 的距离分别为3131,54t t +--------------10分 由313154t t +-=得19t =或9t =(舍去).故圆M 的半径为31253t r +== 所以圆M 的方程为221499x y ⎛⎫-+= ⎪⎝⎭【举一反三】【相似较难试题】【2014高考全国,22】 已知抛物线C :y 2=2px(p>0)的焦点为F ,直线y =4与y 轴的交点为P ,与C 的交点为Q ,且|QF|=54|PQ|.(1)求C 的方程;(2)过F 的直线l 与C 相交于A ,B 两点,若AB 的垂直平分线l′与C 相交于M ,N 两点,且A ,M ,B ,N 四点在同一圆上,求l 的方程.【试题分析】本题主要考查求抛物线的标准方程,直线和圆锥曲线的位置关系的应用,韦达定理,弦长公式的应用,解法及所涉及的知识和上题基本相同. 【答案】(1)y 2=4x. (2)x -y -1=0或x +y -1=0. 【解析】(1)设Q(x 0,4),代入y 2=2px ,得x 0=8p,所以|PQ|=8p ,|QF|=p 2+x 0=p 2+8p.由题设得p 2+8p =54×8p ,解得p =-2(舍去)或p =2,所以C 的方程为y 2=4x.(2)依题意知l 与坐标轴不垂直,故可设l 的方程为x =my +1(m≠0). 代入y 2=4x ,得y 2-4my -4=0. 设A(x 1,y 1),B(x 2,y 2), 则y 1+y 2=4m ,y 1y 2=-4.故线段的AB 的中点为D(2m 2+1,2m), |AB|=m 2+1|y 1-y 2|=4(m 2+1).又直线l ′的斜率为-m ,所以l ′的方程为x =-1m y +2m 2+3.将上式代入y 2=4x ,并整理得y 2+4m y -4(2m 2+3)=0.设M(x 3,y 3),N(x 4,y 4),则y 3+y 4=-4m,y 3y 4=-4(2m 2+3).故线段MN 的中点为E ⎝ ⎛⎭⎪⎫2m2+2m 2+3,-2m ,|MN|=1+1m 2|y 3-y 4|=4(m 2+1)2m 2+1m 2.由于线段MN 垂直平分线段AB ,故A ,M ,B ,N 四点在同一圆上等价于|AE|=|BE|=12|MN|,从而14|AB|2+|DE|2=14|MN|2,即 4(m 2+1)2+⎝ ⎛⎭⎪⎫2m +2m 2+⎝ ⎛⎭⎪⎫2m 2+22=4(m 2+1)2(2m 2+1)m 4,化简得m 2-1=0,解得m =1或m =-1, 故所求直线l 的方程为x -y -1=0或x +y -1=0.三、考卷比较本试卷新课标全国卷Ⅰ相比较,基本相似,具体表现在以下方面: 1. 对学生的考查要求上完全一致。
即在考查基础知识的同时,注重考查能力的原则,确立以能力立意命题的指导思想,将知识、能力和素质融为一体,全面检测考生的数学素养,既考查了考生对中学数学的基础知识、基本技能的掌握程度,又考查了对数学思想方法和数学本质的理解水平,符合考试大纲所提倡的“高考应有较高的信度、效度、必要的区分度和适当的难度”的原则. 2. 试题结构形式大体相同,即选择题12个,每题5分,填空题4 个,每题5分,解答题8个(必做题5个),其中第22,23,24题是三选一题。
题型分值完全一样。
选择题、填空题考查了复数、三角函数、简易逻辑、概率、解析几何、向量、框图、二项式定理、线性规划等知识点,大部分属于常规题型,是学生在平时训练中常见的类型.解答题中仍涵盖了数列,三角函数,立体何,解析几何,导数等重点内容。
3. 在考查范围上略有不同,如本试卷第3题,是一个积分题,尽管简单,但全国卷已经不考查了。
四、本考试卷考点分析表(考点/知识点,难易程度、分值、解题方式、易错点、是否区分度题)。