一次函数图像练习题
第1讲 一次函数的概念及图像(练习)原卷版
第1讲 一次函数的概念及图像(练习)夯实基础一、单选题1.下列函数中,一次函数是( )A .21y x =-B .23y x =+C .3y x =D .y k b =+(k 、b 是常数)2.下列命题错误的是( )A .正比例函数是一次函数B .反比例函数不是一次函数C .如果1y -和x 成正比例,那么y 是x 的一次函数D .一次函数也是正比例函数3.函数y =12x ﹣3的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限4.直线21y x =-的截距是( )A .1B .1-C .2D .2-5.一次函数y kx k =+的图象可能是( )A .B .C .D .6.在平面直角坐标系中,一次函数y=kx+b 的图象如图所示,则k 和b 的取值范围是( )A .k >0,b >0B .k >0,b <0C .k <0,b >0D .k <0,b <0二、填空题7.若函数y=(m-2)x+5是一次函数,则m 满足的条件是____________.8.已知一次函数()32f x x =+,那么()1f -=______.9.如果23(2)2m y m x -=-+是一次函数,那么m 的值是__________.10.已知某汽车油箱中剩余油量y (升)与汽车行驶里程数x (千米)是一次函数关系,油箱中原有油100升,行驶60千米后的剩余油量为70升,那么行驶120(千米)后油箱中剩余油量为_______.11.把直线y =2x ﹣3沿y 轴方向向上平移4个单位后,所得直线的表达式_____.12.若正比例函数y kx =(k 是常数,0k ¹)的图象经过第二、四象限,则的值可以是_______(写出一个即可).13.已知一次函数y =kx +b 的图象经过点(0,3),则截距为_____.三、解答题14.如图,是甲、乙两种机器人根据电脑程序工作时各自工作量y 关于工作时间x 的函数图像,线段OA 表示甲机器人的工作量1y (吨)关于时间x (时)的函数图像,线段BC 表示乙机器人的工作量2y (吨)关于时间x (时)的函数图像.根据图像信息回答下列填空题.(1)甲种机器人比乙种机器人早开始工作 小时;甲种机器人每小时的工作量是 吨;(2)直线BC 的表达式为 ;当乙种机器人工作5小时后,它完成的工作量是 吨.能力提升一、单选题1.下列函数关系式:①y =2x ;②y =2x +11;③y =3﹣x ;④y =2x.其中一次函数的个数是( )A .1个B .2个C .3个D .4个2.下列函数中图象不经过第三象限的是( )A .y =﹣3x ﹣2B .yC .y x +1D .y =3x +23.一次函数1y ax b =+与2y bx a =+在同一坐标系中的图像可能是( )A .B .C .D .4.在同一平面直角坐标系中的图像如图所示,则关于21k x k x b <+的不等式的解为( ).A .1x >-B .2x <-C .1x <-D .无法确定5.已知正比例函数y kx =(k 是常数,0k ¹)的函数值y 随x 的增大而减小,则一次函数y x k =-+的图象大致是( )A .B .C .D .6.若直线y=kx+b 经过第一、二、四象限,则直线y=bx+k 的图象大致是( )A .B .C .D .7.如图,已知一次函数y =kx+b 的图象经过A 、B 两点,那么不等式kx+b >0的解集是( )A .x >3B .x <3C .x >5D .x <5二、填空题8.已知点A (2,0)和C (4,0),点P 在正比例函数2y x =上,且A C P S =4,D 则点P 的坐标是__________9.已知:y=(m ﹣1)x |m|+4,当m= _________ 时,图象是一条直线.10.(1)已知函数y =3+(m ―3)x m 是一次函数,则m=________.(2)若函数y =(k +2)x +(k 2―4)是正比例函数,则k =_________.11.我们知道:当2x =时,不论k 取何实数,函数(2)3y k x =-+的值为3,所以直线(2)3y k x =-+一定经过定点(2,3);同样,直线(2)3y k x k =-+一定经过的定点为______.12.已知点()11,x y ,()22,x y 是直线4y kx =-上的两点,且当 1x <2x 时,1y >2y ,则该直线经过______________象限.13.已知,一次函数y kx b =+的图像经过点A (2,1)(如下图所示),当1y ³时,x 的取值范围是______14.己知(),4P a 是直线2y x =+上的一个点,点M 在坐标轴正半轴上,当PM=5时,那么点M 的坐标是___________三、解答题15.已知点A (﹣1,1)是直线y =kx +3上的一点,若该直线和x 轴相交于点B ,求点B 的坐标.16.已知一次函数y=(1-2m)x+m+1(m ≠12),函数值y 随自变量x 值的增大而减小.(1)求m 的取值范围;(2)在平面直角坐标系xOy 中,这个函数的图象与x 轴的交点M 位于x 轴的正半轴还是负半轴?请简述理由.17.已知正比例函数图象经过(﹣2,4).(1)如果点(a ,1)和(﹣1,b )在函数图象上,求a ,b 的值;(2)过图象上一点P 作y 轴的垂线,垂足为Q ,S △OPQ =154,求Q 的坐标.18.一次函数图像经过点(4,-1),且与直线122y x =+平行,求一次函数解析式和这个函数图像与两坐标轴围成的三角形的面积.19.如图,直线3y kx =+与x 轴、y 轴分别相交于E F 、.点E 的坐标为()40-,,点P 是线段EF 上的一点.(1)求k 的值;(2)若OPE D 的面积为2,求点P 的坐标.。
一次函数图像练习题及答案
一次函数图像练习题及答案一次函数图像练习题及答案一次函数是数学中的基本概念之一,也是初中数学中的重点内容。
掌握一次函数的概念和图像特点,对于解决实际问题和理解其他函数类型都有很大帮助。
在这篇文章中,我将给出一些一次函数图像的练习题及其答案,希望能够帮助读者更好地理解和应用一次函数。
练习题一:已知函数f(x) = 2x + 3,求出函数的图像。
解答一:一次函数的一般形式为y = kx + b,其中k和b分别代表斜率和截距。
根据给定的函数f(x) = 2x + 3,我们可以得知斜率k = 2,截距b = 3。
根据斜率和截距的意义,我们可以得到以下图像特点:1. 斜率k = 2表示每增加1个单位的x,y的值增加2个单位。
2. 截距b = 3表示当x = 0时,y的值为3,即函数的图像与y轴相交于点(0, 3)。
根据上述特点,我们可以画出函数f(x) = 2x + 3的图像。
首先,我们将点(0, 3)标记在坐标系上,然后根据斜率k = 2,我们可以找到另外一个点(1, 5),再连接这两个点,就得到了一次函数的图像。
练习题二:已知函数g(x)的图像如下图所示,请写出函数g(x)的表达式。
解答二:根据给定的函数图像,我们可以得知函数g(x)与x轴相交于点(-2, 0)和(3, 0),并且函数图像在x轴的右侧上升。
根据这些特点,我们可以推测函数g(x)的表达式为g(x) = ax + b。
为了确定a和b的值,我们可以利用已知的两个点(-2, 0)和(3, 0)。
将这两个点的坐标代入函数表达式,可以得到以下方程组:-2a + b = 03a + b = 0解这个方程组,我们可以得到a = 0,b = 0。
因此,函数g(x)的表达式为g(x) = 0。
练习题三:已知函数h(x)的图像如下图所示,请写出函数h(x)的表达式。
解答三:根据给定的函数图像,我们可以观察到函数h(x)与x轴相交于点(0, -3),并且函数图像在x轴的右侧下降。
一次函数的图象专题练习题(最新版) 含答案
一次函数的图象专题练习题1.画函数图象的方法.可以概括为_______,__ __,__ __三步,通常称为__ __.2.如果点M 在函数y =x -1的图象上,则M 点的坐标可以是( )A .(-1,0)B .(0,1)C .(1,0)D .(1,-1)3.(1)若点A(a ,-3)在函数y =-3x的图象上,则a =____; (2)下列各点M (1,2),N (3,32),P (1,-1),Q (-2,-4)中,在函数y =2x x +1的图象上的点是__________. 4. 小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,加快了骑车速度,下面是小明离家后他到学校剩下的路程s 关于时间t 的函数图象,那么符合小明行驶情况的图象大致是( )5. 小明的父亲从家走了20分钟到一个离家900米的书店,在书店看了10分钟书后,用15分钟返回家,下列图中表示小明的父亲离家的距离与时间的函数图象是( )6. 某星期六上午,小明从家出发跑步去公园,在公园停留了一会儿打车回家.图中折线表示小明离开家的路程y(米)和所用时间x(分)之间的函数关系,则下列说法中错误的是()A.小明在公园休息了5分钟B.小明乘出租车用了17分C.小明跑步的速度为180米/分D.出租车的平均速度是900米/分7. 一段笔直的公路AC长20千米,途中有一处休息点B,AB长15千米,甲、乙两名长跑爱好者同时从点A出发,甲以15千米/时的速度匀速跑至点B,原地休息半小时后,再以10千米/时的速度匀速跑至终点C;乙以12千米/时的速度匀速跑至终点C,下列选项中,能正确反映甲、乙两人出发后2小时内运动路程y(千米)与时间x(小时)函数关系的图象是()8. 李老师为锻炼身体一直坚持步行上下班.已知学校到李老师家总路程为2000米.一天,李老师下班后,以45米/分的速度从学校往家走,走到离学校900米时,正好遇到一个朋友,停下又聊了半小时,之后以110米/分的速度走回了家.李老师回家过程中,离家的路程s(米)与所用时间t(分)之间的关系如图所示.(1)求a,b,c的值;(2)求李老师从学校到家的总时间.9. 如果两个变量x,y之间的函数关系如图,则函数值y的取值范围是() A.-3≤y≤3 B.0≤y≤2C.1≤y≤3 D.0≤y≤310. 如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是()A.乙前4秒行驶的路程为48米B.在0到8秒内甲的速度每秒增加4米/秒C.两车到第3秒时行驶的路程相等D.在4至8秒内甲的速度都大于乙的速度11. 甲骑摩托车从A地去B地,乙开汽车从B地去A地,同时出发,匀速行驶,各自到达终点后停止,设甲、乙两人间距离为s(单位:千米),甲行驶的时间为t(单位:小时),s与t之间的函数关系如图所示,有下列结论:①出发1小时时,甲、乙在途中相遇;②出发1.5小时时,乙比甲多行驶了60千米;③出发3小时时,甲、乙同时到达终点;④甲的速度是乙速度的一半.其中,正确结论的个数是()A.4B.3C.2D.112. 有一个水箱,它的容积是500升,水箱内原有水200升,现需将水箱注满,已知每分钟注入水10升.(1)写出水箱内水量Q(升)与时间t(分)的函数关系式;(2)求自变量t的取值范围;(3)画出函数的图象.13.如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则△ABP的面积S随着时间t变化的函数图象大致是()14. 如图①,底面积为30 cm2的空圆柱形容器内水平放置着由两个实心圆柱组成的“几何体”,现向容器内匀速注水,注满为止,在注水过程中,水面高度h(cm)与注水时间t(s)之间的关系如图②所示.请根据图中提供的信息,解答下列问题:(1)圆柱形容器的高为____cm,匀速注水的水流速度为____cm3/s;(2)若“几何体”的下方圆柱的底面积为15 cm2,求“几何体”上方圆柱的高和底面积.答案:1. 描点 连线 描点法2. C3. (1) 1 (2) 点N4. D5. B6. B7. A8. (1)李老师停留地点离他家路程为:2000-900=1100(米),900÷45=20(分).a =20,b =1100,c =20+30=50 (2)20+30+1100110=60(分).答:李老师从学校到家共用60分钟 9. D10. C11. B 点拨:①②④正确12. (1)Q =200+10t (2)令200≤Q≤500,则0≤t≤30 (3)图略13. B14. (1) 14 5(2) “几何体”下方圆柱的高为a ,则a·(30-15)=18×5,解得a =6,所以“几何体”上方圆柱的高为11 cm-6 cm =5 cm ,设“几何体”上方圆柱的底面积为S cm 2,根据题意得5(30-S )=5×(24-18),解得S =24,即“几何体”上方圆柱的底面积为24 cm 2。
一次函数的图象和性质专题练习题
专题19.2.2一次函数的图象和性质一、选择题(本大题共14个小题,每题2分,共28分,在每个小题的四个选项中只有一项是符合题目要求的)1.在函数3y x =-的图象上的点是()A .(1,-3)B .(0,3)C .(-3,0)D .(1,-2)【答案】D【解析】A.1-3=-2≠-3,故本选项不在3y x =-的图象上,B.0-3=-3≠3,故本选项不在3y x =-的图象上,C.-3-3=-6≠0,故本选项不在3y x =-的图象上,D.1-3=-2,故本选项在3y x =-的图象上.故选:D .2.函数2y kx =-的图象经过点(3,1)p -,则k 的值为()A .3B .3-C .13D .13-【答案】C【解析】∵函数2y kx =-的图象经过点(3,1)p -,∴3k −2=-1,解得k =13.故选:C .3.若点(x 1,y 1),(x 2,y 2),(x 3,y 3)都是一次函数y =﹣x ﹣1图象上的点,并且y 1<y 2<y 3,则下列各式中正确的是()A .x 1<x 2<x 3B .x 1<x 3<x 2C .x 2<x 1<x 3D .x 3<x 2<x 1【答案】D【解析】解:∵一次函数y=﹣x ﹣1中k=﹣1<0,∴y 随x 的增大而减小,又∵y 1<y 2<y 3,∴x 1>x 2>x 3.故选:D .4.在平面直角坐标系中,将直线1:41l y x =--平移后,得到直线2:47l y x =-+,则下列平移作法正确的是()A .将1l 向右平移8个单位B .将1l 向右平移2个单位C .将1l 向左平移2个单位D .将1l 向下平移8个单位【答案】B【解析】A :将直线1:41l y x =--向右平移8个单位得到直线()481y x =---,即直线431y x =-+.B :将直线1:41l y x =--向右平移2个单位得到直线()421y x =---,即直线2:47l y x =-+.C :将直线1:41l y x =--向左平移2个单位得到直线()421y x =-+-,即直线49y x =--.D :将直线1:41l y x =--向下平移8个单位得到直线418y x =---,即直线49y x =--.故选B .5.一次函数35y x =-+的图象经过()A .第一、三、四象限B .第二、三、四象限C .第一、二、三象限D .第一、二、四象限【答案】D【解析】解: 一次函数35y x =-+中,30k =-<,50b =>,∴此一次函数的图象经过一、二、象限.故选:D6.下图为正比例函数()0y kx k =≠的图像,则一次函数y x k =+的大致图像是()A .B .C .D .【答案】B 【解析】解:∵正比例函数y=kx(k≠0)的图象经过二、四象限,∴k<0,∴一次函数y=x+k 的图象与y 轴交于负半轴且经过一、三象限.故选B.7.若一次函数y =(k -3)x -k 的图象经过第二、三、四象限,则k 的取值范围是()A .k <3B .k <0C .k >3D .0<k <3【答案】D【解析】∵一次函数y=(k-3)x-k 的图象经过第二、三、四象限,∴ ॰䃰< ॰,解得:0<k <3,故选:D .8.如图,已知一次函数y kx b =+,y 随着x 的增大而增大,且0kb <,则在直角坐标系中它的图象大致是()A .B .C .D .【答案】A【解析】∵y 随x 的增大而增大,∴0k >.又∵0kb <,∴0b <,∴一次函数过第一、三、四象限,故选A .9.对于次函数21y x =-,下列结论错误的是()A .图象过点()0,1-B .图象与x 轴的交点坐标为1(,0)2C .图象沿y 轴向上平移1个单位长度,得到直线2y x=D .图象经过第一、二、三象限【答案】D【解析】A 、图象过点()0,1-,不符合题意;B 、函数的图象与x 轴的交点坐标是1(,0)2,不符合题意;C 、图象沿y 轴向上平移1个单位长度,得到直线2y x =,不符合题意;D 、图象经过第一、三、四象限,符合题意;故选:D .10.直线l 1:y =kx +b 与直线l 2:y =bx +k 在同一坐标系中的大致位置是()A .B .C .D .【答案】C【解析】解:根据一次函数的系数与图象的关系依次分析选项可得:A 、由图可得,y 1=kx+b 中,k <0,b <0,y 2=bx+k 中,b >0,k <0,b 、k 的取值矛盾,故本选项错误;B 、由图可得,y 1=kx+b 中,k >0,b <0,y 2=bx+k 中,b >0,k >0,b 的取值相矛盾,故本选项错误;C 、由图可得,y 1=kx+b 中,k >0,b <0,y 2=bx+k 中,b <0,k >0,k 的取值相一致,故本选项正确;D 、由图可得,y 1=kx+b 中,k >0,b <0,y 2=bx+k 中,b <0,k <0,k 的取值相矛盾,故本选项错误;故选:C .11.一次函数23y x =-的图像在y 轴的截距是()A .2B .-2C .3D .-3【答案】D【解析】∵23y x =-,即b=-3,∴图像与y 轴的截距为-3,故选:D.12.如果直线y=2x+m 与两坐标轴围成的三角形的面积是4,那么m 的值是()A .4-B .2C .2±D .4±【答案】D【解析】∵当x=0时,y=m ,当y=0时,x=2m -,∴直线y=2x+m 与x 轴和y 轴的交点坐标分别为(2m -,0)、(0,m ),∵直线y=2x+m 与两坐标轴围成的三角形的面积是4,∴12|2m -||m|=4,解得:m=±4,故选:D .13.八个边长为1的正方形如图摆放在平面直角坐标系中,经过原点的一条直线l 将这八个正方形分成面积相等的两部分,则该直线l 的解析式为()A .35y x =B .910y x =C .34y x =D .y x=【答案】B【解析】解:设直线l 和八个正方形的最上面交点为A ,过A 作AB ⊥y 轴于B ,作AC ⊥x 轴于C ,∵正方形的边长为1,∴OB =3,∵经过原点的一条直线l 将这八个正方形分成面积相等的两部分,∴两边分别是4,∴三角形ABO 面积是5,∴12OB•AB =5,∴AB =103,∴OC =103,由此可知直线l 经过(103,3),设直线l 解析式为y =kx ,则3=103k ,解得:k =910,∴直线l 解析式为y =910x ,故选:B .14.在平面直角坐标系中,点()11,1A -在直线y x b =+上,过点1A 作11A B x ⊥轴于点1B ,作等腰直角三角形112A B B (2B 与原点O 重合),再以12A B 为腰作等腰直角三角形212A A B ;以22A B 为腰作等腰直角三角形223A B B …;按照这样的规律进行下去,那么2019A 的坐标为()A .()2018201821,2-B .()2018201822,2-C .()2019201921,2-D .()2019201922,2-【答案】B【解析】解:如上图,∵点B 1、B 2、B 3、…、B n 在x 轴上,且A 1B 1=B 1B 2,A 2B 2=B 2B 3,A 3B 3=B 3B 4,∵A 1(−1,1),∴A 2(0,2),A 3(2,4),A 4(6,8),…,∴A n (2n−1−2,2n−1).∴A 2019的坐标为(22018−2,22018).故选:B .二、填空题(本题共4个小题;每个小题3分,共12分,把正确答案填在横线上)15.一次函数36y x =-+的图象与y 轴的交点坐标是________.【答案】(0,6)【解析】解:根据题意,令0x =,解得6y =,所以一次函数36y x =-+的图象与y 轴的交点坐标是(0,6).故答案为:(0,6).16.一次函数(3)2=-+y k x ,若y 随x 的增大而增大,则k 的取值范围是_________.【答案】3k >【解析】∵一次函数(3)2=-+y k x ,y 随x 的增大而增大,30k ∴->,3k ∴>.k .故答案为:317.已知A(2,1),B(2,4).(1)若直线l:y=x+b与AB有一个交点.则b的取值范围为_______________;(2)若直线l:y=kx与AB有一个交点.则k的取值范围为_______________.【答案】-1≤b≤2;0.5≤k≤2.【解析】解:(1)把A(2,1),代入直线l:y=x+b,得2+b=1,解得b=-1;把B(2,4)代入直线l:y=x+b,的2+b=4,解得b=2;所以:b的取值范围是:-1≤b≤2;(2)把A(2,1),代入直线l:y=kx,得2k=1,解得k=0.5;把B(2,4)代入直线l:y=kx,的2k=4,解得k=2;∴k的取值范围为:0.5≤k≤2.故答案为:-1≤b≤2;0.5≤k≤2.18.若点M(k﹣1,k+1)关于y轴的对称点在第四象限内,则一次函数y=(k﹣1)x+k的图象不经过第象限.【答案】一【解析】首先确定点M所处的象限,然后确定k的符号,从而确定一次函数所经过的象限,得到答案.∵点M(k﹣1,k+1)关于y轴的对称点在第四象限内,∴点M(k﹣1,k+1)位于第三象限,∴k﹣1<0且k+1<0,解得:k<﹣1,∴y=(k﹣1)x+k经过第二、三、四象限,不经过第一象限三、解答题(本题共8道题,19-21每题6分,22-25每题8分,26题10分,满分60分)19.先完成下列填空,再在同一直角坐标系中画出以下函数的图象(不必再列表)(1)正比例函数2y x =过(0,)和(1,);(2)一次函数3y x =-+(0,)(,0).【答案】(1)0,2;(2)3,3,作图见解析【解析】解:(1)当x=0时,y=2x=0,∴正比例函数y=2x 过(0,0);当x=1时,y=2x=1,∴正比例函数y=2x 过(1,2).故答案为:0;2.(2)当x=0时,y=-x+3=3,∴一次函数y=-x+3过(0,3);当y=0时,有-x+3=0,解得:x=3,∴一次函数y=-x+3过(3,0).故答案为:3;3.20.已知一次函数()226y k x k =--+.(1)k 满足何条件时,y 随x 的增大而减小;(2)k 满足何条件时,图像经过第一、二、四象限;(3)k 满足何条件时,它的图像与y 轴的交点在x 轴的上方.【答案】(1)k>2;(2)2<k<3;(3)k<3且k≠2.【解析】(1)∵一次函数y=(2−k)x−2k+6的图象y 随x 的增大而减小,∴2−k<0,解得k>2;(2)∵该函数的图象经过第一、二、四象限,∴2−k<0,且−2k+6>0,解得2<k<3;(3)∵y=(2−k)x −2k+6,∴当x=0时,y=−2k+6,由题意,得−2k+6>0且2−k≠0,∴k<3且k≠2.21.如图,已知正比例函数y kx =(0)k ≠经过点(2,4)P .(1)求这个正比例函数的解析式;(2)该直线向上平移4个单位,求平移后所得直线的解析式.【答案】(1)2y x =;(2)24y x =+【解析】解:(1)把(2,4)P 代入y kx =,得42k =,∴2k =,∴这个正比例函数的解析式是2y x =.(2)设平移后所得直线的解析式是y =2x +b ,把(0,4)代入得:4=b ,∴y =2x +4.答:平移后所得直线的解析式是y =2x +4.22.已知一次函数的图象与正比例函数23y x =-的图象平行,且经过点()04,.(1)求一次函数的解析式;(2)若点()8M m -,和()5N n ,在一次函数的图象上,求m ,n 的值.【答案】(1)243y x =-+;(2)283m =;32n =-.【解析】设一次函数的解析式为y=kx+b ,∵一次函数的图象与正比例函数23y x =-的图象平行,∴k=23-,∵一次函数图象经过点(0,4),∴b=4,∴一次函数的解析式为y=23-x+4.(2)∵点()8M m -,和()5N n ,在一次函数的图象上,∴m=23-×(-8)+4=283,5=23-n+4,解得:m=283,n=32-.23.已知一次函数y =-x +3与x 轴,y 轴分别交于A ,B 两点.(1)求A ,B 两点的坐标.(2)在坐标系中画出一次函数y =-x +3的图象,并结合图象直接写出y <0时x 的取值范围.【答案】(1)()3,0A ,()0,3B (2)作图见解析,3x >【解析】(1)令0x =,则3y =,故()0,3B 令0y =,则03x =-+,故()3,0A .(2)如图所示,即为所求,根据图象可得y <0时,3x >.24.如图,直线AB 与x 轴相交于点(3,0)A ,与y 轴相交于点(0,4)B ,点C 是直线AB 上的一个动点.(1)求直线AB 的函数解析式;(2)若AOC ∆的面积是3,求点C 的坐标.【答案】(1)443y x =-+;(2)点C 的坐标为3,22⎛⎫ ⎪⎝⎭或9,22⎛⎫- ⎪⎝⎭.【解析】解:(1)设直线AB 的解析式为y kx b =+.∵直线过点(3,0)A 和点(0,4)B ,∴30,4.k b b +=⎧⎨=⎩解得4,34.k b ⎧=-⎪⎨⎪=⎩∴直线AB 的解析式为443y x =-+.(2)∵(3,0)A ,∴3AO =,∵AOC ∆的面积是3,∴AOC ∆边OA 上的高为2,∴点C 的纵坐标为2或-2,∵点C 为直线AB 上的点,当4423x -+=时,解得32x =;当4423x -+=-时,解得92x =.∴当AOC ∆的面积是3时,点C 的坐标为3,22⎛⎫ ⎪⎝⎭或9,22⎛⎫- ⎪⎝⎭.25.在平面直角坐标系中,一次函数122y x =-+的图象交x 轴、y 轴分别于A B 、两点,交直线y kx =于P 。
八年级数学一次函数图像基础练习题(含答案)
八年级数学一次函数图像练习题一、选择题; ③y=−2x2; ④y=2; ⑤y=2x−1.下列函数关系式: ①y=−2x; ②y=2x1,其中是一次函数的是()A. ① ⑤B. ① ④ ⑤C. ② ⑤D. ② ④ ⑤2.在y=(k+1)x+k2−1中,若y是x的正比例函数,则k值为()A. 1B. −1C. ±1D. 无法确定3.图是一次函数的图象,则该函数的解析式是()A. y=2x+2B. y=−2x−2C. y=−2x+2D. y=2x−24.函数y=(m−2)x n−1+3是关于x的一次函数,则m,n的值为()A. m≠2,n=2B. m=2,n=2C. m≠2,n=1D. m=2,n=15.下列函数中,y随x的增大而增大的是()A. y=−2x+1B. y=−x−2C. y=x+1D. y=−2x−16.一次函数y=kx+3中,当x=2时,y=−3,则当x=−2时,y的值为()A. −1B. −3C. 7D. 97.下列曲线中,表示y是x的函数的是()A. B.C. D.8.已知正比例函数y=kx(k≠0)的函数值y随x的增大而增大,则一次函数y=−kx+k的图象大致是()A. B. C. D.9.将直线y=−2x−1向上平移2个单位长度,平移后的直线所对应的函数关系式为()A. y=−2x−5B. y=−2x−3C. y=−2x+1D. y=−2x+310.在平面直角坐标系中,一次函数y=kx+b的图象如图所示,则k和b的取值范围是()A. k>0,b>0B. k>0,b<0C. k<0,b>0D. k<0,b<011.数形结合是解决数学问题常用的思想方法.如图,直线y=x+5和直线y=ax+b相交于点P,根据图象可知,方程x+5=ax+b的解是()A. x=20B. x=5C. x=25D. x=1512.点P(a,b)在函数y=3x+2的图象上,则代数式6a−2b+1的值等于()A. 5B. 3C. −3D. −113.直线y=kx+b在平面直角坐标系中的位置如图所示,则不等式kx+b≤2的解集是()A. x≤−2B. x≤−4C. x≥−2D. x≥−414.两个一次函数y=ax+b和y=bx+a在同一平面直角坐标系中的图象可能是()A. B.C. D.15.2020年年初以来,红星消毒液公司生产的消毒液在库存量为m吨的情况下,日销售量与产量持平.自1月底抗击“新冠病毒”以来,消毒液需求量猛增,该公司在生产能力不变的情况下,消毒液一度脱销,下面表示2020年年初到脱销期间,该公司消毒液库存量y(吨)与时间t(天)之间的函数关系的大致图象是()A. B.C. D.16.如图,三个正比例函数的图象分别对应表达式: ①y=ax, ②y=bx, ③y=cx,将a,b,c从小到大排列为()A. a<b<cB. a<c<bC. b<a<cD. c<b<a17.已知点(−2,y1),(−1,y2),(1,y3)都在直线y=−3x+b上,则y1,y2,y3的值的大小关系是().A. y3<y2<y1B. y1<y2<y3C. y2<y1<y3D. y3<y1<y218.已知y=kx+2,当x<−1时,其图象在x轴下方;当x>−1时,其图象在x轴上方,则k的值为()A. −2B. 2C. −3D. 319.若一次函数y=kx+b(k≠0)的图象与直线y=−x+1平行,且过点(8,2),则此一次函数的解析式为()A. y=−x−2B. y=−x−6C. y=−x−1D. y=−x+1020.双胞胎兄弟小明和小亮在同一班读书,周五16:00时放学后,小明和同学走路回家,途中没有停留,小亮骑车回家,他们各自离学校的路程s(米)与用去的时间t(分)的关系如图所示,根据图象提供的有关信息,下列说法中错误的是()A. 兄弟俩的家离学校1000米B. 他们同时到家,用时30分钟C. 小明的速度为50米/分D. 小亮中间停留了一段时间后,再以80米/分的速度骑回家21.一元一次方程ax−b=0的解是x=5,则函数y=ax−b的图象与x轴的交点坐标是()A. (−5,0)B. (5,0)C. (a,0)D. (−b,0)二、填空题22.已知函数y=(k+1)x+k2−1.若它是一次函数,则k;若它是正比例函数,则k.23.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x≥ax+4的解集为________.24.如图,分别表示A步行与B骑车在同一道路上行驶的路程s与时间t的关系。
北师大版八年级数学上册《4.3一次函数的图象》练习题(附带参考答案)
北师大版八年级数学上册《4.3一次函数的图象》练习题(附带参考答案)学校:___________班级:___________姓名:___________考号:___________一、选择题1.一次函数y =3x +1的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限2.如图为正比例函数y =kx (k ≠0)的图象,则一次函数y =x +k 的大致图象是( )A .B .C .D .3.已知点P(1,4)在直线y =kx −2k 上,则k 的值为( )A .43B .−43C .4D .-44.如图,已知一次函数的图象与正比例函数y=12x 的图象交于点A ,则一次函数的表达式为()A .y=2x+2B .y=-12x+2C .y=-2x+2D .y=12x+25.将一次函数y =2x +5的图象沿y 轴向下平移4个单位长度,所得直线的解析式为( )A .y =2x −5B .y =x +5C .y =2x +1D .y =x +16.如图所示,点A (﹣1,m ),B (3,n )在一次函数y =kx+b 的图象上,则( )A .m =nB .m >nC.m<n D.m、n的大小关系不确定7.已知一次函数y=kx−k过点(−1,4),则下列结论正确的是()A.y随x增大而增大B.k=2C.一次函数的图象过点(1,0)D.一次函数的图象与坐标轴围成的三角形面积为28.如图,在平面直角坐标系中,已知A(2,0),B(1,3)在y轴上有一动点C,当△ABC的周长最小时,点C的坐标是()A.(0,0)B.(0,−2)C.(0,2)D.(−2,0)二、填空题9.直线y=2x+m−3经过点(2,3),则m=;10.已知y与x−2成正比例,且当x=1时y=1,则y与x之间的函数关系式为.11.如果正比例函数y=(3k+1)x的图像经过第二、四象限,那么k的取值范围是.12.若点P(m,n)在直线y=−2x+3上,则2m+n−3=.13.如果不论k为何值,一次函数y= 2k−1k+3x−k−11k+3的图象都经过一定点,则该定点的坐标是.三、解答题14.直线y=kx+1沿着y轴向上平移b个单位后,经过点A(−2,0)和y轴正半轴上的一点B,若△ABO(O为坐标原点)的面积为4,求b的值.15.已知y−2与x−3成正比例,且x=4时y=8.(1)求y与x之间的函数关系式;(2)当y=−6时,求x的值.16.已知y与3x−2成正比例,且当x=2时y=8.(1)求y与x的函数关系式;(2)画出这个函数的图象;(3)当x>0时, y的取值范围是.17.在直角坐标系内,一次函数y=kx+b的图象经过三点A(4,0),B(0,2)C(m,−3). (1)求这个一次函数解析式(2)求m的值.(3)若点P在直线y=kx+b上且到y轴的距离是3,求点P的坐标.参考答案1.D2.B3.D4.B5.C6.C7.C8.C9.210.y=-x+211.k<−1312.013.(2,3)14.解:直线y=kx+1沿着y轴向上平移b个单位后,得到y=kx+b+1 ∵直线y=kx+b+1经过点A(-2,0)和y轴正半轴上的一点B∴B(0,b+1)∵△ABO的面积是:1×2×(b+1)=42解得b=3.15.(1)解:∵y−2与x−3成正比例∴设y−2=k(x−3)∵x=4时∴8−2=k(4−3)∴k=6∴y=6x−16;(2)解:把y=−6代入y=6x−16,可得:−6=6x−16解得:x=5.316.(1)解:设y=k(3x−2)∵当x=2时x=2∴8=k(3×2−2)解得:k=2∴y与x的函数关系式为y=6x−4(2)解:令x =0,则y =−4,令x =1 过点(0,−4),(1,2)作直线如图所示:(3)y >-417.(1)解:∵一次函数y =kx +b 的图象经过三点A(4,0) B(0,2)则:{4k +b =0b =2,解得:{k =−12b =2∴这个一次函数解析式为:y =−12x +2(2)解:把C(m ,−3)代入:y =−12x +2中得:−3=−12m +2,解得:m =10(3)解:设P(x ,y)∵点P 在直线y =−12x +2上且到y 轴的距离是3 ∴x =±3当x =3时y =−12×3+2=12当x =−3时y =−12×(−3)+2=72∴点P 的坐标是(3,12)或(−3,72)。
初中数学一次函数的图像专项练习30题(有答案)ok
一次函数的图像专项练习30题(有答案)1.函数y=ax+b与y=bx+a的图象在同一坐标系内的大致位置正确的是()A.B.C.D.2.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①k<0;②a>0;③当x>2时,y2>y 1,其中正确的个数是()A.0B.1C.2D.33.一次函数y=kx+b,y随x的增大而减小,且kb>0,则在直角坐标系内它的大致图象是()A.B.C.D.4.下列函数图象不可能是一次函数y=ax﹣(a﹣2)图象的是()A.B.C.D.5.如图所示,如果k•b<0,且k<0,那么函数y=kx+b的图象大致是()A.B.C.D.6.如图,直线l1:y=x+1与直线l2:y=﹣x﹣把平面直角坐标系分成四个部分,则点(,)在()A . 第一部分B . 第二部分C . 第三部分D . 第四部分7.已知正比例函数y=﹣kx 和一次函数y=kx ﹣2(x 为自变量),它们在同一坐标系内的图象大致是( ) A . B . C . D .8.函数y=2x+3的图象是( ) A .过点(0,3),(0,﹣)的直线 B .过点(1,5),(0,﹣)的直线C .过点(﹣1,﹣1),(﹣,0)的直线D . 过点(0,3),(﹣,0)的直线9.下列图象中,与关系式y=﹣x ﹣1表示的是同一个一次函数的图象是( ) A . B . C . D .10.函数kx ﹣y=2中,y 随x 的增大而减小,则它的图象是下图中的( ) A .B .C .D .11.已知直线y 1=k 1x+b 1,y 2=k 2x+b 2,满足b 1<b 2,且k 1k 2<0,两直线的图象是( ) A .B .C .D .A.B.C.D.13.连降6天大雨,某水库的蓄水量随时间的增加而直线上升.若该水库的蓄水量V(万米3)与降雨的时间t(天)的关系如图所示,则下列说法正确的是()A.降雨后,蓄水量每天减少5万米3B.降雨后,蓄水量每天增加5万米3C.降雨开始时,蓄水量为20万米3D.降雨第6天,蓄水量增加40万米314.拖拉机开始行驶时,油箱中有油4升,如果每小时耗油0.5升,那么油箱中余油y(升)与它工作的时间t(时)之间的函数关系的图象是()A.B.C.D.15.已知正比例函数y=kx的图象经过第一、三象限,则y=kx﹣k的大致图象可能是下图的()A.B .C.D.16.一次函数y=kx+b的图象如图所示,当x_________时,y>2.17.一次函数的图象如图所示,根据图象可知,当x_________时,有y<0.18.如图,直线l是一次函数y=kx+b的图象,当x_________时,y>0.19.一次函数y1=kx+b与y2=x+a的图象如图所示,则下列结论:①k<0;②a>0;③当x=3时,y1=y2;④当x>3时,y1<y2中,正确的判断是_________.20.如图,已知函数y1=ax+b和y2=kx的图象交于点P,则根据图象可得,当x_________时,y1>y2.21.已知一次函数y=kx+b的图象如图所示,当y<0时,x的取值范围是_________.22.在平面直角坐标系中画出函数的图象.(1)在图象上标出横坐标为﹣4的点A,并写出它的坐标;(2)在图象上标出和y轴的距离是2个单位长度的点,并写出它的坐标.23.作函数y=2x﹣4的图象,并根据图象回答下列问题.(1)当﹣2≤x≤4,求函数y的取值范围.(2)当x取何值时,y<0?y=0?y>0?24.如图是一次函数y=﹣x+5图象的一部分,利用图象回答下列问题:(1)求自变量的取值范围.(2)在(1)在条件下,y是否有最小值?如果有就求出最小值;如果没有,请说明理由.25.已知函数y1=﹣x+和y2=2x﹣1.(1)在同一个平面直角坐标系中画出这两个函数的图象;(2)根据图象,写出它们的交点坐标;(3)根据图象,试说明当x取什么值时,y1>y2?26.作出函数y=3﹣3x的图象,并根据图象回答下列问题:(1)y的值随x的增大而_________;(2)图象与x轴的交点坐标是_________;与y轴的交点坐标是_________;(3)当x_________时,y≥0;(4)函数y=3﹣3x的图象与坐标轴所围成的三角形的面积是多少?27.已知函数y=2x﹣1.(1)在直角坐标系中画出这函数的图象;(2)判断点A(﹣2.5,﹣4),B(2.5,4)是否在函数y=2x﹣1的图象上;(3)当x取什么值时,y≤0.28.已知函数y=﹣2x﹣6.(1)求当x=﹣4时,y的值,当y=﹣2时,x的值.(2)画出函数图象.(3)如果y的取值范围﹣4≤y≤2,求x的取值范围.29.已知一次函数的图象经过点A(﹣3,0),B(﹣1,1)两点.(1)画出图象;(2)x为何值时,y>0,y=0,y<0?30.已知一次函数y=﹣2x+2,(1)在所给的平面直角坐标系中画出它的图象;(2)根据图象回答问题:①图象与x轴的交点坐标是_________,与y轴的交点坐标是_________;②当x_________时,y>0.参考答案:1.分四种情况:①当a>0,b>0时,y=ax+b的图象经过第一、二、三象限,y=bx+a的图象经过第一、二、三象限,无选项符合;②当a>0,b<0时,y=ax+b的图象经过第一、三、四象限;y=bx+a的图象经过第一、二、四象限,C选项符合;③当a<0,b>0时,y=ax+b的图象经过第一、二、四象限;y=bx+a的图象经过第一、三、四象限,无选项符合;④当a<0,b<0时,y=ax+b的图象经过第二、三、四象限;y=bx+a的图象经过第二、三、四象限,无选项符合.故选C2.由一次函数y1=kx+b与y2=x+a的图象可知k<0,a<0,当x>2时,y2>y1,①③正确.故选C3.∵一次函数y=kx+b,y随x的增大而减小,∴k<0,又∵kb>0,∴b<0,∴函数的图象经过第二、三、四象限.故选C4.根据图象知:A、a>0,﹣(a﹣2)>0.解得0<a<2,所以有可能;B、a<0,﹣(a﹣2)<0.解得两不等式没有公共部分,所以不可能;C、a<0,﹣(a﹣2)>0.解得a<0,所以有可能;D、a>0,﹣(a﹣2)<0.解得a>2,所以有可能.故选B5.∵k•b<0,且k<0,∴b>0,k<0,∴函数y=kx+b的图象经过第一、二、四象限,故选D6.由题意可得,解得,故点(,)应在交点的上方,即第二部分.故选B.7.分两种情况:(1)当k>0时,正比例函数y=﹣kx的图象过原点、第一、三象限,一次函数y=kx﹣2的图象经过第一、三、四象限,选项A符合;(2)当k<0时,正比例函数y=﹣kx的图象过原点、第二、四象限,一次函数y=kx﹣2的图象经过第二、三、四象限,无选项符合.故选A.8.A、把x=0代入函数关系式得2×0+3=3,故函数图象过点(0,3),不过(0,﹣),故错误;B、由A知函数图象不过点(0,﹣),故错误;C、把x=﹣1代入函数关系式得,2×(﹣1)+3=1,故(﹣1,﹣1)不在函数图象上,故错误;D、分别令x=0,y=0,此函数成立,故正确.故选D9.函数y=﹣x﹣1是一次函数,其图象是一条直线.当x=0时,y=﹣1,所以直线与y轴的交点坐标是(0,﹣1);当y=0时,x=﹣1,所以直线与x轴的交点坐标是(﹣1,0).由两点确定一条直线,连接这两点就可得到y=﹣x﹣1的图象.故选D10.整理为y=kx﹣2∵y随x的增大而减小∴k<0又因为图象过2,4,3象限故选D.11.k1k2<0,则k1与k2异号,因而两个函数一个y随x的增大而增大,另一个y随x的增大而减小,因而A是错误的;b1<b2,则y1与y轴的交点在y2与y轴的交点的下边,因而B、C都是错误的.12.①当ab>0,正比例函数y=abx过第一、三象限;a与b同号,同正时y=ax+b过第一、二、三象限,故D错误;同负时过第二、三、四象限,故B错误;②当ab<0时,正比例函数y=abx过第二、四象限;a与b异号,a>0,b<0时y=ax+b过第一、三、四象限,故C错误;a<0,b>0时过第一、二、四象限.故选A13.A、根据图象知,水库的蓄水量因该随着降雨的时间的增加而增多;故本选项错误;B、本图象的直线,所以每天的降雨量是相等的,所以,蓄水库每天的增加的水的量是(40﹣10)÷6=5;故本选项正确;C、根据图示知,降雨开始时,蓄水量为10万米3,故本选项错误;D、根据图示知,降雨第6天,蓄水量增加了40万米3﹣30万米3=10万米3,故本选项错误;故选B14.根据题意列出关系式为:y=40﹣5t,考虑实际情况:拖拉机开始工作时,油箱中有油4升,即开始时,函数图象与y轴交于点(0,40),如果每小时耗油0.5升,且8小时,耗完油,故函数图象为一条线段.故选D15.∵正比例函数y=kx的图象经过第一、三象限,∴k>0,∴﹣k<0,∴y=kx﹣k的大致图象经过一、三、四象限,故选:B.16.由图形可知,该函数过点(0,2),(3,0),故斜率k==,所以解析式为y=,令y>2,即>2,解之得:x<017.根据题意,要求y<0时,x的范围,即:x+3<0,解可得:x<﹣2,故答案为x<﹣218.根据题意,观察图象,可得直线l过点(2,0),且y随x的增大而增大,分析可得,当x>2时,有y>0 19.根据图示及数据可知:①一次函数y1=kx+b的图象经过第二、四象限,则k<0正确;②y2=x+a的图象经与y轴交与负半轴,则a>0错误;③一次函数y1=kx+b与y2=x+a的图象交点的横坐标是3,所以当x=3时,y1=y2正确;④当x>3时,y1<y2正确;故正确的判断是①,③,④20.根据图示可知点P的坐标是(﹣4,2),所以y1>y2即直线1在直线2的上方,则x<﹣4.21.根据图象和数据可知,当y<0即图象在x轴下侧,x<1.故答案为x<122.函数与坐标轴的交点的坐标为(0,3),(6,0).(1)点A的坐标(﹣4,5);(2)和y轴的距离是2个单位长度的点的坐标M(2,2),N(﹣2,4)23.当x=0时,y=﹣4;当y=0时,2x﹣4=0,解得x=2,∴函数图象与两坐标轴的交点为(0,﹣4)(2,0).图象如下:(1)x=﹣2时,y=2×(﹣2)﹣4=﹣8,x=4时,y=2×4﹣4=4,∵k=2>0,∴y随x的增大而增大,∴﹣8≤y≤4;24.(1)由图象可看出当y=2.5时,x=5,因此x的取值范围应该是0<x≤5(y轴上的点是空心圆,因此x≠0);(2)由图象可看出,当x=5时,函数的值最小,是y=2.525.(1)如图所示:(2)由(1)中两函数图象可知,其交点坐标为(1,1);(3)由(1)中两函数图象可知,当x>1时,y1>y2.26.如图.(1)因为一次项系数是﹣3<0,所以y的值随x的增大而减小;(2)当y=0时,x=1,所以图象与x轴的交点坐标是(1,0);当x=0时,y=3,所以图象与y轴的交点坐标是(0,3);(3)由图象知,在A点左边,图象在x轴上方,函数值大于0.所以x≤1时,y≥0.(4)∵OA=1,OB=3,∴函数y=3﹣3x的图象与坐标轴所围成的三角形的面积是S△AOB=×1×3=.27.(1)函数y=2x﹣1与坐标轴的坐标为(0,﹣1)(,0),描点即可,如图所示;(2)将A、B的坐标代入函数式中,可得出A点不在直线y=2x﹣1的图象上,B点在直线y=2x﹣1的图象上,A代入函数后发现﹣2.5×2﹣1=﹣6≠﹣4,因此A点不在函数y=2x﹣1的图象上,然后用同样的方法判定B是否在函数的图象上;(3)当y≤0时,2x﹣1≤0,因此x≤.28.(1)当x=﹣4时,y=2;当y=﹣2时,x=﹣2;(2)由(1)可知函数图象过(﹣4,2)、(﹣2,﹣2),由此可画出函数的图象,如下图所示:(3)∵y=﹣2x﹣6,﹣4≤y≤2∴﹣4≤﹣2x﹣6≤22≤﹣2x≤8﹣4≤x≤﹣129.(1)图象如图:(2)观察图象可得,当x>﹣3时,y>0;当x=﹣3时,y=0;当x<﹣3时,y<0.30.(1)列表:x 0 1y 2 0描点,连线(如图)…(也可以写成过点(0,2)和(1,0)画直线)(2)①(1,0);(0,2)②<1。
一次函数的图像和性质练习题
一次函数的图像和性质练习题一、填空题1.正比例函数一定经过 点,经过,一次函数(0)y kx k =≠(1), 经过点,点. (0)y kx b k =+≠(0), (0) ,2.直线与轴的交点坐标是 ,与y 轴的交点26y x =-+x 坐标是。
与坐标轴围成的三角形的面积是。
3.若一次函数的图象过原点,则的值为 .(44)y mx m =--m4.如果函数的图象经过点,则它经过轴上的点的坐标为 y x b =-(01)P ,x .5.一次函数的图象经过点( ,5)和(2,)3+-=x y 6.已知一次函数y=x+m 和y=-x+n 的图像都经过点A(-2,0), 且与y 轴分别2321交于B,C 两点,求△ABC 的面积。
7.某函数具有下面两条性质:(1)它的图象是经过原点的一条直线;(2)随的增大而减小.请你写出一个满足上述条件的函数 y x 8.在同一坐标系内函数y=2x 与y=2x+6的图象的位置关系是 .9.若直线y=2x+6与直线y=mx+5平行,则m=____________.10.在同一坐标系内函数y=ax+b 与y=3x+2平行,则a, b 的取值范围是 .11.将直线y= -- 2x 向上平移3个单位得到的直线解析式是 ,将直线y= -- 2x 向下移3个单得到的直线解析式是 .将直线y= -- 2x+3向下移2个单得到的直线解析式是 .12.一次函数的图象经过一、三、四象限,则的取值范围是 (2)4y k x k =-+-k .13.已知点A(-4, a),B(-2,b)都在一次函数y=x+k(k 为常数)的图像上,则a21与b 的大小关系是a____b(填”<””=”或”>”)14.直线经过一、二、三象限,则 0, 0,经过二、三、四象y kx b =+k b 限,则有 0, 0,经过一、二、四象限,则有 0, 0.k b k b 15.如果直线与轴交点的纵坐标为,那么这条直线一定不经过第 3y x b =+y 2-------------象限.16、直线与轴的交点坐标是_______,与轴的交点坐标是_______.152y x =-17、直线可以由直线沿轴_______而得到;直线可以23y x =-2y x =32y x =-+由直线轴_______而得到.3y x =-18、已知一次函数.()()634y m x n =++-(1)当m______时,y 随x 的增大而减小;(2)当m______,n______时,函数图象与y 轴的交点在x 轴的下方;(3)当m______,n______时,函数图象过原点.二、选择题1.已知函数,要使函数值随自变量的增大而减小,则的取(3)2y m x =+-y x m 值范围是( )A.B.C.D.3m -≥3m >-3m -≤3m <-2.一次函数中,的值随的减小而减小,则的取值范围是( (1)5y m x =++y x m )A.B.C.D.1m >-1m <-1m =-1m <3.已知直线,经过点和点,若,且,y kx b =+11()A x y ,22()B x y ,0k <12x x <则与的大小关系是( )1y 2y A.B.C.D.不能确定12y y >12y y <12y y =4. 若直线经过第二、三、四象限,则的取值范围是( )23y mx m =--m A.B.C.D.32m <32m -<<32m >0m >5.一次函数的图象不经过( )31y x =-A.第一象限B.第二象限 C.第三象限D.第四象限6.如果点P(a,b)关于x 轴的对称点p ,在第三象限,那么直线y=ax+b 的图像不经过 ( )A.第一象限 B.第二象限 C.第三象限 D.第四象限7.若一次函数y=kx+b 的图像经过(-2,-1)和点(1,2),则这个函数的图像不经过 ( )A.第一象限 B.第二象限 C.第三象限 D.第四象限 8.(m 9.两个一次函数与,它们在同一直角坐标系中的图象可能1y ax b =+2y bx a =+D.C.B .A .是( )10、下列一次函数中,y 的值随x 值的增大而减小的是( )A 、y=x -8 B 、y=-x+3 C 、y=2x+5D 、y=7x -63211、在一次函数中,的值随值的增大而减小,则的取值范围是( ()15y m x =++)A 、B 、C 、D 、1m <-1m >-1m =-1m <12、若一次函数的图象经过一、二、三象限,则应满足的条件是:( b kx y +=b k ,)A.B.C.D.0,0>>b k 0,0<>b k 0,0><b k 0,0<<b k 13、将直线y=2x 向上平移两个单位,所得的直线是 ( )A 、y=2x+2B 、y=2x -2C 、y=2(x -2)D 、y=2(x+2)14.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量y (升)与行驶时间t (时)的函数关系用图象表示应为下图中的( )15.李老师骑自行车上班,最初以某一速度匀速行进, 中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y (千米)与行进时间t (小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )三、解答题1、在同一个直角坐标系中,画出函数与的图象,并判断点21y x =-34y x =-+A (1,1)、B (-2,10)是否在所画的图象上?在哪一个图象上?2.已知一次函数y=(3-k)x-2k+18,(1) k 为何值时,它的图像经过原点; (2) k 为何值时,它的图像经过点(0,-2);(3) k 为何值时,它的图像与y 轴的交点在x 轴的上方;(4) k 为何值时,它的图像平行于直线y=-x;(5) k 为何值时,y 随x 的增大而减小.3、已知一次函数y=kx+b (k 、b 为常数且k≠0)的图象经过点A (0,﹣2)和点B (1,0),求此函数的解析式4、求函数与x 轴、y 轴的交点坐标,并求这条直线与两坐标轴围成323-=x y 的三角形的面积.5、根据下列条件,确定函数关系式:(1)y 与x 成正比,且当x=9时,y=16;(2)y=kx+b 的图象经过点(3,2)和点(-2,1).6、某摩托车的油箱最多可存油5升,行驶时油箱内的余油量y (升)与行驶的路程x(km)成一次函数关系,其图象如图。
一次函数的图像性质练习题
一次函数的图像性质练习题一.选择题(共37小题)1.如图,一次函数y=kx+b(k>0)的图象过点(﹣1,0),则不等式k(x﹣1)+b>0的解集是()A.x>﹣2 B.x>﹣1 C.x>0D.x>12.一次函数y=kx+b的图象如图所示,则下列结论正确的是()A.k<0 B.b=﹣1 C.y随x的增大而减小D.当x>2时,kx+b<0 3.两个一次函数y=ax+b和y=bx+a,它们在同一个直角坐标系的图象可能是()A.B.C.D.4.若m<﹣2,则一次函数y=(m+1)x+1﹣m的图象可能是()A.B.C.D.5.已知正比例函数y=kx(k≠0)的图象过点(2,3),把正比例函数y=kx(k≠0)的图象平移,使它过点(1,﹣1),则平移后的函数图象大致是()A.B.C.D.6.在平面直角坐标系中,一次函数y=x+1的图象是()A.B.C.D.7.如图,直线y=kx+b(k<0)经过点P(1,1),当kx+b≥x时,则x的取值范围为()A.x≤1B.x≥1C.x<1D.x>18.一次函数y=(m﹣2)x+m+3的图象如图所示,则m的取值范围是()A.m>2B.m<2C.2<m<3D.﹣3<m<2 9.直线y=kx+b在平面直角坐标系中的位置如图所示,则不等式kx+b≤2的解集是()A.x≤﹣2B.x≤﹣4C.x≥﹣2D.x≥﹣410.一次函数y=2x﹣1的图象大致是()A.B.C.D.11.一次函数y=2x﹣1图象经过象限()A.一、二、三B.一、二、四C.二、三、四D.一、三、四12.在①y=﹣8x:②y=﹣:③y=+1;④y=﹣5x2+1:⑤y=0.5x﹣3中,一次函数有()A.1个B.2个C.3个D.4个13.如图,直线y=kx+b(k≠0)经过点A(﹣3,2)则关于x的不等式kx+b<2解集为()A.x>﹣3B.x<﹣3C.x>2D.x<214.如图,直线y=ax+1与y=﹣x+4交于点E,点A,B,C,D分别是两条直线与坐标轴的交点.则结论:①a>0;②点B的坐标是(0,1);③S△BDE=3;④当x>2时,ax+1<﹣x+4中,正确的是()A.①②③B.①②④C.①③④D.②③④15.如图,若一次函数y=kx+b的图象与两坐标轴分别交于A,B两点,点B的坐标为(4,0),则不等式kx+b<0的解集为()A.x>2B.x<2C.x<4D.x>416.如图,已知一次函数y=k1x+b1与一次函数y=k2x+b2的图象相交于点(2,1),则不等式k1x+b1<k2x+b2的解集是()A.x>3B.x>2C.x<2D.x<017.已知一次函数y=kx+b的图象如图,则当0≤y<3时,x的取值范围是()A.x<0B.0≤x<2C.0<x≤2D.x>218.一次函数y=kx+k﹣1的图象不可能是下面的()A.B.C.D.19.如图,若直线l1:y=﹣x+b与直线l2:y=kx+4交于点P(﹣1,3),则关于x的不等式kx+4>﹣x+b的解集是()A.x>﹣1B.x<﹣1C.x>3D.x<320.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①k<0;②a<0;③当x<3时,y1<y2中,正确的个数是()A.3B.2C.1D.021.如图,直线y=kx+b与y轴交于点(0,3),直线在x轴上的截距是a,当k≥1时,a 的取值范围是()A.a<0B.a>﹣2C.﹣3≤a<0D.a≥﹣322.若式子+(k﹣2)0有意义,则一次函数y=(k﹣2)x+2﹣k的图象可能是()A.B.C.D.23.如图四条直线,可能是一次函数y=kx﹣k(k≠0)的图象的是()A.B.C.D.24.如图,函数y=kx+4(k≠0)的图象经过点A(2,0),与函数y=mx的图象交于点B (a,2),则不等式kx+4>mx的解集为()A.x>1B.x<1C.x>2D.x<225.在同一平面直角坐标系中,函数y=kx与y=x+3﹣k的图象不可能是()A.B.C.D.26.如图所示,直线l1:y=k1x与l2:y=k2x+b直线在同一平面直角坐标系中的图象,则关于x的不等式k1x>k2x+b的解集为()A.x>﹣1B.x<﹣1C.x<﹣2D.无法确定27.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式ax+4>2x的解集是()A.x>B.x<C.x>3D.x<328.下列图象中,可能是一次函数y=πx﹣7图象的是()A.B.C.D.29.已知函数y=ax+a的图象经过点P(1,2),则该函数的图象可能是()A.B.C.D.30.如图,直线y=kx﹣b与横轴、纵轴的交点分别是(﹣2,0),(0,1),则关于x的不等式kx﹣b≥0的解集为()A.x≥﹣B.x≤﹣2 C.x≥1 D.x≤131.直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,直线l1:y=k1x+b交x轴于点(﹣3,0),则关于x的不等式k2x<k1x+b<0的解集为()A.﹣3<x<﹣1B.﹣2<x<﹣1C.﹣3<x<1D.﹣1<x<232.如图,函数y=﹣2x+3与y=﹣x+m的图象交于P(n,﹣2),则﹣x+m>﹣2x+3的解集为()A.B.C.x<﹣2D.x>﹣233.一次函数y=ax+b与正比例函数y=abx(a、b为常数且ab≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.34.如图,直线y=kx+b与x轴交于点(﹣4,0),与y轴交于点(0,3),当y>0时,则x 的取值范围是()A.x<﹣4B.x>﹣4C.﹣4<x<3D.x>335.如图,直线y=kx+b与坐标轴的两交点分别为A(2,0)和B(0,﹣3),则不等式kx+b+3>0的解集为()A.x>0B.x<0C.x>2D.x<236.如图,直线l1:y=2x+1与直线l2:y=mx+n相交于点P(1,b),则关于x,y的方程组的解为()A.B.C.D.37.如图,一次函数y=kx+b的图象与x轴的交点坐标为(﹣2,0),则下列说法:①y随x 的增大而减小;②k>0,b<0;③关于x,y的二元一次方程kx﹣y+b=0必有一个解为x =﹣2,y=0;④当x>﹣2时,y>0.其中正确的有()A.1个B.2个C.3个D.4个二.填空题(共2小题)38.已知a,b,c满足===k,则一次函数y=kx﹣k必过第象限.39.已知函数y=k1x+b与函数y=k2x的图象交点如图所示,则方程组的解是.三.解答题(共1小题)40.如图,一次函数y1=x+1的图象与正比例函数y2=kx(k为常数,且k≠0)的图象都过A(m,2).(1)求点A的坐标及正比例函数的表达式;(2)若一次函数y1=x+1的图象与y轴交于点B,求△ABO的面积;(3)利用函数图象直接写出当y1>y2时,x的取值范围.一次函数的图像性质练习题参考答案与试题解析一.选择题(共37小题)1.如图,一次函数y=kx+b(k>0)的图象过点(﹣1,0),则不等式k(x﹣1)+b>0的解集是()A.x>﹣2B.x>﹣1C.x>0D.x>1【解答】解:把(﹣1,0)代入y=kx+b得﹣k+b=0,解b=k,则k(x﹣1)+b>0化为k(x﹣1)+k>0,而k>0,所以x﹣1+1>0,解得x>0.故选:C.方法二:一次函数y=kx+b(k>0)的图象向右平移1个单位得y=k(x﹣1)+b,∵一次函数y=kx+b(k>0)的图象过点(﹣1,0),∴一次函数y=k(x﹣1)+b(k>0)的图象过点(0,0),由图象可知,当x>0时,k(x﹣1)+b>0,∴不等式k(x﹣1)+b>0的解集是x>0,故选:C.2.两个一次函数y=ax+b和y=bx+a,它们在同一个直角坐标系的图象可能是()A.B.C.D.【解答】解:当a>0,b>0时,一次函数y=ax+b和y=bx+a的图象都经过第一、二、三象限,当a>0,b<0时,一次函数y=ax+b的图象经过第一、三、四象限,函数y=bx+a的图象经过第一、二、四象限,当a<0,b>0时,一次函数y=ax+b的图象经过第一、二、四象限,函数y=bx+a的图象经过第一、三、四象限,当a<0,b<0时,一次函数y=ax+b和y=bx+a的图象都经过第二、三、四象限,由上可得,两个一次函数y=ax+b和y=bx+a,它们在同一个直角坐标系的图象可能是B 中的图象,故选:B.3.若m<﹣2,则一次函数y=(m+1)x+1﹣m的图象可能是()A.B.C.D.【解答】解:∵m<﹣2,∴m+1<0,1﹣m>0,所以一次函数y=(m+1)x+1﹣m的图象经过一,二,四象限,故选:D.4.一次函数y=kx+b的图象如图所示,则下列结论正确的是()A.k<0B.b=﹣1C.y随x的增大而减小D.当x>2时,kx+b<0【解答】解:如图所示:A、图象经过第一、三、四象限,则k>0,故此选项错误;B、图象与y轴交于点(0,﹣1),故b=﹣1,正确;C、k>0,y随x的增大而增大,故此选项错误;D、当x>2时,kx+b>0,故此选项错误;故选:B.5.已知正比例函数y=kx(k≠0)的图象过点(2,3),把正比例函数y=kx(k≠0)的图象平移,使它过点(1,﹣1),则平移后的函数图象大致是()A.B.C.D.【解答】解:把点(2,3)代入y=kx(k≠0)得2k=3,解得,∴正比例函数解析式为,设正比例函数平移后函数解析式为,把点(1,﹣1)代入得,∴,∴平移后函数解析式为,故函数图象大致为:.故选:D.6.在平面直角坐标系中,一次函数y=x+1的图象是()A.B.C.D.【解答】解:一次函数y=x+1中,令x=0,则y=1;令y=0,则x=﹣1,∴一次函数y=x+1的图象经过点(0,1)和(﹣1,0),∴一次函数y=x+1的图象经过一、二、三象限,故选:C.7.如图,直线y=kx+b(k<0)经过点P(1,1),当kx+b≥x时,则x的取值范围为()A.x≤1B.x≥1C.x<1D.x>1【解答】解:由题意,将P(1,1)代入y=kx+b(k<0),可得k+b=1,即k﹣1=﹣b,整理kx+b≥x得,(k﹣1)x+b≥0,∴﹣bx+b≥0,由图象可知b>0,∴x﹣1≤0,∴x≤1,故选:A.8.直线y=kx+b在平面直角坐标系中的位置如图所示,则不等式kx+b≤2的解集是()A.x≤﹣2B.x≤﹣4C.x≥﹣2D.x≥﹣4【解答】解:∵直线y=kx+b与x轴交于点(2,0),与y轴交于点(0,1),∴,解得∴直线为y=﹣+1,当y=2时,2=﹣+1,解得x=﹣2,由图象可知:不等式kx+b≤2的解集是x≥﹣2,故选:C.9.一次函数y=2x﹣1的图象大致是()A.B.C.D.【解答】解:由题意知,k=2>0,b=﹣1<0时,函数图象经过一、三、四象限.故选:B.10.一次函数y=(m﹣2)x+m+3的图象如图所示,则m的取值范围是()A.m>2B.m<2C.2<m<3D.﹣3<m<2【解答】解:∵直线y=(m﹣2)x+m+3经过一、二、四象限,∴,解得﹣3<m<2,故选:D.11.一次函数y=2x﹣1图象经过象限()A.一、二、三B.一、二、四C.二、三、四D.一、三、四【解答】解:∵一次函数y=2x﹣1,k=2>0,b=﹣1<0,∴该函数图象经过一、三、四象限,故选:D.12.在①y=﹣8x:②y=﹣:③y=+1;④y=﹣5x2+1:⑤y=0.5x﹣3中,一次函数有()A.1个B.2个C.3个D.4个【解答】解:在①y=﹣8x:②y=﹣:③y=+1;④y=﹣5x2+1:⑤y=0.5x﹣3中,一次函数有①y=﹣8x;⑤y=0.5x﹣3.故选:B.13.如图,直线y=kx+b(k≠0)经过点A(﹣3,2)则关于x的不等式kx+b<2解集为()A.x>﹣3B.x<﹣3C.x>2D.x<2【解答】解:由图中可以看出,当x>﹣3时,kx+b<2,故选:A.14.如图,直线y=ax+1与y=﹣x+4交于点E,点A,B,C,D分别是两条直线与坐标轴的交点.则结论:①a>0;②点B的坐标是(0,1);③S△BDE=3;④当x>2时,ax+1<﹣x+4中,正确的是()A.①②③B.①②④C.①③④D.②③④【解答】解:由函数y=ax+1的图象可知,y随x的增大而增大,∴a>0,故①正确;在直线y=ax+1中,令x=0,则y=1,∴直线y=ax+1与y轴的交点B为(0,1),故②正确;由函数y=﹣x+4可知,D的坐标为(0,4),∴BD=3,∵E的横坐标为2,∴S△BDE=×3×2=3,故③正确;由图象可知,当x>2时,函数y=ax+1在函数y=﹣x+4的上方,∴ax+1>﹣x+4,故④错误,故选:A.15.如图,若一次函数y=kx+b的图象与两坐标轴分别交于A,B两点,点B的坐标为(4,0),则不等式kx+b<0的解集为()A.x>2B.x<2C.x<4D.x>4【解答】解:由图可知:当x>4时,y<0,即kx+b<0;因此kx+b<0的解集为:x>4.故选:D.16.如图,已知一次函数y=k1x+b1与一次函数y=k2x+b2的图象相交于点(2,1),则不等式k1x+b1<k2x+b2的解集是()A.x>3B.x>2C.x<2D.x<0【解答】解:一次函数y1=k1x+b1与一次函数y2=k2x+b2的图象相交于点(2,1),所以不等式k1x+b1<k2x+b2的解集是x<2.故选:C.17.一次函数y=kx+k﹣1的图象不可能是下面的()A.B.C.D.【解答】解:∵y=kx+k﹣1=k(x+1)﹣1,∴一次函数的图象一定过点(﹣1,﹣1),A.直线经过一、二,四象限,不经过第三象限,故不可能经过点(﹣1,﹣1),故A符合题意;B、C、D直线都经过第三象限,可能经过点(﹣1,﹣1),故可能经过点(﹣1,﹣1),故B、C、D不符合题意,故选:A.18.已知一次函数y=kx+b的图象如图,则当0≤y<3时,x的取值范围是()A.x<0B.0≤x<2C.0<x≤2D.x>2【解答】解:由图象以及数据可知,当0≤y<3时,即直线在x轴上方,y轴的右侧,并且当y=0时,x=2,所以x的取值范围是0<x≤2.故选:C.19.如图,若直线l1:y=﹣x+b与直线l2:y=kx+4交于点P(﹣1,3),则关于x的不等式kx+4>﹣x+b的解集是()A.x>﹣1B.x<﹣1C.x>3D.x<3【解答】解:由图形可知,当x>﹣1时,kx+4>﹣x+b,所以,不等式的解集是x>﹣1.故选:A.20.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①k<0;②a<0;③当x<3时,y1<y2中,正确的个数是()A.3B.2C.1D.0【解答】解:∵y1=kx+b的函数值随x的增大而减小,∴k<0.故①结论正确;∵y2=x+a的图象与y轴交于负半轴,∴a<0.故②结论正确;当x<3时,相应的x的值,y1图象均高于y2的图象,∴y1>y2,故③结论错误.故选:B.21.如图,直线y=kx+b与y轴交于点(0,3),直线在x轴上的截距是a,当k≥1时,a 的取值范围是()A.a<0B.a>﹣2C.﹣3≤a<0D.a≥﹣3【解答】解:把点(0,3)(a,0)代入y=kx+b,得b=3.则k=﹣,∵k≥1,∴﹣≥1,∴﹣3≤a<0,故选:C.22.若式子+(k﹣2)0有意义,则一次函数y=(k﹣2)x+2﹣k的图象可能是()A.B.C.D.【解答】解:∵式子+(k﹣2)0有意义,∴,解得k>2,∴k﹣2>0,2﹣k<0,∴一次函数y=(k﹣2)x+2﹣k的图象经过第一、三、四象限,故选:B.23.如图四条直线,可能是一次函数y=kx﹣k(k≠0)的图象的是()A.B.C.D.【解答】解:当k>0时,一次函数y=kx﹣k(k≠0)的图象经过第一、三、四象限,故选项A不符合题意,选项D符合题意;当k<0时,一次函数y=kx﹣k(k≠0)的图象经过第一、二、四象限,故选项B、C不符合题意;故选:D.24.如图,函数y=kx+4(k≠0)的图象经过点A(2,0),与函数y=mx的图象交于点B (a,2),则不等式kx+4>mx的解集为()A.x>1B.x<1C.x>2D.x<2【解答】解:把点A(2,0)代入y=kx+4,得0=2k+4,解得k=﹣2,∴y=﹣2x+4,把点B(a,2)代入y=﹣2x+4,得2=﹣2a+4,解得a=1,则B点坐标为(1,2),所以当x<1时,直线y=mx都在直线y=kx+4的下方,∴不等式kx+4>mx的解集为x<1.故选:B.25.在同一平面直角坐标系中,函数y=kx与y=x+3﹣k的图象不可能是()A.B.C.D.【解答】解:当k>3时,函数y=kx的图象经过第一、三象限且过原点,y=x+3﹣k的图象经过第一、三、四象限,当0<k<3时,函数y=kx的图象经过第一、三象限且过原点,y=x+3﹣k的图象经过第一、二、三象限;当k<0时,函数y=kx的图象经过第二、四象限且过原点,y=x+3﹣k的图象经过第一、二、三象限,由上可得,选项C不可能;故选:C.26.如图所示,直线l1:y=k1x与l2:y=k2x+b直线在同一平面直角坐标系中的图象,则关于x的不等式k1x>k2x+b的解集为()A.x>﹣1B.x<﹣1C.x<﹣2D.无法确定【解答】解:两条直线的交点坐标为(﹣1,3),且当x<﹣1时,直线l2在直线l1的下方,故不等式k1x>k2x+b的解集为x<﹣1.故选:B.27.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式ax+4>2x的解集是()A.x>B.x<C.x>3D.x<3【解答】解:∵函数y=2x过点A(m,3),∴2m=3,解得:m=,∴A(,3),∴不等式ax+4>2x的解集为x<.故选:B.28.下列图象中,可能是一次函数y=πx﹣7图象的是()A.B.C.D.【解答】解:∵一次函数y=πx﹣7,k=π>0,b=﹣7<0,∴该函数的图象经过第一、三、四象限,故选:D.29.已知函数y=ax+a的图象经过点P(1,2),则该函数的图象可能是()A.B.C.D.【解答】解:∵函数y=ax+a的图象经过点P(1,2),∴2=a+a,∴a=1,∴一次函数的解析式为y=x+1.∵k=1>0,b=1>0,∴一次函数的图象经过第一、二、三象限.故选:A.30.如图,直线y=kx﹣b与横轴、纵轴的交点分别是(﹣2,0),(0,1),则关于x的不等式kx﹣b≥0的解集为()A.x≥﹣2B.x≤﹣2C.x≥1D.x≤1【解答】∵要求kx﹣b≥0的解集,∴从图象上可以看出等y≥0时,x≥﹣2,故选:A.31.直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,直线l1:y=k1x+b交x轴于点(﹣3,0),则关于x的不等式k2x<k1x+b<0的解集为()A.﹣3<x<﹣1B.﹣2<x<﹣1C.﹣3<x<1D.﹣1<x<2【解答】解:由图象可知,直线l1和直线l2的交点为(﹣1,﹣2),直线l1中y随x的增大而减小,∵y=k1x+b交x轴于点(﹣3,0),关于x的不等式k2x<k1x+b的解集为x<﹣1,∴关于x的不等式k2x<k1x+b<0的解集是﹣3<x<﹣1,故选:A.32.如图,函数y=﹣2x+3与y=﹣x+m的图象交于P(n,﹣2),则﹣x+m>﹣2x+3的解集为()A.B.C.x<﹣2D.x>﹣2【解答】解:把P(n,﹣2)代入y=﹣2x+3得﹣2n+3=﹣2,解得n=,∴P,由图象可知不等式﹣x+m>﹣2x+3的解集为x>.故选:B.33.一次函数y=ax+b与正比例函数y=abx(a、b为常数且ab≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.【解答】解:若a>0,b>0,则y=ax+b经过一、二、三象限,y=abx经过一、三象限,若a>0,b<0,则y=ax+b经过一、三、四象限,y=abx经过二、四象限,若a<0,b>0,则y=ax+b经过一、二、四象限,y=abx经过二、四象限,若a<0,b<0,则y=ax+b经过二、三、四象限,y=abx经过一、三象限,故选:C.34.如图,直线y=kx+b与x轴交于点(﹣4,0),与y轴交于点(0,3),当y>0时,则x 的取值范围是()A.x<﹣4B.x>﹣4C.﹣4<x<3D.x>3【解答】解:观察函数图象,可知:y随x的增大而增大.∵直线y=kx+b与x轴交于点(﹣4,0),∴当y>0时,x>﹣4.故选:B.35.如图,直线y=kx+b与坐标轴的两交点分别为A(2,0)和B(0,﹣3),则不等式kx+b+3>0的解集为()A.x>0B.x<0C.x>2D.x<2【解答】解:由kx+b+3>0得kx+b>﹣3,直线y=kx+b与y轴的交点为B(0,﹣3),即当x=0时,y=﹣3,由图象可看出,不等式kx+b+3>0的解集是x>0.故选:A.36.如图,直线l1:y=2x+1与直线l2:y=mx+n相交于点P(1,b),则关于x,y的方程组的解为()A.B.C.D.【解答】解:∵直线y=2x+1经过点P(1,b),∴b=2+1,解得b=3,∴P(1,3),∴关于x,y的方程组的解为,故选:C.37.如图,一次函数y=kx+b的图象与x轴的交点坐标为(﹣2,0),则下列说法:①y随x的增大而减小;②k>0,b<0;③关于x,y的二元一次方程kx﹣y+b=0必有一个解为x =﹣2,y=0;④当x>﹣2时,y>0.其中正确的有()A.1个B.2个C.3个D.4个【解答】解:∵图象过第一、二、三象限,∴k>0,b>0,y随x的增大而增大,故①②错误;又∵图象与x轴交于(﹣2,0),∴kx+b=0的解为x=﹣2,③正确;当x>﹣2时,图象在x轴上方,y>0,故④正确.综上可得③④正确,共2个,故选:B.二.填空题(共2小题)38.已知a,b,c满足===k,则一次函数y=kx﹣k必过第一、四象限.【解答】解:当a+b+c=0时,a=﹣(c+b),∴k==﹣1,此时函数y=﹣x+1的图象过第一、二、四象限;由===k,可得=k,当a+b+c≠0时,k=,此时函数y=x﹣的图象过第一、三、四象限;综上所述,函数y=kx﹣k的图象必过第一、四象限,故答案为:一、四.39.已知函数y=k1x+b与函数y=k2x的图象交点如图所示,则方程组的解是.【解答】解:∵函数y=k1x+b1与函数y=k2x+b2的交点坐标是(﹣1,3),∴方程组的解为.故答案为.三.解答题(共1小题)40.如图,一次函数y1=x+1的图象与正比例函数y2=kx(k为常数,且k≠0)的图象都过A(m,2).(1)求点A的坐标及正比例函数的表达式;(2)若一次函数y1=x+1的图象与y轴交于点B,求△ABO的面积;(3)利用函数图象直接写出当y1>y2时,x的取值范围.【解答】解:(1)将点A的坐标代入y1=x+1,得m+1=2,解得m=1,故点A的坐标为(1,2),将点A的坐标代入y2=k x,得k=2,则正比例函数的表达式为y=2x;(2)令x=0,则y1=1.∴B(0,1).∴OB=1.∴S△ABO==;(3)结合函数图象可得,当y1>y2时,x<1.。
一次函数图像练习题
一次函数图像练习题一、选择题:1. 函数y=2x-3的图像是一条直线,其斜率k等于:A. -3B. 2C. -2D. 12. 一次函数y=kx+b的图像经过点(1,-1),则k的值不能为:A. 2B. -1C. 0D. 13. 函数y=-x+2与x轴的交点坐标是:A. (-2,0)B. (2,0)C. (0,2)D. (0,-2)4. 已知一次函数y=kx+b的图像经过点(-1,2),且与y轴交于点(0,-1),求k和b的值:A. k=-3, b=-1B. k=3, b=-1C. k=-1, b=2D. k=1, b=25. 若直线y=kx+b与直线y=2x-3平行,则k的值应为:A. 2B. -2C. 3D. -3二、填空题:1. 若直线y=kx+b与y轴交于点(0,4),则b的值为______。
2. 直线y=-2x+5与x轴的交点坐标为______。
3. 已知直线y=kx+b经过点(2,1)和(-1,5),求k和b的值,解得k=______,b=______。
4. 若一次函数的图像经过点(-3,6)且与x轴交于点(1,0),则该函数的解析式为y=______。
5. 函数y=kx+b的图像经过点(-1,-2),且与y轴交于点(0,3),求k和b的值,解得k=______,b=______。
三、解答题:1. 已知一次函数y=kx+b的图像经过点(-2,-1)和(1,6),求k和b的值,并写出函数的解析式。
2. 直线y=kx+b与x轴交于点A,与y轴交于点B,若点A的坐标为(-3,0),点B的坐标为(0,-2),求直线的解析式。
3. 已知一次函数y=kx+b的图像经过点(3,0)和(0,-6),求k和b的值,并判断该直线与坐标轴围成的三角形的面积。
4. 直线y=kx+b经过点(-1,1)且与直线y=2x-1平行,求k和b的值,并写出直线的解析式。
5. 已知一次函数y=kx+b的图像与x轴交于点(2,0),且与y轴交于点(0,4),求k和b的值,并画出该直线的图像。
一次函数的图像和性质练习题
一次函数的图像和性质练习题一次函数的图像和性质练习题一次函数是数学中最基本的函数之一,它的图像呈现出直线的特点。
通过学习一次函数的图像和性质,我们可以更好地理解和应用数学知识。
下面是一些关于一次函数图像和性质的练习题,帮助我们巩固所学的知识。
练习题一:给定一次函数y = 2x + 3,求解以下问题。
1. 当x为0时,y的值是多少?2. 当y为0时,x的值是多少?3. 求函数的斜率和截距是多少?4. 画出函数的图像,并标注斜率和截距。
解答:1. 当x为0时,代入函数表达式得到y = 2(0) + 3 = 3,所以当x为0时,y的值为3。
2. 当y为0时,代入函数表达式得到0 = 2x + 3,解方程得到x = -1.5,所以当y为0时,x的值为-1.5。
3. 函数的斜率即为函数中x的系数,所以斜率为2。
截距即为函数在y轴上的截距,即当x为0时的函数值,所以截距为3。
4. 画出坐标系,选择几个合适的点,连接它们得到一条直线。
根据斜率和截距,我们可以选择点(0,3)和(1,5)。
连接这两个点,得到一条斜率为2,截距为3的直线。
练习题二:给定一次函数y = -0.5x + 2,求解以下问题。
1. 当x为0时,y的值是多少?2. 当y为0时,x的值是多少?3. 求函数的斜率和截距是多少?4. 画出函数的图像,并标注斜率和截距。
解答:1. 当x为0时,代入函数表达式得到y = -0.5(0) + 2 = 2,所以当x为0时,y的值为2。
2. 当y为0时,代入函数表达式得到0 = -0.5x + 2,解方程得到x = 4,所以当y为0时,x的值为4。
3. 函数的斜率即为函数中x的系数,所以斜率为-0.5。
截距即为函数在y轴上的截距,即当x为0时的函数值,所以截距为2。
4. 画出坐标系,选择几个合适的点,连接它们得到一条直线。
根据斜率和截距,我们可以选择点(0,2)和(4,0)。
连接这两个点,得到一条斜率为-0.5,截距为2的直线。
初中二年级数学函数图像练习题
初中二年级数学函数图像练习题在初中二年级的数学学习中,函数图像是一个非常重要的知识点。
通过练习函数图像相关的题目,我们能够更深入地理解函数的性质,提高数学思维能力和解题技巧。
接下来,让我们一起走进一些函数图像练习题。
一、一次函数图像练习题1、已知一次函数 y = 2x + 1 ,求出其与 x 轴和 y 轴的交点坐标,并画出函数图像。
解:当 y = 0 时,2x + 1 = 0 ,解得 x =-1/2 ,所以与 x 轴的交点坐标为(-1/2 ,0)。
当 x = 0 时,y = 1 ,所以与 y 轴的交点坐标为(0 ,1)。
我们通过这两个点(-1/2 ,0)和(0 ,1),就可以画出该一次函数的图像。
2、若一次函数 y = kx + b 的图像经过点(1 ,3)和(-2 ,-1),求 k 和 b 的值,并画出函数图像。
解:将点(1 ,3)和(-2 ,-1)分别代入函数式,得到方程组:3 = k + b-1 =-2k + b解这个方程组,将第一个式子变形为 b = 3 k ,代入第二个式子得到:-1 =-2k + 3 k-1 = 3 3k3k = 4k = 4/3将 k = 4/3 代入 b = 3 k ,得到 b = 3 4/3 = 5/3所以函数式为 y = 4/3 x + 5/3 。
要画出函数图像,先求出与 x 轴和 y 轴的交点坐标。
当 y = 0 时,4/3 x + 5/3 = 0 ,解得 x =-5/4 ,与 x 轴交点为(-5/4 ,0)。
当 x = 0 时,y = 5/3 ,与 y 轴交点为(0 ,5/3)。
通过这两个点画出函数图像。
二、正比例函数图像练习题1、画出正比例函数 y = 3x 的图像,并判断点(2 ,6)是否在该函数图像上。
解:当 x = 0 时,y = 0 ;当 x = 1 时,y = 3 。
通过(0 ,0)和(1 ,3)两点可以画出函数图像。
将点(2 ,6)代入函数式,左边= 6 ,右边= 3×2 = 6 ,左边=右边,所以点(2 ,6)在该函数图像上。
一次函数的图像和性质练习题
一次函数的图像和性质练习题1.一次函数y=kx+b(k≠0)经过正比例函数y=kx(k≠0)一定经过点(0,0),经过点(1,k+b),经过点(-b/k,0)。
2.直线y=-2x+6与x轴的交点坐标是(3,0),与y轴的交点坐标是(0,6)。
与坐标轴围成的三角形的面积是9.3.若一次函数y=mx-(4m-4)的图象过原点,则m的值为1.4.如果函数y=x-b的图象经过点P(0,1),则它经过x轴上的点的坐标为(0,b+1)。
5.一次函数y=-x+3的图象经过点(-2,5)和(2,1)。
6.已知一次函数y=(1/2)x+2的图象与x轴、y轴分别交于点A(4,0)、B(0,2),求△XXX的面积。
答案为4.7.满足条件的函数为y=-x。
8.函数y=2x与y=2x+6的图象平行且不重合。
9.若直线y=2x+6与直线y=mx+5平行,则m=2.10.函数y=ax+b与y=3x+2平行,则a=3,b为任意实数。
11.将直线y=-2x向上平移3个单位得到的直线解析式是y=-2x+3,将直线y=-2x向下移3个单位得到的直线解析式是y=-2x-3,将直线y=-2x+3向下移2个单位得到的直线解析式是y=-2x+1.12.一次函数y=(k-2)x+4-k的图象经过一、三、四象限,则k的取值范围是k≤2或k≥4.13.已知点A(-4.a),B(-2,b)都在一次函数y=3x+1的图象上,且a<b,则系是a<7/2.14.直线y=kx+b经过一、二、三象限,则k>0,b>0;经过二、三、四象限,则k0.15.如果直线y=3x+b与y轴交点的纵坐标为-2,那么这条直线一定不经过第三象限。
16.直线y=(1/2)x-5与x轴的交点坐标是(10,0),与y轴的交点坐标是(0,-5/2)。
17.直线y=2x-3可以由直线y=2x沿y轴上移3个单位而得到;直线y=-3x+2可以由直线y=-3x沿y轴下移2个单位而得到。
初中数学一次函数的图像专项练习30题(有答案)
初中数学一次函数的图像专项练习30题(有答案)1.本题为选择题,无需改写。
2.在图中,当x>2时,y2>y1,因此结论③正确。
由于y1=kx+b与y2=x+a的图象相交于第三象限,因此a<0,结论②也正确。
而k<0,因此结论①错误。
因此选项C正确。
3.根据题目中的条件,k<0,b>0,因此函数的图象是下降的直线,截距为正数,应该是选项A。
4.本题为选择题,无需改写。
5.根据题目中的条件,k<0,b>0,因此函数的图象是下降的直线,截距为正数,斜率的绝对值小于1,应该是选项B。
6.将直线l1和直线l2的方程化简可得y=2x+1和y=-x-1,因此直线l1的斜率为2,直线l2的斜率为-1.由于x+y=0,因此该点在第三部分。
因此选项C正确。
7.根据两个函数的表达式可知它们的图象分别是斜率为负数的直线和斜率为正数的直线,应该是选项B。
8.函数y=2x+3的斜率为2,截距为3,应该是选项A。
9.根据图象可知,选项C表示的是y=-x-1的图象,因此选项C正确。
10.将函数kx-y=2化简可得y=kx-2,因此函数的图象是斜率为正数的直线,截距为-2,应该是选项C。
11.由于b1<b2,因此直线y1在直线y2的下方。
由于k1k2<0,因此直线y1和直线y2的斜率异号,相交于第二象限。
因此选项B正确。
12.根据图象可知,选项D表示的是y=abx的图象,因此选项D正确。
13.根据图象可知,降雨后,蓄水量每天增加5万立方米,因此选项B正确。
14.本题为选择题,无需改写。
15.将y=kx代入y=kx-k可得y=k(x-1),因此函数的图象是斜率为正数的直线,截距为-k,应该是选项C。
16.当x增加时,y的值也会增加,且当x大于某个值时,y会大于2.17.当x增加时,y的值也会增加,但当x大于某个值时,y会小于某个值。
18.当x增加时,y的值也会增加,且当x大于某个值时,y会大于某个值。
19.正确的判断是:①k0;③当x=3时,y1=y2;④当03时,y1>y2.20.当x增加时,y1的值也会增加,且当x大于某个值时,y1会大于y2.21.当y小于某个值时,x的取值范围是一定的,具体取值范围需要根据具体函数图象来确定。
2020年浙教 版八年级上册同步练习:5.4《一次函数的图像》 含答案
2020年浙教新版八年级上册同步练习:5.4《一次函数的图像》一.选择题1.下列函数中,y随x增大而减小的函数是()A.y=﹣2+x B.y=3x+2C.y=4x D.y=4﹣3x2.函数y=﹣4x﹣5的图象不经过的象限是()A.第一B.第二C.第三D.第四3.正比例函数y=3x的图象经过()A.第一、二象限B.第一、三象限C.第二、四象限D.第三、四象限4.将函数y=﹣4x的图象沿y轴向下平移2个单位后,所得到的函数图象对应的函数表达式()A.y=﹣4x+2B.y=﹣6x C.y=﹣4x﹣2D.y=﹣2x5.下列各点在直线y=2x+6上的是()A.(﹣5,4)B.(﹣7,20)C.(,)D.(,1)6.下面所画的函数图象中,不可能是一次函数y=mx+2﹣m图象的是()A.B.C.D.7.一次函数y1=ax+b与一次函数y2=bx﹣a在同一平面直角坐标系中的图象大致是()A.B.C.D.8.若点A(﹣3,y1)和点B(1,y2)都在如图所示的直线上,则y1与y2的大小关系为()A.y1>y2B.y1=y2C.y1 <y2D.y1≤y29.若一次函数y=kx+b的图象经过第一、二、四象限,则一次函数y=bx+k的图象大致是()A.B.C.D.10.函数y=|x﹣1|的图象是()A.B.C.D.11.直线y=kx+b的图象如图所示,则()A.k=﹣,b=﹣2B.k=,b=﹣2C.k=﹣,b=﹣2D.k=,b=﹣2 12.若正比例函数y=kx(k≠0)的图象经过点(2,﹣1),则这个正比例函数的表达式为()A.y=2x B.y=﹣2x C.y=x D.y=﹣x二.填空题13.若点A(﹣2,y1),B(1,y2)都在正比例函数y=﹣5x的图象上,则y1y2(填“>、<或=”).14.在一次函数y=﹣2x+5图象上有A(x1,y1)和A(x2,y2)两点,且x1>x2,则y1y2(填“>,<或=”).15.一次函数y=kx+b的图象如图所示,当y>0时,x的取值范围是.16.一次函数y=kx+b的图象如图所示,其中b=,k=.17.已知y与x的函数如图所示,则y与x的函数解析式为.18.如图,已知点A坐标为(6,0),直线y=x+b(b>0)与y轴交于点B,与x轴交于点C,连接AB,AB=4,则OC的长为.19.如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象经过A(﹣2,﹣2),B(1,4)两点,则△AOB的面积为.20.如图,正方形A1B1C1A2,A2B2C2A3,A3B3C3A4,…按如图所示的方式放置,点A1,A2,A3,…在直线y=x+1上,点B1,B2,B3,…在x轴上.已知点A1是直线与y轴的交点,则点C2020的纵坐标是.三.解答题21.画出直线y=x﹣2,并求它的截距.22.在平面直角坐标系中,点A(2,2),点B(﹣4,0),直线AB交y轴于点C.试求直线AB的表达式和点C的坐标;并在平面直角坐标系中画出直线AB.23.如图,直线l是一次函数y=kx+b的图象,填空:(1)b=,k=.(2)当x=30时,y=.(3)当y=30时,x=.24.直线y=kx+b经过点A(1,0)、B(0,﹣2).(1)求直线y=kx+b的解析式;(2)若点C在x轴上,且S△ABC=3S△AOB,求出点C坐标.25.如图,已知一次函数y=﹣2x﹣4与x轴、y轴分别相交于A、B两点;(1)求出A、B两点的坐标;(2)若点P在直线y=﹣2x﹣4上(与A、B不重合),且使S△POA=S△AOB,求出P点坐标.26.已知一次函数图形经过(0,5),(2,﹣5)两点.(1)求这个函数的表达式;(2)试判断点P(3,﹣5)是否在该直线上.27.如图,一次函数y=2x+b的图象与x轴交于点A(2,0),与y轴交于点B.(1)求b的值.(2)若直线AB上的点C在第一象限,且S△AOC=4,求点C坐标.28.已知一次函数y=﹣2x+4.(1)在如图所示平面直角坐标系中,画出该函数的图象;(2)若一次函数y=﹣2x+4的图象与x轴、y轴分别交于A、B两点,求出A、B两点的坐标;(3)求△AOB的面积;(4)利用图象直接写出:当y≤0时,x的取值范围.参考答案一.选择题1.解:A、∵k=1>0,∴y随x的增大而增大,故本选项不符合题意;B、∵k=3>0,∴y随x的增大而增大,故本选项不符合题意;C、∵k=4>0,∴y随x的增大而增大,故本选项不符合题意;D、∵k=﹣3<0,∴y随x的增大而减小,故本选项符合题意.故选:D.2.解:∵在一次函数y=﹣4x﹣5中,k=﹣4<0,b=﹣5<0,∴函数y=﹣4x﹣5的图象经过第二、三、四象限,不经过第一象限.故选:A.3.解:正比例函数y=3x中k=3>0,因此图象经过第一、三象限,故选:B.4.解:将函数y=﹣4x的图象沿y轴向下平移2个单位后,所得图象对应的函数关系式为:y=﹣4x﹣2.故选:C.5.解:A、当x=﹣5时,y=2×(﹣5)+6=﹣4,∴点(﹣5,4)不在直线y=2x+6上;B、当x=﹣7时,y=2×(﹣7)+6=﹣8,∴点(﹣7,20)不在直线y=2x+6上;C、当x=时,y=2×+6=,∴点(,)在直线y=2x+6上;D、当x=﹣时,y=2×(﹣)+6=﹣1,∴点(﹣,1)不在直线y=2x+6上.故选:C.6.解:根据图象知:A、m<0,2﹣m>0.解得m<0,所以有可能;B、m>0,2﹣m>0.解得0<m<2,所以有可能;C、m<0,2﹣m<0.两不等式无公共部分,所以不可能;D、m>0,2﹣m<0.解得m>2,所以有可能.故选:C.7.解:A、由y1的图象可知,a>0,b>0;由y2的图象可知,b<0,﹣a>0,即a<0,两结论矛盾,故错误;B、由y1的图象可知,a>0,b<0;由y2的图象可知,b<0,﹣a>0,即a<0,两结论矛盾,故错误;C、由y1的图象可知,a<0,b<0;由y2的图象可知,b<0,﹣a<0,即a>0,两结论相矛盾,故错误;D、由y1的图象可知,a>0,b>0;由y2的图象可知,b>0,﹣a<0,即a>0,两结论符合,故正确.故选:D.8.解:观察函数图象,可知:y随x的增大而减小,∵﹣3<1,∴y1>y2.故选:A.9.解:一次函数y=kx+b过一、二、四象限,则函数值y随x的增大而减小,因而k<0;图象与y轴的正半轴相交则b>0,因而一次函数y=bx﹣k的一次项系数b>0,y随x的增大而增大,经过一三象限,常数项k<0,则函数与y轴负半轴相交,因而一定经过一三四象限,故选:D.10.解:∵函数y=|x﹣1|=,∴当x>1时,y随x的增大而增大;当x<1时,y随x的增大而减小;故选:B.11.解:观察图象,可得直线y=kx+b的图象过点(0,﹣2)与(3,0)则有,解可得k=,b=﹣2,故选:B.12.解:将点(2,﹣1)代入正比例函数y=kx(k≠0),得﹣1=2k,∴k=﹣,∴函数的表达式为y=﹣x,故选:D.二.填空题13.解:根据题意得y1=﹣5×(﹣2)=10,y2=﹣5×1=﹣5,所以y1>y2.故答案为>.14.解:∵一次函数y=﹣2x+5中,k=﹣2<0,∴y随x的增大而减小.∵x1>x2,∴y1<y2.故答案为:<.15.解:由图象可得,当y>0时,x的取值范围是x<2,故答案为:x<2.16.解:由函数的图象可知,图象与两坐标轴的交点坐标为(0,3),(2,0),设函数的解析式为y=kx+b(k≠0),把(0,3),(2,0)代入得,,解得b=3,k=﹣;故答案为3,﹣.17.解:观察图象可知:一次函数过原点,所以设函数解析式为y=kx,将(﹣7,2)代入得,﹣7k=2,k=﹣,所以一次函数解析式为y=﹣x.故答案为y=﹣x.18.解:∵点A坐标为(6,0),∴OA=6,∵AB=4,∴OB===2,∴b=OB=2,∴直线的解析式为y=x+2,令y=0,则x=﹣2,∴C(﹣2,0),∴OC=2,故答案为2.19.解:∵一次函数y=kx+b的图象经过A(﹣2,﹣2),B(1,4)两点,∴,解得,∴一次函数的解析式为y=2x+2,设一次函数与y轴的交点为D∴D(0,2),∴S△AOB=S△AOD+S△BOD=+=3,故答案为3.20.解:∵当x=0时,y=x+1=1,∴点A1的坐标是(0,1),∵四边形A1B1C1A2是正方形,∴点C1的纵坐标是1,∵当x=1时,y=x+1=2,点A2的坐标是(1,2),∵四边形A2B2C2A3是正方形,∴点C2的纵坐标是2,同理,点A3的坐标是(3,4),点C3的纵坐标是4,∴点∁n的纵坐标是2n﹣1,∴点C2020的纵坐标是22019,故答案为:22019.三.解答题21.解:列表:x03y﹣20作图:因为当x=0时,y=﹣2,所以截距是﹣2.22.解:画点A(2,2),点B(﹣4,0),作直线AB,设直线AB的解析式为y=kx+b,把A(2,2),B(﹣4,0)分别代入得:,解得,∴直线AB的解析式为y=x+;当x=0时,y=x+=,∴C点坐标为(0,).23.解:(1)根据图形可得函数过点(3,0)和(0,2),将这两点代入得:,解得:k=﹣,b=2.(2)由(1)得函数解析式为:y=﹣x+2,∴当x=30时,y=﹣×30+2=﹣18;(3)当y=30时,则30=﹣x+2,解得x=﹣42.故答案为:2,﹣;﹣18;﹣42.24.解:(1)∵直线AB:y=kx+b(k≠0)过点A(1,0)和B(0,﹣2),∴,解得,∴直线AB的解析式为y=2x﹣2;(2)依照题意画出图形,如图所示.设点C的坐标为(m,0),S△AOB=OA•OB=×1×2=1,S△ABC=AC•OB=|m﹣1|×2=|m﹣1|,∵S△ABC=3S△AOB,∴|m﹣1|=3,解得:m=4或m=﹣2,即点C的坐标为(4,0)或(﹣2,0).25.解:(1)一次函数y=﹣2x﹣4与x轴、y轴分别相交于A、B两点,令y=0,则﹣2x﹣4=0,解得x=﹣2,令x=0,则y=﹣4,∴A(﹣2,0),B(0,﹣4);(2)∵A(﹣2,0),B(0,﹣4),∴OA=2,OB=4,∴S△OAB=×2×4=4,∵S△POA=S△AOB,∴S△POA=2.即OA•|y P|=|y P|=2,∴|y P|=2,即点P的纵坐标为±2.当点P的纵坐标为2时,有﹣2x﹣4=2,解得x=﹣3,此时点P的坐标为(﹣3,2);当点P的纵坐标为﹣2时,有﹣2x﹣4=﹣2,解得x=﹣1,此时点P的坐标为(﹣1,﹣2);∴点P的坐标为(﹣3,2)或(﹣1,﹣2).26.解:(1)设一次函数解析式为y=kx+b(k≠0),将(0,5),(2,﹣5)代入y=kx+b,得,解得:,∴这个函数的解析式为y=﹣5x+5.(2)当x=3时,y=﹣5×3+5=﹣10≠﹣5,∴点P(3,﹣5)不在该直线上.27.解:(1)将A(2,0)代入直线y=2x+b中,得2×2+b=0解得b=﹣4;(2)∵S△AOC=4,点A(2,0),∴OA=2,∴•OA•y C=4,解得y C=4,把y=4代入y=2x﹣4得2x﹣4=4,解得x=4,∴C(4,4).28.解:(1)画出函数图象,如图所示;(2)当x=0时,y=﹣2×0+4=4,∴点B的坐标为(0,4);当y=0时,﹣2x+4=0,解得:x=2,∴点A的坐标为(2,0);(3)S△AOB=OA•OB=×2×4=4;(4)观察函数图象,可知:当y≤0时,x≥2.。
一次函数图象的练习题1
一次函数图象(一)——描点法1.描点法画函数图像的基本方法(1)列表(2) 描点(3) 连线2.特殊的一次函数:正比例函数3.正比例函数图象与一次函数图象有什么样的关系?平移例题:在同一坐标系中用描点法画出函数:y=2x、y=2x+2、y=2x-2的图象4.一次函数的图象是__________________,根据“两点确定一条直线”,因此,我们再画一次函数图象时,只需描_______个点即可.5.(1)画正比例函数y=kx 的图象取哪两点?_____________________.(2)画一次函数y=kx+b的图象取哪两点?_____________________.练习:1、在同一坐标系中分别画出y=-3x,y=-2x+3,y=x-3的图象。
2、画出函数y=-3x+6的图象,并球与两坐标轴的交点A,B的坐标,并求线段AB 的面积。
的长及ABO一次函数图像(二)——待定系数法一、引入小明的作业中有这样一道题:“一次函数y=2x+■的图象经过点A(-1,4)......”其中■部分是小明不小心洒上的钢笔水,你能想办法帮小明恢复钢笔水盖住的数吗?二、新课一般地,确定一个一次函数的解析式,就是确定系数____的值,先把要求的系数设成未知数,再根据所给的条件_____,求出未知系数的方法称为__________________. 例1.已知直线y=kx-3经过点(2,-2),求常数k的值。
判定(-1,1)是否在此直线上?例2.已知一个一次函数的图象经过(-1,6)和(1,2)两点,求这个函数的解析式。
并求它与两坐标轴的交点坐标。
利用待定系数法确定函数解析式的具体步骤是:(1)写出函数解析式的一般形式,其中包括未知系数;(2)把自变量与函数的对应值(也可能是以函数图象上点的坐标的形式给出)代入函数解析式中,得到关于待定系数的方程或方程组(有几个待定系数,就要有几个方程);(3)解方程或方程组,求出待定系数的值,从而写出所求函数的解析例4.已知一次函数的图象和y 轴的交点的纵坐标是-3,且和坐标轴围成的三角形的面积为6,求这个一次函数的解析式并画出图象。
一次函数图像练习题及答案
一次函数图像练习题及答案一次函数是数学中最简单的一种函数形式,它的图像是一条直线。
在学习一次函数的图像时,做一些练习题可以帮助我们更好地理解和掌握这一概念。
下面是一些一次函数图像练习题及其答案,供大家参考。
练习题1:已知一次函数 y = 2x + 3,求该函数对应的图像的斜率和截距,并画出函数图像。
答案1:这是一个一次函数,其一般形式为 y = kx + b。
比较已知函数 y = 2x + 3 和一般形式可以得知,斜率 k = 2,截距 b = 3。
斜率代表着直线的斜率,即直线上点的纵坐标变化量与横坐标变化量的比值,截距表示了直线与纵轴的交点。
根据斜率和截距,我们可以画出函数图像。
首先,选择几个合适的x 值,计算对应的 y 值,然后将这些点连接成一条直线。
选择 x = 0,代入函数 y = 2x + 3,得到 y = 2(0) + 3 = 3;选择 x = 1,代入函数 y = 2x + 3,得到 y = 2(1) + 3 = 5;将这两个点连接起来,就得到了直线的图像。
注意到斜率为正,直线的图像是向上倾斜的。
练习题2:已知一次函数的图像过点 (1, 4),斜率为 3,求该一次函数的表达式。
答案2:已知直线的斜率为 3,过点 (1, 4),我们使用点斜式得到该一次函数的表达式。
点斜式为 y - y₁ = k(x - x₁),其中 (x₁, y₁) 为过直线的一点,k 为直线的斜率。
代入已知条件,得到 y - 4 = 3(x - 1)。
展开化简得到 y - 4 = 3x - 3。
移项得到 y = 3x + 1。
所以该一次函数的表达式为 y = 3x + 1。
练习题3:已知一次函数的图像与 x 轴交点为 (2, 0),y 轴交点为 (0, -3),求该一次函数的表达式。
答案3:已知直线与 x 轴的交点为 (2, 0),与 y 轴的交点为 (0, -3),我们可以通过这两个点求出直线的斜率和截距,从而得到一次函数的表达式。
一次函数图像练习题(打印版)
一次函数图像练习题(打印版)### 一次函数图像练习题一、选择题1. 已知直线y=kx+b与y轴交于点(0,2),且过点(1,-3),则此一次函数的解析式为()- A. y=-5x+2- B. y=5x-3- C. y=-5x-1- D. y=5x+22. 一次函数y=kx+b的图象经过第二、四象限,那么k和b的取值应满足()- A. k>0, b>0- B. k<0, b<0- C. k>0, b<0- D. k<0, b>0二、填空题1. 一次函数y=2x-3的图象与x轴交点坐标是________。
2. 若直线y=-2x+b与y轴的交点在x轴上方,则b的取值范围是________。
三、解答题1. 已知直线y=kx+b经过点(-1,2)和(2,-4),求直线的解析式。
2. 已知直线y=kx+b与x轴交于点A(a,0),与y轴交于点B(0,b),且直线过点P(1,1),求k和b的值。
四、应用题1. 某工厂生产一种产品,成本为每件20元。
若每件产品售价为x元,则利润为y元。
已知当售价为30元时,利润为10元。
求利润y与售价x之间的函数关系式。
2. 某城市规定,居民每月用电量在200度以下时,每度电的价格为0.5元;超过200度时,超出部分每度电的价格为0.6元。
某居民某月用电量为300度,求该居民该月的电费。
答案一、选择题1. 解:将点(1,-3)和(0,2)代入y=kx+b,得:- 当x=1时,y=-3,所以k+b=-3;- 当x=0时,y=2,所以b=2。
解得k=-5,b=2,所以y=-5x+2。
答案为A。
2. 解:一次函数y=kx+b的图象经过第二、四象限,说明k<0,b<0。
答案为B。
二、填空题1. 解:令y=0,得2x-3=0,解得x=1.5,所以交点坐标为(1.5,0)。
2. 解:令x=0,得y=b,由于交点在x轴上方,所以b>0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
确的是( )
A. k1 k2 k3
B. k2 k1 k3
C. k3 k1 k2 D. k1 k3 k2
2.已知正比例函数 y=kx(k≠0)的
图象如图所示,则在下列选项 中 k
值可能是( )
A. 1 B. 2 C. 3 D. 4
考点六:求 k 或 b 的值
1.矩形 AOBC 在第一象限中,且顶点 O 为坐标原点,
A.
B.
C.
D.
4.一次函数 y=kx+k(k<0)的图象大致是( )
A.
B.
C.
D.
5.在平面直角坐标系中,若直线 y=kx+b 经过第一、三、
四象限,则直线 y=bx+k 不经过的象限是( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限
6.已知关于x的一次函数y=m(x-n)的图象经过第二、三、四象
图象经过原点的是( )
A.y=-x-3 B.y=3x C.y=x+3
D.y=2x+5
2.将一次函数 y=-2x+4 的图象平移得到图象的函数关
系式为 y=-2x,则移动方法为( )
A.向左平移 4 个单位 B.向右平移 4 个单位
C.向上平移 4 个单位 D.向下平移 4 个单位
3.y=3x 与 y=3x-3 的图象在同一坐标系中位置关系是
( )A.相交 B.互相垂直 C.平行 D.无法确定
4.已知直线 y=(5-3m)x+ 2 m-4 与直线 y= 1 x+6 平行,
3
2
求 m 的值.
考点四:增减性
1.点 A(-5,y1)和点 B(-6,y2)都在直线 y=-9x 的图像上则 y1__y2。
2. 关于函数
,下列结论正确的是( )
A.函数图象必经过点(1,2)
其他题型:
1、在函数 y=-3x 的图象上取一点 P,过 P 点作 PA⊥x 轴,已知 P 点的横坐标为-•2,求△POA 的面积(O 为 坐标原点).
2.若点(m,n)在函数 y=2x+1 的图象上,则 2m﹣n
的值是( )
A.2
B ﹣2
C1
D.﹣1
3.一次函数 y=kx+b 的图象如图所示,当 y<5 时,x 的
5.若正比例函数的图象经过点(2,-3),则这个图象 必经过点( ) A.(-3,-2) B.(2,3) C.(3,-2) D.(-2,3) 6.直线 y=(2-5k)x+3k-2,若经过原点,则 k=____; 若直线与 x 轴交于点(-1,0),则 k=
考点七:求点坐标
1.下面所给点的坐标满足 y=-2x 的是( ) A.(2,-1) B.(-1,2) C.(1,2) D.(2,1) 2.直线 y=2x+1 经过点(0,a),则 a= 3.直线 y=2x-1 沿 y 轴向上平移 3 个单位,则平移后直 线与 x 轴的交点坐标为 与 x 轴的交点坐标为
4. y (m 2)xm23 m 是一次函数,则 m=___。
考点二:图像所经过的象限(k 和 b 的含义)
1、正比例函数 y=(m-1)x 的图象经过一、三象限, 则 m 的取值范围是 2.在平面直角坐标系中,一次函数 y=2x+1 的图象不经 过________。 3.已知点 P(m,n)在第四象限,则直线 y=nx+m 图象 大致是下列的( )
取值范围是
,k= ,b= 。
4.设 0<k<2,关于 x 的一次函数 y=kx+2(1-x),当 1≤x≤2
时的最大值是( ) A.2k-2 B.k-1 C.k D.k+1 5.若函数 y=kx+b 的图象平行于 y= -2x 的图象且经过
点(0,4), 则直线 y=kx+b 与两坐标轴围成的三角 形的面积是?
已知点 C(3,2),则对角线 OC 所在的直线 l 对应的
解析式为
。
2、已知一次函数 y=kx+3 的图象经过点(1,4). 求这个一次函数的解析式;
3.在一次函数y=kx+3中,当x=3时,y=6,则k的值为
( ) A.-1 B.1
C.5
D.-5
4.已知:如图,正比例函数的图象经过点P和 点Q(﹣m,m+3),求m的值.
限,则有 ( )
A.m>0,n>0
B.m<0,n>0
C.m>0,n<0
D.m<0,n<0
7.在函数 y=kx+3 中,当 k 取不同的非零实数时,就得
到不同的直线,那么这些直线必定( )
A、交于同一个点 C、有无数个不同的交点
B、互相平行 D、交点的个数与 k 的具
体取值有关
8.函数 y=3x+b,当 b 取一系列不同的数值时,它们图
B.函数图象经过第二、四象限
C.y 随 x 的增大而增大
D.不论 x 取何值,总有 y>0
3.当自变量 x 增大时,下列函数值反而减小的
是(
).
x A.y= 3
B.y=2x
C.y=
x 3
D.y=-2+5x
4.下列函数中,y 随 x 的增大而减小的有(
).
①
y 2 x 1 ②
y 6x
③
y 1 x 3
A.a>b>c B.c>b>a C.b>a>c D.b>c>a
②
③
ห้องสมุดไป่ตู้
①
9.y=2x-3 与 x 轴的交点为______,与 y 轴的 交点为_____。
考点一:正比例函数 y=kx 与一次函 数 y=kx+b 的一般式
1.已知一次函数 y (k 2)x k 2 4 的图象经过原点,则 k=_____。 2、已知函数 y=(2m-2)x+m+1, (1)m 为何值时,图象为过原点的直线. (2)m 为何值时,图像为一条不过原点的直线。. 3.一次函数 y=5kx-5k-3,当 k=___时,图象过原点; 当 k______时,y 随 x 的增大而增大.
(1)求 m 的取值范围
(2)当 x1>x2 时,比较 y1 与 y2 的大小,并说明理由.
7.当 x 0时, y 与 x 的函数解析式为 y 2x ,当
x 0时, y 与 x 的函数解析式为 y 2x ,则在同一
直角坐标系中的图象大致为( )
y
y
y
y
O
x
x
O
O
x
O
x
考点五:变化快慢
1.如图所示,你认为下列结论中正
象的共同点是(
)
A、交于同一个点
B、互相平行
C 有无数个不同的交点 D、交点个数的与 b 的具体
取值有关
9. 无 论 m 为 何 实 数 , 直 线 y x 2m 与
y x 4 的交点不可能在( ).
A.第一象限 B.第二象限 C.第三象限 D.第四象限
考点三:平移
1.将下列函数的图象沿 y 轴向下平移 3 个单位长度后,
A.
B.
C.
D.
6.将直线 y= -2x 向下平移两个单位,所得到
的直线为_______。
7.已知(x1,y1)和(x2,y2)是直线 y=-3x 上的两点,且 x1>x2,则 y1___y2•. 8、如图,三个正比例函数的图像分别对应的
解析式是 ①y=ax② y=bx ③ y=cx,则 a、b、 c 的大小关系是( )
当堂检测
1、函数 y=-7x 的图象经过第 象限,经 过点(0, )与点(1, ),y 随 x 的增大而 。 2、函数 y=4x 的图象在第 象限内,经过 点(0, )与点(1, ),y 随 x 的增大而 . 3.若一次函数 y (3 k)x 2k 2 18 的图象经过 原点,则 k= . 4.函数 y=-x+2 的图象不经过第____象限。 5.已知正比例函数 y=kx (k≠0),当 x=-1 时, y=-2,则它的图象大致是( )
④ y (1 2)x
A.1 个 B.2 个
C.3 个
D.4 个
5、若正比例函数图像又 y=(3k-6)x 的图像经过点 A
(x1,x2)和 B(y1,y2),当 x1<x2 时, y1>y2,则 k
的取值范围是
6、正比例函数 y=(3m-1)x 的图像经过第二、四象限,
且该图像经过点 A(x1,x2)和 B(y1,y2).