苏教版五年级数学下册公因数、公倍数讲义
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
公因数和公倍数
【知识要点】
1、一个数最小的因数是1,最大的因数是它本身,一个数因数的个数是有限的。
一个数最小的倍数是它本身,没有最大的倍数。
一个数倍数的个数是无限的。
一个数最大的因数等于这个数最小的倍数。
2、几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,用符号[ ,]
表示。
几个数的公倍数也是无限的。
3、两个数公有的因数,叫做这两个数的公因数,其中最大的一个,叫做这两个数的最大公因数,用符号
(,)。
两个数的公因数也是有限的。
4、两个素数的积一定是合数。
举例:3×5=15,15是合数。
5、两个数的最小公倍数一定是它们的最大公因数的倍数。
举例:[6,8]=24,(6,8)=2,24是2的倍数。
6、求最大公因数和最小公倍数的方法:
倍数关系的两个数,最大公因数是较小的数,最小公倍数是较大的数。
举例:15和5,[15,5]=15,(15,5)=5
素数关系的两个数,最大公因数是1,最小公倍数是它们的乘积。
举例:[3,7]=21,(3,7)=1一个素数和一个合数,最大公因数是1,最小公倍数是它们的乘积。
[5,8]=40,(5,8)=1
相邻关系的两个数,最大公因数是1,最小公倍数是它们的乘积。
[9,8]=72,(9,8)=1
特殊关系的数(两个都是合数,一个是奇数,一个是偶数,但他们之间只有一个公因数1),
比如4和9、4和15、10和21,最大公因数是1,最小公倍数是它们的乘积。
一般关系的两个数,求最大公因数用列举法或短除法,求最小公倍数用大数翻倍法或短除法。
【例题讲解】
例1、一张长方形纸,长60厘米,宽36厘米,要把它截成同样大小的长方形,并使它们的面积尽可能大,截完后又正好没有剩余,正方形的边长可以是多少厘米能截多少正方形?
要使截成的正方形面积尽可能大,也就是说,正方形的边长要尽可能大,截完后又正好没有剩余,这样正方形边长一定是60和36的最大公约数。
?(36、60)=12?
(60÷12)×(36÷12)=15个???
例2、用96朵红玫瑰花和72朵白玫瑰花做花束。
如每个花束里的红玫瑰花的朵数相同,白玫瑰花的朵数也相同,最多可以做多少个花束每个花束里至少要有几朵花?
要把96朵红玫瑰花和72朵白玫瑰花做花束,每束花里的红白花朵数同样多,那么做成花束的的个数一定是96和72的公约数,又要求花束的个数要最多,所以花束的个数应是96和72的最大公约数。
1、?最多可以做多少个花束?(96、72)=24? 2、?每个花束里有几朵红玫瑰花?96÷24=4朵? 3、?每个花束里有几朵白玫瑰花?72÷24=3朵? 4、?每个花束里最少有几朵花?4+3=7朵?
例3、一个植树小组原计划在96米长的一段土地上每隔4米栽一棵树,并且已经挖好坑。
后来改为每隔6米栽一棵树。
求重新挖树坑时可以少挖几个?
解:这一段地全长96米,从一端每隔4米挖一个坑,一共要挖树坑:96÷4+1=25(个)?后来,改为每隔6米栽一棵树,原来挖的坑有的正好赶在6米一棵的坑位上,可不重新挖。
由于4和6的最小公倍数是12,所以从第一个坑开始,每隔12米的那个坑不必挖。
?
96÷12+1=9(个)?
96米中有8个12米,有8个坑是已挖好的,再加上已挖好的第一个坑,一共有9个坑不必重新挖。
知识点:公因数和最大公因数
练习:1、写出下面每组数的最大公因数。
3和5 () 4和8 () 1和13 () 13和26 ()
4和9 () 17和51 () 21和36() 22和55 ()
2、m÷n=5(m、n都是非零的自然数),m和n的最大公因数是()。
3、m和n是相邻的两个非零的自然数,m和n的最大公因数是()。
4、把一张长18cm,宽12cm的长方形纸,分成同样大小的正方形且没有剩余,每个小正方形边长最大是()厘米,最少可分成()个。
5、两根钢管,甲管长36分米,乙管长40分米,把它们截成同样长的小段而且没有剩余,每小段最长()分米,最少可截成()段。
知识点:公倍数与最小公倍数
练习:1、写出下面每组数的最小公倍数。
3和5 () 4和8 () 1和13 () 13和26 ()
4和9 () 17和51 () 21和36() 22和55 ()、
2、m÷n=5(m、n都是非零的自然数),m和n的最小公倍数是()。
3、m和n是相邻的两个非零的自然数,m和n的最小公倍数是()。
4、一种长方形的地砖长8厘米,宽6厘米,用这种地砖铺成一块正方形,至少需要()块地砖。
正方形的面积最少是()平方厘米。
5、暑假期间,小林和小军都去参加游泳训练。
小林每6天去一次,小军每8天去一次。
7月31日两人同时参加游泳训练,()月()日他们又再次相遇。
6、暑假期间,小林和小军都去参加游泳训练。
小林每6天去一次,小军每8天去一次。
8月1日两人同时参加游泳训练,()月()日他们又再次相遇。
7、3和7是21的()①因数②公因数③倍数
8、8是24和64的()①因数②最大公因数③倍数
【综合练习】
一、填空(共20分)
1、最小的素数是(),最小的合数是()。
2、18的因数有(),24的因数有(),它们的公因数有()。
3、在1~20的自然数中,既不是素数又不是合数的数有(),既是素数又是偶数的有()。
4、自然数按因数个数的多少可以分成()、()和()。
5、1082至少加上()是3的倍数,至少减去()才是5的倍数。
6、一个数的最大因数是13,这个数的最小倍数是()。
7、两个自然数a、b的最大公因数是1,它们的最小公倍数是()。
8、如果A=2×2×3,B=2×3×3,那么它们的最大公因数是(),最小公倍数是()。
9、一个数是3的倍数,又是5的倍数,还有因数7。
这个数最小是()。
10、一个数既是30的因数、又是45的因数,最大的是()。
11、用0、1、2三个数字排成的所有三位数中,同时是2、3、5的倍数的数有()。
12、如果两个数的最大公因数是1,它们最小公倍数是91,那么这两个数的和最大是()。
二、判断题(共5分)
1、两个连续自然数(0除外)它们的最大公因数是1。
()
2、在24的因数中,是素数的只有2和3。
()
3、5和7没有公因数,但5和7有公倍数。
()
4、所有的偶数都是合数。
()
5、两个数的公倍数一定比这两个数都大。
()
三、选择题(共5分)
1、任何两个奇数的和是()。
A 奇数
B 合数
C 偶数
2、两个素数的积一定是()。
A 素数
B 合数C奇数
3、任何两个自然数的()的个数是无限的。
A 公倍数
B 公因数
C 倍数
4、A是B倍数,那么它们的最小公倍数是()。
A A
B B A
C B
5、两个数的最大公因数是15,最小公倍数是90,这两个数一定不是()。
A 15和90
B 45和90
C 45和30
四、写出每组数的最大公因数(共12分)
32和1 12和18 72和48
78和117 23和60 12和60
五、写出每组数的最小公倍数(共12分)
4和15 5和7 90和30
9和15 13和39 6和13
六、列式计算(共8分)
1、一个自然数被3、5除都余1,这个数最小是多少
2、五个连续奇数的和是425,最小的一个是多少
七、解决问题(共38分,第8题3分,其余每题5分)
1、一枝钢笔的价钱是元,比一枝圆珠笔贵元,一枝圆珠笔多少元(列方程解答)
2、小明的妈妈比小明大26岁,爸爸今年38岁,比妈妈大4岁,小明今年多大了(列方程解答)
3、甲、乙两人到图书馆去借书,甲每4天去一次,乙每5天去一次,如果7月1日他们两人在图书馆相遇,那么他们下一次同时到图书馆是几月几日
4、有两根小棒分别长20分米,28分米。
要把它们都截成同样长的小棒,不许剩余,每根小棒最长能有多少分米
5、一个长方形的面积是24厘米,它的长和宽都是整厘米数,这样的长方形有多少种
6、在一张长40厘米,宽32厘米的长方形红纸上裁出同样大小,面积最大的正方形,并且没有剩余。
一
共可以裁出多少个这样的正方形
7、五(1)班学生人数不超过50人,在分小组做游戏时,可以分为每组6人或者每组8人,两种分法都刚好分完。
这个班的学生可能有多少人
8、园林工人在一段公路的一边每隔4米栽一棵树,一共栽了17棵。
现在要改成每隔6米栽一棵树。
那么,不用移栽的树有多少棵
【解决问题】
1、甲、乙两人到图书馆去借书,甲每4天去一次,乙每5天去一次,如果7月1日他们两人在图书馆相
遇,那么他们下一次同时到图书馆是几月几日
2、一块长方形纸片,长18厘米,宽12厘米,把它剪成同样大小的边长是整厘米数的正方形且没有剩余,
最少可以剪多少个
3、同学们做了24朵红花和56朵黄花,把这些花分成相同的若干束,最多可以分成几束每束里红花和
黄花各有几朵
4、五(1)班学生做早操,每行12人或16人都正好站成整行,这个班不到50人,这个班究竟有多少人
5、一块砖长42厘米,宽26厘米,用这样的砖铺成一块正方形地,至少要多少块
6、有一筐苹果,无论是平均分给8个人,还是平均分给18人,结果都剩下3个,这筐苹果至少有多少个
【拓展练习】
1、学校操场长96米,从一端起到另一端每隔4米插有一面小红旗。
现在要改成每隔6米插一面红旗。
问可以不必拔出来的小红旗有多少面
2、某校同学们做操,把学生分为10人一组,14人一组,18人一组,都恰好分完,这个学校至少有多少个
学生
3、有一列数1,1,2,3,5,8,13,21,34,55……,从第三个数开始,每个数是都前面两个数的和,前100个
数中偶数有多少个
4、1路、2路和5路车都从东站发车,1路车每隔10分钟发一辆,2路车每隔15分钟发一辆,而5路车每隔20分钟发一辆。
当这三种路线的车同时发车后,至少要过多少分钟又有这三种路线同时发车
5、从小明家到学校原来每隔50米安装一根电线杆,加上两端的两根一共是55根电线杆,现在改成每隔60米安装一根电线杆,除两端的两根不用移动外,中途还有多少根不必移动?
6、在一根长100厘米的木棍上,自左到右每隔6厘米染一个红点,同时自右到左每隔5厘米染一个红点,染后沿红点将木棍逐段锯开,那么长度是1厘米的短木棍有多少根?
【挑战奥数】
【例题讲解】
在求18与12的最大公约数与最小公倍数时,由短除法
可知,(18,12)=2×3=6,[18,12]=2×3×3×2=36。
如果把18与12的最大公约数与最小公倍数相乘,那么
(18,12)×[18,12]=(2×3)×(2×3×3×2)
=(2×3×3)×(2×3×2)=18×12。
也就是说,18与12的最大公约数与最小公倍数的乘积,等于18与12的乘积。
当把18,12换成其它自然数时,依然有类似的结论。
从而得出一个重要结论:
两个自然数的最大公约数与最小公倍数的乘积,等于这两个自然数的乘积。
即,
(a,b)×[a,b]=a×b。
例1、两个自然数的最大公约数是6,最小公倍数是72。
已知其中一个自然数是18,求另一个自然数。
解:由上面的结论,另一个自然数是(6×72)÷18=24。
例2 、两个自然数的最大公约数是7,最小公倍数是210。
这两个自然数的和是77,求这两个自然数。
分析与解:如果将两个自然数都除以7,则原题变为:“两个自然数的最大公约数是1,最小公倍数
是30。
这两个自然数的和是11,求这两个自然数。
”
改变以后的两个数的乘积是1×30=30,和是11。
30=1×30=2×15=3×10=5×6,
由上式知,两个因数的和是11的只有5×6,且5与6互质。
因此改变后的两个数是5和6,故原来的两个自然数是
7×5=35和7×6=42。
例3、已知a与b,a与c的最大公约数分别是12和15,a,b,c的最小公倍数是120,求a,b,c。
分析与解:因为12,15都是a的约数,所以a应当是12与15的公倍数,即是[12,15]=60的倍数。
再由[a,b,c]=120知, a只能是60或120。
[a,c]=15,说明c没有质因数2,又因为[a,b,c]=120=23×3×5,所以c=15。
因为a是c的倍数,所以求a,b的问题可以简化为:“a是60或120,(a,b)=12,[a,b]=120,求a,b。
”
当a=60时,b=(a,b)×[a,b]÷a =12×120÷60=24;
当a=120时,b=(a,b)×[a,b]÷a =12×120÷120=12。
所以a,b,c为60,24,15或120,12,15。
【练习】
1、两个自然数的最大公约数是6,最小公倍数是72。
已知其中一个自然数是18。
求另一个自然数。
2、两个自然数的最大公约数是7,最小公倍数是210。
这两个自然数的和是77。
求这两个自然数。
3、两个数的最大公因数是9,最小公倍数是90,求这两个数分别是多少
4、已知两个数的积是3072,最大公因数是16,求这两个数。
5、已知A与B的最大公约数为6,最小公倍数为84,且A×B=42,求B。
6、两个数的最大公约数为12,最小公倍数为180,且较大数不能被较小数整除,求这两个数。
7、甲乙两数的最大公约数为75,最小公倍数为450,当这两个数分别为何值时,它们差最小。
【课后练习】
一、填空
1、(7,9)在平面图上表示是第()列第()行的位置。
2、30以内3的倍数有(),4的倍数有(),3和4的公倍数有(),最小公倍数是()。
3、在12、15、36、6
4、450、950六个数中,是3的倍数有(),是5的倍数的有(),是2的倍数的有();是2和5的公倍数的有(),是2和3的公倍数的有(),是3和5的公倍数的有();同时是2、3和5的公倍数的数是()。
4、18的因数有(),60的因数有(),18和60的公因数有(),最大公因数是()。
5、一个合数的因数至少有()个,例如:()。
6、如果A=2×3×7,B=2×5×7,那么A和B的最大公因数是(),最小公倍数是()。
7、用0、3、5、7四个数组成一个同时是2和5的倍数的四位数,最大是(),最小是()。
8、要使601□既是2的倍数,又是3的倍数,那么□里可以填()。
9、身份证上数字编码的头两位数字表示的是()。
二、判断
1、如果a÷b=4(a、b为整数)那么a和b的最大公因数是4。
()
2、一个数最小的倍数与它最大的因数相等。
()
3、任何一个自然数的因数至少有2个。
()
4、1和任何自然数(0除外)都没有公因数。
()
5、两个素数的最小公倍数是它们的乘积。
()
三、选择
1、 1、
2、4、8是8的()
A、因数
B、公因数
C、素数
2、12是()的最大公因数。
A、1和12
B、12和24
C、3和4
3、一个两位数个位和十位上都是合数,并且它们的最大公因数是1,那么这两位数可能是()
A、49
B、59
C、69
4、a 是一个素数,则a的倍数有()个
A、1个
B、2个
C、无数个
5、如果b是一个整数,那么2b一定是()
A、合数
B、偶数
C、素数
四、写出每组数的最大公因数
7和9 5和25 10和4
27和18 11和77 15和16
五、写出每组数的最小公倍数
8和10 51和3 5和4
57和19 91和7 9和1
六、列式计算
1、a与b的最大公因数是6,最小公倍数是72,a是18,b是多少
2、50以内最大素数与最大一位数的和除以最小合数,商是多少
七、解决问题
1、汽车站内每隔3分钟发一辆公交车,4分钟发一辆中巴车,在1小时的时间里几次同时发了公交车和中巴车
2、把两根长度分别是120厘米和180厘米的铁丝,截成长度相等的小段,每根都不能有剩余。
每小段最长多少厘米
3、有一批地砖,每块长45厘米、宽30厘米,至少要用多少块这样的地砖才能铺成一个正方形
4、李刚和李强是兄弟,两人都在外地工作。
李刚隔6天回家一次,李强隔8天回家一次,十月一日这天他们同时回家,再过多少天他们才能再一次见面
5、用96朵红花和72朵白花做成花束,如果各花束里红花的朵数相同,白花的朵数也相同,每束花里最少有几朵花
6、在一根长100厘米的木棍上,自左至右每隔6厘米染一个红点,同时自右至左每隔5厘米染一个蓝点,有多少个点同时染了红色和蓝色
7、有一盒糖,如果按4块一堆分开,结果多出一块;如果按5块一堆分开,结果也多出一块。
那么这盒糖最少有多少块
8、从小明家到学校原来每隔5米安装一根电线杆,加上两端的两根一共是25根电线杆,现在改成每隔6米安装一根电线杆,除两端的两根不需要移动外,中间有多少根不必移动。