基于时间序列分析的股票价格短期预测与分析之欧阳文创编

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于时间序列分析的股票价格短
期预测与分析
姓名:王红芳数学与应用数学一班指导老师:魏友华
摘要
时间序列分析是经济领域研究的重要工具之一,它描述历史数据随时间变化的规律,并用于预测经济变量值。

在股票市场上,时间序列预测法常用于对股票价格趋势进行预测,为投资者和股票市场管理方提供决策依据。

本文通过各种预测方法的对比,突出时间序列分析的优势,从时间序列的概念出发介绍了时间序列分析预测法的基础以及其简单的应用模型。

文中使用中石化股票的历史收盘价数据,运用时间序列预测法预测出中石化股票的后五个交易日的收盘价,通过对预测价格和实际价格做出对比,表明时间序列预测法的效果比较好。

关键词:时间序列;股票价格;预测
The short-term stock price prediction based on time series analysis Abstract: The analysis of time series is one of the important tools for researching in the field of economy, it describes the law of historic data with the time passing by and it is also used to predict the value of economic variables. In the stock market, the forecasting method of time series is commonly used to forecast the trend of stock price, and provide evidence of decision making for investors and managements. In the thesis, through the comparison of various forecasting methods to highlight the advantages of the analysis of time series, beginning with the concept of time series, I introduce the basic of forecasting method of the analysis of time series as well as its simple application model. in the paper, I use the historic closing price data of Sinopec shares and the forecasting method of time series to predict the Sinopec shares' closing price of the last five days, and by comparison between predicting price and actual price to show the good effect of the forecasting method of time series.
Keywords:Time series; Stock price; Forecast
目录第1章前言1
1.1研究背景1
1.2预测基础知识2
1.3股票基础知识4
1.4股票预测方法4
第2章时间序列预测法6
2.1时间序列预测6
2.1.1 时间序列的概念6
2.1.2 时间序列分析特点7
2.1.3 时间序列预测法的分类7
2.1.4 时间序列预测法的步骤8
2.2时间序列预测算法9
2.2.1 平均数预测法9
2.2.2 指数平滑法10
2.3时间序列模型13
2.3.1 时间序列模型13
2.3.2 模型选择14
2.3.3 模型参数的估计16
第3章中石化股票价格短期预测17
3.1输入数据17
3.2数据预处理18
3.3选择模型19
3.4参数计算20
3.5预测20
结论22
致谢23
参考文献24 附录125
附录 227
附录 328
第1章前言
1.1 研究背景
股票市场是经济的“晴雨表”和“报警器”,其作用不仅被政府所重视,更受到广大投资者的关注。

对股票投资者来说,未来股价变化趋势预测越准确,对利润的获取及风险的躲避就越有把握;对国家的经济发展和金融建设而言,股票预测研究同样具有重要作用。

因此对股票内在性质及预测的研究具有重大的理论意义和应用前景。

我国于1985年发行第一支股票,现已有沪、深两大交易所,上几百家证券公司,3000多个证券营业部,7000多万证券投资者。

90年代以来,计算机技术和网络技术在股票市场中得到充分应用,使得股票市场更加蓬勃发展起来,显示出强大的生命力。

然而进入21世纪后的中国股市,几乎一直在危机的状态运行。

随着时间的推移,危机正在呈现出逐步扩散的态势和日益加深的走势。

从总体上来说,中国股市现阶段的生存危机是一种复合危机,是由多种因素组合并且具有多重影响的深层制度危机。

正可谓“冰冻三尺非一日之寒”,中国股市的基本制度缺陷在长期中被忽视、被容忍、被放纵,使得市场中的消极因素日益累积、相互交织,以至于最终演化为危及股市根基的生存危机。

股票是市场经济的产物,股票的发行与交易促进了市场经济的发展。

由于股市行情受经济、政治、社会文化等因素(如发行公司的经营状况和财务状况、新股上市、利率水平、汇率变动、国际收支、物价因素、经济周期、经济政策等)的作用,其内部规律非常复杂,变化周期无序,同时我国资本市场投资者结构具有特殊性,投资者个人心理状态不同,对股票交易的行为可产生直接影响,从而导致股价波动,使股价走势变化莫测,难以把握。

相对于机构投资者而言,个人投资者风险承受能力差,专业水平低,人数众多,这对投资咨询服务的频度、强度、个性化和专业化提出了更高的要求。

股民尤其是非专业股民由于受时间、空间的限制,往往无法长期关注股市动态和发展。

所有这些都给股票预测提出了新课题。

股市预测是指以准确的调查统计资料和股市信息为依据,从股市的历史、现状和规律出发,运用
科学方法,对股市未来发展前景的预测。

作为市场经济重要特征的股票市场,从诞生的那天起就牵动着数以千万投资者的心。

高风险高回报是股票市场的特征,因此股票投资者们时刻在关心股市、分析股市、试图预测股市的发展趋势。

一百年来,一些方法随着股市的产生和发展逐步完善起来,如道琼斯分析法、K线图分析法、柱状图分析法、移动平均法,还有趋势分析法、四度空间法等,随着计算机技术在证券分析领域的普及与应用,不断推出新的指标分析法。

不管是处于发展阶段还是萎靡阶段,不可否认,股票市场的发展为中国的经济体制改革注入了巨大的活力,并且成为中国经济高速成长的重要动力源泉;它的迅速发展摧毁了传统经济体制的根基,为新经济体制的建立与成长赢得了时间、开辟了空间。

股市在现代市场经济中具有不可忽视、不能轻视和无法代替的地位和作用,特别是我们这样一个处于体制转轨时期的国家与经济来说,更为如此。

没有好的股市就不可能有好的银行,没有好的银行就不可能有好的金融,没有好的金融就不可能有好的经济。

总之,股票市场作为社会主义经济的重要组成部分,为我国的经济发展发挥着重要的作用。

研究股票的预测能够指导投资者进行有益的投资,不仅可以为个人提供利润,更可以为国家经济发展做出贡献。

1.2预测基础知识
(1)预测的概念
预测是根据事物发展过程的历史和现实,综合各方面的信息,运用定性和定量的科学分析方法,揭示出事物发展过程中的客观规律,并对各类事物现象之间的联系以及作用机制做出科学的分析,指出各类事物现象和过程未来发展的可能途径以及结果。

预测的过程是从过去和现在已知的情况出发,利用一定的方法或技术去探测或模拟不可知的、未出现的、复杂的中间过程,推断出结果。

预测研究的是事物的未来,而未来之所以会使人们感兴趣,是因为与人们目前的行动有密切的联系。

(2)预测的可能性
由于是对未来未知事物发展的推测,要进行准确预测是很不容易的。

股票价格预测尤为如此且不说我国股市自身发展的特殊性,单从股市本身的变
幻莫测来说,面对瀚如烟海的数据、众说纷纭的信息,就让人们茫然失措。

那么,这是否意味着我国股市的不可预测?答案是否定的。

正如恩格斯所指出的:在表面上是偶然性在起作用的地方,这种偶然性始终是受内部的隐蔽的规律支配的,而问题只在于发现这些规律。

预测研究的任务,就在于透过事物的现象探讨其内在规律,并利用这些规律来为人们服务。

(3)预测方法和种类
预测科学应用于不同领域,则分别形成各具特色的预则技术。

在经济领域的应用,形成经济预测技术;在人口领域的应用,形成人口预测与控制技术等等。

预测技术的丰富和发展促进着预测方法体系的完善。

目前各种领域的预测方法已近三百种,但大部分方法专业限制严格,有些方法还处于试验研究阶段,真正在实际中广泛应用的大约只有一二十种如回归分析法、时间序列方法、投入产出法、马尔科夫法、德尔菲法等。

根据预测目标和特征的不同,以及预测用户的需求的不同,可以把预测划分为不同的种类。

根据预测的目标的不同,可以分为事件结果预测、事件发生时间预测;根据预测的基本特征的不同,一般可以分为定性预测和定量预测;根据预测用户的需求不同,可分为点预测、区间预测和密度预测。

(4)预测的步骤
预测要遵循一定的科学程序或者步骤,预测的基本步骤归纳起来有如下几步:
○1确定预测目标和预测期限。

不论是宏观预测,还是微观预测,确定预测目标和预测期限是进行预测工作的前提。

○2确定预测因子。

根据确定的预测目标,选择可能与预测目标相关或者有一定影响的预测因素。

○3进行市场调查,收集各因素的历史和现状的信息、数据、资料,并加以整理、综合和分析。

○4选择合适的预测方法。

有的预测目标,可同时使用多种预测方法独立的进行预测,也可以把几种独立的方法综合起来进行组合预测。

然后对各预测值分别进行评估和判断,选择合适的预测值。

○5对预测的结果进行分析和评估。

如预测误差是正偏还是负偏,相对误差与绝对误差的大小、范围等等。

○6指出根据最新的经济动态和新来到的经济信息或者数据,看能否重新调整原来的预测值,以期提高预测的精度。

1.3股票基础知识
(1)股票价格指数
股票价格指数既是人们常说的指数。

是由证券交易所或金融服务机构编制的表明股票行市变动的一种供参考的指示数字。

由于股票价格起伏无常,投资者必然面临市场价格风险。

对于具体某一种股票的价格变化,投资者容易了解,而对于多种股票的价格变化,要逐一了解,既不容易,也不胜其烦。

为了适应这种情况和需要,一些金融服务机构就利用自己的业务知识和熟悉市场的优势,编制出股票价格指数,公开发布,作为市场价格变动的指标。

投资者据此就可以检验自己投资的效果,并用以预测股票市场的动向。

同时,新闻界、公司老板乃至政界领导人等也以此为参考指标,来观察、预测社会政治、经济发展形势。

(2)股市影响因素分析
股票市场价格波动是股市运行的基础,也是股票投资者关注的焦点。

股价的波动受各种经济因素和非经济因素的影响,分析这些因素的影响,可为投资者做出正确的投资决策提供一定的依据。

虽然影响股价波动的因素很多,但股价有其内在价值,股价围绕其内在价值波动,内在价值决定论是基本分析法的基础;股价随投资者对各种因素的心理预期的变化而波动,心理预期理论是技术分析的基础;股价波动是各种因素形成合力作用的结果。

影响股票价格的因素比较多,可根据内容和性质分为宏观因素、微观经济因素、市场因素和非经济因素等四个方面。

1.4股票预测方法
股票预测基于三个假设:市场行为包括一切信息;股价变化有趋势可循;历史常常会重演。

股票预测方法主要有基本分析法和技术分析法。

(1)基本分析法
基本分析,又称基本面分析,是股票投资分析师根据经济学、金融学、
财务管理学及投资学等基本原理,对决定证券价值及价格的基本要素如宏观经济指标、经济政策走势、行业发展状况、产品市场状况、公司销售和财务状况等进行分析,评估证券的投资价值,判断证券的合理价位提出相应的投资建议的一种分析方法。

基本分析的内容主要包括宏观经济分析、行业分析与区域分析以及公司分析三大内容。

宏观经济分析主要探讨各项经济指标和经济政策对证券价格的影响。

行业分析与区域分析是介于经济分析与公司分析之间的中观层次分析。

公司分析是基本分析的重点,侧重对公司的竞争能力、盈利能力、经营管理能力、发展潜力、财务状况、经营业绩以及潜在风险等进行分析,借此评估和预测证券的投资价值、价格及其未来变化的趋势。

(2)技术分析法
技术分析是仅从证券的市场行为来分析证券价格未来变化趋势的方法。

证券的市场行为可以有多种表现形式,其中证券的市场价格、成交价和成交量的变化以及完成这些变化所经历的时间是市场行为最基本的表现形式。

粗略的进行划分,可以将技术分析理论分为以下几类:K线理论、切线理论、形态理论、技术指标理论、波浪理论和循环周期理论。

技术分析法可以分为常用的有图像分析法和统计分析法,其中图像分析法以图像为分析工具,统计分析法是对价格、交易量等市场指标进行一定的统计处理。

另外还有时间序列分析法、灰色预测法、神经网络预测法等方法。

通过比较得出,基本分析法是通过宏观因素进行预测而我们这里是取时间作为变量,所以我们采取技术分析法里面的时间序列预测方法。

时间序列典型的一个本质特征就是相邻观测值的依赖性,随机时间序列分析所论及的就是对这种依赖性进行分析的技巧。

股票价格在短期内宏观因素不会发生变化,只考虑时间对它的影响,而我们预测股票价格指数所用的数据就是时间数据,因此,在股票价格的预测当中,时间序列预测法是一个比较好的选择。

第2章时间序列预测法
2.1时间序列预测
2.1.1时间序列的概念
时间序列是指同一种现象在不同时间上的相继观察值排列而成的一组数字序列。

时间序列分析(Time series analysis)是一种动态数据处理的统计方法。

该方法基于随机过程理论和数理统计学方法,研究随机数据序列所遵从的统计规律,以用于解决实际问题。

它包括一般统计分析(如自相关分析,谱分析等),统计模型的建立与推断,以及关于时间序列的最优预测、控制与滤波等内容。

经典的统计分析都假定数据序列具有独立性,而时间序列分析则侧重研究数据序列的互相依赖关系。

后者实际上是对离散指标的随机过程的统计分析,所以又可看作是随机过程统计的一个组成部分。

现实中的时间序列的变化受许多因素的影响,有些起着长期的、决定性的作用,使时间序列的变化呈现出某种趋势和一定的规律性,有些则起着短期的、非决定性的作用,使时间序列的变化呈现出某种不规则性。

时间序列的变化大体可分解为以下四种:
(1)趋势变化,指现象随时间变化朝着一定方向呈现出持续稳定地上升、下降或平稳的趋势。

(2)周期变化(季节变化),指现象受季节性影响,按固定周期呈现出的周期波动变化。

(3)循环变动,指现象按不固定的周期呈现出的波动变化。

(4)随机变动,指现象受偶然因素的影响而呈现出的不规则波动。

时间序列一般是以上几种变化形式的叠加或组合。

时间序列预测方法分为两大类:一类是确定型的时间序列模型方法;另一类是随机型的时间序列分析方法。

确定型时间序列预测方法的基本思想是用一个确定的时间函数()
=
y f t
来拟合时间序列,不同的变化采取不同的函数形式来描述,不同变化的叠加采用不同的函数叠加来描述。

具体可分为趋势预测法、平滑预测法、分解分析法等。

随机型时间序列分析法的基本思想是通过分析不同时刻
变量的相关关系,揭示其相关结构,利用这种相关结构来对时间序列进行预测。

2.1.2时间序列分析特点
(1)时间序列分析预测法是根据市场过去的变化趋势预测未来的发展,它的前提是假定事物的过去会同样延续到未来。

市场预测的时间序列分析法,正是根据客观事物发展的这种连续规律性,运用过去的历史数据,通过统计分析,进一步推测市场未来的发展趋势。

需要指出,由于事物的发展不仅有连续性的特点,而且又是复杂多样的。

因此,在应用时间序列分析法进行市场预测时应注意市场现象未来发展变化规律和发展水平,不一定与其历史和现在的发展变化规律完全一致。

(2)时间序列分析预测法突出了时间因素在预测中的作用,暂不考虑外界具体因素的影响。

时间序列在时间序列分析预测法处于核心位置,没有时间序列,就没有这一方法的存在。

需要指出的是,时间序列预测法因突出时间序列暂不考虑外界因素影响,因而存在着预测误差的缺陷,当遇到外界发生较大变化,往往会有较大偏差,时间序列预测法对于中短期预测的效果要比长期预测的效果好。

因为客观事物,尤其是经济现象,在一个较长时间内发生外界因素变化的可能性加大,它们对市场经济现象必定要产生重大影响。

如果出现这种情况,进行预测时,只考虑时间因素不考虑外界因素对预测对象的影响,其预测结果就会与实际状况严重不符。

2.1.3时间序列预测法的分类
时间序列预测法可用于短期、中期和长期预测。

根据对资料分析方法的不同,又可分为:简单序时平均数法、加权序时平均数法、移动平均法、加权移动平均法、趋势预测法、指数平滑法、季节性趋势预测法、市场寿命周期预测法等。

上述几种方法虽然简便,能迅速求出预测值,但由于没有考虑整个社会经济发展的新动向和其他因素的影响,所以准确性较差。

应根据新的情况,对预测结果作必要的修正。

指数平滑法即根据历史资料的上期实际数和预测值,用指数加权的办法进行预测。

此法实质是由内加权移动平均法演变而来的一种方法,优点是只要有上期实际数和上期预测值,就可计算下期的预测值,这样可以节省很多数据和处理数据的时间,减少数据的存储量,方法简便。

季节趋势预测法根据经济事物每年重复出现的周期性季节变动指数,预测其季节性变动趋势。

推算季节性指数可采用不同的方法,常用的方法有季(月)别平均法和移动平均法。

市场寿命周期预测法就是对产品市场寿命周期的分析研究。

2.1.4时间序列预测法的步骤
第一步收集历史资料,加以整理,编成时间序列,并根据时间序列绘成统计图。

时间序列分析通常是把各种可能发生作用的因素进行分类,传统的分类方法是按各种因素的特点或影响效果分为四大类:(1)长期趋势;(2)季节变动;(3)循环变动;(4)不规则变动。

第二步分析时间序列。

时间序列中的每一时期的数值都是由许许多多不同的因素同时发生作用后的综合结果。

第三步求时间序列的长期趋势(T)季节变动(s)和不规则变动(I)的值,并选定近似的数学模式来代表它们。

对于数学模式中的诸未知参数,使用合适的技术方法求出其值。

第四步利用时间序列资料求出长期趋势、季节变动和不规则变动的数学模型后,就可以利用它来预测未来的长期趋势值T和季节变动值s,在可能的情况下预测不规则变动值I。

时间序列分析主要用于:①系统描述。

根据对系统进行观测得到的时间序列数据,用曲线拟合方法对系统进行客观的描述。

②系统分析。

当观测值取自两个以上变量时,可用一个时间序列中的变化去说明另一个时间序列中的变化,从而深入了解给定时间序列产生的机理。

③预测未来。

一般用ARMA模型拟合时间序列,预测该时间序列未来值。

④决策和控制。

根据时间序列模型可调整输入变量使系统发展过程保持在目标值上,即预测到过程要偏离目标时便可进行必要的控制。

2.2时间序列预测算法
2.2.1平均数预测法
1.简单算术平均法
设时间序列的各期观察值为
1
n
t
t X
X n
==
∑,(t =1,2,…,n ),式中X 表示观
察值时间序列平均数;n 表示观察时期数;
t
X 表示时间序列各组观察值。

2.加权算术平均法
利用不同的时期所对应的权数不同,来体现由于时间差异而取得的信息的重要性不同,或根据预测者的能力大小不同也可以利用加权法来体现其重要性的区别。

其公式是:
∑∑===
n
t t
n
t t
t
W
X
W X 1
1。

3.一次移动平均法
移动平均法是通过逐项推移,依次计算包含一定项数的时序平均数,以反映时间序列的长期趋势的方法。

由于移动平均法具有较好的修匀历史数据、消除数据因随机波动而出现高点、低点的影响,从而能较好地揭示经济现象发展地趋势。

设时间序列为1Y ,2Y ,
3
Y , …;以N 为移动时期数,则简单移动平均数的
计算公式为: t M =N Y Y Y N t t t 1
1...+--+++
t
M =
()N Y Y Y Y Y t
N t N t N t t +-+++--+--11... 通过整理得出
N Y Y M N
t N t ---+
=1
4.加权移动平均法
若要考虑各期数据的重要性,对近期数据给予较大的权数,远期数据给予较小的权数,就应采用加权平均法。

设为移动步长为N 期内由近至远各期观察值的权数,则加权移动平均
数的计算公式为:
N
N t n t t tw W W W Y W Y W Y W M ++++++=
+-- (211)
121。

利用加权移动平均法进行预测,其预测模型为:tw
t M Y =+1,即以第t 期的加
权移动平均数作为t +1期的预测值 5. 二次移动平均法
当实际资料出现明显的线性增长或减少的变动趋势时,用一次移动平均值来预测就会出现滞后偏差。

因此要进行修正,方法是在一次移动平均的基础上,作二次移动平均,利用两次移动平均滞后偏差的规律来建立直线趋势预测模型。

为区别起见将一次移动平均法记作
()
1t M ,将二次移动平均法记作
()
2t M 。

则二次移动平均法的计算公式为:()2t M =()()()
N M M M N t t t 11
111...+--+++
上式中:
()
1t M 为一次移动平均值;
()
2t M 为二次移动平均值;N 为步长。


上式可推出:()
2t M =
()
()()
N
M M M N t t t 1121
---+。

值得注意的是,二次移动平均值不能直接用于预测,而应该建立趋势直线预测模型来进行了预测。

2.2.2指数平滑法
移动平均法明显存在两个问题:一是计算移动平均预测值,需要有近期N 个以上的数据资料;二是计算未来预测值没有利用全部历史资料,只考虑这N 期资料便作出推测,N 期以前数据对预测值不产生任何影响。

指数平滑法是由移动平均法改进而来的,是一种特殊的加权移动平均法,也称为指数加权平均法。

这种方法既有移动平均法的长处,又可以减少历史数据的数量。

第一,它把过去的数据全部加以利用;第二,它利用平滑系数加以区分,使得近期数据比远期数据对预测值影响更大。

它特别适用于。

相关文档
最新文档