洪泽区二中2018-2019学年上学期高二数学12月月考试题含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

洪泽区二中2018-2019学年上学期高二数学12月月考试题含解析
班级__________ 姓名__________ 分数__________
一、选择题
1. 已知直线l 1 经过A (﹣3,4),B (﹣8,﹣1)两点,直线l 2的倾斜角为135°,那么l 1与l 2( ) A .垂直 B .平行 C .重合 D .相交但不垂直 2. 已知函数⎩⎨
⎧≤>=)0(|
|)
0(log )(2x x x x x f ,函数)(x g 满足以下三点条件:①定义域为R ;②对任意R x ∈,有
1
()(2)2
g x g x =+;③当]1,1[-∈x 时,()g x .则函数)()(x g x f y -=在区间]4,4[-上零
点的个数为( )
A .7
B .6
C .5
D .4
【命题意图】本题考查利用函数图象来解决零点问题,突出了对分段函数的转化及数形结合思想的考查,本题综合性强,难度大.
3. 等差数列{a n }中,已知前15项的和S 15=45,则a 8等于( )
A .
B .6
C .
D .3
4. 已知函数2
2
()32f x x ax a =+-,其中(0,3]a ∈,()0f x ≤对任意的[]1,1x ∈-都成立,在1 和两数间插入2015个数,使之与1,构成等比数列,设插入的这2015个数的成绩为T ,则T =( ) A .2015
2
B .2015
3
C .20152
3 D .20152
2
5. 若某算法框图如图所示,则输出的结果为( )
A .7
B .15
C .31
D .63
6. 已知数列{a n }满足a 1=1,a 2=2,a n+2=(1+cos 2)a n +sin
2
,则该数列的前10项和为( )
A .89
B .76
C .77
D .35
7. 已知两条直线ax+y ﹣2=0和3x+(a+2)y+1=0互相平行,则实数a 等于( ) A .1或﹣3 B .﹣1或3 C .1或3
D .﹣1或﹣3
8. 记集合T={0,1,2,3,4,5,6,7,8,9},M=,
将M 中的元素按从大到小排列,则第2013个数是( )
A .
B .
C .
D .
9. 执行如图所示的程序框图,若输出的S=88,则判断框内应填入的条件是( )
A .k >7
B .k >6
C .k >5
D .k >4
10.在ABC ∆中,22
tan sin tan sin A B B A =,那么ABC ∆一定是( )
A .锐角三角形
B .直角三角形
C .等腰三角形
D .等腰三角形或直角三角形 11.已知函数f(x)是定义在R 上的奇函数,当x ≥0时,
.若
,f(x-1)≤f(x),则实数a 的取值范围为
A[] B[
]
C[]
D[]
12.冶炼某种金属可以用旧设备和改造后的新设备,为了检验用这两种设备生产的产品中所含杂质的关系,调查结果如下表所示.
杂质高杂质低
旧设备37 121
新设备22 202
根据以上数据,则()
A.含杂质的高低与设备改造有关
B.含杂质的高低与设备改造无关
C.设备是否改造决定含杂质的高低
D.以上答案都不对
二、填空题
13.△ABC外接圆半径为,内角A,B,C对应的边分别为a,b,c,若A=60°,b=2,则c的值为.
14.在极坐标系中,直线l的方程为ρcosθ=5,则点(4,)到直线l的距离为.
15.某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用下面的条形图表示.根据条形图可得这50名学生这一天平均的课外阅读时间为小时.
16.log 3+lg25+lg4﹣7﹣(﹣9.8)0=.
17.设数列{a n}的前n项和为S n,已知数列{S n}是首项和公比都是3的等比数列,则{a n}的通项公式
a n=.
18.设向量a=(1,-1),b=(0,t),若(2a+b)·a=2,则t=________.
三、解答题
19.函数f(x)是R上的奇函数,且当x>0时,函数的解析式为f(x)=﹣1.
(1)用定义证明f(x)在(0,+∞)上是减函数;
(2)求函数f(x)的解析式.
20.
21.已知函数f(x)=x2﹣ax+(a﹣1)lnx(a>1).
(Ⅰ)讨论函数f(x)的单调性;
(Ⅱ)若a=2,数列{a n}满足a n+1=f(a n).
(1)若首项a1=10,证明数列{a n}为递增数列;
(2)若首项为正整数,且数列{a n}为递增数列,求首项a1的最小值.
22.某小区在一次对20岁以上居民节能意识的问卷调查中,随机抽取了100份问卷进行统计,得到相关的数
(2)据了解到,全小区节能意识强的人共有350人,估计这350人中,年龄大于50岁的有多少人? (3)按年龄分层抽样,从节能意识强的居民中抽5人,再从这5人中任取2人,求恰有1人年龄在20至50岁的概率.
23.(本小题满分12分)
如图,在四棱锥P ABCD -中,底面ABCD 是菱形,且120ABC ∠=︒.点E 是棱
PC 的中点,平面ABE 与棱PD 交于点F . (1)求证://AB EF ;
(2)若2PA PD AD ===,且平面PAD ⊥平面ABCD ,求平面PAF 与平面AFE 所成的锐二面角的余 弦值.
【命题意图】本小题主要考查空间直线与平面,直线与直线垂直的判定,二面角等基础知识,考查空间想象能力,推理论证能力,运算求解能力,以及数形结合思想、化归与转化思想.
24.某校在一次趣味运动会的颁奖仪式上,高一、高二、高三各代表队人数分别为120人、120人、n人.为了活跃气氛,大会组委会在颁奖过程中穿插抽奖活动,并用分层抽样的方法从三个代表队中共抽取20人在前排就坐,其中高二代表队有6人.
(1)求n的值;
(2)把在前排就坐的高二代表队6人分别记为a,b,c,d,e,f,现随机从中抽取2人上台抽奖.求a和b 至少有一人上台抽奖的概率.
(3)抽奖活动的规则是:代表通过操作按键使电脑自动产生两个[0,1]之间的均匀随机数x,y,并按如图所示的程序框图执行.若电脑显示“中奖”,则该代表中奖;若电脑显示“谢谢”,则不中奖,求该代表中奖的概率.
洪泽区二中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)
一、选择题
1. 【答案】A
【解析】解:由题意可得直线l 1的斜率k 1
=
=1,
又∵直线l 2的倾斜角为135°,∴其斜率k 2=tan135°=﹣1, 显然满足k 1•k 2=﹣1,∴l 1与l 2垂直 故选A
2. 【答案】
D

Ⅱ卷(共100分)[.Com]
3. 【答案】D
【解析】解:由等差数列的性质可得:S 15
==15a 8=45,则a 8=3.
故选:D .
4. 【答案】C 【解析】
试题分析:因为函数2
2
()32f x x ax a =+-,()0f x ≤对任意的[]1,1x ∈-都成立,所以()()
10
10f f -≤⎧⎪⎨≤⎪⎩,解得
3a ≥或1a ≤-,又因为(0,3]a ∈,所以3a =,在和两数间插入122015,...a a a 共2015个数,使之与,构成等
比数列,T 122015...a a a =,
201521...T a a a =,两式相乘,根据等比数列的性质得()()
2015
2015
2
1201513T a a ==⨯,
T =2015
2
3
,故选C.
考点:1、不等式恒成立问题;2、等比数列的性质及倒序相乘的应用. 5. 【答案】 D
【解析】解:模拟执行算法框图,可得 A=1,B=1
满足条件A ≤5,B=3,A=2 满足条件A ≤5,B=7,A=3 满足条件A ≤5,B=15,A=4 满足条件A ≤5,B=31,A=5 满足条件A ≤5,B=63,A=6
不满足条件A ≤5,退出循环,输出B 的值为63. 故选:D .
【点评】本题主要考查了程序框图和算法,正确得到每次循环A ,B 的值是解题的关键,属于基础题.
6. 【答案】C
【解析】解:因为a 1=1,a 2=2,所以a 3=(1+cos 2
)a 1+sin
2
=a 1+1=2,a 4=(1+cos 2π)a 2+sin 2π=2a 2=4.
一般地,当n=2k ﹣1(k ∈N *
)时,
a 2k+1=[1+cos 2
]a 2k ﹣1+sin 2
=a 2k ﹣1+1,即a 2k+1﹣a 2k ﹣1=1.
所以数列{a 2k ﹣1}是首项为1、公差为1的等差数列,因此a 2k ﹣1=k .
当n=2k (k ∈N *)时,a 2k+2=(1+cos
2
)a 2k +sin
2
=2a 2k .
所以数列{a 2k }是首项为2、公比为2的等比数列,因此a 2k =2k

该数列的前10项的和为1+2+2+4+3+8+4+16+5+32=77 故选:C .
7. 【答案】A
【解析】解:两条直线ax+y ﹣2=0和3x+(a+2)y+1=0互相平行,
所以=


解得 a=﹣3,或a=1. 故选:A .
8. 【答案】 A
【解析】
进行简单的合情推理.
【专题】规律型;探究型.
【分析】将M中的元素按从大到小排列,求第2013个数所对应的a i,首先要搞清楚,M集合中元素的特征,同样要分析求第2011个数所对应的十进制数,并根据十进制转换为八进行的方法,将它转换为八进制数,即得答案.
【解答】因为=(a1×103+a2×102+a3×10+a4),
括号内表示的10进制数,其最大值为9999;
从大到小排列,第2013个数为
9999﹣2013+1=7987
所以a1=7,a2=9,a3=8,a4=7
则第2013个数是
故选A.
【点评】对十进制的排序,关键是要找到对应的数是几,如果从大到小排序,要找到最大数(即第一个数),再找出第n个数对应的十进制的数即可.
9.【答案】C
【解析】解:程序在运行过程中各变量值变化如下表:
K S 是否继续循环
循环前1 0
第一圈2 2 是
第二圈3 7 是
第三圈4 18 是
第四圈5 41 是
第五圈6 88 否
故退出循环的条件应为k>5?
故答案选C.
【点评】算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.其中前两点考试的概率更大.此种题型的易忽略点是:不能准确理解流程图的含义而导致错误.
10.【答案】D
【解析】
试题分析:在ABC ∆中,2
2
tan sin tan sin A B B A =,化简得
22sin sin sin sin cos cos A B
B A A B
=,解得 sin sin sin cos sin cos cos cos B A
A A
B B A B =⇒=,即s i n 2s i n 2
A B =,
所以22A B =或22A B π=-,即A B =或2
A B π
+=
,所以三角形为等腰三角形或直角三角形,故选D .
考点:三角形形状的判定.
【方法点晴】本题主要考查了三角形形状的判定,其中解答中涉及到二倍角的正弦、余弦函数公式、以及同角三角函数基本关系的运用,其中熟练掌握三角恒等变换的公式是解答的关键,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,本题的解答中得出sin 2sin 2A B =,从而得到A B =或2
A B π
+=是试
题的一个难点,属于中档试题. 11.【答案】B 【解析】当x ≥0时,
f (x )=,
由f (x )=x ﹣3a 2,x >2a 2,得f (x )>﹣a 2; 当a 2<x <2a 2时,f (x )=﹣a 2;
由f (x )=﹣x ,0≤x ≤a 2,得f (x )≥﹣a 2。

∴当x >0时,。

∵函数f (x )为奇函数, ∴当x <0时,。

∵对∀x ∈R ,都有f (x ﹣1)≤f (x ), ∴2a 2﹣(﹣4a 2)≤1,解得:。

故实数a 的取值范围是。

12.【答案】
A
【解析】
独立性检验的应用. 【专题】计算题;概率与统计.
【分析】根据所给的数据写出列联表,把列联表的数据代入观测值的公式,求出两个变量之间的观测值,把观测值同临界值表中的数据进行比较,得到有99%的把握认为含杂质的高低与设备是否改造是有关的.
【解答】解:由已知数据得到如下2×2列联表
杂质高杂质低合计
旧设备37 121 158
新设备22 202 224
合计59 323 382
由公式κ2=≈13.11,
由于13.11>6.635,故有99%的把握认为含杂质的高低与设备是否改造是有关的.
【点评】本题考查独立性检验,考查写出列联表,这是一个基础题.
二、填空题
13.【答案】.
【解析】解:∵△ABC外接圆半径为,内角A,B,C对应的边分别为a,b,c,若A=60°,b=2,
∴由正弦定理可得:,解得:a=3,
∴利用余弦定理:a2=b2+c2﹣2bccosA,可得:9=4+c2﹣2c,即c2﹣2c﹣5=0,
∴解得:c=1+,或1﹣(舍去).
故答案为:.
【点评】本题主要考查了正弦定理,余弦定理,在解三角形中的综合应用,考查了转化思想和计算能力,属于基础题.
14.【答案】3.
【解析】解:直线l的方程为ρcosθ=5,化为x=5.
点(4,)化为.
∴点到直线l的距离d=5﹣2=3.
故答案为:3.
【点评】本题考查了极坐标化为直角坐标、点到直线的距离,属于基础题.
15.【答案】0.9
【解析】解:由题意,=0.9,
故答案为:0.9
16.【答案】.
【解析】解:原式=+lg100﹣2﹣1=+2﹣2﹣1=,
故选:
【点评】本题考查了对数的运算性质,属于基础题.
17.【答案】.
【解析】解:∵数列{S n}是首项和公比都是3的等比数列,∴S n =3n.
故a1=s1=3,n≥2时,a n=S n ﹣s n﹣1=3n﹣3n﹣1=2•3n﹣1,
故a n=.
【点评】本题主要考查等比数列的通项公式,等比数列的前n项和公式,数列的前n项的和Sn与第n项an 的关系,属于中档题.
18.【答案】
【解析】(2a+b)·a=(2,-2+t)·(1,-1)
=2×1+(-2+t)·(-1)
=4-t=2,∴t=2.
答案:2
三、解答题
19.【答案】
【解析】(1)证明:设x2>x1>0,∵f(x1)﹣f(x2)=(﹣1)﹣(﹣1)=,
由题设可得x2﹣x1>0,且x2•x1>0,∴f(x1)﹣f(x2)>0,即f(x1)>f(x2),
故f(x)在(0,+∞)上是减函数.
(2)当x<0时,﹣x>0,f(﹣x)=﹣1=﹣f(x),∴f(x)=+1.
又f(0)=0,故函数f(x)的解析式为f(x)=.
20.【答案】一个盒子中装有大量形状大小一样但重量不尽相同的小球,从中随机抽取50个作为样本,称出它们的重量(单位:克),重量分组区间为[5,15],(15,25],(25,35],(35,45],由此得到样本的重量频率分布直方图(如图),
(1)求a的值,并根据样本数据,试估计盒子中小球重量的众数与平均值;
(2)从盒子中随机抽取3个小球,其中重量在[5,15]内的小球个数为X,求X的分布列和数学期望.(以直方图中的频率作为概率)
【考点】离散型随机变量及其分布列;离散型随机变量的期望与方差.
【专题】概率与统计.
【分析】(1)求解得a=0.03,由最高矩形中点的横坐标为20,可估计盒子中小球重量的众数约为20
根据平均数值公式求解即可.
(2)X~B(3,),根据二项分布求解P(X=0),P(X=1),P(X=2)=,P(X=3),列出分布列,
求解数学期望即可.
【解析】解:(1)由题意得,(0.02+0.032+a+0.018)×10=1
解得a=0.03;
又由最高矩形中点的横坐标为20,
可估计盒子中小球重量的众数约为20,
而50个样本小球重量的平均值为:
=0.2×10+0.32×20+0.3×30+0.18×40=24.6(克)
故估计盒子中小球重量的平均值约为24.6克.
(2)利用样本估计总体,该盒子中小球的重量在[5,15]内的0.2;
则X~B(3,),
X=0,1,2,3;
P (X=0)=×()3=;
P (X=1)=×()2×=

P (X=2)=×()×()2=;
P (X=3)=
×()3=

∴X 的分布列为:
即E (X )=0×
=.
【点评】本题考查了离散型的随机变量及概率分布列,数学期望的求解,注意阅读题意,得出随机变量的数值,准确求解概率,难度不大,需要很好的计算能力
21.【答案】
【解析】解:(Ⅰ)∵,

(x >0),
当a=2时,则
在(0,+∞)上恒成立,
当1<a <2时,若x ∈(a ﹣1,1),则f ′(x )<0,若x ∈(0,a ﹣1)或x ∈(1,+∞),则f ′(x )>0, 当a >2时,若x ∈(1,a ﹣1),则f ′(x )<0,若x ∈(0,1)或x ∈(a ﹣1,+∞),则f ′(x )>0, 综上所述:当1<a <2时,函数f (x )在区间(a ﹣1,1)上单调递减, 在区间(0,a ﹣1)和(1,+∞)上单调递增; 当a=2时,函数(0,+∞)在(0,+∞)上单调递增;
当a >2时,函数f (x )在区间(0,1)上单调递减,在区间(0,1)和(a ﹣1,+∞)上单调递增.
(Ⅱ)若a=2,则
,由(Ⅰ)知函数f (x )在区间(0,+∞)上单调递增,
(1)因为a 1=10,所以a 2=f (a 1)=f (10)=30+ln10,可知a 2>a 1>0, 假设0<a k <a k+1(k ≥1),因为函数f (x )在区间(0,+∞)上单调递增, ∴f (a k+1)>f (a k ),即得a k+2>a k+1>0,
由数学归纳法原理知,a n+1>a n 对于一切正整数n 都成立, ∴数列{a n }为递增数列.
(2)由(1)知:当且仅当0<a 1<a 2,数列{a n }为递增数列,
∴f(a1)>a1,即(a1为正整数),
设(x≥1),则,
∴函数g(x)在区间上递增,
由于,g(6)=ln6>0,又a1为正整数,
∴首项a1的最小值为6.
【点评】本题考查导数的运用:求单调区间,同时考查函数的零点存在定理和数学归纳法的运用,考查运算能力,属于中档题.
选做题:本题设有(1)(2)(3)三个选考题,每题7分,请考生任选2题作答,满分7分.如果多做,则按所做的前两题计分.【选修4-2:矩阵与变换】
22.【答案】
【解析】解(1)因为20至50岁的54人有9人节能意识强,大于50岁的46人有36人节能意识强,与
相差较大,所以节能意识强弱与年龄有关
(2)由数据可估计在节能意识强的人中,年龄大于50岁的概率约为
∴年龄大于50岁的约有(人)
(3)抽取节能意识强的5人中,年龄在20至50岁的(人),
年龄大于50岁的5﹣1=4人,记这5人分别为a,B1,B2,B3,B4.
从这5人中任取2人,共有10种不同取法:(a,B1),(a,B2),(a,B3),(a,B4),(B1,B2),(B1,B3),(B1,B4),(B2,B3),(B2,B4),(B3,B4),
设A表示随机事件“这5人中任取2人,恰有1人年龄在20至50岁”,
则A中的基本事件有4种:(a,B1),(a,B2),(a,B3),(a,B4)
故所求概率为
23.【答案】
【解析】
∵BG ⊥平面PAD ,∴)0,3,0(=GB 是平面PAF 的一个法向量,
24.【答案】
【解析】解:(1)由题意可得,∴n=160;
(2)高二代表队6人,从中抽取2人上台抽奖的基本事件有(a,b),(a,c),(a,d),(a,e),(a,f),(b,c),(b,d),(b,e),(b.f),(c,d),(c,e),(c,f),(d,e),(d,f),(e,f)共15种,其中a和b至少有一人上台抽奖的基本事件有9种,
∴a和b至少有一人上台抽奖的概率为=;
(3)由已知0≤x≤1,0≤y≤1,点(x,y)在如图所示的正方形OABC内,
由条件得到的区域为图中的阴影部分
由2x﹣y﹣1=0,令y=0可得x=,令y=1可得x=1
∴在x,y∈[0,1]时满足2x﹣y﹣1≤0的区域的面积为=
∴该代表中奖的概率为=.。

相关文档
最新文档