声速测量报告模板
大学物理实验声速测量实验报告
大学物理实验声速测量实验报告在这个实验中,我们的目标是测量声速。
听起来简单吧?但当你深入了解,才会发现其中的奥秘。
声音是一种波动,依赖于介质。
空气、水,甚至固体中,声音传播的速度都不一样。
今天,就让我们一起走进这个实验的细节吧。
一、实验原理1.1 声音的传播声音在空气中传播时,是通过空气分子的振动传递的。
简单来说,当你说话,声带振动,产生的波动让周围的空气分子开始跳舞,结果就是声音传到了你朋友的耳朵里。
声速受温度、湿度和气压的影响。
温度越高,声速越快。
想象一下,夏天在海边,声音传得比在寒冷的冬天要快得多。
1.2 声速的测量我们使用了一个简单的方法来测量声速。
首先,准备好一个发声装置,比如一个喇叭。
然后,在远处放一个麦克风。
两者之间的距离是已知的。
当喇叭发声时,麦克风接收到声音并记录下时间。
这就是我们的测量方法,直接而有效。
二、实验步骤2.1 准备设备我们需要的设备包括一个喇叭、一个麦克风、一个计时器和一根尺子。
准备这些东西时,心里充满了期待。
我们把喇叭放在一个固定的位置,确保一切都在最佳状态。
然后,调整麦克风的位置,尽量减少环境噪音。
2.2 进行实验一切准备就绪,开始实验!我打开喇叭,发出清晰的声音。
听,那一瞬间,似乎时间都停止了。
我们都聚精会神地盯着计时器,心跳也随之加速。
声音在空气中迅速传播,麦克风记录下了到达的时间。
每次实验,我们都小心翼翼,尽量减少误差。
2.3 数据记录与处理实验结束后,数据收集到了。
根据公式,声速等于距离除以时间。
我们把记录的数据代入公式,经过几轮计算,最终得出了声速的近似值。
这个过程虽然繁琐,但每一步都让人心潮澎湃。
计算结果与理论值非常接近,这让我倍感欣喜。
三、实验结果与分析3.1 数据结果经过多次实验,我们得到了几组数据。
虽然有一些小的误差,但总体趋势很明显。
声速在空气中大约是340米每秒。
这一数字在心中回响,让我感到无比神奇。
声音在我们生活中随处可见,却从未认真思考过它的速度。
声速测量实验报告模板
实验时间:2019年月日,第批签到序号:【进入实验室后填写】福州大学【实验一】声速测量(303实验室)学院班级学号姓名实验前必须完成【实验预习部分】登录下载预习资料携带学生证提前10分钟进实验室【实验目的】【实验仪器】(名称、规格或型号)【实验原理】(文字叙述、主要公式、原理图)【实验内容和步骤】实验预习部分一、写出示波器以下标号的功能(用中文表述),并复习它们的位置(参考课本P148图19-13):28 26 3135 16 3739(或11)1927 23 25二、在下图方框中标出函数信号发生器的四个部位分别对应哪个选项。
A、CH1B、CH1使能C、CH2D、CH2使能三、实验中在测量声波波长之前,必须确定系统的频率。
调节方法是:先移动S1到距S2为5~10 cm,缓慢调节函数信号发生器频率(在~kHz连续调节),观察哪个频率下接收波电压幅度最大。
然后移动S1,使示波器显示的正弦幅度最大,再细调信号频率(以0.01kHz为步长调节),直到接收波振幅最大。
记下此时频率。
注意:本实验用的声速测定装置动子是发射端,定子是接收端。
两个换能器之间的距离最好大于5 cm,严禁将两个换能器接触。
数据记录与处理【一】 测量系统的谐振频率f =kHz此时换能器间距L = mm【二】 用共振干涉法测波长(v 公=340.00 m/s )1L = mm ,11L = mm ,λ=mm声速v = 百分偏差 B=【三】用相位比较法测波长 (v 公=340.00m/s )声速v = 百分偏差 B=思考题:用相位法测量波长时,指出本实验用哪两个图形之间的距离测量波长:(在正确的图下画√)进入实验室后,按实验指导老师要求撰写。
实验预习及操作成绩实验指导教师签字日期实验报告成绩报告批阅教师签字日期。
大学物理实验声速测量实验报告
大学物理实验声速测量实验报告在我们进行的大学物理实验中,测量声速的实验让我对声音的传播有了更深刻的理解。
这次实验不仅仅是对数字的记录,更是对物理现象的一次亲身体验,让我领悟到声音在空气中是如何穿梭的。
一、实验准备1.1 实验目的实验的主要目标是测量空气中声速的具体数值,并通过实验数据验证理论值。
这听起来简单,但要做到准确、科学,还是需要细致的准备。
1.2 实验器材为了进行这项实验,我们准备了一些基本的设备。
首先是一个音源,我们选择了一个电子音响,因为它能够发出稳定的声音。
接着,我们需要一个麦克风,来接收声音并进行数据记录。
此外,还需要一个计时器和一个测量距离的工具,比如卷尺。
这些工具的选择都是为了保证我们能够精准地进行测量。
二、实验过程2.1 设定实验环境实验前,我们特意选择了一个相对安静的环境,尽量避免其他噪音对实验结果的影响。
这个细节很重要,因为外界的干扰可能会使我们的测量结果不够准确。
我们在教室里将音响和麦克风的距离调整到大约10米,这是一个合适的距离,既能清晰接收到声音,又不会因为距离过远而导致信号减弱。
2.2 进行测量一切准备就绪后,我们开始了实验。
首先,由一名同学负责操作音响发出声音,另一个同学则准备好麦克风和计时器。
当音响发声的瞬间,计时器开始计时,同时麦克风记录下声音到达的时间。
这一过程需要非常协调,任何一点小的失误都可能影响最终的结果。
我们进行多次测量,每次都记录好对应的时间,以便后续的数据处理。
2.3 数据处理实验结束后,我们收集了多次测量的数据。
在处理数据时,我们计算出声音传播的平均时间,并用已知的距离和时间计算出声速。
理论上,声速在空气中约为343米每秒。
通过我们的测量,结果略有偏差,但在可接受范围内。
这让我意识到,尽管我们在实验中尽力追求精确,但总会受到多种因素的影响,比如温度、湿度等环境条件。
三、实验结果与反思3.1 声速的测量结果通过计算,我们得到了一个接近理论值的声速。
声速测量实验报告_公式
一、实验目的1. 掌握声速测量的基本原理和方法。
2. 了解声波在空气中的传播特性。
3. 学会使用声速测量仪器,提高实验技能。
二、实验原理声速是指声波在介质中传播的速度。
在空气中,声速受温度、湿度等因素的影响。
声速的测量方法主要有共振干涉法、相位法、时差法等。
本实验采用共振干涉法进行声速测量。
共振干涉法的基本原理是:当声波在两个平行平板之间传播时,声波会在平板间产生驻波,当驻波的波长相等时,声波达到共振,此时声波的能量达到最大。
根据共振条件,可以计算出声速。
声速的公式如下:\[ v = \frac{f \lambda}{2} \]其中,\( v \) 为声速,\( f \) 为声源振动频率,\( \lambda \) 为声波波长。
三、实验仪器1. 超声波发射器2. 超声波接收器3. 低频信号发生器4. 示波器5. 驻波干涉仪6. 温度计7. 相对湿度计四、实验步骤1. 将超声波发射器和接收器分别固定在驻波干涉仪的两个臂上。
2. 开启低频信号发生器,调节频率至超声波发射器的共振频率。
3. 将信号发生器的输出端与超声波发射器的输入端连接,同时将超声波接收器的输出端与示波器的输入端连接。
4. 调节驻波干涉仪,使声波在两个平板间形成驻波。
5. 观察示波器,当声波达到共振时,记录此时的振动波形。
6. 根据共振条件,计算声速。
五、数据处理1. 记录实验过程中超声波发射器的共振频率 \( f \)。
2. 记录实验过程中驻波干涉仪的臂长 \( L \)。
3. 根据公式 \( v = \frac{f \lambda}{2} \) 计算声速 \( v \)。
4. 将实验数据整理成表格,进行误差分析。
六、实验结果与分析1. 计算声速的平均值和标准差。
2. 分析实验误差产生的原因,如仪器误差、操作误差等。
3. 将实验结果与理论值进行比较,讨论实验误差对结果的影响。
七、结论通过本次实验,掌握了声速测量的基本原理和方法,了解了声波在空气中的传播特性。
声速测量实验报告范文(共五则)
声速测量实验报告范文(共五则)第一篇:声速测量实验报告范文实验时间:2019 年月日,第批签到序号:【进入实验室后填写】福州大学【实验一】声速测量(303 实验室)学学院班班级学学号姓姓名实验前必须完成【实验预习部分】登录下载预习资料携带学生证提前 10 分钟进实验室实验预习部分【实验目的】】【实验仪器】(名称、规格或型号)【实验原理】(文字叙述、主要公式、原理图)实验预习部分【实验内容和步骤】】实验预习部分一、写出示波器以下标号的功能(用中文表述),并复习它们的位置(参本考课本 P148 图图 19-13):39(或 11)25。
二、在下图方框中标出函数信号发生器的四个部位分别对应哪个选项。
A、CH1B、CH1使能C、CH2D、CH2使能三、实验中在测量声波波长之前,必须确定系统的。
频率。
动调节方法是:先移动 S1 到距 S2 为为 5 ~10 cm,缓慢调节函数信号发生器频率(在~kHz 连续调节),观察哪个频率下接收波电压动幅度最大。
然后移动S1,使示波器显示的正弦幅度最大,再细调信号以频率(以0.01kHz。
为步长调节),直到接收波振幅最大。
记下此时频率。
注意:本实验用的声速测定装置动子是发射端,定子是接收端。
于两个换能器之间的距离最好大于 5 cm,严禁将两个换能器接触。
数据记录与处理【一】测量系统的谐振频率 f =k H z此时换能器间距 L=mm 【二】用共振干涉法测波长((v 公 =340.00 m/s)1L =mm,11L =mm,λ=mm声速 v =百分偏差 B=【三】用相位比较法测波长(v 公 =340.00m/s)数次数 i L i /mm 数次数 i+6 L i+6 m/mm6()/6()i iL L mmλ+=-()mm λ声速 v =百分偏差 B=思考题:用相位法测量波长时,指出本实验用哪两个图形之间的距离:测量波长:(在正确的图下画√)进入实验室后,按实验指导老师要求撰写。
测声速的实验报告
一、实验目的1. 了解声速的概念及其影响因素。
2. 通过实验测量声速,并验证声速在空气中传播的规律。
二、实验原理声速是指在介质中声波传播的速度。
声速与介质的性质有关,如温度、密度等。
根据声速的定义和公式,我们可以通过测量声源与接收器之间的距离和声波传播的时间来计算声速。
三、实验仪器1. 发射器:用于产生声波。
2. 接收器:用于接收声波。
3. 秒表:用于测量声波传播的时间。
4. 卷尺:用于测量声源与接收器之间的距离。
5. 温度计:用于测量环境温度。
四、实验步骤1. 将发射器与接收器固定在实验平台上,确保它们之间的距离为50m。
2. 使用卷尺测量声源与接收器之间的距离,并记录下来。
3. 使用温度计测量环境温度,并记录下来。
4. 将发射器与接收器同时开启,并启动秒表。
5. 当接收到声波时,立即停止秒表,记录声波传播的时间。
6. 重复以上步骤,进行多次实验,并记录数据。
五、实验数据实验次数 | 距离(m) | 时间(s) | 声速(m/s)-------- | -------- | -------- | --------1 | 50 | 0.18 | 277.782 | 50 | 0.19 | 263.163 | 50 | 0.20 | 250.004 | 50 | 0.21 | 238.105 | 50 | 0.22 | 227.27六、数据处理与分析1. 计算声速的平均值:声速平均值 = (277.78 + 263.16 + 250.00 + 238.10 + 227.27) / 5 =253.15 m/s2. 分析实验数据,观察声速与距离、时间的关系。
由实验数据可知,声速在空气中传播时,距离与时间成正比,即声速与距离的比值在实验过程中保持相对稳定。
七、实验结论1. 通过实验,我们成功测量了声速,并验证了声速在空气中传播的规律。
2. 实验结果表明,声速在空气中传播时,距离与时间成正比,即声速与距离的比值在实验过程中保持相对稳定。
超声波测量声速实验报告
超声波测量声速实验报告一、实验目的本实验旨在通过超声波测量声速,加深对声波传播特性的理解,并掌握相关实验技术和数据处理方法。
二、实验原理超声波是一种频率高于 20000 赫兹的声波,其在介质中传播的速度与介质的性质有关。
在本实验中,我们利用超声波的反射和接收来测量声速。
根据声波的传播速度公式:$v =fλ$,其中$v$ 为声速,$f$ 为声波频率,$λ$ 为波长。
我们通过测量超声波的频率$f$ 和波长$λ$,即可计算出声速。
超声波的频率可以通过信号发生器直接读取,而波长的测量则通过测量相邻两个波峰(或波谷)之间的距离来实现。
三、实验仪器1、超声波发射与接收装置2、信号发生器3、示波器4、游标卡尺四、实验步骤1、连接实验仪器将超声波发射与接收装置、信号发生器和示波器正确连接。
2、调节信号发生器设置合适的频率和幅度,使超声波发射装置正常工作。
3、测量超声波频率在信号发生器上直接读取输出的超声波频率。
4、测量波长移动接收装置,在示波器上观察到稳定的波形。
使用游标卡尺测量相邻两个波峰(或波谷)之间的距离,多次测量取平均值,得到波长。
5、记录数据将测量得到的频率和波长数据记录下来。
6、重复实验为了减小误差,重复进行多次实验,获取多组数据。
五、实验数据及处理实验次数频率(kHz)波长(mm)声速(m/s)1 400 820 32802 400 815 32603 400 818 32724 400 822 32885 400 816 3264平均值 400 818 3272计算平均值:频率平均值$f_{平均} = 400$ kHz波长平均值$λ_{平均} = 818$ mm声速平均值$v_{平均} = f_{平均}×λ_{平均} =400×10^3×818×10^{-3} = 3272$ m/s六、误差分析1、仪器误差信号发生器和示波器的精度有限,可能导致频率和波长测量的误差。
声速测量实验实验报告
一、实验目的1. 掌握测量超声波在空气中传播速度的方法。
2. 理解驻波和振动合成理论。
3. 学会逐差法进行数据处理。
4. 了解压电换能器的功能和培养综合使用仪器的能力。
二、实验原理1. 声波在空气中的传播速度:在标准状态下,干燥空气中的声速为v₀ = 331.5 m/s,温度T = 273.15 K。
室温t时,干燥空气的声速v可以表示为:v = v₀ √(T/t)其中,T为绝对温度,t为室温。
2. 测量声速的实验方法:利用压电换能器产生和接收超声波,通过测量超声波的频率f和波长λ,可以计算声速v:v = f λ其中,频率f由声源振动频率得到,波长λ可以通过相位法测得。
3. 相位法:当超声波发生器发出的声波是平面波时,当接收器端面垂直于波的传播方向时,其端面上各点都具有相同的相位。
沿传播方向移动接收器时,总可以找到一个位置使得接收到的信号与发射器的激励电信号同相。
继续移动接收器,直到找到的信号再一次与发射器的激励电信号同相时,移过的这段距离就等于声波的波长。
三、实验仪器1. 函数信号发生器一台2. 超声波发射器一台3. 超声波接收器一台4. 双踪示波器一台5. 压电陶瓷换能器两台6. 同轴电缆若干7. 温度计一台8. 卷尺一把四、实验步骤1. 将函数信号发生器的输出与超声波发射器的输入端及示波器的通道1相连;超声波接收器的输出端和示波器的通道2相连。
2. 将压电陶瓷换能器安装在支架上,使其相对位置固定。
3. 调整函数信号发生器的输出频率,使其在超声波发射器的工作频率范围内。
4. 使用示波器观察发射器和接收器信号的波形,并调整接收器位置,使接收到的信号与发射器的激励电信号同相。
5. 记录此时接收器与发射器之间的距离,即为声波的波长λ。
6. 重复步骤4和5,记录多组数据。
7. 利用逐差法对实验数据进行处理,计算声速v。
五、实验结果1. 测量得到的声波波长λ的平均值为λ = 0.0200 m。
2. 利用公式v = f λ计算得到的声速v的平均值为v = 402.0 m/s。
声速的测量实验报告
声速的测量实验报告不会写声速的测量实验报告的朋友,下面请看小编给大家整理收集的声速的测量实验报告,仅供参考。
声速的测量实验报告1实验目的:测量声音在空气中的传播速度。
实验器材:温度计、卷尺、秒表。
实验地点:平遥县状元桥东。
实验人员:爱物学理小组实验分工:张灏、成立敬——测量时间张海涛——发声贾兴藩——测温实验过程:1 测量一段开阔地长;2 测量人在两端准备;3 计时员挥手致意,发声人准备发声;4 发生人向上举手,同时发声,计时员计时(看到举手始,听到声音止)5 多测几次,记录数据。
实验结果:时间17∶30温度21℃发声时间0.26″发声距离 93m实验结论:在21℃空气中,声音传播速度为357.69m/s.实验反思:有一定误差,卡表不够准确。
声速的测量实验报告2实验目的:1)探究影响声速的因素,超声波产生和接收的原理。
2)学习、掌握空气中声速的测量方法3)了解、实践液体、固体中的声速测量方法。
4)三种声速测量方法作初步的比较研究。
实验仪器:1)超声波发射器 2)超声波探测器 3)平移与位置显示部件。
4)信号发生器: 5)示波器实验原理: 1)空气中:a.在理想气体中声波的传播速度为v88(式中8088cpcV(1)称为质量热容比,也称“比热[容]比”,它是气体的质量定压热容cp与质量定容热容cV的比值;M 是气体的摩尔质量,T是绝对温度,R=8.314472(1±1.7×10-6)Jmol-1K-1为摩尔气体常量。
)标准干燥空气的平均摩尔质量为Mst =28.966�8�710-3kg/mol b.在标准状态下(T0�8�8273.15K,p�8�8101.3�8�8kPa),干燥空气中的声速为v0=331.5m/s。
在室温t℃下,干燥空气中的声速为v88v0(2)(T0=273.15K)c.然而实际空气总会有一些水蒸气。
当空气中的相对湿度为r时,若气温为t℃时饱和蒸气压为pS,则水汽分压为rps。
声速的测量实验报告
声速的测量实验报告一、实验目的通过本次实验,掌握测量声速的方法及原理,熟悉实验仪器的操作,并进一步加深对声学基础理论的理解。
二、实验器材•信号发生器、功放器•话筒•扬声器•Oscilloscope•PC机三、实验原理声速指的是在自由空气中声波传播的速度。
实验使用的原理是产生谐振,求出谐振频率,进而计算出波长和声速的值。
实验中使用两个分别为x和x+l的话筒,用扬声器向话筒内产生声音。
由于声音在两个话筒之间反射,从而产生谐振。
此时,发生器的频率即为一共振频率。
当两个话筒之间的距离为整数倍的半波长时,声波信号会在两个话筒之间构成明显的谐振。
根据声波波长、振幅、频率之间的关系,公式为:$\\lambda=4(x_l - x)$, $v_s=f\\lambda$。
四、实验步骤1.连接仪器:将信号发生器和功放器连接到扬声器上,将话筒和示波器连接。
2.调整扬声器音量至较小的幅度,并调整发生器频率。
3.将两个话筒放置在合适位置,打开附近的窗户保证室内空气流通,调节话筒位置以保证话筒下方的空气流畅。
4.调节发生器频率直到观察到谐振现象,记录下其频率f。
5.移动一个话筒,调节其位置,直至观察到下一个谐振现象,记录此时的频率f′。
6.重复步骤5,直到观察到5个不同的谐振现象,记录各自的频率和距离x l−x。
7.对于每一个谐振现象,使用公式:$\\lambda=4(x_l-x)$计算出波长,并使用公式:$v_s=f\\lambda$计算出声速的值,记录到实验数据表中。
8.最终计算所得的声速的平均值为本次实验的测量值。
五、实验数据以下为本次实验所获得的数据:序号频率f(Hz)x l−x(m)波长$\\lambda$(m)声速v s(m/s)1 332.47 0.125 0.500 166.232 665.86 0.250 0.500 332.933 998.74 0.375 0.500 499.374 1332.09 0.5 0.50 666.045 1665.90 0.625 0.500 832.95六、实验结论通过本次实验,我们成功地使用谐振的方法测量了自由空气中声音的速度,获得了声速v s的落差数据。
实验报告--声速的测量
实验报告--声速的测量一声速,这个词听上去有点儿高大上,其实生活中随处可见。
想象一下,阳光明媚的日子里,朋友们在操场上打球,远处传来一声巨响。
你有没有注意到,你先看到球飞过,耳朵里却慢了一拍,才听到声音?这就是声速的魅力,快得让人惊叹。
1.1 实验的准备首先,我们得准备一些简单的工具。
一个计时器,一根长长的绳子,当然还有个听得见的声音源,比如说一个小鼓或一根哨子。
听起来简单吧?没错,实际操作时却充满乐趣。
把绳子拉直,朋友们站在不同的位置,准备好,等着那一瞬间。
大家心里都激动不已。
1.2 测量的方法我们决定用“看声”的方式。
有人在远处敲鼓,另一个人则在离鼓约100米的地方,眼睛紧盯着。
鼓声一响,计时器开始计时。
等到声音传来,计时器停下。
每个人的心跳都在加速,生怕错过了那一瞬间。
数据记录下来,一切都那么直接,那种感觉,真是妙不可言。
二2.1 数据的分析接下来,我们得分析这些数据。
为了得到声速,我们需要用公式:声速等于距离除以时间。
假设我们记录到的时间是0.3秒,距离是100米,那么声速就成了333米每秒。
听到这里,是不是觉得声音就像一阵风,瞬间吹过?当然,这只是一个粗略的估计,真实情况可能会受到许多因素的影响。
2.2 环境因素的影响在不同的环境下,声速是有差异的。
比如,水里的声速比空气快得多。
想象一下,如果在水下,你的声音仿佛穿越了时空。
再说说温度,热空气中的声音传播得更快。
记得那次实验吗?我们在阳光下和阴凉处分别测试,结果差别不小。
这就像是在说,同样的声音,放在不同的地方,效果却大相径庭。
2.3 误差的来源当然,实验总是有误差的。
第一,环境噪声会影响我们的判断,谁能保证鼓声和其他声音的清晰度?第二,计时的准确性也会影响结果。
手一抖,可能就多了几毫秒。
这样想来,实验不仅是测量,更是一个探寻的过程,让我们不断接近真实。
三3.1 实验的意义声速的测量,不仅仅是为了求得一个数字。
它揭示了声波传播的奥秘。
想想音乐,声波通过空气传递到我们的耳朵,触动了我们的心弦。
超声声速测量实验报告
一、实验目的1. 理解超声波的基本物理特性和产生机制。
2. 掌握相位法测量超声波声速的方法。
3. 学会使用逐差法处理实验数据。
4. 测量超声波在介质中的吸收系数和反射系数。
5. 运用超声波检测声场分布。
6. 学习超声波的产生与接收原理。
7. 通过相位法与共振干涉法测量声音在空气中的传播速度,并与公认值进行比较。
8. 观察与测量声波的双缝干涉与单缝衍射现象。
二、实验原理超声波是一种频率高于人耳听觉上限(约20kHz)的声波。
其传播速度与介质的性质有关,主要受到介质密度和弹性模量的影响。
本实验采用相位法测量超声波声速,即通过测量超声波的波长和频率,计算出声速。
三、实验器材1. 型声速测量综合实验仪2. 示波器3. 信号发生仪4. 声波发射器5. 声波接收器6. 温度计7. 卷尺8. 秒表四、实验步骤1. 将实验仪器的各个部分连接好,包括声波发射器、声波接收器、示波器、信号发生仪等。
2. 校准实验仪器,确保其工作正常。
3. 测量环境温度,并记录数据。
4. 使用相位法测量超声波在空气中的传播速度:a. 将声波发射器与信号发生仪连接,调整信号发生仪的频率至超声波频率范围。
b. 将声波接收器放置在距离声波发射器一定距离的位置。
c. 在示波器上观察声波信号,调整声波接收器的位置,直到在示波器上观察到两个同相的声波信号。
d. 测量两个同相信号之间的距离,即为超声波的波长。
e. 计算超声波的传播速度:声速 = 频率× 波长。
5. 使用共振干涉法测量超声波在空气中的传播速度:a. 将声波发射器与声波接收器放置在共振腔内。
b. 调整信号发生仪的频率,直到在共振腔内观察到共振现象。
c. 测量共振频率,并计算超声波的传播速度:声速 = 频率× 波长。
6. 测量超声波在介质中的吸收系数和反射系数:a. 将声波发射器与声波接收器放置在待测介质中。
b. 调整信号发生仪的频率,使超声波在介质中传播。
c. 测量超声波在介质中的传播速度,并计算吸收系数和反射系数。
声速测定实验报告(一)
声速测定实验报告(一)引言概述:声速测定实验是一种常见的物理实验,通过测量声波在介质中传播的速度,可以研究介质的性质和结构。
本实验通过使用特定仪器和方法,测定了声波在不同介质中的传播速度,并通过实验数据进行分析和计算,得出了准确的声速数值。
正文:1. 实验目的1.1 目的1:掌握声速测定实验的基本原理与方法。
1.2 目的2:研究声波在不同介质中传播的速度差异。
1.3 目的3:了解声速与介质性质的关系。
2. 实验仪器与材料2.1 仪器1:声波发生器2.2 仪器2:示波器2.3 材料1:空气2.4 材料2:水2.5 材料3:固体介质(如金属板或塑料板)3. 实验步骤3.1 步骤1:准备实验仪器和材料3.2 步骤2:将声波发生器置于空气中,并调节频率和幅度3.3 步骤3:使用示波器测量声波的传播时间3.4 步骤4:重复步骤2和3,但将介质更换为水和固体3.5 步骤5:记录实验数据并计算声速4. 实验结果与数据分析4.1 结果1:测得空气中声速为350 m/s4.2 结果2:测得水中声速为1500 m/s4.3 结果3:测得固体中声速为5000 m/s4.4 数据分析1:介质密度对声速的影响4.5 数据分析2:介质的弹性模量对声速的影响5. 结论与讨论5.1 结论1:声速与介质性质密切相关5.2 结论2:空气中声速较低,水中声速中等,固体中声速较高5.3 讨论1:实验误差分析与改进方法5.4 讨论2:声速测定在实际应用中的重要性5.5 讨论3:声速在不同介质中的传播特性及其应用领域总结:本实验通过声速测定方法,研究了声波在不同介质中的传播速度差异,并得出了声速与介质性质之间的关系。
实验结果表明,声速与介质的密度和弹性模量密切相关。
此实验对于深入理解声波传播和应用具有重要意义。
为准确测定声速提供了可靠的实验方法和数据。
最新实验报告-声速测量
最新实验报告-声速测量在本次实验中,我们旨在通过两种不同的方法来测量声速,并对结果进行比较分析。
实验的主要目的是加深对声速这一物理量的理解,并熟悉相关测量技术。
实验方法一:共振管法1. 制备一根密封良好的玻璃管,管内充满水。
2. 使用标准音叉产生固定频率的声音,并通过水面上方的扬声器播放。
3. 逐渐降低水位,直到在管的开口端听到共振的声音,记录此时的水位高度。
4. 通过测量共振时管内水的长度,结合声波的波长公式(波长=声速/频率),计算声速。
实验方法二:闪光摄影法1. 准备一个封闭的室内空间,设置好麦克风和闪光灯。
2. 利用电子触发器控制闪光灯的开启,同时记录麦克风接收到声音信号的时间。
3. 通过改变麦克风与闪光灯之间的距离,重复实验多次,记录不同距离下的声速数据。
4. 利用声速公式(声速=距离/时间),计算并求平均值。
实验结果与分析通过共振管法,我们得到了声速的初步测量值为343米/秒,与理论值相当接近。
而闪光摄影法得到的声速测量值为342米/秒,略有偏差,这可能是由于实验操作中的微小误差或环境因素造成的。
两种方法所得结果均在可接受误差范围内,验证了实验的可靠性。
通过对比两种方法,我们可以看出,共振管法操作简单,但对环境要求较高;而闪光摄影法虽然设备要求较高,但能提供更为精确的测量结果。
结论本次实验成功地通过两种不同的物理方法测量了声速,并对结果进行了比较。
实验结果表明,尽管存在微小的误差,但两种方法都能有效测量声速,且结果具有一致性。
这不仅加深了我们对声速测量技术的理解,也为我们提供了实验设计和数据分析的宝贵经验。
未来的工作可以集中在进一步减小误差和提高测量精度上。
声速测量实验报告
声速测量实验报告一、实验背景声速,听起来似乎很简单,但它的测量却是个有趣的挑战。
科学家们早就发现,声音在不同的介质中传播的速度不一样。
这次实验,目的是想更深入了解声速在空气中的表现。
记得小时候,听见雷声总是先于闪电,那时候就好奇,声音究竟是多快的呢?1.1 声速的基本概念声速,简单来说,就是声音在某个介质中传播的速度。
在空气中,声速大约是343米每秒,哇,想想就觉得快得吓人。
温度、气压等因素都会影响声速。
比如,温度越高,声速越快,理由也很简单,空气分子的运动加快,声音就能更快传递了。
1.2 声速的影响因素声音的传播还受很多因素影响。
气温、湿度、风速,甚至是周围的环境都能左右声速。
在寒冷的冬天,声音就没那么迅速,而在潮湿的环境中,声音又能跑得飞快。
总之,声速不是一成不变的,这让我们在实验中充满了期待。
二、实验设计2.1 实验目的我们希望通过这次实验,亲身测量声速,并观察环境变化对声速的影响。
通过实际操作,加深对声速的理解,激发我们对物理学的热爱。
2.2 实验器材实验器材准备得相当简单。
需要一个音响,当然越响越好;一个麦克风,用来接收声音;还有个计时器,记录时间。
哎,科学实验就是这样,少不了各种“黑科技”的辅助。
2.3 实验步骤实验步骤也不复杂。
首先,选择一个安静的环境。
接着,将音响放在一端,麦克风放在另一端。
然后,播放一个声音,开始计时。
等声音到达麦克风时,立刻停止计时。
最后,根据公式,计算声速。
嘿,简单明了吧?三、实验结果3.1 数据记录实验过程中,我们记录了不同温度下声速的变化。
在20度时,声速是343米每秒;在30度时,声速上升到了349米每秒。
数据真是显而易见,温度一升,声速就跟着“飞”起来。
3.2 数据分析分析这些数据,能够看出温度对声速的影响是显著的。
气温升高时,空气分子运动加快,声音传播自然也就迅速了。
这个道理很简单,却又十分有趣。
四、总结通过这次声速测量实验,我们不仅收获了数据,也收获了对声速的深刻理解。
空气中声速的测量实验报告
空气中声速的测量实验报告一、实验目的本实验的目的是通过测量空气中声波的传播速度, 即声速, 来了解声波在不同介质中的传播规律, 掌握声速的测量方法和技巧。
二、实验原理声波是一种机械波, 它是由物体振动产生的, 通过介质传播的一种波动现象。
声波在空气中的传播速度与空气的温度、压力、湿度等因素有关。
在本实验中, 我们将通过测量声波在空气中的传播时间和距离, 来计算出声速。
声速的计算公式为:v = d / t其中, v为声速, d为声波传播的距离, t为声波传播的时间。
三、实验器材1.声音发生器2.示波器3.计时器4.测量尺5.温度计6.气压计7.湿度计四、实验步骤1.将声音发生器放置在实验室中央, 调节频率为1kHz。
2.将示波器连接到声音发生器上, 调节示波器的垂直和水平放大倍数, 使得声波的波形清晰可见。
3.将计时器归零, 用测量尺测量声波从声音发生器到示波器的距离d。
4.按下计时器的启动按钮, 同时发出声波, 记录声波传播的时间t。
5.重复以上步骤3-4, 进行多次测量, 取平均值。
6.根据公式v = d / t, 计算出声速v。
7.测量空气的温度、压力、湿度等因素, 并记录下来。
五、实验结果经过多次测量和计算, 得出声速的平均值为340.29m/s。
空气的温度为25℃, 气压为101.3kPa, 湿度为50%。
六、实验分析通过本实验的测量结果, 我们可以得出以下结论:1.声速与空气的温度、压力、湿度等因素有关。
在本实验中, 空气的温度为25℃, 气压为101.3kPa, 湿度为50%, 这些因素对声速的影响较小。
2.声速在不同介质中有所不同。
在空气中, 声速为340m/s左右, 而在水中, 声速为1497m/s左右。
3.声波的传播速度与介质的密度和弹性有关。
在同一介质中, 声速与介质的密度和弹性成正比。
七、实验结论通过本实验的测量和分析, 我们得出了声速在空气中的测量结果, 并了解了声波在不同介质中的传播规律。
声速的测量实验报告
声速的测量实验报告一、实验目的1、了解声速测量的基本原理和方法。
2、学会使用驻波法和相位法测量声速。
3、加深对声波的传播特性和波动理论的理解。
二、实验原理1、驻波法声波在介质中传播时,入射波和反射波相遇会形成驻波。
在驻波中,波腹处的振幅最大,波节处的振幅为零。
相邻两个波腹(或波节)之间的距离为半波长。
通过测量驻波相邻两个波腹(或波节)之间的距离,就可以计算出声波的波长。
已知声波的频率,根据公式:声速=频率×波长,即可求出声速。
2、相位法利用示波器观察两个同频率、但存在一定相位差的声波信号。
通过改变两个信号之间的相位差,当相位差为 0 或2π 的整数倍时,示波器上会出现直线;当相位差为π的奇数倍时,示波器上会出现椭圆。
通过测量两个信号之间的相位差变化,以及声波的频率,就可以计算出声波的波长,进而求出声速。
三、实验仪器1、声速测量仪2、示波器3、信号发生器四、实验步骤1、驻波法测量声速(1)按照实验装置图连接好仪器,将声速测量仪的发射端和接收端保持一定距离。
(2)打开信号发生器,调节输出频率,使示波器上显示出稳定的正弦波。
(3)缓慢移动接收端,观察示波器上的波形变化,当出现振幅最大时,即为波腹位置,记录此时接收端的位置。
(4)继续移动接收端,找到相邻的波腹位置,记录其位置。
(5)重复测量多次,计算相邻波腹之间的距离平均值,即为半波长。
(6)根据信号发生器显示的频率,计算出声速。
2、相位法测量声速(1)将信号发生器的输出分别连接到声速测量仪的发射端和示波器的 X 输入端,将声速测量仪的接收端输出连接到示波器的 Y 输入端。
(2)调节信号发生器的频率,使示波器上显示出稳定的李萨如图形。
(3)缓慢移动接收端,观察李萨如图形的变化,当图形由椭圆变为直线时,记录接收端的位置。
(4)继续移动接收端,当图形再次变为直线时,记录位置。
(5)测量相邻两次直线出现时接收端的距离,即为波长。
(6)根据频率计算出声速。
实验报告模板声速测量
如右图所示, 实验时将信号发生器输出的正弦电压信号接到发射超声换能器上,超声发射换能器通过电声转换,将电压信号变为超声波,以超声波形式发射出去。接收换能器通过声电转换,将声波信号变为电压信号后,送入示波器观察。
由声波传播理论可知,从发射换能器发出一定频率的平面声波,经过空气传播,到达接收换能器。如果接收面和发射面严格平行,即入射波在接收面上垂直反射,入射波与反射波相互干涉形成驻波。此时,两换能器之间的距离恰好等于其声波半波长的整数倍。在声驻波中,波腹处声压(空气中由于声扰动而引起的超出静态大气压强的那部分压强)最小,而波节处声压最大。当接收换能器的反射界面处为波节时,声压效应最大,经接收器转换成电信号后从示波器上观察到的电压信号幅值也是极大值,所以可从接收换能器端面声压的变化来判断超声波驻波是否形成。
压电陶瓷一般由一种多晶结构的压电材料(如钛酸钡、锆钛酸等)组成,具有压电效应。当它们受外力作用形变时,表面上会出现电荷,去掉外力后电荷消失,这就是压电效应。压电效应是可逆的,在两表面上加一电压时,雅典晶体发生形变,撤去电压后又恢复原状,此即逆压电效应。如果加上的电压是频率f超过20kHz的交流电,压电材料就会因逆压电效应产生频率也为f的周期性纵向收缩,从而压迫空气成为超生比的波源,图20—1中的s1换能器正是基于此原理而发射超声波。同样,压电材料也可利用压电效应,将声场中声压的变化,用来接受信号,图20—1中的s2换能器正是基于此原理将受收到的超声波信号转换成电压信号送入示波器显示。
X6-X1
X7-X2
X8-X3
X9-X4
X10-X5
45.668
45.383
47.002
46.482
47.666
(/2=△x)
18.267
声速测定实验报告模板
一、实验目的1. 理解声波在介质中传播的原理。
2. 掌握测量声速的基本方法,包括驻波法和相位法。
3. 熟悉实验仪器的使用,如示波器、低频信号发生器、压电换能器等。
4. 培养实验操作技能和数据处理能力。
二、实验原理声波是一种机械波,其传播速度取决于介质的性质。
在空气中,声速v与温度T (单位:℃)和空气的密度ρ(单位:kg/m³)有关,可用以下公式表示:\[ v = \sqrt{\frac{K}{\rho}} \]其中,K为介质的体积模量,对于空气,K可视为常数。
三、实验仪器1. 声速测定仪(含发射换能器、接收换能器、支架、刻度手轮等)2. 示波器3. 低频信号发生器4. 温度计5. 卷尺6. 秒表7. 计算器四、实验步骤1. 准备工作:检查实验仪器是否完好,调整实验装置,确保发射换能器和接收换能器之间的距离可调。
2. 测量环境温度:使用温度计测量实验环境的温度,记录数据。
3. 测量声速(驻波法):a. 将发射换能器连接到低频信号发生器,接收换能器连接到示波器。
b. 打开信号发生器,调节输出频率,使声波在空气中传播。
c. 移动接收换能器,观察示波器上的波形,当波形出现驻波现象时,记录接收换能器与发射换能器之间的距离。
d. 重复步骤c,记录多个驻波现象下的距离值。
4. 测量声速(相位法):a. 按照步骤3a、b连接好实验装置。
b. 移动接收换能器,观察示波器上的波形,当接收到的信号与发射信号同相时,记录接收换能器与发射换能器之间的距离。
c. 重复步骤b,记录多个同相现象下的距离值。
5. 数据处理:a. 计算驻波法下测得的声速平均值。
b. 计算相位法下测得的声速平均值。
c. 比较两种方法测得的声速值,分析误差来源。
五、实验结果与分析1. 实验数据:a. 驻波法:记录多个驻波现象下的距离值。
b. 相位法:记录多个同相现象下的距离值。
2. 声速计算:a. 根据实验数据,计算驻波法和相位法下测得的声速平均值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
每个压电陶瓷换能器都有一个谐振频率 f0,当外加正弦交变 电压一信号的频率等于 f0 时,得到的电信号最强;同理,当 输入电信号的频率等于 f0 时,它的机械振动的振幅最大。换 句话说,压电陶瓷换能器在谐振频率下工作时,作为接收器 时灵敏度最高;作为发射器时辐射效率最高。所以,实验时 应仔细调节信号发生器的工作频率,以此换能器谐振。 2.驻波法测波长 驻波法测波长的实验装置如图 20-1 所示,图中超声波 发射器 s1 和接收器 s2 均为压电陶瓷换能器。由信号发生 器输入的正弦交变电压信号接到发射器 s1 上,转换成超 声波,而接收器 s2 接收入射的超声波,并将其转换为正 弦电压信号,此信号输入示波器进行显示观察。
X7-X2
X8-X3
X9-X4
X10-X5
48.908
49.013
49.939
48.406
48.84
( x )
的平均值
9.5816
9.0026
9.0878 9.383
9.6812
9.368
对 于 波长 , A 类 不 确定 度 S
( )
i i 1
n
2
n 1
结果表达:V=347.43(不确定度 2.54×10-4)m/s
七、实验结果分析与小结 误差来源: 1) 使用信号发生器及示波器,实验时的电压不是十分稳定。 2) 用声速测量仪时, 调动大鼓轮的方向没有完全按照单方向 调整,而是纠正了很多次。 这次实验锻炼了自己的自学能力,正如老师所说,这次 实验对自己的印象很深刻,对自己的实验能力有一定的提高。 八、附上原始数据
对于频率 f,只有 B 类不确定度 =0.001kHz;
仪
V · f
, ln V ln ln f
r
V 的不确定度 UV UV ·V
(
ln V 2 2 ln V 2 2 ) ·U ( ) ·Uf ·V f
结果表达:V=341.713(不确定度 2.68×10-4)m/s
23.969
24.753
24.753
24.65
( / 2 x )
的平均值
9.52
9.5876
9.9012 9.236
9.9012
9.86
对 于 波长 , A 类 不 确定 度 S
( )
i i 1
nБайду номын сангаас
2
n 1
, B 类 不 确定 度
仪 =0.001mm;合成不确定度 U ( S ) 2 (仪) 2
式中,A 为声源振幅, 为角频率, 2 x 为由于波动传播到坐
x)
标 x 处(t 时刻)引起的相位变化。在任意时刻 t,两换能 器之间的空气中某一位置处的合振动方程为
y y1 y 2 (2 A cos 2
x) cos t
(20-1)
这便是驻波方程。由方程可见,两波合成后两换能器之 间的空气中各点都在做同频率的简谐振动,而各点的位移振 幅 2 A cos 2 x 是位置坐标 x 的函数,与时间 t 无关。
由此可见相邻两波节 , n 0, 1, 2, ..., 4
x 1求
间的距离 x 为 。 同理可知, 波腹的位置可用公式 cos 2
2 2
得,即 x n , n 1,2,3,..., 有此可见相邻两波腹间的距离也为 。
2
这样测出相邻波节或波腹之间的距离就可以求出波长 。 但在声学测量中,声波的位移振幅大小不容易测量,而
x 1 ,即 x n
, n 1,2,3,..., 时,驻波的 2
位移振幅 2 A cos 2 x 最大,为驻波的波腹,而声压振幅
4A
sin
2x
=0,为声压的波节。
x 0 ,即 x (2n 1)
当坐标 x 满足 cos 2
时,驻 , n 0, 1, 2, ..., 4
v f
可见,只要测得声波的频率 f 和波长 ,就可求得声速 v。在本实验中,声波频率 f 为信号发生器产生的超声波的 频率,直接由信号发生器显示,所以只要测出声波波长 , 即可确定声速,而测量波长常用的方法有驻波法和相位法。 1.超声波的发射与接收——压电陶瓷换能器 声速测定仪,主要有两只相同的压电陶瓷换能器组成 (图 20-1 中的 s1 和 s2) , 他们分别用于超声波的发射和接收。 压电陶瓷一般由一种多晶结构的压电材料(如钛酸钡、锆钛 酸铅等) 组成, 具有压电效应。 当他们受到外力作用形变时, 表面上会出现电荷, 去掉外力后电荷消失, 这就是压电效应。 压电效应是可逆的,再两表面上加一电压时,压电晶体发生 形变,撤去电压后,又恢复原状,此为逆电压效应。如果加 上的电压是频率 f 超过 20kHz 的交流电,压电材料就会因逆 电压效应产生频率 f 的周期性纵向伸缩,从而压迫空气成为 超生波的波源,图 20-1 中的 s1 换能器正是基于此原理发射 超声波。同样,压电材料也可利用压电效应,将声场中声压 的变化转化成电压的变化,用来接收信号,图 20-1 中的 s2 换能器正是基于此原理将接收到的超声波信号转换成电压 信号送入示波器显示。 虽然给压电陶瓷加压力和电信号就会有压电效应和逆 压电效应,但是能量的转换效率却与所加信号的频率有关。
相位法实验数据整理表(f=37.026KHz)
项目 X1
181. 302
S2 坐标/mm X2
191.6 19
X3
200.9 69
X4
210.3 81
X5
220.7 70
X6
230.2 10
X7
240.6 32
X8
250.9 08
X9
260.4 27
X10
270.6 10
逐差 (5 x )
X6-X1
五、 实验内容及步骤(详细操作见实验室内讲义) 驻波法测量波长: 1) 将测试方法设置到连续波方式, 把声速测试仪信号源调到 共振工作频率(根据共振特点观察波幅变化进行调节) 。 2) 在共振频率下,将 S2 移近 S1 处,依次记下各振幅最大时 的读数标尺位置 L1、L2 共 10 个值; 3) 记下室温 t ; 4) 用逐差法处理数据。 用相位比较法(李萨如图形)测量波长 1) 将测试方法设置到连续波方式, 连好线路, 把声速测试仪 信号源调到最佳工作频率 f。 2)调节示波器:把“扫描时间”旋扭旋至“X-Y”方式; 六、数据记录及处理 驻波法实验数据整理表(f=36.998KHz)
按照波动理论,超声波发射器 s1 发出的平面声波经 介质到接收器 s2, 若接收面与发射面平行, 声波在接受面 处就会被垂直反射,于是平面声波在两端面间往返反射, 相互干涉形成驻波。 设沿 x 方向射出的入射波方程为
y1 Acos(t -
2
x)
反射方程为
y 2 A cos(t 2
当坐标 x 满足 cos 2
(任何 x 0 的那些点的位移振幅为零
时刻 t 都处于平衡位置) ,称为驻波的波节。 当坐标 x 满足 cos 2
x 1 的那些点的位移振幅最大,称为
驻波的波腹。 驻波的特点是:在一系列驻波中,波节的位置可用公式
cos 2
x 0 求得,即 x (2n 1)
空气中压强变化的幅值较容易测量。本实验中,示波器上显 示的波形实际上并不是位移波形,而是声压波形。 声压 P 就是空气中由于声扰动而引起的超出静态大气压 强的那部分压强,根据声学理论,在 x 方向传播的波中,声 压 P 与沿 x 方向位移的变化 dy 成正比。将式(20-1)对 x 微
dx
分,可得
声速测量
课程名称:
大学物理实验
实验名称:
声速测量
学院:
前湖学院
专业班级:
综合实验班
学生姓名:
于泽尧 学号:
5901115068
实验地点: 实验时间:
基础实验大楼 104
第七周星期五下午四点开始
一、 实验项目名称 声速的测量 二、 实验目的 1. 学会测量超声波在空气中的传播速度的方法。 2. 理解驻波和振动合成理论。 3. 学会逐差法进行数据处理。 4. 了解压电换能器的功能和培养综合使用仪器的能力。 三、 实验原理 声速 v、声波频率 f 和波长 之间的关系为
当接收换能器 s2 移动时,超声波传播距离发生变化, 发射信号与接收信号之间的相位差也随之发生改变, 示波 器中的李萨如图形随相位差的改变而变化。 当接收器和发 射器的距离变化等于一个波长时, 则发射信号与接受信号 之间的相位差也正好变化一个周期, 相同的李萨如图形就 会出现。 通过准确观测相位差变化一个周期时接收器移动 的距离,即可得出其对应声波的波长。 四、 实验仪器 1. 驻波法:信号发生器、双踪示波器、声速示波器。 2. 相位法:信号发生器、双踪示波器、声速示波器。
项目 X1
157. 432
S2 坐标/mm X2
162.1 32
X3
166.8 49
X4
171.5 79
X5
176.3 99
X6
181.2 32
X7
186.1 01
X8
191.6 02
X9
196.3 32
X10
201.0 49
逐差 (5 x )
X6-X1
X7-X2
X8-X3
X9-X4
X10-X5
23.8
P dy 4A 2x sin cos t dx
(20-2)
由式(20-2)可知,声压关系式与驻波方程式(20-1) 非常相似,其空间分布也是周期性的,各点的声压振幅