数理统计3

合集下载

概率论与数理统计第3章随机向量

概率论与数理统计第3章随机向量

解 (1)根据概率密度函数性质(2)知
f (x, y)dxdy
Ce(3x4 y) dxdy C e3xdx e4y dy C 1
00
0
0
12
从而 C 1
12
(2)由定义3.3.1知
xy
F(x, y)
f (u,v)dudv
(1 e3x )(1 e4y ), x 0, y 0,
3
7
7
1
3.4.1 二维离散型随机向量的边缘分布
(2) 采取无放回摸球时,与(1)的解法相同,(X,Y)的 联合分布与边缘分布由表3.4给出.
表3.4
Y X
0
1 P{Y=yj} p j
01Biblioteka 2277
2
1
7
7
4
3
7
7
P{X=xi} pi
4 7 3 7
1
3.4.2 二维连续型随机向量的边缘分布
设(X,Y)是二维连续型随机向量,其概率密度为f(x,y),

FX (x) F(x,)
x
f (x,y)dydx
知,X是一个连续型随机变量,且其概率密度为
f X (x)
dFX (x) dx
f (x,y)dy.
(3.4.5)
同样,Y也是一个连续型随机变量,其概率密度为
fY ( y)
= dFY(y)
dy
f (x,y)dx.
(3.4.6)
(X ,Y )
~
N (1,
2
,
2 1
,
2 2
,
)
称(X,Y)为二维正态随机向量.
3.4 边缘分布
1 二维离散型随机向量的边缘分布 2 二维连续型随机向量的边缘分布

概率论与数理统计第3章

概率论与数理统计第3章

试求常数a和b。
π F xlim F x a b 2 0 解: F lim F x a b π 1 x 2
1 1 a , b 2 π
P ( 2 4) P ( 2) P ( 2 4) 0.3 0.6 0.5 0.4
P ( 3) 1 P ( 3) 1 0.5 0.5
6
例3:设r.v. 的分布函数
F x a b arctan x
b a
因此求概率可从分布函数与密度函数两条途径入手。
5、密度的图像称分布曲线,相应有两个特征: ⑴ 曲线在x轴上方;
概率面积
y
f(x)分布曲线
⑵ 曲线于x轴之间的 面积是1。
x c o d
10
例4:设 的密度在[a,b]以外为0,在[a,b]内为
一常数 ,
, a x b f ( x) 0, 其它
x2 2
16
⑶ f(x)符合密度函数的两性质: ① f(x) > 0;②



f x d x 1。
x2 2
以标准正态分布为例, e
e d t e
t2 2 2 x2 2
d x 称为高斯积分。
dy
r2 2 0
从F(x)求f(x): f x F x 从f(x)求F(x): F x f t d t
x
9
4、对于连续型随机变量 ,
⑴ P a 0 ,即某指定点的概率为0; ⑵ Pa b Pa b
Pa b Pa b f x d x

概率论与数理统计第三章多维随机变量及其分布习题解答

概率论与数理统计第三章多维随机变量及其分布习题解答

习题3-11、设(,)X Y 的分布律为求a 。

解:由分布律的性质,得1,0iji jp a =>∑∑,即111111691839a +++++=,0a >, 解得,29a =。

注:考察分布律的完备性和非负性。

2、设(,)X Y 的分布函数为(,)F x y ,试用(,)F x y 表示:(1){,}P a X b Y c ≤≤<;(2){0}P Y b <<;(3){,}P X a Y b ≥<。

解:根据分布函数的定义(,){,}F x y P X x Y y =≤≤,得(1){,}{,}{,}(,)(,)P a X b Y c P X b Y c P X a Y c F b c F a c ---≤≤<=≤<-<<=-; (2){0}{,}{,0}(,)(,0)P Y b P X Y b P X Y F b F -<<=≤+∞<-≤+∞≤=+∞-+∞; (3){,}{,}{,}(,)(,)P X a Y b P X Y b P X a Y b F b F a b ---≥<=≤+∞<-<<=+∞-。

3、设二维随机变量(,)X Y 的分布函数为(,)F x y ,分布律如下:试求:(1)13{,04}22P X Y <<<<;(2){12,34}P X Y ≤≤≤≤;(3)(2,3)F 。

解:由(,)X Y 的分布律,得 (1)1311{,04}{1,1}{1,2}{1,3}002244P X Y P X Y P X Y P X Y <<<<===+==+===++=; (2){12,34}{1,3}{1,4}{2,3}{2,4}P X Y P X Y P X Y P X Y P X Y ≤≤≤≤===+==+==+==1150016416=+++=;(3)(2,3){2,3}{1,1}{1,2}{1,3}F P X Y P X Y P X Y P X Y =≤≤===+==+==1119{2,1}{2,2}{2,3}000416416P X Y P X Y P X Y +==+==+===+++++=。

数理统计第三版课后答案师义民

数理统计第三版课后答案师义民

数理统计第三版课后答案师义民1. 简介本文档是《数理统计第三版》课后答案的整理,师义民提供。

数理统计是概率论的一个分支,研究如何对从总体中获得的样本进行处理和推断的方法。

本书是数理统计的经典教材,内容丰富全面,适合用于大学本科生和研究生的数理统计课程教学。

2. 第一章简单随机抽样2.1 简单随机抽样的基本概念简单随机抽样是指从总体中以等概率的方式抽取样本的过程。

本节介绍了简单随机抽样的基本概念,包括总体、样本、样本容量等。

2.2 简单随机抽样的数学模型这一节介绍了简单随机抽样的数学模型,包括离散总体的简单随机抽样、连续总体的简单随机抽样等。

2.3 样本均值的抽样分布本节主要讨论样本均值的抽样分布问题,包括样本均值的数学期望、方差等。

3. 第二章参数估计3.1 点估计点估计是通过样本信息来估计总体参数的方法。

本节介绍了常用的点估计方法,包括矩估计法、最大似然估计法等。

3.2 置信区间估计置信区间估计是用样本信息来估计总体参数的范围。

本节介绍了置信区间估计的原理和计算方法,并给出了一些实例。

3.3 区间估计与假设检验的关系本节介绍了区间估计与假设检验的关系,以及两者之间的转换。

同时给出了一些实例进行解答。

4. 第三章假设检验4.1 基本概念假设检验是统计推断的重要方法之一,用于对总体参数进行推断。

本节介绍了假设检验的基本概念,包括原假设、备择假设、显著性水平等。

4.2 参数假设检验参数假设检验是对总体参数进行推断的方法,本节介绍了参数假设检验的基本步骤和计算方法。

4.3 非参数假设检验非参数假设检验是对总体分布进行推断的方法,本节介绍了非参数假设检验的基本思想和常用的非参数检验方法。

5. 第四章方差分析5.1 单因素方差分析单因素方差分析是比较两个或多个总体均值是否相等的方法。

本节介绍了单因素方差分析的原理和计算方法。

5.2 多因素方差分析多因素方差分析是对多个因素同时进行比较的方法,本节介绍了多因素方差分析的基本原理和计算方法。

概率论与数理统计第三章课后习题及参考答案

概率论与数理统计第三章课后习题及参考答案

概率论与数理统计第三章课后习题及参考答案1.设二维随机变量),(Y X 只能取下列数组中的值:)0,0(,)1,1(-,31,1(-及)0,2(,且取这几组值的概率依次为61,31,121和125,求二维随机变量),(Y X 的联合分布律.解:由二维离散型随机变量分布律的定义知,),(Y X 的联合分布律为2.某高校学生会有8名委员,其中来自理科的2名,来自工科和文科的各3名.现从8名委员中随机地指定3名担任学生会主席.设X ,Y 分别为主席来自理科、工科的人数,求:(1)),(Y X 的联合分布律;(2)X 和Y 的边缘分布律.解:(1)由题意,X 的可能取值为0,1,2,Y 的可能取值为0,1,2,3,则561)0,0(3833====C C Y X P ,569)1,0(381323====C C C Y X P ,569)2,0(382313====C C C Y X P ,561)3,0(3833====C C Y X P ,283)0,1(382312====C C C Y X P ,289)1,1(38131312====C C C C Y X P ,283)2,1(382312====C C C Y X P ,0)3,1(===Y X P ,563)0,2(381322====C C C Y X P ,563)1,2(381322====C C C Y X P ,0)2,2(===Y X P ,0)3,2(===Y X P .),(Y X 的联合分布律为:(2)X 的边缘分布律为X 012P1452815283Y 的边缘分布律为Y 0123P285281528155613.设随机变量),(Y X 的概率密度为⎩⎨⎧<<<<--=其他.,0,42,20),6(),(y x y x k y x f 求:(1)常数k ;(2))3,1(<<Y X P ;(3))5.1(<Y P ;(4))4(≤+Y X P .解:方法1:(1)⎰⎰⎰⎰--==∞+∞-∞+∞-422d d )6(d d ),(1yx y x k y x y x f ⎰--=42202d |)216(y yx x x k k y y k 8d )210(42=-=⎰,∴81=k .(2)⎰⎰∞-∞-=<<31d d ),()3,1(y x y x f Y X P ⎰⎰--=32102d d )216(yx yx x x ⎰--=32102d |)216(81y yx x x 83|)21211(81322=-=y y .(3)),5.1()5.1(+∞<<=<Y X P X P ⎰⎰∞+∞-∞---=5.1d d )6(81yx y x ⎰⎰--=425.10d d )6(81y x y x y yx x x d )216(81422⎰--=3227|)43863(81422=-=y y .(4)⎰⎰≤+=≤+4d d ),()4(y x y x y x f Y X P ⎰⎰---=2042d )6(d 81x y y x x ⎰+-⋅=202d )812(2181x x x 32|)31412(1612032=+-=x x x .方法2:(1)同方法1.(2)20<<x ,42<<y 时,⎰⎰∞-∞-=yxv u v u f y x F d d ),(),(⎰⎰--=y xv u v u 20d d )6(81⎰--=y xv uv u u 202d |)216(81⎰--=y v xv x x 22d )216(81y xv v x xv 222|)21216(81--=)1021216(81222x xy y x xy +---=,其他,0),,(=y x F ,∴⎪⎩⎪⎨⎧<<<<+---=其他.,0,42,20),1021216(81),(222y x x x xy y x xy y x F 83)3,1()3,1(==<<F Y X P .(3))42,5.1(),5.1()5.1(<<<=+∞<<=<Y X P Y X P X P )2,5.1()4,5.1(<<-<<=Y X P Y X P 3227)2,5.1()4,5.1(=-=F F .(4)同方法1.4.设随机变量),(Y X 的概率密度为⎩⎨⎧>>=--其他.,0,0,0,e ),(2y x A y x f y x 求:(1)常数A ;(2)),(Y X 的联合分布函数.解:(1)⎰⎰⎰⎰∞+∞+--∞+∞-∞+∞-==02d d e d d ),(1yx A y x y x f y x ⎰⎰∞+∞+--=02d e d e y x A y x2|)e 21(|)e (020A A y x =-⋅-=∞+-∞+-,∴2=A .(2)0>x ,0>y 时,⎰⎰∞-∞-=y xv u v u f y x F d d ),(),(⎰⎰--=yxv u vu 02d d e 2yv x u 020|)e 21(|)e (2---⋅-=)e 1)(e 1(2y x ----=,其他,0),(=y x F ,∴⎩⎨⎧>>--=--其他.,0,0,0),e 1)(e 1(),(2y x y x F y x .5.设随机变量),(Y X 的概率密度为⎩⎨⎧≤≤≤≤=其他.,0,10,10,),(y x Axy y x f 求:(1)常数A ;(2)),(Y X 的联合分布函数.解:(1)2121d d d d ),(11010⋅⋅===⎰⎰⎰⎰∞+∞-∞+∞-A y y x x A y x y x f ,∴4=A .(2)10≤≤x ,10≤≤y 时,⎰⎰∞-∞-=y xv u v u f y x F d d ),(),(⎰⎰=yxv u uv 0d d 4220202||y x v u yx =⋅=,10≤≤x ,1>y 时,⎰⎰∞-∞-=yx v u v u f y x F d d ),(),(⎰⎰=100d d 4xv u uv 210202||x v u x =⋅=,10≤≤y ,1>x 时,⎰⎰∞-∞-=yx v u v u f y x F d d ),(),(⎰⎰=100d d 4yu v uv 202102||y v u y =⋅=,1>x ,1>y 时,⎰⎰∞-∞-=yx v u v u f y x F d d ),(),(⎰⎰=101d d 4v u uv 1||102102=⋅=v u ,其他,0),(=y x F ,∴⎪⎪⎪⎩⎪⎪⎪⎨⎧>>≤≤>>≤≤≤≤≤≤=其他.,0,1,1,1,10,1,,1,10,,10,10,),(2222y x y x y y x x y x y x y x F .6.把一枚均匀硬币掷3次,设X 为3次抛掷中正面出现的次数,Y 表示3次抛掷中正面出现次数与反面出现次数之差的绝对值,求:(1)),(Y X 的联合分布律;(2)X 和Y 的边缘分布律.解:由题意知,X 的可能取值为0,1,2,3;Y 的可能取值为1,3.易知0)1,0(===Y X P ,81)3,0(===Y X P ,83)1,1(===Y X P ,0)3,1(===Y X P 83)1,2(===Y X P ,0)3,2(===Y X P ,0)1,3(===Y X P ,81)3,3(===Y X P 故),(Y X 得联合分布律和边缘分布律为:7.在汽车厂,一辆汽车有两道工序是由机器人完成的:一是紧固3只螺栓;二是焊接2处焊点,以X 表示由机器人紧固的螺栓紧固得不牢的数目,以Y 表示由机器人焊接的不良焊点的数目,且),(Y X 具有联合分布律如下表:求:(1)在1=Y 的条件下,X 的条件分布律;(2)在2=X 的条件下,Y 的条件分布律.解:(1)因为)1,3()1,2()1,1()1,0()1(==+==+==+====Y X P Y X P Y X P Y X P Y P 08.0002.0008.001.006.0=+++=,所以43)1()1,0()1|0(=======Y P Y X P Y X P ,81)1()1,1()1|1(=======Y P Y X P Y X P ,101)1()1,2()1|2(=======Y P Y X P Y X P ,401)1()1,3()1|3(=======Y P Y X P Y X P ,故在1=Y 的条件下,X 的条件分布律为X 0123P4381101401(2)因为)2,2()1,2()0,2()2(==+==+====Y X P Y X P Y X P X P 032.0004.0008.002.0=++=,所以85)2()0,2()2,0(=======X P Y X P X Y P ,41)2()1,2()2,1(=======X P Y X P X Y P ,81)2()2,2()2,2(=======X P Y X P X Y P ,故在2=X 的条件下,Y 的分布律为:Y 012P8541818.设二维随机变量),(Y X 的概率密度函数为⎩⎨⎧>>=+-其他.,0,0,0,e ),()2(y x c y x f y x 求:(1)常数c ;(2)X 的边缘概率密度函数;(3))2(<+Y X P ;(4)条件概率密度函数)|(|y x f Y X ,)|(|x y f X Y .解:(1)⎰⎰⎰⎰∞+∞++-∞+∞-∞+∞-==0)2(d d e d d ),(1yx c y x y x f y x⎰⎰∞+∞+--=02d e d ey x c y x2|)e (|)e 21(002c c y x =-⋅-=∞+-∞+-,∴2=c .(2)0>x 时,⎰∞+∞-=y y x f x f X d ),()(⎰∞++-=0)2(d e 2y y x x y x 202e 2|)e (e 2-+∞--=-=,0≤x 时,0)(=x f X ,∴⎩⎨⎧≤>=-.0,0,0,e 2)(2x x x f x X ,同理⎩⎨⎧≤>=-.0,0,0,e )(y y y f y Y .(3)⎰⎰<+=<+2d d ),()2(y x y x y x f Y X P ⎰⎰---=20202d d e 2xy x yx 422202e e 21d e d e 2-----+-==⎰⎰xy x y x .(4)由条件概率密度公式得,当0>y 时,有⎩⎨⎧>=⎪⎩⎪⎨⎧>==----其他.其他.,0,0,e 2,0,0,e e 2)(),()|(22|x x y f y x f y x f xy y x Y Y X ,同理,当0>x 时,有⎩⎨⎧>=⎪⎩⎪⎨⎧>==----其他.其他.,0,0,e ,0,0,2e e 2)(),()|(22|y y x f y x f x y f yx y x X X Y .9.设二维随机变量),(Y X 的概率密度函数为⎩⎨⎧<<<<=其他.,0,0,10,3),(x y x x y x f 求:(1)关于X 、Y 的边缘概率密度函数;(2)条件概率密度函数)|(|y x f Y X ,)|(|x y f X Y .解:(1)10<<x 时,⎰∞+∞-=y y x f x f X d ),()(203d 3x y x x==⎰,其他,0)(=x f X ,∴⎩⎨⎧<<=其他.,0,10,3)(2x x x f X ,密度函数的非零区域为}1,10|),{(}0,10|),{(<<<<=<<<<x y y y x x y x y x ,∴10<<y 时,⎰∞+∞-=x y x f y f Y d ),()()1(23d 321y x x y-==⎰,其他,0)(=y f Y ,∴⎪⎩⎪⎨⎧<<-=其他.,0,10),1(23)(2y y y f Y .(2)当10<<y 时,有⎪⎩⎪⎨⎧<<-=⎪⎪⎩⎪⎪⎨⎧<<-==其他.其他.,0,1,12,0,1,)1(233)(),()|(22|x y y x x y y xy f y x f y x f Y Y X .当10<<x 时,有⎪⎩⎪⎨⎧<<=⎪⎩⎪⎨⎧<<==其他.其他.,0,0,1,0,0,33)(),()|(2|x y x x y x x x f y x f x y f X X Y .10.设条件密度函数为⎪⎩⎪⎨⎧<<<=其他.,0,10,3)|(32|y x y x y x f Y X Y 的概率密度函数为⎩⎨⎧<<=其他.,0,10,5)(4y y y f Y 求21(>X P .解:⎩⎨⎧<<<==其他.,0,10,15)|()(),(2|y x y x y x f y f y x f Y X Y ,则6447d )(215d d 15d d ),(21(121421211221=-===>⎰⎰⎰⎰⎰>x x x x y y x y x y x f X P xx .11.设二维随机变量),(Y X 的概率密度为⎪⎩⎪⎨⎧<<<<+=其他.,0,20,10,3),(2y x xyx y x f 求:(1)),(Y X 的边缘概率密度;(2)X 与Y 是否独立;(3))),((D Y X P ∈,其中D 为曲线22x y =与x y 2=所围区域.解:(1)10<<x 时,x x y xy x y y x f x f X 322d )3(d ),()(222+=+==⎰⎰∞+∞-,其他,0)(=x f X ,∴⎪⎩⎪⎨⎧<<+=其他.,0,10,322)(2x x x x f X ,20<<y 时,⎰∞+∞-=x y x f y f Y d ),()(316)d 3(12+=+=⎰y x xy x ,其他,0)(=y f Y ,∴⎪⎩⎪⎨⎧<<+=其他.,0,20,316)(y y y f Y .(2)∵),()()(y x f y f x f Y X ≠,∴X 与Y 不独立.(3)}22,10|),{(2x y x x y x D ≤≤<<=,∴⎰⎰+=∈102222d d 3()),((xxx y xy x D Y X P 457d )32238(10543=--=⎰x x x x .12.设二维随机变量),(Y X 的概率密度为⎪⎩⎪⎨⎧>>+=-其他.,0,0,0,e )1(),(2y x y xy x f x试讨论X ,Y 的独立性.解:当0>x 时,xx x X x yx y y x y y x f x f -∞+-∞+-∞+∞-=+-=+==⎰⎰e |11e d )1(e d ),()(002,当0≤x 时,0)(=x f X ,故⎩⎨⎧≤>=-.0,0,0,e )(x x x x f x X ,同理,可得⎪⎩⎪⎨⎧≤>+=.0,0,0,)1(1)(2y y y y f Y ,因为)()(),(y f x f y x f Y X =,所以X 与Y 相互独立.13.设随机变量),(Y X 在区域}|),{(a y x y x g ≤+=上服从均匀分布,求X 与Y 的边缘概率密度,并判断X 与Y 是否相互独立.解:由题可知),(Y X 的联合概率密度函数为⎪⎩⎪⎨⎧≤+=其他.,0,,21),(2a y x a y x f ,当0<<-x a 时,有)(1d 21d ),()(2)(2x a a y a y y x f x f xa x a X +===⎰⎰++-∞+∞-,当a x <≤0时,有)(1d 21d ),()(2)(2x a a y a y y x f x f x a x a X -===⎰⎰---∞+∞-,当a x ≥时,0d ),()(==⎰+∞∞-y y x f x f X ,故⎪⎩⎪⎨⎧≥<-=.a x a x x a a x f X ,0,),(1)(2,同理,由轮换对称性,可得⎪⎩⎪⎨⎧≥<-=.a y a y y a a y f Y ,0,),(1)(2,显然)()(),(y f x f y x f Y X ≠,所以X 与Y 不相互独立.14.设X 和Y 时两个相互独立的随机变量,X 在)1,0(上服从均匀分布,Y 的概率密度为⎪⎩⎪⎨⎧≤>=-.0,0,0,e 21)(2y y y f yY (1)求X 和Y 的联合概率密度;(2)设含有a 的二次方程为022=++Y aX a ,试求a 有实根的概率.解:(1)由题可知X 的概率密度函数为⎩⎨⎧<<=其他.,0,10,1)(x x f X ,因为X 与Y 相互独立,所以),(Y X 的联合概率密度函数为⎪⎩⎪⎨⎧><<==-其他.,0,0,10,e 21)()(),(2y x y f x f y x f y Y X ,(2)题设方程有实根等价于}|),{(2X Y Y X ≤,记为D ,即}|),{(2X Y Y X D ≤=,设=A {a 有实根},则⎰⎰=∈=Dy x y x f D Y X P A P d d ),()),(()(⎰⎰⎰---==1021002d )e 1(d d e 2122xx y x x y⎰--=12d e12x x ⎰--=12d e 21212x x ππππ23413.01)]0()1([21-=Φ-Φ-=.15.设i X ~)4.0,1(b ,4,3,2,1=i ,且1X ,2X ,3X ,4X 相互独立,求行列式4321X X X X X =的分布律.解:由i X ~)4.0,1(b ,4,3,2,1=i ,且1X ,2X ,3X ,4X 相互独立,易知41X X ~)84.0,16.0(b ,32X X ~)84.0,16.0(b .因为1X ,2X ,3X ,4X 相互独立,所以41X X 与32X X 也相互独立,又32414321X X X X X X X X X -==,则X 的所有可能取值为1-,0,1,有)1()0()1,0()1(32413241======-=X X P X X P X X X X P X P 1344.016.084.0=⨯=,)1,1()0,0()0(32413241==+====X X X X P X X X X P X P )1()1()0()0(32413241==+===X X P X X P X X P X X P 7312.016.016.084.084.0=⨯+⨯=,)0()1()0,1()1(32413241=======X X P X X P X X X X P X P 1344.084.016.0=⨯=,故X 的分布律为X 1-01P1344.07312.01344.016.设二维随机变量),(Y X 的概率密度为⎩⎨⎧>>=+-其他.,0,0,0,e 2),()2(y x y x f y x 求Y X Z 2+=的分布函数及概率密度函数.解:0≤z 时,若0≤x ,则0),(=y x f ;若0>x ,则0<-=x z y ,也有0),(=y x f ,即0≤z 时,0),(=y x f ,此时,0d d ),()2()()(2==≤+=≤=⎰⎰≤+zy x Z y x y x f z Y X P z Z P z F .0>z 时,若0≤x ,则0),(=y x f ;只有当z x ≤<0且02>-=xz y 时,0),(≠y x f ,此时,⎰⎰≤+=≤+=≤=zy x Z yx y x f z Y X P z Z P z F 2d d ),()2()()(⎰⎰-+-=zx z y x y x 020)2(d e 2d z z z ----=e e 1.综上⎩⎨⎧≤>--=--.0,0,0,e e 1)(z z z z F z z Z ,所以⎩⎨⎧≤<='=-.0,0,0,e )()(z z z z F z f z Z Z .17.设X ,Y 是相互独立的随机变量,其概率密度分别为⎩⎨⎧≤≤=其他.,0,10,1)(x x f X ,⎩⎨⎧≤>=-.0,0,0,e )(y y y f y Y 求Y X Z +=的概率密度.解:0<z 时,若0<x ,则0)(=x f X ;若0≥x ,则0<-=x z y ,0)(=-x z f Y ,即0<z 时,0)()(=-x z f x f Y X ,此时,0d )()()(=-=⎰∞+∞-x x z f x f z f Y X Z .10≤≤z 时,若0<x ,则0)(=x f X ;只有当z x ≤≤0且0>-=x z y 时0)()(≠-x z f x f Y X ,此时,z zx z Y X Z x x x z f x f z f ---∞+∞--==-=⎰⎰e 1d e d )()()(0)(.1>z 时,若0<x ,0)(=x f X ;若1>x ,0)(=x f X ;若10≤≤x ,则0>-=x z y ,此时,0)()(≠-x z f x f Y X ,z x z Y X Z x x x z f x f z f ---∞+∞--==-=⎰⎰e )1e (d e d )()()(1)(.综上,⎪⎩⎪⎨⎧<>-≤≤-=--.0,0,1,e )1e (,10,e 1)(z z z z f z z Z .18.设随机变量),(Y X 的概率密度为⎪⎩⎪⎨⎧>>+=+-其他.,0,0,0,e)(21),()(y x y x y x f y x (1)X 和Y 是否相互独立?(2)求Y X Z +=的概率密度.解:(1)),()()(y x f y f x f Y X ≠,∴X 与Y 不独立.(2)0≤z 时,若0≤x ,则0)(=x f X ;若0>x ,则0<-=x z y ,0),(=y x f ,此时,0d ),()(=-=⎰∞+∞-x x z x f z f Z .0≥z 时,若0≤x ,则0)(=x f X ;只有当z x <<0且0>-=x z y 时0),(≠y x f ,此时,⎰∞+∞--=x x z x f z f Z d ),()(⎰+-+=zy x x y x 0)(d e)(21⎰-=z z x z 0d e 21z z -=e 212,所以⎪⎩⎪⎨⎧≤>=-.0,0,0,e 21)(2z z z z f zZ .19.设X 和Y 时相互独立的随机变量,它们都服从正态分布),0(2σN .证明:随机变量22Y X Z +=具有概率密度函数⎪⎩⎪⎨⎧<≥=-.0,0,0,e )(2222z z z z f z Z σσ.证:因为X 与Y 相互独立,均服从正态分布),0(2σN ,所以其联合密度函数为2222)(2e 121),(σσπy x y x f +-⋅=,(+∞<<∞-y x ,)当0≥z 时,有⎰⎰≤+=≤+=≤=zy x Z yx y x f z Y X P z Z P z F 22d d ),()()()(22⎰⎰≤++-⋅=zy x y x y x 22222d e 1212)(2σσπ⎰⎰-⋅=πσθσπ2022d ed 12122zr r r ⎰-=zr r r 022d e122σσ,此时,2222e)(σσz Z z z f -=;当0<z 时,=≤+}{22z Y X ∅,所以0)()()(22=≤+=≤=z Y X P z Z P z F Z ,此时,0)(=z f Z ,综上,⎪⎩⎪⎨⎧<≥=-.0,0,0,e )(2222z z z z f z Z σσ.20.设),(Y X 在矩形区域}10,10|),{(≤≤≤≤=y x Y X G 上服从均匀分布,求},min{Y X Z =的概率密度.解:由题可知),(Y X 的联合概率密度函数为⎪⎩⎪⎨⎧≤≤≤≤=其他.,0,20,10,21),(y x y x f ,易证,X ~]1,0[U ,Y ~]2,0[U ,且X 与Y 相互独立,⎪⎩⎪⎨⎧≥<≤<=.1,1,10,,0,0)(x x x x x F X ,⎪⎪⎩⎪⎪⎨⎧≥<≤<=.2,1,20,2,0,0)(y y yy y F Y ,可得)](1)][(1[1)(z F z F z F Y X Z ---=)()()()(z F z F z F z F Y X Y X -+=⎪⎪⎩⎪⎪⎨⎧≥<≤-<=.1,1,10,223,0,02z z z z z ,求导,得⎪⎩⎪⎨⎧<<-=其他.,0,10,23)(z z z f Z .21.设随机变量),(Y X 的概率密度为⎩⎨⎧+∞<<<<=+-其他.,0,0,10,e ),()(y x b y x f y x (1)试确定常数b ;(2)求边缘概率密度)(x f X 及)(y f Y ;(3)求函数},max{Y X U =的分布函数.解:(1)⎰⎰⎰⎰∞++-∞+∞-∞+∞-==01)(d d e d d ),(1yx b y x y x f y x⎰⎰∞+--=1d e d e y x b y x )e 1(|)e (|)e (1102-+∞---=-⋅=b b y x ,∴1e11--=b .(2)10<<x 时,1)(1e1e d e e 11d ),()(--∞++--∞+∞--=-==⎰⎰x y x X y y y x f x f ,其他,0)(=x f X ,∴⎪⎩⎪⎨⎧<<-=--其他.,0,10,e 1e )(1x x f xX ,0>y 时,⎰∞+∞-=x y x f y f Y d ),()(y y x x -+--=-=⎰e d e e1110)(1,0≤y 时,0)(=y f Y ,∴⎩⎨⎧≤>=-.0,0,0,e )(y y y f y Y .(3)0≤x 时,0)(=x F X ,10<<x 时,101e 1e 1d e 1e d )()(----∞---=-==⎰⎰xxt xX X t t t f x F ,1≥x 时,1)(=x F X ,∴⎪⎪⎩⎪⎪⎨⎧≥<<--≤=--.1,1,10,e1e1,0,0)(1x x x x F x X ;0≤y 时,0)(=y F Y ,0>y 时,y yv y Y Y v v v f y F --∞--===⎰⎰e 1d e d )()(0,∴⎩⎨⎧≤>-=-.0,0,0,e 1)(y y y F y Y ,故有)()()(y F x F u F Y X U =⎪⎪⎩⎪⎪⎨⎧≥-<≤--<=---.1,e 1,10,e1e1,0,01u u u uu .。

概率论与数理统计第3章课后题答案

概率论与数理统计第3章课后题答案

概率论与数理统计第3章课后题答案第三章连续型随机变量3.1 设随机变数 的分布函数为F(x),试以F(x)表示下列概率:(1)P( a);(2)P( a);(3)P( a);(4)P( a) 解:(1)P( a) F(a 0) F(a);(2)P( a) F(a 0);(3)P( a)=1-F(a);(4)P( a) 1 F(a 0)。

3.2 函数F(x) 11 x2是否可以作为某一随机变量的分布函数,如果(1) x(2)0 x ,在其它场合适当定义;(3)- x 0,在其它场合适当定义。

解:(1)F(x)在(- , )设随机变数 具有对称的分布密度函数p(x),即p(x) p( x),证明:对任意的a 0,有(1)F( a) 1 F(a)12ap(x)dx;(2)P( a) 2F(a) 1;(3)P( a) 2 1 F(a) 。

证:(1)F( a)ap(x)dx 1ap(x)dx=1ap( x)dx 1ap(x)dx=1 F(a) 1 (2)P( ap(x)dxap(x)dxa12a0ap(x)dx;ap(x)dx 2 p(x)dx,由(1)知1-F(a)故上式右端=2F(a) 1;12ap(x)dx。

(3)P( a) 1 P( a) 1 [2F(a) 1] 2[1 F(a)]3.5 设F1(x)与F2(x)都是分布函数,又a 0,b 0是两个常数,且a b 1。

证明F(x) aF1(x) b F2(x)也是一个分布函数,并由此讨论,分布函数是否只有离散型和连续型这两种类型?证:因为F1(x)与F2(x1) F2(x2),于是F(x1) aF1(x1) b F2(x1) aF1(x2) b F2(x2) F(x2)F2(x都是分布函数,当x1 x2时,F1(x1) F1(x2),又xlimF(x) lim[aF1(x) b F2(x)] 0xlimF(x) lim[aF1(x) b F2(x)] a b 1xxF(x 0) aF1(x 0) b F2(x 0) aF1(x) b F2(x) F(x)所以,F(x)也是分布函数。

数理统计第3章 随机抽样与抽样分布

数理统计第3章 随机抽样与抽样分布

E ( X i ) = E ( X ) = µ , D( X i ) = D( X ) = σ 2 , i = 1,2,L , n
1 n 1 n 所以 E ( X ) = E ( ∑ X i ) = ∑ E ( X i ) = µ , n i =1 n i =1
1 1 . D ( X ) = D( ∑ X i ) = 2 ∑ D( X i ) = n n i =1 n i =1
11
它反映了总体 二、样本数字特征 均值的信息 它反映了总体 1 n 样本均值 X = ∑Xi 方差的信息 n i=1 1 n 1 n 2 2 2 2 样本方差 S = ∑( Xi − X) = n −1 ∑Xi − nX n −1 i=1 i =1
推导: 推导:
( Xi − X)2 = ∑( Xi2 − 2Xi X + X 2 ) ∑
因此, 应视为一组随机变量, 因此,抽样值 ( x1 , x2 ,L, xn ) 应视为一组随机变量,我们把 的一个样本 子样), 样本( ),其中 称为该样本的容量 容量。 它称为总体 X 的一个样本(或子样),其中 n 称为该样本的容量。
7
二、简单随机抽样
由于抽样的目的是为了对总体的分布进行统 计推断, 计推断,为了使抽取的样本能很好地反映总体的 信息,必须考虑抽样方法 信息,必须考虑抽样方法. 最常用的一种抽样方法叫作“ 最常用的一种抽样方法叫作“简单随机抽 它要求抽取的样本满足下面两点: 样”,它要求抽取的样本满足下面两点: 1. 代表性: X1,X2,…,Xn中每一个与所考察的总体 代表性: 有相同的分布. 有相同的分布 2. 独立性: X1,X2,…,Xn是相互独立的随机变量 独立性: 是相互独立的随机变量. 由简单随机抽样得到的样本称为简单随机样本 简单随机样本, 由简单随机抽样得到的样本称为简单随机样本, 今后如不加声明,均指简单随机样本。 今后如不加声明,均指简单随机样本。

概率论与数理统计第三章课后习题答案

概率论与数理统计第三章课后习题答案

习题三1.将一硬币抛掷三次,以X 表示在三次中出现正面的次数,以Y 表示三次中出现正面次数与出现反面次数之差的绝对值.试写出X 和Y 的联合分布律.【解】X 和Y 的联合分布律如表:222⨯⨯222⨯⨯=2.盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球,以X 表示取到黑球的只数,以Y 表示取到红球的只数.求X 和Y 的联合分布律.【解】X 和Y 的联合分布律如表:324C 35= 324C 35=3224C 35= 3224C 35=324C 35= 3224C 35=324C 35=3.设二维随机变量(X ,Y)的联合分布函数为F (x ,y )=⎪⎩⎪⎨⎧≤≤≤≤.,020,20,sin sin 其他ππy x y x求二维随机变量(X ,Y )在长方形域⎭⎬⎫⎩⎨⎧≤<≤<36,40πππy x 内的概率.【解】如图πππ{0,}(3.2)463P X Y <≤<≤公式ππππππ(,)(,)(0,)(0,)434636F F F F --+ππππππsin sin sin sin sin 0sin sin 0sin 4346361).=--+=题3图说明:也可先求出密度函数,再求概率。

4.设随机变量(X ,Y )的分布密度f (x ,y )=⎩⎨⎧>>+-.,0,0,0,)43(其他y x A y x e求:(1) 常数A ;(2) 随机变量(X ,Y )的分布函数; (3) P {0≤X <1,0≤Y <2}.【解】(1) 由-(34)0(,)d d e d d 112x y Af x y x y A x y +∞+∞+∞+∞+-∞-∞===⎰⎰⎰⎰得 A =12(2) 由定义,有(,)(,)d d y xF x y f u v u v -∞-∞=⎰⎰(34)340012ed d (1e )(1e )0,0,0,0,y yu v x y u v y x -+--⎧⎧-->>⎪==⎨⎨⎩⎪⎩⎰⎰其他(3) {01,02}P X Y ≤<≤<12(34)3800{01,02}12ed d (1e )(1e )0.9499.x y P X Y x y -+--=<≤<≤==--≈⎰⎰5.设随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧<<<<--.,0,42,20),6(其他y x y x k(1) 确定常数k ; (2) 求P {X <1,Y <3}; (3) 求P {X <}; (4) 求P {X +Y ≤4}. 【解】(1) 由性质有242(,)d d (6)d d 81,f x y x y k x y y x k +∞+∞-∞-∞=--==⎰⎰⎰⎰故 18R =(2) 13{1,3}(,)d d P X Y f x y y x -∞-∞<<=⎰⎰130213(6)d d 88k x y y x =--=⎰⎰ (3) 11.5{ 1.5}(,)d d a (,)d d x D P X f x y x y f x y x y <<=⎰⎰⎰⎰如图1.542127d (6)d .832x x y y =--=⎰⎰(4) 24{4}(,)d d (,)d d X Y D P X Y f x y x y f x y x y +≤+≤=⎰⎰⎰⎰如图b240212d (6)d .83xx x y y -=--=⎰⎰题5图6.设X 和Y 是两个相互独立的随机变量,X 在(0,)上服从均匀分布,Y 的密度函数为f Y (y )=⎩⎨⎧>-.,0,0,55其他y y e求:(1) X 与Y 的联合分布密度;(2) P {Y ≤X }.题6图【解】(1) 因X 在(0,)上服从均匀分布,所以X 的密度函数为1,00.2,()0.20,.X x f x ⎧<<⎪=⎨⎪⎩其他 而55e ,0,()0,.y Y y f y -⎧>=⎨⎩其他 所以(,),()()X Y f x y X Y f x f y 独立5515e25e ,00.20,0.20,0,yy x y --⎧⎧⨯<<>⎪==⎨⎨⎩⎪⎩且其他. (2) 5()(,)d d 25e d d y y xDP Y X f x y x y x y -≤≤=⎰⎰⎰⎰如图0.20.2-550-1d 25e d (5e 5)d =e 0.3679.xyx x y x-==-+≈⎰⎰⎰7.设二维随机变量(X ,Y )的联合分布函数为F (x ,y )=⎩⎨⎧>>----.,0,0,0),1)(1(24其他y x y x e e求(X ,Y )的联合分布密度.【解】(42)28e ,0,0,(,)(,)0,x y x y F x y f x y x y -+⎧>>∂==⎨∂∂⎩其他. 8.设二维随机变量(X ,Y )的概率密度为f (x ,y )= 4.8(2),01,0,0,.y x x y x -≤≤≤≤⎧⎨⎩其他求边缘概率密度.【解】()(,)d X f x f x y y +∞-∞=⎰x204.8(2)d 2.4(2),01,=0,.0,y x y x x x ⎧⎧--≤≤⎪=⎨⎨⎩⎪⎩⎰其他 ()(,)d Y f y f x y x +∞-∞=⎰12y 4.8(2)d 2.4(34),01,=0,.0,y x x y y y y ⎧-⎧-+≤≤⎪=⎨⎨⎩⎪⎩⎰其他题8图 题9图 9.设二维随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧<<-.,0,0,其他e y x y求边缘概率密度. 【解】()(,)d X f x f x y y +∞-∞=⎰e d e ,0,=0,.0,y x x y x +∞--⎧⎧>⎪=⎨⎨⎩⎪⎩⎰其他 ()(,)d Y f y f x y x +∞-∞=⎰0e d e ,0,=0,.0,yy x x y y --⎧⎧>⎪=⎨⎨⎩⎪⎩⎰其他题10图10.设二维随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧≤≤.,0,1,22其他y x y cx(1) 试确定常数c ; (2) 求边缘概率密度.【解】(1) (,)d d (,)d d Df x y x y f x y x y +∞+∞-∞-∞⎰⎰⎰⎰如图2112-14=d d 1.21xx cx y y c ==⎰⎰ 得214c =. (2) ()(,)d X f x f x y y +∞-∞=⎰212422121(1),11,d 840,0,.x x x x x y y ⎧⎧--≤≤⎪⎪==⎨⎨⎪⎪⎩⎩⎰其他 ()(,)d Y f y f x y x +∞-∞=⎰5227d ,01,420,0,.y y x y x y y -⎧⎧≤≤⎪⎪==⎨⎨⎪⎪⎩⎩其他11.设随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧<<<.,0,10,,1其他x x y求条件概率密度f Y |X (y |x ),f X |Y (x |y ).题11图【解】()(,)d X f x f x y y +∞-∞=⎰1d 2,01,0,.xx y x x -⎧=<<⎪=⎨⎪⎩⎰其他111d 1,10,()(,)d 1d 1,01,0,.y Y y x y y f y f x y x x y y -+∞-∞⎧=+-<<⎪⎪⎪===-≤<⎨⎪⎪⎪⎩⎰⎰⎰其他所以|1,||1,(,)(|)2()0,.Y X X y x f x y f y x xf x ⎧<<⎪==⎨⎪⎩其他|1, 1,1(,)1(|),1,()10,.X Y Y y x y f x y f x y y x f y y⎧<<⎪-⎪⎪==-<<⎨+⎪⎪⎪⎩其他 12.袋中有五个号码1,2,3,4,5,从中任取三个,记这三个号码中最小的号码为X ,最大的号码为Y . (1) 求X 与Y 的联合概率分布; (2) X 与Y 是否相互独立【解】(1) X 与Y 的联合分布律如下表(2) 因6161{1}{3}{1,3},101010010P X P Y P X Y ===⨯=≠=== 故X 与Y 不独立13.设二维随机变量(X ,Y )的联合分布律为2 5 8(1)求关于X 和关于Y 的边缘分布; (2) X 与Y 是否相互独立 【解】(1)X 和Y 的边缘分布如下表2 5 8 P {Y=y i }{}i P X x =(2) 因{2}{0.4}0.20.8P X P Y ===⨯0.160.15(2,0.4),P X Y =≠=== 故X 与Y 不独立.14.设X 和Y 是两个相互独立的随机变量,X 在(0,1)上服从均匀分布,Y 的概率密度为f Y (y )=⎪⎩⎪⎨⎧>-.,0,0,212/其他y y e(1)求X 和Y 的联合概率密度;(2) 设含有a 的二次方程为a 2+2Xa +Y =0,试求a 有实根的概率.【解】(1) 因1,01,()0,X x f x <<⎧==⎨⎩其他; 21e ,1,()20,yY y f y -⎧>⎪==⎨⎪⎩其他. 故/21e01,0,(,),()()20,.y X Y x y f x y X Y f x f y -⎧<<>⎪=⎨⎪⎩独立其他题14图(2) 方程220a Xa Y ++=有实根的条件是2(2)40X Y ∆=-≥故 X 2≥Y , 从而方程有实根的概率为:22{}(,)d d x yP X Y f x y x y ≥≥=⎰⎰21/2001d e d 21(1)(0)]0.1445.x y x y-==-Φ-Φ=⎰⎰15.设X 和Y 分别表示两个不同电子器件的寿命(以小时计),并设X和Y 相互独立,且服从同一分布,其概率密度为f (x )=⎪⎩⎪⎨⎧>.,0,1000,10002其他x x 求Z =X /Y 的概率密度.【解】如图,Z 的分布函数(){}{}Z XF z P Z z P z Y=≤=≤ (1) 当z ≤0时,()0Z F z =(2) 当0<z <1时,(这时当x =1000时,y =1000z )(如图a) 3366102222101010()d d d d yz Z zx y zF z x y y x x y x y +∞≥==⎰⎰⎰⎰33610231010=d 2z zy yzy +∞⎛⎫-= ⎪⎝⎭⎰题15图(3) 当z ≥1时,(这时当y =103时,x =103z )(如图b )3366222210101010()d d d d zy Z xy zF z x y y x x y x y +∞≥==⎰⎰⎰⎰336231010101=d 12y yzy z +∞⎛⎫-=- ⎪⎝⎭⎰即 11,1,2(),01,20,.Z z z zf z z ⎧-≥⎪⎪⎪=<<⎨⎪⎪⎪⎩其他 故 21,1,21(),01,20,.Z z z f z z ⎧≥⎪⎪⎪=<<⎨⎪⎪⎪⎩其他 16.设某种型号的电子管的寿命(以小时计)近似地服从N (160,202)分布.随机地选取4 只,求其中没有一只寿命小于180的概率. 【解】设这四只寿命为X i (i =1,2,3,4),则X i ~N (160,202),从而123412{min(,,,)180}{180}{180}i P X X X X X P X P X ≥≥≥之间独立34{180}{180}P X P X ≥≥ 1234[1{180}][1{180}][1{180}][1{180}]P X P X P X P X =-<-<-<-<44144180160[1{180}]120[1(1)](0.158)0.00063.P X ⎡-⎤⎛⎫=-<=-Φ ⎪⎢⎥⎝⎭⎣⎦=-Φ== 17.设X ,Y 是相互独立的随机变量,其分布律分别为P {X =k }=p (k ),k =0,1,2,…, P {Y =r }=q (r ),r =0,1,2,….证明随机变量Z =X +Y 的分布律为P {Z =i }=∑=-ik k i q k p 0)()(,i =0,1,2,….【证明】因X 和Y 所有可能值都是非负整数,所以{}{}Z i X Y i ==+={0,}{1,1}{,0}X Y i X Y i X i Y =====-==于是0{}{,},i k P Z i P X k Y i k X Y =====-∑相互独立0{}{}ik P X k P Y i k ===-∑()()ik p k q i k ==-∑18.设X ,Y 是相互独立的随机变量,它们都服从参数为n ,p 的二项分布.证明Z =X +Y 服从参数为2n ,p 的二项分布. 【证明】方法一:X +Y 可能取值为0,1,2,…,2n .{}{,}ki P X Y k P X i Y k i =+====-∑00202(){}2ki ki n i k i n k ii kk n ki k n k P X i P Y k i n n p q p qi k i n n p qi k i n p q k =---+=-=-===-⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭⎛⎫⎛⎫= ⎪⎪-⎝⎭⎝⎭⎛⎫= ⎪⎝⎭∑∑∑方法二:设μ1,μ2,…,μn ;μ1′,μ2′,…,μn ′均服从两点分布(参数为p ),则X =μ1+μ2+…+μn ,Y =μ1′+μ2′+…+μn ′, X +Y =μ1+μ2+…+μn +μ1′+μ2′+…+μn ′,所以,X +Y 服从参数为(2n ,p )的二项分布.19.设随机变量(X ,Y )的分布律为(1) 求P {X =2|Y =2},P {Y =3|X =0}; (2) 求V =max (X ,Y )的分布律; (3) 求U =min (X ,Y )的分布律; (4) 求W =X +Y 的分布律.【解】(1){2,2}{2|2}{2}P X Y P X Y P Y ======5{2,2}0.051,0.252{,2}i P X Y P X i Y ========∑ {3,0}{3|0}{0}P Y X P Y X P X ======3{0,3}0.011;0.033{0,}j P X Y P X Y j ========∑ (2){}{max(,)}{,}{,}P V i P X Y i P X i Y i P X i Y i =====<+≤=1{,}{,},i ik k P X i Y k P X k Y i -=====+==∑∑ 0,1,2,3,4,5i =所以V 的分布律为(3) {}{min(,)}P U i P X Y i ===351{,}{,}{,}{,}k ik i P X i Y i P X i Y i P X i Y k P X k Y i ==+==≥+>====+==∑∑ 0,1,2,3,i =于是(4)类似上述过程,有W=X +Y0 1 2 3 4 5 6 7 8P 020.雷达的圆形屏幕半径为R ,设目标出现点(X ,Y )在屏幕上服从均匀分布.(1) 求P {Y >0|Y >X };(2) 设M =max{X ,Y },求P {M >0}.题20图【解】因(X ,Y )的联合概率密度为22221,,(,)π0,.x y R f x y R⎧+≤⎪=⎨⎪⎩其他 (1){0,}{0|}{}P Y Y X P Y Y X P Y X >>>>=>0(,)d (,)d y y xy xf x y f x y σσ>>>=⎰⎰⎰⎰π2π/405π42π/401d d π1d d πRR r rR r r R θθ=⎰⎰⎰⎰3/83;1/24==(2) {0}{max(,)0}1{max(,)0}P M P X Y P X Y >=>=-≤00131{0,0}1(,)d 1.44x y P X Y f x y σ≤≤=-≤≤=-=-=⎰⎰21.设平面区域D 由曲线y =1/x 及直线y =0,x =1,x=e 2所围成,二维随机变量(X ,Y )在区域D 上服从均匀分布,求(X ,Y )关于X 的边缘概率密度在x =2处的值为多少题21图【解】区域D 的面积为 22e e 0111d ln 2.S x x x===⎰(X ,Y )的联合密度函数为211,1e ,0,(,)20,.x y f x y x ⎧≤≤<≤⎪=⎨⎪⎩其他(X ,Y )关于X 的边缘密度函数为1/2011d ,1e ,()220,.x X y x f x x⎧=≤≤⎪=⎨⎪⎩⎰其他 所以1(2).4X f =22.设随机变量X 和Y 相互独立,下表列出了二维随机变量(X ,Y )联合分布律及关于X 和Y 的边缘分布律中的部分数值.试将其余数值填入表中的空白处.【解】因21{}{,}j j i j i P Y y P P X x Y y ======∑,故11121{}{,}{,},P Y y P X x Y y P X x Y y ====+== 从而11111{,}.6824P X x Y y ===-=而X 与Y 独立,故{}{}{,}i j i i P X x P Y y P X x Y y =====, 从而11111{}{,}.624P X x P X x Y y =⨯==== 即:1111{}/.2464P X x === 又1111213{}{,}{,}{,},P X x P X x Y y P X x Y y P X x Y y ====+==+== 即1,3111{},4248P X x Y y =++== 从而131{,}.12P X x Y y ===同理21{},2P Y y == 223{,}8P X x Y y ===又31{}1j j P Y y ===∑,故3111{}1623P Y y ==--=.同理23{}.4P X x == 从而23313111{,}{}{,}.3124P X x Y y P Y y P X x Y y ====-===-=故23.设某班车起点站上客人数X 服从参数为λ(λ>0)的泊松分布,每位乘客在中途下车的概率为p (0<p <1),且中途下车与否相互独立,以Y 表示在中途下车的人数,求:(1)在发车时有n 个乘客的条件下,中途有m 人下车的概率;(2)二维随机变量(X ,Y )的概率分布.【解】(1) {|}C (1),0,0,1,2,m m n mn P Y m X n p p m n n -===-≤≤=.(2) {,}{}{|}P X n Y m P X n P Y m X n ======e C (1),,0,1,2,.!m m n mnnp p n m n n n λλ--=-≤≤=24.设随机变量X 和Y 独立,其中X 的概率分布为X ~⎪⎪⎭⎫⎝⎛7.03.021,而Y的概率密度为f (y ),求随机变量U =X +Y 的概率密度g (u ). 【解】设F (y )是Y 的分布函数,则由全概率公式,知U =X +Y 的分布函数为(){}0.3{|1}0.7{|2}G u P X Y u P X Y u X P X Y u X =+≤=+≤=++≤=0.3{1|1}0.7{2|2}P Y u X P Y u X =≤-=+≤-=由于X 和Y 独立,可见()0.3{1}0.7{2}G u P Y u P Y u =≤-+≤-0.3(1)0.7(2).F u F u =-+-由此,得U 的概率密度为()()0.3(1)0.7(2)g u G u F u F u '''==-+-0.3(1)0.7(2).f u f u =-+-25. 25. 设随机变量X 与Y 相互独立,且均服从区间[0,3]上的均匀分布,求P {max{X ,Y }≤1}.解:因为随即变量服从[0,3]上的均匀分布,于是有1, 03,()30, 0,3;x f x x x ⎧≤≤⎪=⎨⎪<>⎩ 1, 03,()30, 0, 3.y f y y y ⎧≤≤⎪=⎨⎪<>⎩ 因为X ,Y 相互独立,所以1, 03,03,(,)90, 0,0,3, 3.x y f x y x y x y ⎧≤≤≤≤⎪=⎨⎪<<>>⎩ 推得 1{max{,}1}9P X Y ≤=.26. 设二维随机变量(X ,Y )的概率分布为1 0 11 01a 0b0 0.1 c其中a,b,c为常数,且X的数学期望E(X)=,P{Y≤0|X≤0}=,记Z=X+Y.求:(1)a,b,c的值;(2)Z的概率分布;(3)P{X=Z}.解 (1) 由概率分布的性质知,a+b+c+=1 即a+b+c = .由()0.2E X=-,可得0.1a c-+=-.再由 {0,0}0.1{00}0.5{0}0.5P X Y a b P Y X P X a b ≤≤++≤≤===≤++,得 0.3a b +=.解以上关于a ,b ,c 的三个方程得0.2,0.1,0.1a b c ===.(2) Z 的可能取值为2,1,0,1,2,{2}{1,1}0.2P Z P X Y =-==-=-=,{1}{1,0}{0,1}0.1P Z P X Y P X Y =-==-=+==-=,{0}{1,1}{0,0}{1,1}0.3P Z P X Y P X Y P X Y ===-=+==+==-=,{1}{1,0}{0,1}0.3P Z P X Y P X Y ====+===,{2}{1,1}0.1P Z P X Y =====,即Z 的概率分布为Z2 1 0 12P(3) {}{0}0.10.20.10.10.20.4P X Z P Y b ====++=++=.习题四1.设随机变量X 的分布律为1 0 12求E (X ),E (X 2),E (2X +3).【解】(1) 11111()(1)012;82842E X =-⨯+⨯+⨯+⨯=(2) 2222211115()(1)012;82844E X =-⨯+⨯+⨯+⨯= (3) 1(23)2()32342E X E X +=+=⨯+=2.已知100个产品中有10个次品,求任意取出的5个产品中的次品数的数学期望、方差.【解】设任取出的5个产品中的次品数为X ,则X 的分布律为故 ()0.58300.34010.07020.00730405E X =⨯+⨯+⨯+⨯+⨯+⨯0.501,= 52()[()]iii D X x E X P ==-∑222(00.501)0.583(10.501)0.340(50.501)00.432.=-⨯+-⨯++-⨯=3.设随机变量X 的分布律为1 01且已知E (X )=,E (X 2)=,求P 1,P 2,P 3. 【解】因1231P P P ++=……①,又12331()(1)010.1E X P P P P P =-++=-=……②,222212313()(1)010.9E X P P P P P =-++=+=……③由①②③联立解得1230.4,0.1,0.5.P P P ===4.袋中有N 只球,其中的白球数X 为一随机变量,已知E (X )=n ,问从袋中任取1球为白球的概率是多少 【解】记A ={从袋中任取1球为白球},则(){|}{}Nk P A P A X k P X k ===∑全概率公式001{}{}1().NNk k k P X k kP X k N N n E X N N========∑∑5.设随机变量X 的概率密度为f (x )=⎪⎩⎪⎨⎧≤≤-<≤.,0,21,2,10,其他x x x x求E (X ),D (X ).【解】12201()()d d (2)d E X xf x x x x x x x +∞-∞==+-⎰⎰⎰21332011 1.33x x x ⎡⎤⎡⎤=+-=⎢⎥⎢⎥⎣⎦⎣⎦122232017()()d d (2)d 6E X x f x x x x x x x +∞-∞==+-=⎰⎰⎰故 221()()[()].6D XE X E X =-=6.设随机变量X ,Y ,Z 相互独立,且E (X )=5,E (Y )=11,E (Z )=8,求下列随机变量的数学期望. (1) U =2X +3Y +1; (2) V =YZ4X .【解】(1) [](231)2()3()1E U E X Y E X E Y =++=++25311144.=⨯+⨯+=(2) [][4][]4()E V E YZ X E YZ E X =-=-,()()4()Y Z E Y E Z E X -因独立 1184568.=⨯-⨯=7.设随机变量X ,Y 相互独立,且E (X )=E (Y )=3,D (X )=12,D(Y )=16,求E (3X2Y ),D (2X3Y ).【解】(1) (32)3()2()3323 3.E X Y E X E Y -=-=⨯-⨯=(2) 22(23)2()(3)412916192.D X Y D X DY -=+-=⨯+⨯=8.设随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧<<<<.,0,0,10,其他x y x k试确定常数k ,并求E (XY ).【解】因1001(,)d d d d 1,2xf x y x y x k y k +∞+∞-∞-∞===⎰⎰⎰⎰故k =210()(,)d d d 2d 0.25xE XY xyf x y x y x x y y +∞+∞-∞-∞===⎰⎰⎰⎰.9.设X ,Y 是相互独立的随机变量,其概率密度分别为f X (x )=⎩⎨⎧≤≤;,0,10,2其他x x f Y (y )=(5)e ,5,0,.y y --⎧>⎨⎩其他 求E (XY ).【解】方法一:先求X 与Y 的均值12()2d ,3E X x x x ==⎰ 5(5)5()e d 5e d e d 51 6.z y y z z E Y y yz z z +∞+∞+∞=-----=+=+=⎰⎰⎰令由X 与Y 的独立性,得2()()()6 4.3E XY E X E Y ==⨯=方法二:利用随机变量函数的均值公式.因X 与Y 独立,故联合密度为(5)2e ,01,5,(,)()()0,,y X Y x x y f x y f x f y --⎧≤≤>==⎨⎩其他于是11(5)2(5)552()2e d d 2d e d 6 4.3y y E XY xy x x y x xy y +∞+∞----===⨯=⎰⎰⎰⎰10.设随机变量X ,Y 的概率密度分别为f X (x )=⎩⎨⎧≤>-;0,0,0,22x x x e f Y (y )=⎩⎨⎧≤>-.0,0,0,44y y y e 求(1) E (X +Y );(2) E (2X 3Y 2).【解】22-2000()()d 2e d [e ]e d xx x X X xf x x x x x x +∞+∞+∞--+∞-∞==-⎰⎰⎰201e d .2x x +∞-==⎰401()()d 4e dy .4y Y E Y yf y y y +∞+∞--∞==⎰⎰22242021()()d 4e d .48y Y E Y y f y y y y +∞+∞--∞====⎰⎰从而(1)113()()().244E X Y E X E Y +=+=+=(2)22115(23)2()3()23288E X Y E X E Y -=-=⨯-⨯=11.设随机变量X 的概率密度为f (x )=⎪⎩⎪⎨⎧<≥-.0,0,0,22x x cx xke求(1) 系数c ;(2) E (X );(3) D (X ). 【解】(1) 由2220()d e d 12k x c f x x cx x k+∞+∞--∞===⎰⎰得22c k =. (2) 2220()()d()2e d k x E X xf x x x k x x +∞+∞--∞==⎰⎰22220π2ed 2k x kx x k+∞-==⎰(3) 222222201()()d()2e .k xE X x f x x x k x k +∞+∞--∞==⎰⎰ 故222221π4π()()[()].24D X E X E X k k k ⎛-=-=-= ⎝⎭12.袋中有12个零件,其中9个合格品,3个废品.安装机器时,从袋中一个一个地取出(取出后不放回),设在取出合格品之前已取出的废品数为随机变量X ,求E (X )和D (X ).【解】设随机变量X 表示在取得合格品以前已取出的废品数,则X 的可能取值为0,1,2,3.为求其分布律,下面求取这些可能值的概率,易知9{0}0.750,12P X === 39{1}0.204,1211P X ==⨯= 329{2}0.041,121110P X ==⨯⨯= 3219{3}0.005.1211109P X ==⨯⨯⨯=于是,得到X 的概率分布表如下:X 0 1 2 3P由此可得()00.75010.20420.04130.0050.301.E X =⨯+⨯+⨯+⨯=22222222()075010.20420.04130.0050.413()()[()]0.413(0.301)0.322.E X D X E X E X =⨯+⨯+⨯+⨯==-=-=13.一工厂生产某种设备的寿命X (以年计)服从指数分布,概率密度为f (x )=⎪⎩⎪⎨⎧≤>-.0,0,0,414x x xe 为确保消费者的利益,工厂规定出售的设备若在一年内损坏可以调换.若售出一台设备,工厂获利100元,而调换一台则损失200元,试求工厂出售一台设备赢利的数学期望.【解】厂方出售一台设备净盈利Y 只有两个值:100元和200元/41/411{100}{1}e d e 4x P Y P X x +∞--==≥==⎰1/4{200}{1}1e .P Y P X -=-=<=-故1/41/41/4()100e (200)(1e )300e 20033.64E Y ---=⨯+-⨯-=-= (元).14.设X 1,X 2,…,X n 是相互独立的随机变量,且有E (X i )=μ,D (X i )=σ2,i =1,2,…,n ,记∑==n i i S X n X 12,1,S 2=∑=--n i i X X n 12)(11. (1) 验证)(X E =μ,)(X D =n2σ;(2) 验证S 2=)(11122∑=--ni i X n X n ;(3) 验证E (S 2)=σ2.【证】(1) 1111111()()().n nn i i i i i i E X E X E X E X nu u n n n n ===⎛⎫===== ⎪⎝⎭∑∑∑22111111()()n nni i i ii i i D X D X D X X DXn nn ===⎛⎫== ⎪⎝⎭∑∑∑之间相互独立2221.n n nσσ==(2) 因222221111()(2)2nnnniii ii i i i i XX X X X X X nX X X ====-=+-=+-∑∑∑∑2222112nnii i i X nX X nX X nX ===+-=-∑∑故22211()1ni i S X nX n ==--∑. (3) 因2(),()i i E X u D X σ==,故2222()()().i i i E X D X EX u σ=+=+同理因2(),()E X u D X nσ==,故222()E X u nσ=+.从而222221111()()[()()]11n ni i i i E s E X nX E X nE X n n ==⎡⎤=-=-⎢⎥--⎣⎦∑∑221222221[()()]11().1ni i E X nE X n n u n u n n σσσ==--⎡⎤⎛⎫=+-+=⎢⎥ ⎪-⎝⎭⎣⎦∑15.对随机变量X 和Y ,已知D (X )=2,D (Y )=3,Cov(X ,Y )=1,计算:Cov (3X2Y +1,X +4Y3).【解】Cov(321,43)3()10Cov(,)8()X Y X Y D X X Y D Y -++-=+-3210(1)8328=⨯+⨯--⨯=-(因常数与任一随机变量独立,故Cov(X ,3)=Cov(Y ,3)=0,其余类似).16.设二维随机变量(X ,Y )的概率密度为f (x ,y )=221,1,π0,.x y ⎧+≤⎪⎨⎪⎩其他试验证X 和Y 是不相关的,但X 和Y 不是相互独立的. 【解】设22{(,)|1}D x y x y =+≤.2211()(,)d d d d πx y E X xf x y x y x x y +∞+∞-∞-∞+≤==⎰⎰⎰⎰ 2π1001=cos d d 0.πr r r θθ=⎰⎰同理E (Y )=0.而 Cov(,)[()][()](,)d d X Y x E x y E Y f x y x y +∞+∞-∞-∞=--⎰⎰222π1200111d d sin cos d d 0ππx y xy x y r r r θθθ+≤===⎰⎰⎰⎰, 由此得0XY ρ=,故X 与Y 不相关.下面讨论独立性,当|x |≤1时,1()X f x y 当|y |≤1时,1()Y f y x 显然()()(,).X Y f x f y f x y ≠ 故X 和Y 不是相互独立的.17.设随机变量(X ,Y )的分布律为1 0 11 0验证X和Y是不相关的,但X和Y不是相互独立的.【解】联合分布表中含有零元素,X与Y显然不独立,由联合分布律易求得X,Y及XY的分布律,其分布律如下表111由期望定义易得E(X)=E(Y)=E(XY)=0.从而E(XY)=E(X)·E(Y),再由相关系数性质知ρXY=0,即X 与Y 的相关系数为0,从而X 和Y 是不相关的. 又331{1}{1}{1,1}888P X P Y P X Y =-=-=⨯≠==-=- 从而X 与Y 不是相互独立的.18.设二维随机变量(X ,Y )在以(0,0),(0,1),(1,0)为顶点的三角形区域上服从均匀分布,求Cov (X ,Y ),ρXY . 【解】如图,S D =12,故(X ,Y )的概率密度为题18图2,(,),(,)0,x y D f x y ∈⎧=⎨⎩其他.()(,)d d DE X xf x y x y =⎰⎰11001d 2d 3xx x y -==⎰⎰22()(,)d d DE X x f x y x y =⎰⎰11201d 2d 6xx x y -==⎰⎰从而222111()()[()].6318D XE X E X ⎛⎫=-=-= ⎪⎝⎭ 同理11(),().318E Y D Y ==而 11001()(,)d d 2d d d 2d .12xDDE XY xyf x y x y xy x y x xy y -====⎰⎰⎰⎰⎰⎰ 所以1111Cov(,)()()()123336X Y E XY E X E Y =-=-⨯=-. 从而 112)()XY D Y ρ-===-19.设(X ,Y )的概率密度为f (x ,y )=1ππsin(),0,0,2220.x y x y ,⎧+≤≤≤≤⎪⎨⎪⎩其他求协方差Cov (X ,Y )和相关系数ρXY .【解】π/2π/2001π()(,)d d d sin()d .24E X xf x y x y x x x y y +∞+∞-∞-∞==+=⎰⎰⎰⎰ππ2222201ππ()d sin()d 2.282E X x x x y y =+=+-⎰⎰从而222ππ()()[()] 2.162D XE X E X =-=+-同理 2πππ(),() 2.4162E Y D Y ==+-又π/2π/2π()d sin()d d 1,2E XY x xy x y x y =+=-⎰⎰故 2ππππ4Cov(,)()()()1.2444X Y E XY E X E Y -⎛⎫⎛⎫=-=--⨯=- ⎪ ⎪⎝⎭⎝⎭222222π4(π4)π8π164.πππ8π32π8π32()()2162XYD X D Y ρ-⎛⎫- ⎪--+⎝⎭===-=-+-+-+-20.已知二维随机变量(X ,Y )的协方差矩阵为⎥⎦⎤⎢⎣⎡4111,试求Z 1=X 2Y和Z 2=2XY 的相关系数.【解】由已知知:D (X )=1,D (Y )=4,Cov(X ,Y )=1.从而12()(2)()4()4Cov(,)1444113,()(2)4()()4Cov(,)414414,D Z D X Y D X D Y X Y D Z D X Y D X D Y X Y =-=+-=+⨯-⨯==-=+-=⨯+-⨯=12Cov(,)Cov(2,2)Z Z X Y X Y =--2Cov(,)4Cov(,)Cov(,)2Cov(,)2()5Cov(,)2()215124 5.X X Y X X Y Y Y D X X Y D Y =--+=-+=⨯-⨯+⨯=故 121212513.26()()134Z Z D Z D Z ρ===⨯21.对于两个随机变量V ,W ,若E (V 2),E (W 2)存在,证明: [E (VW )]2≤E (V 2)E (W 2).这一不等式称为柯西许瓦兹(Couchy Schwarz )不等式.【证】令2(){[]},.g t E V tW t R =+∈显然22220()[()][2]g t E V tW E V tVW t W ≤=+=++222[]2[][],.E V t E VW t E W t R =++∀∈可见此关于t 的二次式非负,故其判别式Δ≤0, 即2220[2()]4()()E VW E W E V ≥∆=-2224{[()]()()}.E VW E V E W =-故222[()]()()}.E VW E V E W ≤22.假设一设备开机后无故障工作的时间X 服从参数λ=1/5的指数分布.设备定时开机,出现故障时自动关机,而在无故障的情况下工作2小时便关机.试求该设备每次开机无故障工作的时间Y 的分布函数F (y ).【解】设Y 表示每次开机后无故障的工作时间,由题设知设备首次发生故障的等待时间X ~E (λ),E (X )=1λ=5. 依题意Y =min(X ,2). 对于y <0,f (y )=P {Y ≤y }=0.对于y≥2,F(y)=P(X≤y)=1.对于0≤y<2,当x≥0时,在(0,x)内无故障的概率分布为P{X≤x}=1eλx,所以F(y)=P{Y≤y}=P{min(X,2)≤y}=P{X≤y}=1e y/5.。

概率论与数理统计 第三章

概率论与数理统计 第三章
x y e 2u |0 e v |0 , x 0, y 0, 其它, 0,
(1 e 2 x )(1 e y ), x 0, y 0, 其它, 0,
例2-续3
(3)求概率P{Y≤X}. 只需在概率密度f的非零 区域与事件区域 G={(x,y)|y≤x} 的交集D上积分. 由公式
0 F ( x, y) 1; ;

F ( x, y )关于x、y均单调不减右连续.
分布函数与离散型二维随机变量分布律、连 续型二维随机变量概率密度的关系[见后].
三、离散型二维随机变量
1、二维均匀分布
两种常见的二维连续型分布
设G为一个平面有界区域,其
二维均匀分布
面积为A.如果二维连续型随机变量(X,Y)的概率密
度为
1 , ( x, y ) G , f ( x, y ) A 0, 其它,
则称(X,Y)服从区域G上的均匀分布,记为(X,Y)~U(G).
2、二维正态分布
域”的概率.
分布函数具有下列基本性质:
对任意点 ( x1 , y1 ), ( x2 , y2 ), x1 x2 , y1 y2 均有:
随机向量落在矩 形区域的概率
P{x1 X x2 , y1 Y y2 }
F ( x1 , y1 ) F ( x2 , y2 ) F ( x1 , y2 ) F ( x2 , y1 ) 0;
D
x
例2-续4
2 e
0

2 x
(1 e )dx [e
x
2 x
2 3 x 2 1 e ] |0 1 . □ 3 3 3
本例是一个典型题.大家应熟练掌握分析与计算 的方法。特别是会根据不同形状的概率密度非零区域 与所求概率的事件区域G来处理这类问题。 就P.73:例3来共同考虑如何分段?应分几段?怎 样计算各段值?(板书)

概率论与数理统计习题三参考答案

概率论与数理统计习题三参考答案

概率论与数理统计习题三参考答案1. 某产品的次品率为0.1,检验员每天检验4次,每次随机地取10件进行检验,如果发现其中的次品多于1,就去调整设备。

以X 表示一天中调整设备的次数,求。

(设诸产品是否为次品是相互独立的。

) )(X E 解:解法一 用Y 表示10件中次品的个数,则)1.0,10(~B Y 而X 表示一天中调整设备的次数,,),4(~p B X {}2≥=Y p p {}{}{}1012=−=−=≥Y P Y P Y p Q()()9110100101.011.01.011−⋅−−−=C C 264.0= 056.14)(==∴p X E解法二 设为发现次品数i X 4,3,2,1 111,0=⎩⎨⎧=i X i ,,次品数大于发现次品数小于等于 则4321X X X X X +++=)()()()()(4321X E X E X E X E X E +++={}{}{}100次品数等于次品数等于P P X P i +==∴()()9110100101.011.01.01−⋅+−=C C 743.0= {}{}264.0011==−==∴i i X P X P 056.1264.04)(=×=∴X E2. 将3只球随机地逐个放入4只编号分别为1,2,3,4 的盒子中,以X 表示至少有一只球的盒子的最小号码,是求。

)(X E 解:解法一 X 可取1、2、3、4{}6437433133323213=++==∴C C C X P {}6419422233323213=++==C C C X P{}6474133332313=++⋅==C C C X P {}6414143===X P 162564146473649264371)(=×+×+×+×=∴X E 解法二 1625162316521691)(=×+×+×=∴X E 3. 若随机变量X 的分布律为()=⎭⎫⎩⎨⎧−=+i x P ii 21121i ,i =1,2 ,……., 是否存在。

数理统计第三版课后练习题含答案

数理统计第三版课后练习题含答案

数理统计第三版课后练习题含答案前言数理统计是数学中的一个重要分支,也是许多学科的基础。

在大学数学课程中,数理统计通常是必修课程之一,是许多专业的必修或选修课程。

为了帮助同学们更好地掌握数理统计知识,本文提供了数理统计第三版课后练习题的答案。

希望本文能为同学们学习数理统计提供帮助。

答案第一章1.11.误差的来源主要有四个方面:人的主观因素、测量仪器的误差、自然因素和其他因素等。

2.(1)自然因素;(2)测量仪器的误差;(3)人的主观因素;(4)其他因素。

1.21.经验、概率和科学方法。

2.经验和科学方法。

1.31.将客观事物通过数量表现出来,是量。

2.比较量的大小,是数。

3.研究一类事物的规律,是统计。

1.41.统计的基本要素包括:总体、样本、统计指标和统计方法等。

2.总体是指研究对象的全体,也称总体集合;样本是从总体中随机抽取的一部分,用于对总体作出推断;统计指标是对研究对象的特征进行量化的数值,如平均数、标准差等;统计方法是根据样本数据对总体进行推断的方法,如参数估计、假设检验等。

1.51.(1)抽样误差:指由于抽样误差引起的随机误差,主要源于样本的随机性和差异性;(2)非抽样误差:指由于非抽样误差引起的系统误差,主要源于调查设计、调查方法等影响调查结果的因素。

2.抽样误差和非抽样误差。

1.61.设计合理的抽样方法,充分反映总体特征,保证样本的可靠性和代表性;采用妥善的调查方法,包括调查问卷设计、访问调查、网络调查等;充分处理和分析调查数据,进行合理的统计推断;对调查结果进行可靠性分析,包括连续性检验、稳定性分析等。

2.统计调查是一项重要的社会调查方法,广泛应用于社会科学、经济、政治、教育等领域。

通过统计调查,可以了解和掌握社会、经济、政治、教育等领域的情况和变化,为科学决策提供参考依据。

概率论与数理统计第3章

概率论与数理统计第3章
22
y
(2)
{Y X } {( X ,Y ) G },
YX
G
O
P{Y X } P{( X ,Y ) G }
x
f ( x , y ) d x d y
G


0
( 2 x y ) d x y 2e d y
1 . 3
2e ( 2 x y ) , f ( x, y) 0,
(2)
p
i j
ij
1
二维离散型随机向量的联合分布函数为
xi x y j y
p
13
例1
一袋中装有2只白球 则( X , Y )的联合概率分布为 和3只黑球,进行有放 回取球 Y 0 1
X 0 1
1 第一次取出白球 X 0 第一次取出黑球 1 第二次取出白球 Y 0 第二次取出黑球
Y 的边缘概率密度.
25
3 x 3 e x0 边缘密度函数为 例6 求随机向量 (X,Y)的边缘分布函数和边缘密度函数, ( x) f X ( x ) FX x0 已知其联合分布函数为 0
故 F ( x2 , y2 ) F ( x2 , y1 ) F ( x1 , y1 ) F ( x1 , y2 ) 0.
9
三、边缘分布函数
( X , Y )为二维随机向量, 联合分布函数为F ( x, y)
X和Y分别也是随机变量 X , Y的分布函数分别记为 FX ( x)和FY ( y) FX ( x) P{ X x} P{ X x, Y } lim F ( x , y ) F ( x , )
4
二、联合分布函数的性质
设 ( X , Y ) 是二维随机向量, 对于任意实数 x , y , 二元函数 : F ( x , y ) P{( X x ) (Y y )} P { X x , Y y } 称为二维随机向量 ( X , Y ) 的分布函数, 或称为随 机变量X 和 Y 的联合分布函数.

概率论与数理统计第三章章节总结

概率论与数理统计第三章章节总结

概率论与数理统计第三章章节总结
概率论与数理统计的第三章主要介绍了随机变量及其分布、随机变量的离散概率和连续概率、期望和方差的计算、贝叶斯统计学等内容。

以下是本章的总结:
1. 随机变量及其分布
第三章第一小节介绍了随机变量的定义和性质,并介绍了离散型和连续型随机变量的区别。

然后,章节第二小节介绍了随机变量的分布,其中包括概率分布、密度函数、期望和方差的计算方法。

这些内容对于理解随机变量的分布非常重要。

2. 随机变量的离散概率和连续概率
第三章第三小节介绍了随机变量的离散概率和连续概率。

离散概率讨论的是离散型随机变量在某一范围内的取值概率,而连续概率讨论的是连续型随机变量在某一区间内的概率。

这些概念对于理解随机变量的性质和分布非常重要。

3. 期望和方差的计算
第三章第四小节介绍了期望和方差的计算方法。

期望是指一个随机变量的平均值,可以通过计算各个取值的概率和总和来实现。

方差是指一个随机变量在各个取值之间的差异,可以通过计算各个取值的差值和总和来实现。

这些内容对于计算随机变量的期望和方差非常重要。

4. 贝叶斯统计学
第三章第五小节介绍了贝叶斯统计学的原理和应用。

贝叶斯统计
学可以用来预测未来事件的概率,也可以用于概率模型的建模和优化。

这些内容对于实际应用非常有帮助。

综上所述,概率论与数理统计的第三章主要介绍了随机变量的分布、离散概率和连续概率、期望和方差的计算、贝叶斯统计学等内容,是学习概率论和统计学的重要基础。

《概率论与数理统计》第三章

《概率论与数理统计》第三章

§1 二维随机变量
定义:设E是一个随机试验,样本空间S={e}; 设X=X(e)和Y=Y(e)是定义
y
X e,Y e
在S上的随机变量,由它们构成的
向量(X,Y)叫做二维随机向量 或二维随机变量。
e S
x
定义:设(X,Y)是二维随机变量对于任意实数x,y,
二元函数
ቤተ መጻሕፍቲ ባይዱ
y
F(x, y) P(X x) (Y y)
1 4
1 i
,
ji
0, j i
(X,Y)的联合分布律为:
YX
1
1
1/4
23 4 1/8 1/12 1/16
2
0 1/8 1/12 1/16
3
0
0 1/12 1/16
4
0
0 0 1/16
例3:设有10件产品,其中7件正品,3件次品。现从中
任取一件产品,取后不放回,令
1 X 0
第一次取到的产品是次品 1
z f (x, y)为顶面的柱体体积。
所以 X,Y 落在面积为零的区域的概率为零。
例3:设二维随机变量(X,Y)具有概率密度:
2e(2x y) , x 0,y 0
y f (x, y) 0,
其他
1 求分布函数F(x, y);2求P{X 2,Y 3};
3求P(Y X )的概率
解: (1)当x>0,y>0时
f (x, y)xy
————————
概率微分
(4) f ( x, y)的作用 : 求二维随机变量(X,Y)取值
落在区域G内的事件的概率
P((X ,Y ) G) f ( x, y)dxdy
G
G
注:1在几何上,z f (x, y)表示空间一个曲面,

概率论与数理统计第3章

概率论与数理统计第3章

i
31
二维离散型随机变量的边缘分布
关于X的边缘分布列
X
x1
x2
x3

概率 P1.
P2.
P3.

pi P{X xi} pij
关于Y的边缘分布列
j
Y
y1
y2
y3

概率 P.1
P.2
P.3

p j P{Y y j} pij
32
i
16
2019-9-16
例1 设二维离散型随机变量(X,Y)的联合分布律为
30
15
2019-9-16
二维离散型随机变量的边缘分布
Y
X
y1
y2
y3

Pi.
x1
p11
p12
p13

P1.
x2
p21
p22
p23

P2.
x3
p31
p32
p33

P3.
…………… …
p.j p.1 p.2 p.3 …
关于X的边缘分布律 关于Y的边缘分布律
pi P{X xi} pij
j
p j P{Y y j} pij
22
11
2019-9-16
第4节 常见多维随机变量
23
1. 多项分布
在独立重复试验中,设每次实验必有A1, A2 , , Ar 之一发生,且事件Ai在每次实验中发生的概率为pi, 记Xi为Ai出现的次数,则 X1, X 2 , , X r 的分布律为
P{X1 n1, X 2 n2 , , X r nr}
20
10
2019-9-16
(4) P{X Y} f (x, y)dxdy y x 0, y 0

《概率论与数理统计》三

《概率论与数理统计》三
称F(x,y)为二维随机变量(X,Y)的分布函数,或称为随机变量X 和Y 的联合分布函数。
y (x,y)
y y2
y1
O
x
O x1
x2
x
P{x1 X x2, y1 Y y2} F(x2, y2 ) F(x1, y2 ) F(x2, y1) F(x1, y1)
➢ 分布函数F(x,y)的性质
设(X,Y)的所有可能取值:(xi, yj), i,j=1,2…,
P{X xi ,Y y j } ˆ pij ,( i, j 1,2,)

1 0 pij 1,

2
pij 1.
j1 i1


函 F ( x, y) pij

xi x yjy
Y X
x1 x2 xi
y1
p1 1 p21
记为
(X
,Y)
~
N (1,
2
,
2 1
,
22,
)
四、多维随机变量
(1)设E是一随机试验, 是其样本空间,X1,X2,...Xn 是定义在上的n个随机变量,则称n维向量(X1,X2,...Xn ) 为定义在 上的n维随机向量或n维随机变量.
(2)对n个任意实数,令
F(x1, x2 ,, xn ) P{X1 x1, X2 x2 ,Xn xn}
标 (X,Y)表示, 也就是 中每一元素都可用一对数来
表示, 把X, Y看成变量, X 与Y 都是随机变量, (X,Y) 共同刻化试验的结果, 这就是二维随机变量.
例2 考察某地一天的天气情况, 即同时考虑最高气温、 最低气温、气压、风力、降雨量,这就需要5个变量 来表示可能的试验结果,这就是五维随机变量.

概率论与数理统计第三__课后习题答案

概率论与数理统计第三__课后习题答案

习题一:写出下列随机试验的样本空间:(1) 某篮球运动员投篮时, 连续5 次都命中, 观察其投篮次数; 解:连续5 次都命中,至少要投5次以上,故}{Λ,7,6,51=Ω; (2) 掷一颗匀称的骰子两次, 观察前后两次出现的点数之和; 解:}{12,11,4,3,22Λ=Ω; (3) 观察某医院一天内前来就诊的人数;解:医院一天内前来就诊的人数理论上可以从0到无穷,所以}{Λ,2,1,03=Ω;(4) 从编号为1,2,3,4,5 的5 件产品中任意取出两件, 观察取出哪两件产品; 解:属于不放回抽样,故两件产品不会相同,编号必是一大一小,故: ()}{;51,4≤≤=Ωj i j i π (5) 检查两件产品是否合格;解:用0 表示合格, 1 表示不合格,则()()()()}{1,1,0,1,1,0,0,05=Ω;(6) 观察某地一天内的最高气温和最低气温(假设最低气温不低于T1, 最高气温不高于T2); 解:用x 表示最低气温, y 表示最高气温;考虑到这是一个二维的样本空间,故: ()}{216,T y x T y x ≤≤=Ωπ;(7) 在单位圆内任取两点, 观察这两点的距离; 解:}{207ππx x =Ω;(8) 在长为l 的线段上任取一点, 该点将线段分成两段, 观察两线段的长度. 解:()}{l y x y x y x =+=Ω,0,0,8φφ;(1) A 与B 都发生, 但C 不发生; C AB ;(2) A 发生, 且B 与C 至少有一个发生;)(C B A ⋃; (3) A,B,C 中至少有一个发生; C B A ⋃⋃;(4) A,B,C 中恰有一个发生;C B A C B A C B A ⋃⋃; (5) A,B,C 中至少有两个发生; BC AC AB ⋃⋃; (6) A,B,C 中至多有一个发生;C B C A B A ⋃⋃;(7) A;B;C 中至多有两个发生;ABC(8) A,B,C 中恰有两个发生.C AB C B A BC A ⋃⋃ ; 注意:此类题目答案一般不唯一,有不同的表示方式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

易知上述条件概率具有分布律的性质
2)二维连续型随机变量的条件分布
设 对任意的 是二维连续型随机变量, 有 ,
所以不能直接用条件概率公式得到条件分布。
下面我们用极限的方法导出条件分布函数。
定义2
给定
,设对任意固定的正数 , ,= y下X的条件分布函数, 写成 P{ X x |Y= y },或记为 FX|Y(x|y).
F ( ,) 1 F , F x , F , y 0
3. F ( x , y ) F ( x 0 , y ) F ( x , y ) F ( x , y 0) 即F ( x , y ) 关于x右连续, 关于y右连续。 4.

F ( x , y ) FX ( x ) FY ( y )
成立,则称随机变量 X与 Y 是相互独立的。
当X , Y独立时由X , Y的边缘分布可以唯一决定 ( X , Y )的联合分布。
1)对于离散型随机变量
X与Y独立
P{ X xi , Y y j } P{ X xi } P {Y y j } pij pi p j
设 则 的联合分布律 关于 的边缘分布律为
记作 且有
同理
记作
称为
且有
关于
的边缘分布律
已知联合分布律求边缘分布律
X 以及Y 的边缘分布律也可以由 下表表示
Y X x1
y1 p11 p21

y2 p12 p22

… … …

yj p1 j p2 j pij

x2

… … …

pi
p1 p2
pi
P{ x1 x x2 , y1 y y2 } F ( x2 , y2 ) F ( x2 , y1 ) F ( x1 , y2 ) F ( x1 , y1 )
Y
( x 2 , y2 )
( x1 , y1 )
X
2. 二维离散型随机变量
定义1 若二维随机变量 ( X , Y ) 的所有可能取值
算出罪犯的身高. 这个公式是
如何推导出来的?
设一个人身高为 X ,脚印长度为 Y . 显然,两者之间是有统计关系的,故 应作为二维随机变量 ( X , Y )来研究. 由于影响人类身高与脚印的随机 因素是大量的、相互独立的,且各因 素的影响又是微小的,可以叠加的. 故 由中心极限定理知 ( X , Y )可以近似看 2 2 成服从二维正态分布 N (u1,1 , u2 , 2 ; ) .
的密度函数, 因此
1 E ( X | Y y) u1 ( y u2 ) 2
如果按中国人的相应参数代入上 式,即可得出以脚印长度作自变量 的身高近似公式.
四. 随机变量的相互独立性
定义 若二维随机变量(X,Y)对任意实数x, y,都

P { X x , Y y} P { X x } P{Y y}
( x 1 ) 2 ( x 1 )( y 2 ) ( y 2 ) 2 2 2 2 1 2 2 1
其中 1 , 2 , 1 , 2 , 都是常数,且 1 0 , 2 0 , 的二维正态分布,记为
第三讲 多维随机变量
一、多维随机变量及其分布
某些随机试验的结果需要同时用两个或两个 以上的随机变量来描述。例如射击的弹着点。
如在靶纸上设有平面坐标系,则弹着点就可 用随机变量横坐标和随机变量纵坐标来描述。
1.n 维随机向量
定义设 , F, P 是一概率空间,
是定义在这个概率空间上的n个随机变量,则称
其中参数 u1, ; u2 , ; 因区域、
2 1 2 2
民族、生活习惯的不同而有所变化 , 但它们都能通过统计方法而获得.
现已知罪犯的脚印长度为 y , 要
估计其身高就需计算条件期望 , 条件 密度为
f ( x, y) f X |Y ( x | y ) fY ( y )
1 N (u1 ( y u2 ), 12 (1 2 )) 这正是正态分布 2

xi
p j
pi1
pi 2
… …
… …
p1
p2
p j
◆边缘概率密度
若 是二维连续型随机变量, 其概率密度为 则:
同理
2 例2 设二维随机变量( X , Y ) ~ N ( 1 , 2 , 12 , 2 , )
试求 ( X , Y ) 的边缘概率密度. 解

p1 ( x) p( x , y)dy
n F ( x1 ,, xn ) p( x1 ,, xn ) x1 x2 xn
4) 对 R n上任意一个区域 B,有
例1
已知二维随机变量
的概率密度为
试求:(1)常数 解
的值;
(2)分布函数;
的概率。
(1) 利用概率密度的性质
2)由定义
(3)
的取值区域如图3-3所示,故
4、几种常见分布
结 论 (三)
结论(二)表明:如果
X 1, Y1 ~ N 1, 2, 12, 22, 1 X 2, Y2 ~ N 1, 2, 12, 22, 2
(其中 1 2 ),
则 X 1, Y1 与 X 2, Y2 的分布不相同, 但是 Y1 与Y2 的分布相同. 1 与 X 2 的分布相同, X


1 2 1 2 1
2

( x 1 )2 212
e



e
( y 2 ) ( x 1 ) 2 ] 1 2 (1 2 ) 2 1 [
dy
令 t
1 1
2

( y 2 ) ( x 1 ) 2 1
,则有
◆均匀分布
设 G为 xoy 平面上的有界区域, 的面积为 m, G
若二维随机变量 ( X , Y ) 的概率密度为
1 , ( x, y ) G p( x , y ) m 0 , 其它
则称二维随机变量 ( X , Y ) 在 G 上服从均匀分布.
◆多元正态分布
设 B (bij ) nn 是n阶非负定对称矩阵, 1 (rij ) nn B 是它的逆矩阵, B 表示B的行列式,
通过本题,我们有以下 几条结论:
结 论 (一)
二元正态分布的边缘分 布是一元正态分布.
即若 X, Y ~ N 1, 2, , , 则有,
2 1 2 2


X ~ N 1,
结 论 (二)

2 1

Y ~ N 2,

2 2

上述的两个边缘分布中 的参数与二元正态分 布中的常数 无关.
则称 X 连续型随机向量。
p( x1 , x2 ,, xn ) 为X的密度函数或联合概率密度。
性质 2) 1) p( x1 , x2 ,, xn ) 0
可以证明: 凡满足性质1,2的任意一个n元函数
p( x1 ,, xn ) 必可作为某个n维随机向量概率密度。
3) 若 p( x1 ,, xn ) 在点 ( x1 ,, xn ) 处连续, 则有
这表明,一般来讲,我们不能由边缘分布求出联合分布.
三 条件分布
• 条件分布律 • 条件分布函数 • 条件概率密度
1) 二维离散型随机变量的条件分布 设 已发生的条件下事件 ,我们考虑在事件 发生的概率,
由条件概率公式可得
定义1


,若
是二维离散型随机变量,对于固定
,则称
为在
的条件下
的条件分布律。
2)
p
i 1 j 1


ij
1
X, Y 的联合分布律也可以由 下表表示
Y X x1
y1
p11 p21

y2
p12 p22

… … …

yj p1 j
p2 j pij

… … … …
x2

xi

pi1

pi 2


3. n 维连续型随机变量
若存在非负函数 p( x1 , x2 ,, xn ) 使得分布函数可表为
1 ( x u1 ) 2 ( x u1 )( y u2 ) ( y u2 ) 2 exp{ [ 2 2 ]} 2 2 2 2 2(1 ) 1 2 2 . 2 2 ( y u2 ) 2 1 2 1 exp{ } 2 2 2
是有限多对或可列无限多对, ( X , Y )为二维 则称 离散型随机变量. 定义2 设 ( X , Y ) 所有可能取值为 ( x i , y j ) ,称
P{ X xi , Y y j } pi j ( i , j 1 , 2 , )
为随机变量(X,Y)的分布律。
性质: 1)
pi j 0
2 ( X , Y ) ~ N (1 , 2 , 12 , 2 , )
1 1,则称 ( X , Y ) 服从参数为 1 , 2 , 1 , 2 ,
( X , Y ) ~ N (1 , 2 , , , )
2 1 2 2
f ( x, y )
FX ( x ) 称为 ( X , Y ) 关于X 的边缘分布函数。
FX ( x ) P{ X x } P{ X x , Y } F ( x , )
同理可得 几何 表示:
FY ( y ) F (, y )
y y
F ( x, )
y
F (, y )
x
x
相关文档
最新文档