人教A版数学必修一2.2.3对数函数(3).docx
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学学习材料
马鸣风萧萧*整理制作
对数函数(3)
【自学目标】
1. 理解函数图像变换与函数表达式之间的联系
2. 深入体会数形结合思想,逐步学会灵活运用函数图像研究函数性质
【知识要点】
1. 函数x y a log =与)0,1,0)((log ≠≠>+=b a a b x y a 图像的关系 0>b 时,函数x y a log =的图像向左平移b 个单位,得函数)(log b x y a +=的图像
0<b 时, ,函数x y a l o g =的图像向右平移b -个单位, 得函数)(log b x y a +=的图像
2. 函数x y a log =与x y a log =)1,0(≠>a a 图像的关系 有函数x y a log =为偶函数易知,0>x 时x y a log ==x a log 此时函数图像记为1c ;0<x 时, x y a log ==)(log x a -,即得1c 关于y 轴对称的图像2c
【预习自测】
例1.函数b x y a +=log )1,10(=≠>ab a a 且的图像只可能是 ( )
例 2.将函数x y 2=的图像向左平移一个单位得到1c ,将1c 向上平移一个单位,得到2c ,再作2c 关于直线x y =的对称图形,得到3c ,求3c 的解析式
例3.在函数)1,10(log ≥<<=x a x y a 的图像上有A,B,C 三点,它们的横坐标分别
是4,2,++t t t
(1) 若ABC ∆的面积为S ,求)(t f S =
(2) 判断)(t f S =的单调性
【课堂练习】
1. 若10≠>a a 且,则函数11-=-x a y 的图像过定点_______,函数
1)1(l o g --=x y a 的图像过定点____________
2. 函数56log )(2
3.0+-=x x x f 的单调增区间为_____________
3. 若函数a x x f +=3log )(的对称轴为1-=x ,则实数a =___________
【归纳反思】
1. 研究对数函数图像,一定要抓住底数大于1还是小于1这个关键,其次是要注意
图像和坐标轴的交点及图像的渐近线
2. 图像变换是数学中经常研究的问题,熟练掌握图像变换和解析式之间的关系能
帮助我们快速了解某个具体函数的草图,从而帮助思考
【巩固反思】
1.已知10≠>a a 且,函数x a y -=和)(log x y a -=的图像只可能是 ( )
2.已知x x f a log )(=,其中10<<a ,则下列各式正确的是 ( ) A )41()2()3
1(f f f >> B )2()3
1
()41(f f f >> C )41()31()2(f f f >> D )31()2()41(f f f >> 3. 若函数)10(1≠>-+=a a b a y x 且的图像经过第一,三四象限,则下列结论中
正确的是 ( )
A 11<>b a 且
B 010<<<b a 且
C 010><<b a 且
D 01<>b a 且
4. 作出函数2log 2
1+=x y 的图像
5. 怎样利用图像变换,由x
y ⎪⎭
⎫ ⎝⎛=21的图像得到x y 2log =的图像
6. 若函数1log 2-=ax y 的图像的对称轴是2=x ,求非零实数a 的值.
7.。