2020-2021备战中考数学直角三角形的边角关系综合练习题含答案解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021备战中考数学直角三角形的边角关系综合练习题含答案解析
一、直角三角形的边角关系
1.如图,在△ABC中,∠ABC=∠ACB,以AC为直径的⊙O分别交AB、BC于点M、N,点P在AB的延长线上,且∠CAB=2∠BCP.
(1)求证:直线CP是⊙O的切线.
(2)若BC=2,sin∠BCP=,求点B到AC的距离.
(3)在第(2)的条件下,求△ACP的周长.
【答案】(1)证明见解析(2)4(3)20
【解析】
试题分析:(1)利用直径所对的圆周角为直角,2∠CAN=∠CAB,∠CAB=2∠BCP判断出∠ACP=90°即可;
(2)利用锐角三角函数,即勾股定理即可.
试题解析:(1)∵∠ABC=∠ACB,
∴AB=AC,
∵AC为⊙O的直径,
∴∠ANC=90°,
∴∠CAN+∠ACN=90°,2∠BAN=2∠CAN=∠CAB,
∵∠CAB=2∠BCP,
∴∠BCP=∠CAN,
∴∠ACP=∠ACN+∠BCP=∠ACN+∠CAN=90°,
∵点D在⊙O上,
∴直线CP是⊙O的切线;
(2)如图,作BF⊥AC
∵AB=AC,∠ANC=90°,
∴CN=CB=,
∵∠BCP=∠CAN,sin∠BCP=,
∴sin∠CAN=,
∴
∴AC=5,
∴AB=AC=5,
设AF=x,则CF=5﹣x,
在Rt△ABF中,BF2=AB2﹣AF2=25﹣x2,
在Rt△CBF中,BF2=BC2﹣CF2=2O﹣(5﹣x)2,
∴25﹣x2=2O﹣(5﹣x)2,
∴x=3,
∴BF2=25﹣32=16,
∴BF=4,
即点B到AC的距离为4.
考点:切线的判定
2.在等腰△ABC中,∠B=90°,AM是△ABC的角平分线,过点M作MN⊥AC于点N,
∠EMF=135°.将∠EMF绕点M旋转,使∠EMF的两边交直线AB于点E,交直线AC于点F,请解答下列问题:
(1)当∠EMF绕点M旋转到如图①的位置时,求证:BE+CF=BM;
(2)当∠EMF绕点M旋转到如图②,图③的位置时,请分别写出线段BE,CF,BM之间的数量关系,不需要证明;
(3)在(1)和(2)的条件下,tan∠BEM=,AN=+1,则BM=,CF=.
【答案】(1)证明见解析(2)见解析(3)1,1+或1﹣
【解析】
【分析】
(1)由等腰△ABC中,∠B=90°,AM是△ABC的角平分线,过点M作MN⊥AC于点N,可得BM=MN,∠BMN=135°,又∠EMF=135°,可证明的△BME≌△NMF,可得BE=NF,
NC=NM=BM进而得出结论;
(2)①如图②时,同(1)可证△BME≌△NMF,可得BE﹣CF=BM,
②如图③时,同(1)可证△BME≌△NMF,可得CF﹣BE=BM;
(3) 在Rt△ABM和Rt△ANM中,,
可得Rt△ABM≌Rt△ANM,后分别求出AB、 AC、 CN 、BM、 BE的长,结合(1)(2)的结论对图①②③进行讨论可得CF的长.
【详解】
(1)证明:∵△ABC是等腰直角三角形,
∴∠BAC=∠C=45°,
∵AM是∠BAC的平分线,MN⊥AC,
∴BM=MN,
在四边形ABMN中,∠,BMN=360°﹣90°﹣90°﹣45°=135°,
∵∠ENF=135°,,
∴∠BME=∠NMF,
∴△BME≌△NMF,
∴BE=NF,
∵MN⊥AC,∠C=45°,
∴∠CMN=∠C=45°,
∴NC=NM=BM,
∵CN=CF+NF,
∴BE+CF=BM;
(2)针对图2,同(1)的方法得,△BME≌△NMF,
∴BE=NF,
∵MN⊥AC,∠C=45°,
∴∠CMN=∠C=45°,
∴NC=NM=BM,
∵NC=NF﹣CF,
∴BE﹣CF=BM;
针对图3,同(1)的方法得,△BME≌△NMF,
∴BE=NF,
∵MN⊥AC,∠C=45°,
∴∠CMN=∠C=45°,
∴NC=NM=BM,
∵NC=CF﹣NF,
∴CF﹣BE=BM;
(3)在Rt△ABM和Rt△ANM中,,
∴Rt△ABM≌Rt△ANM(HL),
∴AB=AN=+1,
在Rt△ABC中,AC=AB=+1,
∴AC=AB=2+,
∴CN=AC﹣AN=2+﹣(+1)=1,
在Rt△CMN中,CM=CN=,
∴BM=BC﹣CM=+1﹣=1,
在Rt△BME中,tan∠BEM===,
∴BE=,
∴①由(1)知,如图1,BE+CF=BM,
∴CF=BM﹣BE=1﹣
②由(2)知,如图2,由tan∠BEM=,
∴此种情况不成立;
③由(2)知,如图3,CF﹣BE=BM,
∴CF=BM+BE=1+,
故答案为1,1+或1﹣.
【点睛】
本题考查三角函数与旋转与三角形全等的综合,难度较大,需综合运用所学知识求解.
3.在Rt△ACB和△AEF中,∠ACB=∠AEF=90°,若点P是BF的中点,连接PC,PE.特殊发现:
如图1,若点E、F分别落在边AB,AC上,则结论:PC=PE成立(不要求证明).问题探究:
把图1中的△AEF 绕点A 顺时针旋转.
(1)如图2,若点E 落在边CA 的延长线上,则上述结论是否成立?若成立,请给予证明;若不成立,请说明理由;
(2)如图3,若点F 落在边AB 上,则上述结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由; (3)记
AC
BC
=k ,当k 为何值时,△CPE 总是等边三角形?(请直接写出后的值,不必说)
【答案】()1 PC PE =成立 ()2 ,PC PE =成立 ()3当k 3
CPE V 总是等边三角形 【解析】 【分析】
(1)过点P 作PM ⊥CE 于点M ,由EF ⊥AE ,BC ⊥AC ,得到EF ∥MP ∥CB ,从而有
EM FP
MC PB
=,再根据点P 是BF 的中点,可得EM=MC ,据此得到PC=PE . (2)过点F 作FD ⊥AC 于点D ,过点P 作PM ⊥AC 于点M ,连接PD ,先证△DAF ≌△EAF ,即可得出AD=AE ;再证△DAP ≌△EAP ,即可得出PD=PE ;最后根据FD ⊥AC ,BC ⊥AC ,PM ⊥AC ,可得FD ∥BC ∥PM ,再根据点P 是BF 的中点,推得PC=PD ,再根据PD=PE ,即可得到结论.
(3)因为△CPE 总是等边三角形,可得∠CEP=60°,∠CAB=60°;由∠ACB=90°,求出∠CBA=30°;最后根据AC k BC =,AC
BC
=tan30°,求出当△CPE 总是等边三角形时,k 的值是多少即可. 【详解】
解:(1)PC=PE 成立,理由如下:
如图2,过点P 作PM ⊥CE 于点M ,∵EF ⊥AE ,BC ⊥AC ,∴EF ∥MP ∥CB ,∴
EM FP
MC PB
=,∵点P 是BF 的中点,∴EM=MC ,又∵PM ⊥CE ,∴PC=PE ;
(2)PC=PE 成立,理由如下:
如图3,过点F 作FD ⊥AC 于点D ,过点P 作PM ⊥AC 于点M ,连接PD ,∵∠DAF=∠EAF ,∠FDA=∠FEA=90°,在△DAF 和△EAF 中 ,∵∠DAF=∠EAF ,∠FDA=∠FEA ,AF=AF , ∴△DAF ≌△EAF (AAS ), ∴AD=AE ,在△DAP 和△EAP 中, ∵AD=AE ,∠DAP=∠EAP ,AP=AP , ∴△DAP ≌△EAP (SAS ), ∴PD=PE ,
∵FD ⊥AC ,BC ⊥AC ,PM ⊥AC , ∴FD ∥BC ∥PM , ∴
DM FP
MC PB
=, ∵点P 是BF 的中点, ∴DM=MC ,又∵PM ⊥AC , ∴PC=PD ,又∵PD=PE , ∴PC=PE ;
(3)如图4,∵△CPE 总是等边三角形, ∴∠CEP=60°, ∴∠CAB=60°, ∵∠ACB=90°,
∴∠CBA=90°﹣∠ACB=90°﹣60°=30°, ∵
AC k BC =,AC
BC
=tan30°,
∴k=tan30°=3
,
3
∴当k为3时,△CPE总是等边三角形.
【点睛】
考点:1.几何变换综合题;2.探究型;3.压轴题;4.三角形综合题;5.全等三角形的判定与性质;6.平行线分线段成比例.
4.如图,PB为☉O的切线,B为切点,过B作OP的垂线BA,垂足为C,交☉O于点A,连接PA,AO.并延长AO交☉O于点E,与PB的延长线交于点D.
(1)求证:PA是☉O的切线;
(2)若=,且OC=4,求PA的长和tan D的值.
【答案】(1)证明见解析;(2)PA =3,tan D=.
【解析】
试题分析: (1)连接OB,先由等腰三角形的三线合一的性质可得:OP是线段AB的垂直平分线,进而可得:PA=PB,然后证明△PAO≌△PBO,进而可得∠PBO=∠PAO,然后根据切线的性质可得∠PBO=90°,进而可得:∠PAO=90°,进而可证:PA是⊙O的切线;
(2)连接BE,由,且OC=4,可求AC,OA的值,然后根据射影定理可求PC的值,从而可求OP的值,然后根据勾股定理可求AP的值.
试题解析:(1)连接OB,则OA=OB,
∵OP⊥AB,∴AC=BC,
∴OP是AB的垂直平分线,∴PA=PB,
在△PAO和△PBO中,∵,∴△PAO≌△PBO(SSS)
∴∠PBO=∠PAO,PB=PA,
∵PB为⊙O的切线,B为切点,∴∠PBO=90°,∴∠PAO=90°,即PA⊥OA,
∴PA是⊙O的切线;
(2)连接BE,
∵,且OC=4,∴AC=6,∴AB=12,
在Rt△ACO中,由勾股定理得:AO=,
∴AE=2OA=4,OB=OA=2,
在Rt△APO中,∵AC⊥OP,∴AC2=OC PC,解得:PC=9,∴OP=PC+OC=13,
在Rt△APO中,由勾股定理得:AP==3.
易证,所以,解得,
则,在中,.
考点:1.切线的判定与性质;2.相似三角形的判定与性质;3.解直角三角形.
5.在正方形ABCD中,BD是一条对角线.点P在射线CD上(与点C,D不重合),连接AP,平移△ADP,使点D移动到点C,得到△BCQ,过点Q作QH⊥BD于点H,连接AH、PH.
(1)若点P在线CD上,如图1,
①依题意补全图1;②判断AH与PH的数量关系与位置关系并加以证明;
(2)若点P在线CD的延长线上,且∠AHQ=152°,正方形ABCD的边长为1,请写出求DP长的思路.(可以不写出计算结果)
【答案】(1)①如图;②AH=PH,AH⊥PH.证明见解析(2)或
【解析】
试题分析:(1)①如图(1);②(1)法一:轴对称作法,判断:AH=PH,
AH⊥PH.连接CH,根据正方形的每条对角线平分一组对角得:△DHQ等腰Rt△,根据平移的性质得DP=CQ,证得△HDP≌△△HQC,全等三角形的对应边相等得PH=CH,等边对等角得∠HPC=∠HCP,再结合BD是正方形的对称轴得出∠AHP=180°-∠ADP=90°,∴AH=PH且AH⊥PH.四点共圆作法,同上得:∠HPC=∠DAH,∴A、D、P、H共向,∴∠AHP=90°,∠APH=∠ADH=45°,∴△APH等腰Rt△.
(2)轴对称作法同(1)作HR⊥PC于R,∵∠AHQ=152°,∴∠AHB=62°,∴∠DAH=17°
∴∠DCH=17°.设DP=x,则.由代入HR,CR解方程即可得出x的值. 四点共圆作法,A、H、D、P共向,∴∠APD=∠AHB=62°,
∴.
试题解析:(1)①
法一:轴对称作法,判断:AH=PH,AH⊥PH
证:连接CH,得:△DHQ等腰Rt△,又∵DP=CQ,∴△HDP≌△△HQC,∴PH=CH,
∠HPC=∠HCP
BD为正方形ABCD对称轴,∴AH=CH,∠DAH=∠HCP,∴AH=PH,∠DAH=∠HPC,
∴∠AHP=180°-∠ADP=90°,∴AH=PH且AH⊥PH.
法二:四点共圆作法,同上得:∠HPC=∠DAH,∴A、D、P、H共向,∴∠AHP=90°,
∠APH=∠ADH=45°,∴△APH等腰Rt△.
(2)法一:轴对称作法
考虑△DHQ 等腰Rt △,PD =CQ ,作HR ⊥PC 于R ,∵∠AHQ =152°,∴∠AHB =62°,∴∠DAH =17°
∴∠DCH =17°.设DP =x ,则
.
由得:,∴.即PD=
法二:四点共向作法,A 、H 、D 、P 共向,∴∠APD =∠AHB =62°,∴
.
考点:全等三角形的判定;解直角三角形;正方形的性质;死电脑共圆
6.我市在创建全国文明城市的过程中,某社区在甲楼的A 处与E 处之间悬挂了一副宣传条幅,在乙楼顶部C 点测得条幅顶端A 点的仰角为45°,条幅底端E 点的俯角为30°,若甲、乙两楼之间的水平距离BD 为12米,求条幅AE 的长度.(结果保留根号)
【答案】AE 的长为(123)+ 【解析】 【分析】
在Rt ACF V 中求AF 的长, 在Rt CEF V 中求EF 的长,即可求解. 【详解】
过点C 作CF AB ⊥于点F 由题知:四边形CDBF 为矩形
12CF DB ∴==
在Rt ACF V 中,45ACF ∠=︒
tan 1AF ACF CF ∴∠== 12AF ∴=
在Rt CEF V 中,30ECF ∠=︒
tan EF ECF CF
∴∠=
312EF ∴= 43EF ∴=
1243AE AF EF ∴=+=+
∴求得AE 的长为()1243+
【点睛】
本题考查了三角函数的实际应用,中等难度,作辅助线构造直角三角形是解题关键.
7.许昌芙蓉湖位于许昌市水系建设总体规划中部,上游接纳清泥河来水,下游为鹿鸣湖等水系供水,承担着承上启下的重要作用,是利用有限的水资源、形成良好的水生态环境打造生态宜居城市的重要部分.某校课外兴趣小组想测量位于芙蓉湖两端的A ,B 两点之间的距离他沿着与直线AB 平行的道路EF 行走,走到点C 处,测得∠ACF=45°,再向前走300米到点D 处,测得∠BDF=60°.若直线AB 与EF 之间的距离为200米,求A ,B 两点之间的距离(结果保留一位小数)
【答案】215.6米.
【解析】
【分析】
过A 点做EF 的垂线,交EF 于M 点,过B 点做EF 的垂线,交EF 于N 点,
根据Rt △ACM 和三角函数tan BDF ∠求出CM 、DN ,然后根据MN MD DN AB =+=即可求出A 、B 两点间的距离.
【详解】
解:过A 点做EF 的垂线,交EF 于M 点,过B 点做EF 的垂线,交EF 于N 点
在Rt △ACM 中,∵45ACF ∠=︒,
∴AM=CM=200米,
又∵CD=300米,所以100MD CD CM =-=米,
在Rt △BDN 中,∠BDF=60°,BN=200米 ∴115.6tan 60BN DN =≈o
米, ∴215.6MN MD DN AB =+=≈米
即A ,B 两点之间的距离约为215.6米.
【点睛】
本题主要考查三角函数,正确做辅助线是解题的关键.
8.如图,已知,在O e 中,弦AB 与弦CD 相交于点E ,且»»AC BD
=. (1)求证:AB CD =;
(2)如图,若直径FG 经过点E ,求证:EO 平分AED ∠;
(3)如图,在(2)的条件下,点P 在»CG
上,连接FP 交AB 于点M ,连接MG ,若AB CD ⊥,MG 平分PMB ∠,2MG =,FMG ∆的面积为2,求O e 的半径的长.
【答案】(1)见解析;(2)见解析;(3)O e 10.
【解析】
【分析】
(1) 利用相等的弧所对的弦相等进行证明;
(2)连接AO 、DO ,过点O 作OJ AB ⊥于点J ,OQ CD ⊥于点Q ,证明
AOJ DOQ ∆≅∆得出OJ OQ =,根据角平分线的判定定理可得结论;
(3)如图,延长GM 交O e 于点H ,连接HF ,求出2FH =,在HG 上取点L ,使HL FH =,延长FL 交O e 于点K ,连接KG ,求出22FL =,设HM n =,则有22LK KG n ==,2222
FK FL LK n =+=+,再证明KFG EMG HMF ∠=∠=∠,从而得到tan tan KFG HMF ∠=∠,
KG HF FK HM
=,再代入LK 和FK 的值可得n=4,再求得FG 的长,最后得到圆的半径为10.
【详解】 解:(1)证明:∵»»AC BD =,∴»»»»AC CB
BD CB +=+, ∴»»AB CD =,
∴AB CD =.
(2)证明:如图,连接AO 、DO ,过点O 作OJ AB ⊥于点J ,OQ CD ⊥于点Q ,
∴90AJO DQO ∠=∠=︒,1122
AJ AB CD DQ =
==, 又∵AO DO =,
∴AOJ DOQ ∆≅∆,
∴OJ OQ =,
又∵OJ AB ⊥,OQ CD ⊥,
∴EO 平分AED ∠.
(3)解:∵CD AB ⊥,∴90AED ∠=︒,
由(2)知,1452
AEF AED ∠=
∠=︒, 如图,延长GM 交O e 于点H ,连接HF ,
∵FG 为直径,∴90H ∠=︒,122
MFG S MG FH ∆=
⨯⋅=, ∵2MG =,∴2FH =, 在HG 上取点L ,使HL FH =,延长FL 交O e 于点K ,连接KG ,
∴45HFL HLF ∠=∠=︒,45KLG HLF ∠=∠=︒,
∵FG 为直径,∴90K ∠=︒,
∴9045KGL KLG KLG ∠=︒-∠=︒=∠,∴LK KG =,
在Rt FHL ∆中,222FL FH HL =+,22FL =
设HM n =,2HL MG ==,
∴GL LM MG HL LM HM n =+=+==,
在Rt LGK ∆中,222LG LK KG =+,22
LK KG ==,222FK FL LK =+=, ∵GMP GMB ∠=∠,∵PMG HMF ∠=∠,∴HMF GMB ∠=∠, ∵1452
AEF AED ∠=∠=︒, ∴45MGF EMG MEF ∠+∠=∠=︒,45MGF KFG HLF ∠+∠=∠=︒, ∴KFG EMG HMF ∠=∠=∠,
∴tan tan KFG HMF ∠=∠, ∴KG HF FK HM =,∴2222222n
n =+,4n =, ∴6HG HM MG =+=,
在Rt HFG ∆中,222FG FH HG =+,210FG =10FO =
即O e 10
【点睛】
考查了圆的综合题,本题是垂径定理、圆周角定理以及三角函数等的综合应用,适当的添
加辅助线是解题的关键.
9.如图,AB是圆O的直径,O为圆心,AD、BD是半圆的弦,且∠PDA=∠PBD.延长PD 交圆的切线BE于点E
(1)判断直线PD是否为⊙O的切线,并说明理由;
(2)如果∠BED=60°,PD=3,求PA的长;
(3)将线段PD以直线AD为对称轴作对称线段DF,点F正好在圆O上,如图2,求证:四边形DFBE为菱形.
【答案】(1)证明见解析;(2)1;(3)证明见解析.
【解析】
【分析】
(1)连接OD,由AB是圆O的直径可得∠ADB=90°,进而求得∠ADO+∠PDA=90°,即可得出直线PD为⊙O的切线;
(2)根据BE是⊙O的切线,则∠EBA=90°,即可求得∠P=30°,再由PD为⊙O的切线,得∠PDO=90°,根据三角函数的定义求得OD,由勾股定理得OP,即可得出PA;
(3)根据题意可证得∠ADF=∠PDA=∠PBD=∠ABF,由AB是圆O的直径,得∠ADB=90°,设∠PBD=x°,则可表示出∠DAF=∠PAD=90°+x°,∠DBF=2x°,由圆内接四边形的性质得出x 的值,可得出△BDE是等边三角形.进而证出四边形DFBE为菱形.
【详解】
(1)直线PD为⊙O的切线,
理由如下:
如图1,连接OD,
∵AB是圆O的直径,
∴∠ADB=90°,
∴∠ADO+∠BDO=90°,
又∵DO=BO,
∴∠BDO=∠PBD,
∵∠PDA=∠PBD,
∴∠BDO=∠PDA,
∴∠ADO+∠PDA=90°,即PD⊥OD,∵点D在⊙O上,
∴直线PD为⊙O的切线;
(2)∵BE是⊙O的切线,
∴∠EBA=90°,
∵∠BED=60°,
∴∠P=30°,
∵PD为⊙O的切线,
∴∠PDO=90°,
在Rt△PDO中,∠P=30°,
∴0 tan30
OD
PD
=,解得OD=1,
∴PO,
∴PA=PO﹣AO=2﹣1=1;
(3)如图2,
依题意得:∠ADF=∠PDA,∠PAD=∠DAF,
∵∠PDA=∠PBD∠ADF=∠ABF,
∴∠ADF=∠PDA=∠PBD=∠ABF,
∵AB是圆O的直径,
∴∠ADB=90°,
设∠PBD=x°,则∠DAF=∠PAD=90°+x°,∠DBF=2x°,
∵四边形AFBD内接于⊙O,
∴∠DAF+∠DBF=180°,
即90°+x+2x=180°,解得x=30°,
∴∠ADF=∠PDA=∠PBD=∠ABF=30°,
∵BE、ED是⊙O的切线,
∴DE=BE,∠EBA=90°,
∴∠DBE=60°,∴△BDE是等边三角形,
∴BD=DE=BE,
又∵∠FDB=∠ADB﹣∠ADF=90°﹣30°=60°∠DBF=2x°=60°,∴△BDF是等边三角形,
∴BD=DF=BF,
∴DE=BE=DF=BF,
∴四边形DFBE为菱形.
【点睛】
本题是一道综合性的题目,考查了切线的判定和性质,圆周角定理和菱形的性质,是中档题,难度较大.
10.如图,在▱ABCD中,AC与BD交于点O,AC⊥BC于点C,将△ABC沿AC翻折得到△AEC,连接DE.
(1)求证:四边形ACED是矩形;
(2)若AC=4,BC=3,求sin∠ABD的值.
613
【答案】(1)证明见解析(2)
【解析】
【分析】
(1)根据▱ABCD中,AC⊥BC,而△ABC≌△AEC,不难证明;
(2)依据已知条件,在△ABD或△AOC作垂线AF或OF,求出相应边的长度,即可求出∠ABD的正弦值.
【详解】
(1)证明:∵将△ABC沿AC翻折得到△AEC,
∴BC=CE,AC⊥CE,
∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC,
∴AD=CE,AD∥CE,
∴四边形ACED是平行四边形,
∵AC⊥CE,
∴四边形ACED是矩形.
(2)解:方法一、如图1所示,过点A作AF⊥BD于点F,
∵BE =2BC =2×3=6,DE =AC =4,
∴在Rt △BDE 中, 2222BD BE DE 64213=+=+=∵S △BDE =1
2×DE•AD
=12
AF•BD , ∴AF =61313213
=, ∵Rt △ABC 中,AB =2234+=5,
∴Rt △ABF 中,
sin ∠ABF =sin ∠ABD =6136135
AF AB ==
方法二、如图2所示,过点O 作OF ⊥AB 于点F ,
同理可得,OB =
1132BD =, ∵S △AOB =
11OF AB OA BC 22⋅=⋅, ∴OF =23655
⨯=, ∵在Rt △BOF 中,
sin ∠FBO =0613513F OB ==, ∴sin ∠ABD =
61365.
【点睛】
本题考查直角三角形翻折变化后所得图形的性质,矩形的判定和性质,平行四边形的性质
和解直角三角形求线段的长度,关键是正确添加辅助线和三角形面积的计算公式求出
sin∠ABD.
11.如图,在一次军事演习中,蓝方在一条东西走向的公路上的A处朝正南方向撤退,红方在公路上的B处沿南偏西60°方向前进实施拦截,红方行驶1000米到达C处后,因前方无法通行,红方决定调整方向,再朝南偏西45°方向前进了相同的距离,刚好在D处成功拦截蓝方,求拦截点D处到公路的距离(结果不取近似值).
【答案】拦截点D处到公路的距离是(500+500)米.
【解析】
试题分析:过B作AB的垂线,过C作AB的平行线,两线交于点E;过C作AB的垂线,过D作AB的平行线,两线交于点F,则∠E=∠F=90°,拦截点D处到公路的距离
DA=BE+CF.解Rt△BCE,求出BE=BC=×1000=500米;解Rt△CDF,求出
CF=CD=500米,则DA=BE+CF=(500+500)米.
试题解析:如图,过B作AB的垂线,过C作AB的平行线,两线交于点E;过C作AB的垂线,过D作AB的平行线,两线交于点F,则∠E=∠F=90°,拦截点D处到公路的距离DA=BE+CF.
在Rt△BCE中,∵∠E=90°,∠CBE=60°,
∴∠BCE=30°,
∴BE=BC=×1000=500米;
在Rt△CDF中,∵∠F=90°,∠DCF=45°,CD=BC=1000米,
∴CF=CD=500米,
∴DA=BE+CF=(500+500)米,
故拦截点D处到公路的距离是(500+500)米.
考点:解直角三角形的应用-方向角问题.
12.如图,在航线l 的两侧分别有观测点A 和B ,点B 到航线l 的距离BD 为4km ,点A 位于点B 北偏西60°方向且与B 相距20km 处.现有一艘轮船从位于点A 南偏东74°方向的C 处,沿该航线自东向西航行至观测点A 的正南方向E 处.求这艘轮船的航行路程CE 的长度.(结果精确到0.1km )(参考数据:3≈1.73,sin74°≈0.96,cos74°≈0.28,tan74°≈3.49)
【答案】20.9km
【解析】
分析:根据题意,构造直角三角和相似三角形的数学模型,利用相似三角形的判定与性质和解直角三角形即可.
详解:如图,
在Rt △BDF 中,∵∠DBF=60°,BD=4km ,
∴BF=
cos 60BD o
=8km , ∵AB=20km ,
∴AF=12km , ∵∠AEB=∠BDF ,∠AFE=∠BFD ,
∴△AEF ∽△BDF ,
∴
AE BD AF BF
, ∴AE=6km , 在Rt △AEF 中,CE=AE•tan74°≈20.9km .
故这艘轮船的航行路程CE 的长度是20.9km .
点睛:本题考查相似三角形,掌握相似三角形的概念,会根据条件判断两个三角形相似.。