第6章 机床的结构与传动.ppt

合集下载

机床数控技术:第6章 数控伺服系统

机床数控技术:第6章 数控伺服系统
30
6.2 伺服电动机
伺服电动机是数控伺服系统的重要组成部分, 是速度和轨迹控制的执行元件。
数控机床中常用的伺服电机: ● 直流伺服电机(调速性能良好) ● 交流伺服电机(主要使用的电机) ● 步进电机(适于轻载、负荷变动不大) ● 直线电机(高速、高精度)
31
6.2.1 直流伺服电机及工作特性
6.1 概述
伺服系统的性能直接关系到数控机床执行件的 静态和动态特性、工作精度、负载能力、响应快慢 和稳定程度等。所以,至今伺服系统还被看做是一 个独立部分,与数控装置和机床本体并列为数控机 床的三大组成部分。
按ISO标准,伺服系统是一种自动控制系统,其 中包含功率放大和反馈,从而使得输出变量的值紧 密地响应输入量的值。
数控机床常用的直流电动机有: ●直流进给伺服系统:永磁式直流电机; ●直流主轴伺服系统:励磁式直流电机;
图6.5 直流伺服驱动系统的一般结构
32
6.2.1 直流伺服电机及工作特性
直流电动机原理
根据法拉第电磁感应定理 当载流导体位于磁场中,导
体上受到的电磁力F:
F = B ×L× i
B:磁场的磁通密度; L: 导体长度; i:导体中的电流。 F、B、i之间的方向关 系可用左手定则确定。
29
6.1 概述
6.1.4 伺服系统的发展 由于直流电动机存在换向火花和电刷磨损等问题
,美国通用电气(GE)公司于1983年研制成功采用 笼型异步交流伺服电动机的交流伺服系统。采用 矢量变换控制变频调速,使交流电动机具有和直 流电动机—样的控制性能,又具有机构简单、可 靠性高、成本低,以及电动机容量不受限制和机 械惯性小等优点。 日本于1986年又推出了全数字交流伺服系统。
28

机械设计基础.第六章_间歇运动机构

机械设计基础.第六章_间歇运动机构

21 2 2
2
运动关系(运动特性系数τ ):
tm 21 z 2 t 2 2z
讨论:τ >0,z≥3
21 z 2 2 2z
(2)销数 K
在0~0.5 之间,运动时间小于 静止时间。
K ( z 2) 2z
讨论:τ <1 常用K=1
§6-1 棘轮机构
组成:棘轮机构主要由
棘轮2、驱动棘爪3、摇杆1、 止动爪5和机架等组成 。
工作原理: 原动件1逆时针摆动时,棘轮逆时针转动 原动机1顺时针摆动时,棘轮不动
类型1:运动形式来分
单动式棘轮机构(转动、移动) 齿式棘轮机构 双动式棘轮机构 可变向棘轮机构
棘条机构(移动) 钩头双动式棘轮机构
运动;
加工复杂;
刚性冲击,不适于高速。
应用于计数器、电影放映机和某些具 有特殊运动要求的专业机械中。
§ 6-4 凸轮式间歇机构(不讲)
图6-11 圆柱形凸轮间歇运动机构
此机构实质上为一个摆 杆长度为R2、只有推程 和远休止角的摆动从动 件圆柱凸轮机构。
蜗杆凸轮分度机构
凸轮如蜗杆,滚子如涡 轮的齿。
作业:
6-2、6-3
2z K z2
增加径向槽数z可以增加机构运动的平稳性,但是机构尺寸 随之增大,导致惯性力增大。一般取 z = 4~8。

几何尺寸计算,学会参考机械设计手册
§6-3. 不完全齿轮机构
不完全齿轮机构是由普通齿轮机构演化而成。如图 所示,主动轮1为只有一个齿或几个齿的不完全齿轮, 从动轮2由正常齿和带锁止弧的厚齿彼此相间组成。
(2)制动机构
在卷扬机中通过棘轮机构实现制动功能,防止
链条断裂时卷筒逆转。

第6章 数控机床的机械结构

第6章 数控机床的机械结构

1.滚珠丝杠的结构组成
滚珠丝杠由丝杠、螺母、滚珠和滚珠返回装置四 部分组成。按照滚珠的循环方式,滚珠丝杠螺母副分 内循环方式和外循环方式两大类。 内循环方式指在循环过程中滚珠始终保持和丝杠 接触,如图6.16所示。

图6.16 滚珠丝杠内循环方式 1-丝杠;2-反向器;3-滚珠;4-螺母


2)减少各运动零件的惯量
传动件的惯量对进给系统的启动和制动特性都有 影响,尤其是高速运转的零件,其惯量的影响更大。 3)减少运动件的摩擦阻力 机械传动结构的摩擦阻力,主要来自丝杠螺母副 和导轨。 4)响应速度快 快速响应是伺服系统的动态性能,反映了系统的 跟踪精度。它是工件在加工过程中,工作台在规定的 速度范围内灵敏而精确地跟踪指令,且不出现丢步现 象。
1-主轴 2-同步齿形带 3-主轴电机 4-永久磁铁 5-磁传感器 图6.11 加工中心主轴准停装置
4.主轴部件的结构
(1)数控车床主轴部件的结构 数控车床的主传动系
统一般采用交流无级调速电动机,通过皮带传动,带 动主轴旋转。 图 6.12为数控车床主轴外观图。图 6.13 为数控车床主轴部件的典型结构图。主轴电动机通过 带轮15把运动传给主轴7。
1. 齿轮变速的主传动方式
如图6.6(a)所示,主轴电机经过二级齿轮变速, 使主轴获得低速和高速两种转速系列,这种分段无级 变速,确保低速时的大扭矩,满足机床对扭矩特性的 要求,是大中型数控机床采用较多的一种配置方式。
2. 带传动主传动方式
如图6.6(b)所示,主轴电机经带传动传递给主轴, 带传动主要采用 V型带或齿形带传动,可以避免齿轮 传动时引起的振动与噪声,且其结构简单、安装调试 方便,应用广泛。
1.主轴部件的支承与润滑 根据主轴部件的工作精度、刚度、温升和结构的

数控机床电气控制第六章

数控机床电气控制第六章

第六章 检测装置
6.5 光栅 6.5.1 光栅结构与工作原理 无论是长光栅或圆光栅,主要由标尺光栅和光栅读数头两部分组成。通常,标尺光栅固定在机床活动部 件(如工作台或丝杠)上,光栅读数头安装在机床的固定部件(如机床底座)上,两者由于工作台的移动而 雨相对移动。在光栅读数头中,有一个指示光栅,它可以随光栅读数头在标尺光栅上移动,因此,在光栅安 装时,必须严格保证标尺光栅和指示光栅的平行度要求以及二者之间的间隙(通常取 0.05mm 或 0.lmm)要 求。 1 结构 (1)光栅尺 标尺光栅和指示光栅,统称光栅尺,采用真空镀膜方法光刻上均匀密集线纹的透明玻璃板或长条形金属 镜面。对于长光栅,这些线纹相互平行、距离相等,该间距被称为栅距。对于圆光栅,这些线纹是等栅距角 的向心条纹。栅距和栅距角是决定光栅光学性质的基本参数。常见的长光栅的线纹密度为每毫米 25 条、50 条、 条、 条、 条。 100 125 250 对于圆光栅, 如果直径为 70mm, 一周内的刻线 100~768 条; 如果直径为 110mrn, 一周内的刻线 600~1024 条。但是对于同一光栅元件,其标尺光栅和指示光栅的线纹密度必须相同。
Hale Waihona Puke 第六章 检测装置图 6-3 绝对式光电编码器的结构图 由于绝对式光电编码器转过的圈数由 RAM 保存,所以断电后机床的位置即使断电或断电后又移动过也 能够正常工作。
第六章 检测装置
6.3 感应同步器 6.3.1 感应同步器结构与工作原理 1.结构特点 直线式感应同步器由定尺和滑尺组成,相当于一个展开式的多极旋转变压器,其结构如图 6-4 所示。定 尺和滑尺的基板由与机床线胀系数相近的钢板制成,钢板上用绝缘粘接剂贴有钢箔,利用照相腐蚀的办法做 成图示的印刷线路绕组。感应同步器定尺绕组是一个单向均匀的连续绕组;滑尺有两个绕组,其位置相距绕 组节距(2 )的 1/4,分别称为正弦绕组和余弦绕组。定尺和滑尺绕组的节距相等,均为 2 ,这是衡量感 应同步器精度的主要参数,工艺上要保证其节距的精度。一块标准型感应同步器定尺长度为 250mm,节距 为 2mm,其绝对精度可达 2.5 m,分辨率为 0.25 m。

数控机床加工工艺第6章数控铣床加工工艺PPT课件

数控机床加工工艺第6章数控铣床加工工艺PPT课件

(2)零件尺寸所要求的加工精度、尺寸公差是否都可 以得到保证?
(3)内槽及缘板之间的内转接圆弧是否过小?
(4)零件铣削面的槽底圆角或腹板与缘板相交处的圆 角半径r是否太大?
(5)零件图中各加工面的凹圆弧(R与r)是否过于零乱, 是否可以统一?
(6)零件上有无统一基准以保证两次装夹加工后其相 对位置的正确性?
(3)零件铣槽底平面时,槽底圆角半径r不要
过大。 (4)应采用统一的基准定位。在有关的铣削件
的结构工艺性实例见表6-1。
(a) R较小
(b) R较大
图6-11 内槽结构工艺性对比
(a) r较小
(b) r较大
图6-12 零件槽底平面圆弧对铣削工艺的影响
3.零件毛坯的工艺性分析
(1)毛坯应有充分、稳定的加工余量。 经验表明,数控铣削中最难保证的是加工 面与非加工面之间的尺寸,在零件图样注 明的非加工面处也增加适当的余量。
(2)平面加工方法的选择 在数控铣床上加工平面主要采用端铣 刀和立铣刀加工。粗铣的尺寸精度和表面粗糙度一般可达
IT11~IT13,Ra6.3~25;精铣的尺寸精度和表面精糙度一 般可达IT8~IT10,Ra1.6~6.3。
(3)平面轮廓加工方法的选择通常采用3坐标数控铣床进行两轴 半坐标加工。
(4)固定斜角平面加工方法的选择 固定斜角平面是与水平成成 一固定夹角的斜面,常用的加工方法如下:
1.加工方法的选择
对于数控铣床,应重点考虑几个方面:能保证零件的加工精 度和表面粗糙度的要求;使走刀路线最短,既可简化程序段, 又可减少刀具空行程时间,提高加工效率;应使数值计算简 单,程序段数量少,以减少编程工作量。
(1)内孔表面加工方法的选择
在数控铣床上加工内孔表面加工方法主要有钻孔、扩孔、铰 孔、镗孔和攻丝等,应根据被加工孔的加工要求、尺寸、具 体生产条件、批量的大小及毛坯上有无预制孔等情况合理选 用。

机械设计基础第6章齿轮传动

机械设计基础第6章齿轮传动

2.展成法 2.展成法 展成法是利用一对齿轮(或齿轮与齿条)啮合时, 两轮齿廓互为包络线的原理来切制轮齿的加工方法 展成法切制齿轮时常用的刀具有 齿轮插刀
插直齿
插斜齿
齿条插刀
齿轮滚刀
用此方法加工齿轮,只要刀具和 被加工齿轮的模数m和压力角α 相等,则不管被加工齿轮的齿数 是多少,都可以用同一把刀具来 加工。这给生产带来很大的方便, 得到广泛应用。
3.传动的平稳性
啮合线:N1N2线叫做渐开线齿轮 啮合线 传动的啮合线。 啮合角:啮合线N1N2与两轮节圆 啮合角 公切线t-t之间所夹的锐角称为啮 合角,用α′表示。 啮合角在数值上等于渐开线在节 圆处的压力角。啮合角α′恒定。 啮合线N1N2又是啮合点的公法线, 而齿轮啮合传动时其正压力是沿公 法线方向的,故齿廓间的正压力方 向(即传力方向)恒定。 至此可知,啮合线、公法线、 压力线和基圆的内公切线四线重合, 为一定直线。
渐开线标准直齿圆柱齿 轮各部分的名称和符号
4.齿厚:分度圆上一个齿的两侧端面齿廓之间的弧长称为 齿厚,用s表示 5.齿槽宽:分度圆上一个齿槽的两侧端面齿廓之间的弧 长称为齿槽宽,用e表示 6.齿距:分度圆上相邻两齿同侧端面齿廓之间的弧长称 为齿距,用p表示,即p=s+e 7.齿宽:轮齿部分沿齿轮轴线方向的宽度称为齿宽,用b 表示 8.齿顶高:分度圆与齿顶圆之间的径向距离,用ha表示 9.齿根高:分度圆与齿根圆之间的径向距离,用hf表示 10全齿高:齿顶圆与齿根圆之间的径向距离,用h表示 显然 h=ha+hf 11.齿宽:轮齿的轴向长度,用b表示
(3)齿数 因db=dcosα=mzcosα,只有m、z、α都确 定了,齿轮的基圆直径db 才能确定,同时渐 开线的形状亦才确定。 所以m、z、α是决定轮齿渐开线形状的三个 基本参数。当m、α不变时,z越大,基圆越大, 渐开线越平直。当z→∞时,db→∞,渐开线 变成直线,齿轮则变成齿条 (4)齿顶高系数ha*和顶隙系数c* 齿轮的齿顶高、齿根高都与模数m成正比。 即ha=ha*mhf=(ha*+c*)mh=(2ha*+c*)m

机床工作原理图

机床工作原理图

机床工作原理图机床是制造业中常见的一种设备,用于对工件进行切削、成型、打磨等加工操作。

机床工作原理图是描述机床内部结构和工作原理的图示,通过机床工作原理图可以清晰地了解机床的工作方式和各部件之间的关系。

1. 机床结构机床通常由主要部件和辅助部件组成。

主要部件包括床身、立柱、横梁、主轴、进给系统等,而辅助部件则包括润滑系统、冷却系统、控制系统等。

•床身:承载整个机床的重量,通常由铸铁等材料制成,稳定性好。

•立柱:连接床身和横梁的纵向结构,起支撑和固定作用。

•横梁:连接立柱并支撑主轴等工作部件,横向移动时起到导向作用。

•主轴:通过主轴驱动刀具进行旋转运动,实现工件的切削加工。

•进给系统:控制工件和刀具之间的进给速度和进给方向,实现工件的加工。

2. 工作原理机床的工作原理可以分为以下几个步骤:1.设定加工参数:操作人员根据工件要求设定加工参数,包括切削速度、进给速度、切削深度等。

2.启动机床:操作人员通过控制系统启动机床,调整各部件位置,准备开始加工。

3.主轴启动:主轴开始旋转,带动刀具对工件进行切削,根据加工参数调整主轴转速。

4.进给系统:根据加工要求,进给系统控制工件和刀具之间的进给速度和进给方向,实现工件的加工。

5.加工完成:当工件加工完毕后,机床停止工作,操作人员取出加工好的工件,进行下一步处理。

3. 应用领域机床广泛应用于各种工业领域,如汽车制造、航空航天、模具制造等。

在制造业中,机床是不可或缺的设备之一,能够实现对各种材料的精密加工,提高生产效率和加工质量。

4. 发展趋势随着工业自动化和智能化的发展,现代机床趋向于智能化、自动化。

机床控制系统越来越智能化,具备自学习、自适应和远程监控功能,提高了生产效率和加工精度。

通过机床工作原理图的解析,我们可以更好地了解机床的结构和工作原理,为我们在实际生产加工中提供指导和参考。

机床作为制造业的重要设备,将继续发挥其重要作用,推动制造业的发展和进步。

6--机床数控技术-第6章--数控反馈测量元件-jin2

6--机床数控技术-第6章--数控反馈测量元件-jin2
码盘与工作轴连在一起 ,码盘转动时,每转过一个缝隙就发生一次光线的 明暗变化,光电元件把通过码盘和光栏板射来的忽明忽暗的光信号转换为 近似正弦波的电信号,经过整形、放大、和微分处理后,输出脉冲信号。 通过记录脉冲的数目,就可测出转角;记录脉冲的频率,就可测出转轴速 度;测量A组与B组信号相位的超前或滞后确定被测轴的旋转方向。
6.3.1
旋转变压器的结构
旋转变压器是一种小型交流电机。在结构上与两相绕组式异步 电动机相似,由定子和转子组成,定子绕组为变压器的原边,转子 绕组为变压器的副边。激磁电压接到定子绕组上,激磁频率通常为 400Hz、500Hz、1000Hz、3000Hz、5000Hz等。
2
3
5
6
1
8
47
1—转子轴; 2—壳体;3—分解器定子; 4—变压器定子; 5—变压器一次线 圈;6—变压器转子线轴; 7—变压器二次线圈;8—分解器转子。 旋转变压器结构示意图
6.1 位置测量装置概述
6.1.1 数控机床对检测装置的要求
6.1.2
位置检测装置分类

6.1 位置测量装置概述
6.1.1 数控机床对检测装置的要求
数控机床对检测装置的主要要求有如下几个方面: 1.工作可靠,抗干扰能力强; 2.满足测量精度、检测速度和测量范围的要求; 3.易于实现高速的动态测量和处理,利于实现自动化; 4.易于安装,使用维护方便; 5.成本低。
误差控制在最小单位上。但编码与位置循序无直接规律。
1110
1001 1000 0000 000210
0001 0000 1111 1110
21
22
23
2-3 2+2E
21
20
1111 1110 1010 1011 0101 0100 0011 0010 111 1110 1010 1011

机械制造工程之第六章 齿轮

机械制造工程之第六章 齿轮
(1)展成运动传动链 (2)主运动传动链 (3)轴向进给运动传动链
依照交错轴螺旋 齿轮啮合原理。滚齿时的 成形运动是滚刀旋转运动 和工件旋转运动组成的复 合运动,这个复合运动称 为展成运动。再加上滚刀 沿工件轴线垂直方向的进 给运动,就可切出整个齿 长。
图6-1 滚齿原理
1-滚刀;2-工件
图6-2 滚切直齿圆柱齿轮的传动原理图
磨齿加工主要用于对高精度齿轮或淬硬的齿 轮进行齿形的精加工,齿轮的精度可达6级或更高 常用的齿面精加工方法有剃齿、珩齿和磨齿等方法。 (1)展成法磨齿方法 1)连续分度展成法磨齿 2)单齿分度展成法磨齿 。

1)连续分度 展成法磨齿


连续分度展成法 磨齿是利用蜗杆形砂 轮的刀具磨削齿轮的 轮齿,其加工过程和 滚齿相同,如图6-17
机床的传动系统分析
(1)范成运动传动链 1、两末端件:
滚刀——工件
2、运动比例(位移):滚刀转Zx/K转——工件转1转 3、运动平衡式
(Zx/K)*i1*i2*i3*i4.i合成。。。*in =工件转1转
(2)主运动传动链
1、两末端件:
主电动机——滚刀
2、运动比例(位移):n电动机(r/min)——n滚刀(r/min)
3. 滚切斜齿圆柱齿轮
(1)机床的运动和传动原理图
(2)差动运动传动链
图2-60 滚切斜齿圆柱齿轮的传动原理图
二、插齿机 1. 插齿原理 2. 插齿机的传动原理
(1)展成运动传动链 (2)主运动传动链 (3)圆周进给运动传动链
插齿机加工原 理类似一对圆柱齿轮相啮 合,其中一个是工件,另 一个是具有齿轮形状的插 齿刀。
滚刀移动一个工件螺旋线导程 S 时,工件应准 确地附加转过1转。

液压与气压传动课件第6章1-3节

液压与气压传动课件第6章1-3节

“死点”;若工作台运动速度较高,虽能克服死点,但因换向过快,由于运 动惯性而引起冲击,这也不能满足磨床换向性能的要求。
采用电磁换向阀换向,因换向时间短(0.08~0.15s),换向冲击更严重。 采用机动—液动换向阀来换向,这是磨床工作台换向回路中常采用的一 种换向形式。它一般由机动阀作先导阀,与液动阀组成一个换向回路—操纵 箱,这种操纵箱有时间控制式和行程控制式两种。 行程控制式操纵箱如图6-4所示,主要由起先导作用的机动阀和主液动阀 组成。
YT4543型液压动力滑台特点和组成
现以YT4543型液压动力滑台为例分析其工作原理和特点:该动力滑台要
求进给速度范围为(0.11~11)×10-3m/s,最大进给力为4.5×104 N。
图6-1是YT4543型动力滑台的液压系统原理图,该系统用限压式变量泵供
油、 电液换向阀换向、 液压缸差动连接来实现快进。 用行程阀实现快进与
同时左腔内的回油经单向阀10、阀B直接流回油箱。
6.原位停止
退回原位时,使电磁铁2YA失电,液动阀回中间位置,
滑台停止在原位。液压泵输出的油液经换向阀7直接回到油箱,液压泵卸荷。
YT4543型动力滑台液压系统的特点
1.系统采用了限压式变量叶片泵和调速阀组成的进油路容积节流调速回路, 并在回油路上设置了背压阀,这种回路能使滑台得到稳定的低速运动和较好 的速度一负载特性,并且系统的效率较高。回油路中设置背压阀,是为了改 善滑台运动的平稳性。
砂轮架的快速进、退由二位四通手动换向阀H控制。 (五)砂轮架的周期进给运动 砂轮架周期进给是在工作台往复运动行程终了,工作台反向起动之前进 行的。周期进给有双向进给、左端进给、右端进给和无进给四种方式,通过 进给选择阀进行控制。 (六)尾座顶尖的液动退出 尾座顶尖平时靠弹簧力作用而顶在工件上,只有在砂轮架处于退出位置时, 尾座顶尖才能松开。 (七)机床的润滑 液压泵输出的压力油经精过滤器后分成更两路,一路进入先导阀作为控 制压力油,另一路进入润滑调节器作为润滑油。 (八)压力的测量 系统中各点压力,可转动压力表开关通过压力表进行测量。如:在压力 表开关处于左位时测出润滑系统的压力,而在右位时则可测出的是系统的工 作压力。

1.2.1CA6140车床传动原理图

1.2.1CA6140车床传动原理图
在车床上使用的刀具,主要是各种车刀,有些车 床还可以使用各种孔加工刀具(如钻头、扩孔钻、铰 刀等)和螺纹刀具。图1.1.1 是卧式车床所能加工的 典型表面。
返回第一张 上一张幻灯片 下一张幻灯片
图1.1. 卧式车床所能加工的典型零件 返回第一张 上一张幻灯片 下一张幻灯片
1.1.2 车床种类
车床的种类很多,按其结构和用途可分为以下几类: ① 卧式车床

130 230

(1


)uⅠⅡ

uⅡⅢ

uⅢⅥ
(3)转速值计算
返回第一张 上一张幻灯片 下一张幻灯片
一、进给传动系统的分析 1.车削螺纹(米制、英制、模数和径节四种螺纹)
运动平衡式: 1(主轴) u L丝 P
(1)米制螺纹加工 (2)英制螺纹加工 (3)模数螺纹加工 (4)径节螺纹加工
卡盘
返回第一张 上一张幻灯片 下一张幻灯片
5、变速操纵机构
返回第一张 上一张幻灯片 下一张幻灯片
展开图的剖切面
返回第一张 上一张幻灯片 下一张幻灯片
CA6140型卧式车床主轴箱展开图 返回第一张 上一张幻灯片 下一张幻灯片
1、卸荷式带轮
带轮与花键套用螺钉连接 成一体,支承在法兰内的 两个深沟球轴承上,而法 兰则固定在主轴箱体上。 这样,带轮可通过花键套 带动轴I旋转,而带的拉力 则经法兰直接传至箱体 (卸下了径向载荷)。从 而避免因拉力而使轴I产生 弯曲变形,提高了传动平 稳性。卸荷式带轮特别适 用于要求传动平稳性高的 精密机床。
P

1(主轴)
58 58

33 63 100 1 33 100 75 u j

36 25

ub
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
»齿差调隙 »垫片调隙 »双螺母调隙
滚珠丝杠螺母幅轴向间隙
滚珠丝杠的选定
根据机床的精度要求来选用滚珠丝杠的 精度
根据机床的载荷来选定丝杠的直径 并且要验算丝杠扭转刚度、压曲刚度与
工作寿命。
滚珠丝杠的支承方式
丝杠的预拉伸
为补偿热膨胀,将丝杠预拉伸,预拉伸 量应略大于热膨胀量,发热后热膨胀量 抵消了部分预拉伸量,使丝杠的拉应力 下降,长度却没有变化。
数控机床主运动的参数
– 主轴转速和调速范围 – 主运动功率、扭矩特性
数控机床主运动的传动与变速
– 传动形式 – 自动变速
主轴转速和调速范围
主轴转速n(r/min) 主轴最低和最高转速:
调速范围:
主运动的功率、扭矩特性
主轴功率: 功率、扭矩特性图
主运动的传动形式
主传动的自动变速
目标行程=公称行程-预拉伸量
预拉伸结构图
滚珠丝杠的制动
滚珠丝杠的防护
贴塑导轨
滚动导轨
直齿轮偏心轴套式消除间隙结构
锥度齿轮式垫片消除间隙结构
斜齿轮消除间隙结构(双片薄齿轮+垫片)
双齿轮错齿式消除间隙结构
压力弹簧式消除间隙结构
碟型弹簧消除间隙结构
齿差调隙
垫片调隙
双螺母调隙
6.2 数控机床本体组成部分
6.2 数控机床本体组成部分
基本部件
– 主传动系统 – 进给系统 – 基础件 – 辅助装置
扩展部件
– 回转、分度定位装置
– 库、刀架、自动换 刀装置(ATC)
– 自动托盘交换装置 (APC)
– 特殊功能装置
要求:静刚度、抗振性、热稳定性、低速运动平稳 性、运动时的摩擦特性、几何精度、传动精度
数控机床机械部分要求
高刚度
– 静、动刚度 – 比普通机床高50% – 构件结构形式
高精度
– 使用高精度部件 – 缩短传动链 – 采用消除间隙和预紧 – 减小机床热变形影响
高速度
– 主轴转速、进给速度、 换刀时间
– 使用变速范围大的伺 服电动机,达到无极 调速
低摩擦
– 利用滚动副
6.3 数控机床主传动系统
– 锥度齿轮压力弹簧 式
– 斜齿轮碟型弹簧式
连轴节
伺服电机与丝杠直接相联
滚珠丝杠螺母副
滚珠的循环方式:
– 外循环方式 – 内循环方式
滚珠丝杠螺母副的预紧
轴向间隙:
– 丝杠和螺母无相对 转动时,丝杠和螺 母之间的最大轴向 串动。
消除方法:预紧
– 单螺母结构:
»微量过盈滚珠
– 双螺母结构
液压变速机 构
电磁离合器 变速
6.4 数控机床进给传动系统
无极调速
电机 → 齿轮副
→ 滚珠丝杠螺母副
带轮传动副
齿轮齿条副
联轴节
→工作台移动(导轨)
进给系统传动齿轮间隙的消除
刚性调整法
– 直齿轮偏心轴套式
– 锥度齿轮垫片调整 式
– 斜齿轮(双片薄齿 轮+垫片)式
柔性调整法
– 直齿轮双齿轮错齿 式
数控机床的机械传动结构
机械结构与间隙调整
机床误差来源
电机本身的制造误差 齿轮间隙(反向) 齿轮齿距误差 轴承间隙(止推轴承) 丝杠螺母副间隙 丝杠导程误差 工作台的摩擦特性 机械部件变形
6.1 数控机床的布局
数控车床 加工中心 五面体加工中心 五坐标数控机床
数控车床布局
加工中心布局
五面体加工中心布局1
五面体加工中心布局2
五坐标数控机床布局
相关文档
最新文档