石河子市二中2018-2019学年上学期期中高考数学模拟题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
石河子市二中2018-2042学年上学期期中高考数学模拟题 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)
1. 若,m n 是两条不同的直线,,,αβγ是三个不同的平面,则下列为真命题的是( ) A .若,m βαβ⊂⊥,则m α⊥ B .若,//m m n α
γ=,则//αβ
C .若,//m m βα⊥,则αβ⊥
D .若,αγαβ⊥⊥,则βγ⊥
2. 已知
22(0)()|log |(0)
x x f x x x ⎧≤=⎨
>⎩,则方程[()]2f f x =的根的个数是( )
A .3个
B .4个
C .5个
D .6个
3. 已知向量=(1,2),=(x ,﹣4),若∥,则x=( ) A . 4 B . ﹣4 C . 2 D . ﹣2
4. 若集合A ={-1,1},B ={0,2},则集合{z|z =x +y ,x ∈A ,y ∈B}中的元素的个数为( )
A5 B4 C3 D2
5. 设a ,b ∈R ,i 为虚数单位,若2+a i
1+i =3+b i ,则a -b 为( )
A .3
B .2
C .1
D .0
6. 已知函数21
1,[0,)22
()13,[,1]
2
x x f x x x ⎧+∈⎪⎪=⎨⎪∈⎪⎩,若存在常数使得方程()f x t =有两个不等的实根12,x x
(12x x <),那么12()x f x ∙的取值范围为( )
A .3[,1)4 B
.1[8 C .31[,)162 D .3[,3)8
7. 已知点P 是双曲线C :22
221(0,0)x y a b a b
-=>>左支上一点,1F ,2F 是双曲线的左、右两个焦点,且
12PF PF ⊥,2PF 与两条渐近线相交于M ,N 两点(如图),点N 恰好平分线段2PF ,则双曲线的离心率
是( ) A.5
B.2
D.2
【命题意图】本题考查双曲线的标准方程及其性质等基础知识,意在考查运算求解能力. 8. 已知全集R U =,集合{|||1,}A x x x R =≤∈,集合{|21,}x B x x R =≤∈,则集合U A C B 为( )
A.]1,1[-
B.]1,0[
C.]1,0(
D.)0,1[- 【命题意图】本题考查集合的运算等基础知识,意在考查运算求解能力.
9. 若当R x ∈时,函数||)(x a x f =(0>a 且1≠a )始终满足1)(≥x f ,则函数3
|
|log x x y a =的图象大致是 ( )
【命题意图】本题考查了利用函数的基本性质来判断图象,对识图能力及逻辑推理能力有较高要求,难度中等. 10.拋物线E :y 2=2px (p >0)的焦点与双曲线C :x 2-y 2=2的焦点重合,C 的渐近线与拋物线E 交于非原点的P 点,则点P 到E 的准线的距离为( ) A .4 B .6 C .8
D .10
11.已知实数y x ,满足不等式组⎪⎩
⎪
⎨⎧≤-≥+≤-5342
y x y x x y ,若目标函数mx y z -=取得最大值时有唯一的最优解)3,1(,则
实数m 的取值范围是( )
A .1-<m
B .10<<m
C .1>m
D .1≥m
【命题意图】本题考查了线性规划知识,突出了对线性目标函数在给定可行域上最值的探讨,该题属于逆向问
题,重点把握好作图的准确性及几何意义的转化,难度中等.
12.若关于x 的不等式07|2||1|>-+-++m x x 的解集为R ,则参数m 的取值范围为( ) A .),4(+∞ B .),4[+∞ C .)4,(-∞ D .]4,(-∞
【命题意图】本题考查含绝对值的不等式含参性问题,强化了函数思想、化归思想、数形结合思想在本题中的应用,属于中等难度.
二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)
13.已知圆22240C x y x y m +-++=:,则其圆心坐标是_________,m 的取值范围是________. 【命题意图】本题考查圆的方程等基础知识,意在考查运算求解能力.
14.已知实数x ,y 满足2330220y x y x y ≤⎧⎪
--≤⎨⎪+-≥⎩
,目标函数3z x y a =++的最大值为4,则a =______.
【命题意图】本题考查线性规划问题,意在考查作图与识图能力、逻辑思维能力、运算求解能力. 15.设向量a =(1,-1),b =(0,t ),若(2a +b )·a =2,则t =________.
16.若x ,y 满足约束条件⎩⎪⎨⎪
⎧x +y -5≤0
2x -y -1≥0x -2y +1≤0
,若z =2x +by (b >0)的最小值为3,则b =________.
三、解答题(本大共6小题,共70分。
解答应写出文字说明、证明过程或演算步骤。
)
17.(本小题满分12分)
已知函数2
1()(3)ln 2
f x x a x x =+-+. (1)若函数()f x 在定义域上是单调增函数,求的最小值;
(2)若方程2
1()()(4)02f x a x a x -+--=在区间1[,]e e
上有两个不同的实根,求的取值范围.
18.如图1,∠ACB=45°,BC=3,过动点A 作AD ⊥BC ,垂足D 在线段BC 上且异于点B ,连
接AB ,沿AD 将△ABD 折起,使∠BDC=90°(如图2所示),
(1)当BD 的长为多少时,三棱锥A ﹣BCD 的体积最大;
(2)当三棱锥A ﹣BCD 的体积最大时,设点E ,M 分别为棱BC ,AC 的中点,试在棱CD 上确定一点N ,使得EN ⊥BM ,并求EN 与平面BMN 所成角的大小。
19.(本小题满分12分)△ABC 的三内角A ,B ,C 的对边分别为a ,b ,c ,AD 是BC 边上的中线.
(1)求证:AD =1
2
2b 2+2c 2-a 2;
(2)若A =120°,AD =192,sin B sin C =3
5,求△ABC 的面积.
20.(本小题满分10分)选修4—4:坐标系与参数方程
以坐标原点为极点,以x 轴的非负半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为方程为r (],0[πθ∈),直线l 的参数方程为2t cos 2sin x y t a
a
ì=+ïí
=+ïî(t 为参数).
(I )点D 在曲线C 上,且曲线C 在点D 处的切线与直线+2=0x y +垂直,求点D 的直角坐标和曲线C 的参数方程;
(II )设直线l 与曲线C 有两个不同的交点,求直线l 的斜率的取值范围.
21.(本小题满分12分)某旅行社组织了100人旅游散团,其年龄均在[10,60]岁间,旅游途中导游发现该旅游散团人人都会使用微信,所有团员的年龄结构按[10,20),[20,30),[30,40),[40,50),[50,60]分成5组,分别记为,,,,A B C D E ,其频率分布直方图如下图所示.
(Ⅰ)根据频率分布直方图,估计该旅游散团团员的平均年龄;
(Ⅱ)该团导游首先在,,C D E 三组中用分层抽样的方法抽取了6名团员负责全团协调,然后从这6名团员中
随机选出2名团员为主要协调负责人,求选出的2名团员均来自C 组的概率.
22.(本小题满分12分)已知12,F F 分别是椭圆C :22221(0)x y a b a b +=>>的两个焦点,(1,
2
P 是椭圆上
1122|,||PF F F PF 成等差数列.
(1)求椭圆C 的标准方程;、
(2)已知动直线l 过点F ,且与椭圆C 交于A B 、两点,试问x 轴上是否存在定点Q ,使得7
16
QA QB ⋅=-恒成立?若存在,求出点Q 的坐标;若不存在,请说明理由.
石河子市二中2018-2042学年上学期期中高考数学模拟题(参考答案)
一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)
1. 【答案】C 【解析】
试题分析:两个平面垂直,一个平面内的直线不一定垂直于另一个平面,所以A 不正确;两个平面平行,两个平面内的直线不一定平行,所以B 不正确;垂直于同一平面的两个平面不一定垂直,可能相交,也可能平行,所以D 不正确;根据面面垂直的判定定理知C 正确.故选C . 考点:空间直线、平面间的位置关系. 2. 【答案】C
【解析】由[()]2f f x =,设f (A )=2,则f (x )=A,则2log 2x =,则A=4或A=1
4
,作出f (x )的图像,由数型结合,当A=1
4
时3个根,A=4时有两个交点,所以[()]2f f x =的根的个数是5个。
3. 【答案】D
【解析】: 解:∵∥, ∴﹣4﹣2x=0,解得x=﹣2. 故选:D . 4. 【答案】C
【解析】由已知,得{z|z =x +y ,x ∈A ,y ∈B}={-1,1,3},所以集合{z|z =x +y ,x ∈A ,y ∈B}中的元素的个数为3. 5. 【答案】
【解析】选A.由2+a i
1+i
=3+b i 得,
2+a i =(1+i )(3+b i )=3-b +(3+b )i , ∵a ,b ∈R ,
∴⎩⎪⎨⎪⎧2=3-b a =3+b
,即a =4,b =1,∴a -b =3(或者由a =3+b 直接得出a -b =3),选A. 6. 【答案】C 【解析】
试题分析:由图可知存在常数,使得方程()f x t =有两上不等的实根,则
314t <<,由1324x +=,可得1
4x =,
由2
13x =,可得x =12111,422x x ≤<≤≤,即221143x ≤≤,则
()212123133,162x f x x x ⎡⎫
=⋅∈⎪⎢⎣⎭
.故本题答案选C.
考点:数形结合.
【规律点睛】本题主要考查函数的图象与性质,及数形结合的数学思想方法.方程解的个数问题一般转化为两个常见的函数图象的交点个数问题来解决.要能熟练掌握几种基本函数图象,如二次函数,反比例函数,指数函数,对数函数,幂函数等.掌握平移变换,伸缩变换,对称变换,翻折变换,周期变换等常用的方法技巧来快速处理图象.
7. 【答案】A.
8. 【答案】C.
【解析】由题意得,[11]
A =-,,(,0]
B =-∞,∴(0,1]U A
C B =,故选C.
9. 【答案】C
【解析】由|
|)(x a x f =始终满足1)(≥x f 可知1>a .由函数3
|
|log x
x y a =
是奇函数,排除B ;当)1,0(∈x 时,0||log <x a ,此时0|
|log 3
<=
x
x y a ,排除A ;当+∞→x 时,0→y ,排除D ,因此选C . 10.【答案】
【解析】解析:选D.双曲线C 的方程为x 22-y 22=1,其焦点为(±2,0),由题意得p
2=2,
∴p =4,即拋物线方程为y 2=8x , 双曲线C 的渐近线方程为y =±x ,
由⎩⎪⎨⎪⎧y 2=8x y =±
x ,解得 x =0(舍去)或x =8,则P 到E 的准线的距离为8+2=10,故选D.
11.【答案】C
12.【答案】A
二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)
13.【答案】(1,2)-,(,5)-∞.
【解析】将圆的一般方程化为标准方程,2
2
(1)(2)5x y m -++=-,∴圆心坐标(1,2)-, 而505m m ->⇒<,∴m 的范围是(,5)-∞,故填:(1,2)-,(,5)-∞. 14.【答案】3-
【解析】作出可行域如图所示:作直线0l :30x y +=,再作一组平行于0l 的直线l :3x y z a +=-,当直线
l 经过点5
(,2)3M 时,3z a x y -=+取得最大值,∴max 5()3273
z a -=⨯+=,所以max 74z a =+=,故
3a =-.
15.【答案】
【解析】(2a +b )·a =(2,-2+t )·(1,-1) =2×1+(-2+t )·(-1) =4-t =2,∴t =2. 答案:2 16.【答案】 【解析】
约束条件表示的区域如图, 当直线l :z =2x +by (b >0)经过直线2x -y -1=0与x -2y +1=0的交点A (1,1)时,z min =2+b ,∴2+b
=3,∴b =1. 答案:1
三、解答题(本大共6小题,共70分。
解答应写出文字说明、证明过程或演算步骤。
)
17.【答案】(1);(2)01a <<.1111] 【解析】
则
'()0f x ≥对0x >恒成立,即1
()3a x x
≥-++对0x >恒成立,
而当0x >时,1
()3231x x
-++≤-+=,
∴1a ≥.
若函数()f x 在(0,)+∞上递减,
则'()0f x ≤对0x >恒成立,即1()3a x x
≤-++对0x >恒成立, 这是不可能的. 综上,1a ≥. 的最小值为1. 1
(2)由2
1()()(2)2ln 02
f x a x a x x =-+-+=, 得2
1()(2)2ln 2
a x a x x -+-=,
即2ln x x a x +=,令2ln ()x x r x x +=,233
1(1)2(ln )12ln '()x x x x x x x r x x x +-+--==
, 得12ln 0x x --=的根为1,
考点:1、利用导数研究函数的单调性;2、函数零点问题及不等式恒成立问题.
【方法点晴】本题主要考查利用导数研究函数的单调性、函数零点问题及不等式恒成立问题,属于难题.不等式恒成立问题常见方法:①分离参数()a f x ≤恒成立(min ()a f x ≤即可)或()a f x ≥恒成(max ()a f x ≥即可);②数形结合;③讨论最值min ()0f x ≥或max ()0f x ≤恒成立;④讨论参数.本题(2)就是先将问题转化为不等式恒成立问题后再利用①求得的最小值的.
请考生在第22、23两题中任选一题作答,如果多做,则按所做的第一题记分.解答时请写清题号. 18.【答案】(1)1 (2)60°
【解析】(1)设BD=x ,则CD=3﹣x ∵∠ACB=45°,AD ⊥BC ,∴AD=CD=3﹣x
∵折起前AD ⊥BC ,∴折起后AD ⊥BD ,AD ⊥CD ,BD ∩DC=D ∴AD ⊥平面BCD
∴V A ﹣BCD =×AD ×S △BCD =×(3﹣x )××x (3﹣x )=(x 3﹣6x 2+9x ) 设f (x )=(x 3﹣6x 2+9x ) x ∈(0,3),
∵f ′(x )=(x ﹣1)(x ﹣3),∴f (x )在(0,1)上为增函数,在(1,3)上为减函数 ∴当x=1时,函数f (x )取最大值
∴当BD=1时,三棱锥A ﹣BCD 的体积最大; (2)以D 为原点,建立如图直角坐标系D ﹣xyz ,
19.【答案】 【解析】解:
(1)证明:∵D 是BC 的中点,
∴BD =DC =a
2
.
法一:在△ABD 与△ACD 中分别由余弦定理得c 2
=AD 2
+a 2
4
-2AD ·
a
2
cos ∠ADB ,① b 2=AD 2+a 2
4-2AD ·a 2
·cos ∠ADC ,②
①+②得c 2+b 2=2AD 2+a 2
2
,
即4AD 2=2b 2+2c 2-a 2,
∴AD =1
2
2b 2+2c 2-a 2.
法二:在△ABD 中,由余弦定理得
AD 2=c 2
+a 24-2c ·a 2
cos B
=c 2+a
24-ac ·a 2+c 2-b 22ac
=2b 2+2c 2-a 2
4,
∴AD =1
2
2b 2+2c 2-a 2.
(2)∵A =120°,AD =1219,sin B sin C =3
5,
由余弦定理和正弦定理与(1)可得 a 2=b 2+c 2+bc ,① 2b 2+2c 2-a 2=19,②
b c =3
5
,③ 联立①②③解得b =3,c =5,a =7,
∴△ABC 的面积为S =12bc sin A =12×3×5×sin 120°=153
4.
即△ABC 的面积为15
4 3.
20.【答案】
【解析】【命题意图】本题考查圆的参数方程和极坐标方程、直线参数方程、直线和圆位置关系等基础知识,意在考查数形结合思想、转化思想和基本运算能力.
(Ⅱ)设直线l :2)2(+-=x k y 与半圆)0(22
2
≥=+y y x 相切时
21|22|2
=+-k
k
0142=+-∴k k ,32-=∴k ,32+=k (舍去)
设点)0,2(-B ,2
AB
k =
=-
故直线l 的斜率的取值范围为]22,32(--. 21.【答案】
【解析】【命题意图】本题考查频率分布直方图与平均数、分层抽样、古典概型等基础知识,意在考查审读能力、识图能力、获取数据信息的能力.
22.【答案】
【解析】【命题意图】本题考查椭圆的定义及方程、直线与椭圆的位置关系、平面向量数量积等基础知识,意在考查学生逻辑思维能力、运算求解能力、探索能力,以及分类讨论思想、待定系数法、设而不求法的应用.
下面证明54m =
时,7
16
QA QB ⋅=-恒成立. 当直线l 的斜率为0时,结论成立;
当直线l 的斜率不为0时,设直线l 的方程为1x ty =+,()11,A x y ,()22,B x y ,
由1x ty =+及2
212
x y +=,得22(2)210t y ty ++-=, 所以0∆>,∴12122221
,22
t y y y y t t +=-=-++. 111x ty =+,221x ty =+,
∴112212125511(,)(,)()()4444x y x y ty ty y y -⋅-=--+=2
(1)t +121211()416
y y t y y -++=
222
222
11212217(1)242162(2)1616
t t t t t t t t --+-++⋅+=+=-+++.
综上所述,在x 轴上存在点5(,0)4Q 使得7
16
QA QB ⋅=-恒成立.。