宜昌市高中物理必修3物理 全册全单元精选试卷检测题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

宜昌市高中物理必修3物理 全册全单元精选试卷检测题
一、必修第3册 静电场及其应用解答题易错题培优(难)
1.如图所示,固定于同一条竖直线上的A 、B 是两个带等量异种电荷的点电荷,电荷量分别为+Q 和-Q ,A 、B 相距为2d 。

MN 是竖直放置的光滑绝缘细杆,另有一个穿过细杆的带电小球p ,质量为m 、电荷量为+q (可视为点电荷,不影响电场的分布。

),现将小球p 从与点电荷A 等高的C 处由静止开始释放,小球p 向下运动到距C 点距离为d 的O 点时,速度为v 。

已知MN 与AB 之间的距离为d ,静电力常量为k ,重力加速度为g 。

求: (1)C 、O 间的电势差U CO ;
(2)O 点处的电场强度E 的大小及小球p 经过O 点时的加速度;
【答案】(1) 222mv mgd q - (2)222kQ d ; 2kQq
g + 【解析】 【详解】
(1)小球p 由C 运动到O 的过程,由动能定理得
2
102
CO mgd qU mv +=
- 所以
222CO
m mgd U q
v -=
(2)小球p 经过O 点时受力如图
由库仑定律得
122
(2)F F d ==
它们的合力为
F =F 1cos 45°+F 2cos 45°=Eq
所以O 点处的电场强度
2
2=
2k Q
E d
由牛顿第二定律得:
mg+qE =ma
所以
2k Qq
a g =+
2.竖直放置的平行金属板A 、B 带等量异种电荷(如图),两板之间形成的电场是匀强电场.板间用绝缘细线悬挂着的小球质量m=4.0×10-5kg ,带电荷量q=3.0×10-7C ,平衡时细线与竖直方向之间的夹角α=37°.求:
(1)A 、B 之间匀强电场的场强多大?
(2)若剪断细线,计算小球运动的加速度,小球在A 、B 板间将如何运动? 【答案】(1)E =1×103N/C (2) 12.5m/s 2 【解析】 【详解】
(1)小球受到重力mg 、电场力F 和绳的拉力T 的作用,由共点力平衡条件有:
F =qE =mg tan α
解得:
537
tan 410100.75 1.010N/C 310
mg E q α--⨯⨯⨯===⨯⨯ 匀强电场的电场强度的方向与电场力的方向相同,即水平向右;
(2)剪断细线后,小球做偏离竖直方向,夹角为37°匀加速直线运动,设其加速度为a 由牛顿第二定律有:
cos mg
ma θ
= 解得:
212.5m/s cos g
a θ
=
= 【点睛】
本题是带电体在电场中平衡问题,分析受力情况是解题的关键,并能根据受力情况判断此
后小球的运动情况.
3.如图所示,在绝缘的水平面上,相隔2L的,A、B 两点固定有两个电量均为Q的正点电荷,C、O、D是AB连线上的三个点,O为连线的中点,CO=OD=L/2。一质量为m、电量为q的带电物块以初速度v0从c点出发沿AB连线向B运动,运动过程中物块受到大小恒定的阻力作用。当物块运动到O点时,物块的动能为初动能的n倍,到达D点刚好速度为零,然后返回做往复运动,直至最后静止在O点。已知静电力恒量为k,求:
(1)AB两处的点电荷在c点产生的电场强度的大小;
(2)物块在运动中受到的阻力的大小;
(3)带电物块在电场中运动的总路程。
【答案】(1)
(2)
(3)
【解析】
【分析】
【详解】
(1)设两个正点电荷在电场中C点的场强分别为E1和E2,在C点的合场强为E C;则
1
2
()
2
kQ
E
L

;2
2
3
()
2
kQ
E
L

则E C=E1-E2
解得:E C=
2
32
9
kQ
L

(2)带电物块从C点运动到D点的过程中,先加速后减速.AB连线上对称点φC=φD,电场力对带电物块做功为零.设物块受到的阻力为f,
由动能定理有:−fL=0−
1
2
mv02
解得:2
1
2
f mv
L

(3)设带电物块从C到O点电场力做功为W电,根据动能定理得:
22
00
11
222
L
W f n mv mv


-⋅⋅-
解得:()20
1
21
4
W n mv
-


设带电物块在电场中运动的总路程为S,由动能定理有:W电−fs=0−
1
2
mv02
解得:s=(n+0.5)L
【点睛】
本题考查了动能定理的应用,分析清楚电荷的运动过程,应用动能定理、点电荷的场强公式与场的叠加原理即可正确解题.
4.如右图所示,在方向竖直向下的匀强电场中,一个质量为m、带负电的小球从斜直轨道上的A点由静止滑下,小球通过半径为R的圆轨道顶端的B点时恰好不落下来.若轨道是光滑绝缘的,小球的重力是它所受的电场力2倍,试求:
⑴A点在斜轨道上的高度h;
⑵小球运动到最低点C时,圆轨道对小球的支持力.
【答案】(1)5
2
R (2) 3mg
【解析】
试题分析:由题意得:mg=2Eq
设小球到B点的最小速度为V B,则由牛顿第二定律可得:
mg-Eq=m
2
B
v
R

对AB过程由动能定理可得:
mg(h-2R)-Eq(h-2R)=1
2
mV B2;
联立解得:h=5
2 R;
(2)对AC过程由动能定理可得:
mgh-Eqh=1
2
mv c2;
由牛顿第二定律可得:
F+Eq-mg=m
2 C v R
联立解得:F=3mg;由牛顿第三定律可得小球对轨道最低点的压力为3mg.
考点:牛顿定律及动能定理.
5.如图,在空间中水平面MN的下方存在竖直向下的匀强电场,质量为m的带电小球由MN上方H处的A点以初速度v水平抛出,从B点进入电场,到达C点时速度方向恰好水
平,A 、B 、C 三点在同一直线上,且AB =2BC ,求:
(1)A 、B 两点间的距离
(2)带电小球在电场中所受的电场力
【答案】(1) 22
28
v H H +(2)3mg
【解析】 【详解】
(1)小球在MN 上方做平抛运动
竖直方向:212
H gt = 水平方向:x vt =
A 、
B 两点间的距离
22L H x =+
联立以上各式解得
22
2v H
L H g
=+ (2)带电小球进入电场后水平方向做匀速直线运动,竖直方向做匀减速直线运动,对带电小球运动的全过程,由动能定理得:
()022
H H
mg H F +
-⋅= 解得
F =3mg
6.如图所示,∆abc 处在真空中,边长分别为ab =5cm ,bc =3cm ,ca =4cm .两个带电小球固定在a 、b 两点,电荷量分别为q a =6.4×10-12C ,q b =-2.7×10-12C .已知静电力常量k =9.0×109N ⋅m 2/C 2,求c 点场强的大小及方向.
【答案】 方向与由a 指向b 的方向相同
【解析】
【详解】
如图所示,a 、b 两电荷在c 点的场强分别为
E a =k =36N/C E b =k
=27N/C
由几何关系,有
E 2=E a 2+E b 2
解得
E =45N/C
方向与由a 指向b 的方向相同.
二、必修第3册 静电场中的能量解答题易错题培优(难)
7.如图甲所示,极板A 、B 间电压为U 0,极板C 、D 间距为d ,荧光屏到C 、D 板右端的距离等于C 、D 板的板长.A 板O 处的放射源连续无初速地释放质量为m 、电荷量为+q 的粒子,经电场加速后,沿极板C 、D 的中心线射向荧光屏(荧光屏足够大且与中心线垂直),当C 、D 板间未加电压时,粒子通过两板间的时间为t 0;当C 、D 板间加上图乙所示电压(图中电压U 1已知)时,粒子均能从C 、D 两板间飞出,不计粒子的重力及相互间的作用.求:
(1)C 、D 板的长度L ;
(2)粒子从C 、D 板间飞出时垂直于极板方向偏移的最大距离; (3)粒子打在荧光屏上区域的长度. 【答案】(1)02qU L t m =2)2102qU t y md =(3)2
10
32qU t s s md
∆== 【解析】
试题分析:(1)粒子在A 、B 板间有20012
qU mv = 在C 、D 板间有00L v t =
解得:L t =(2)粒子从nt 0(n=0、2、4……)时刻进入C 、D 间,偏移距离最大 粒子做类平抛运动 偏移距离2012
y at = 加速度1
qU a md
=
得:2
10
2qU t y md
=
(3)粒子在C 、D 间偏转距离最大时打在荧光屏上距中心线最远ZXXK] 出C 、D 板偏转角0
tan y v v θ=
0y v at =
打在荧光屏上距中心线最远距离tan s y L θ=+
荧光屏上区域长度2
10
32qU t s s md
∆==
考点:带电粒子在匀强电场中的运动
【名师点睛】此题是带电粒子在匀强电场中的运动问题;关键是知道粒子在水平及竖直方向的运动规律和特点,结合平抛运动的规律解答.
8.图中所示的静电机由一个半径为R 、与环境绝缘的开口(朝上)金属球壳形的容器和一个带电液滴产生器G 组成。

质量为m 、带电量为q 的球形液滴从G 缓慢地自由掉下(所谓缓慢,意指在G 和容器口之间总是只有一滴液滴)。

液滴开始下落时相对于地面的高度为h 。

设液滴很小,容器足够大,容器在达到最高电势之前进入容器的液体尚未充满容器. 忽略G 的电荷对正在下落的液滴的影响.重力加速度大小为g 。

若容器初始电势为零,求容器可达到的最高电势max V 。

【答案】max ()
mg h R V q
-= 【解析】 【详解】
设在某一时刻球壳形容器的电量为Q 。

以液滴和容器为体系,考虑从一滴液滴从带电液滴产生器G 出口自由下落到容器口的过程。

根据能量守恒有
2122Qq Qq
mgh k
m mgR k h R R
+=++-v (1) 式中,v 为液滴在容器口的速率,k 是静电力常量。

由此得液滴的动能为
21(2)(2)2()Qq h R m mg h R k h R R
-=---v (2) 从上式可以看出,随着容器电量Q 的增加,落下的液滴在容器口的速率v 不断变小;当液滴在容器口的速率为零时,不能进入容器,容器的电量停止增加,容器达到最高电势. 设容器的最大电量为max Q ,则有
max (2)
(2)0()Q q h R mg h R k
h R R
---=-(3)
由此得
max ()mg h R R
Q kq
-=
(4) 容器的最高电势为
max
max Q V k
R
=(5) 由(4)和(5)式得
max ()
mg h R V q
-=
(6)
9.电容器是一种重要的电学元件,基本工作方式就是充电和放电.由这种充放电的工作方式延伸出来的许多电学现象,使得电容器有着广泛的应用.如图1所示,电源与电容器、电阻、开关组成闭合电路.已知电源电动势为E ,内阻不计,电阻阻值为R ,平行板电容器电容为C ,两极板间为真空,两极板间距离为d ,不考虑极板边缘效应.
(1)闭合开关S,电源向电容器充电.经过时间t,电容器基本充满.
a.求时间t内通过R的平均电流I;
b.请在图2中画出充电过程中电容器的带电荷量q随电容器两极板电压u变化的图象;并求出稳定后电容器储存的能量E0;
(2)稳定后断开开关S.将电容器一极板固定,用恒力F将另一极板沿垂直极板方向缓慢拉开一段距离x,在移动过程中电容器电荷量保持不变,力F做功为W;与此同时,电容器储存的能量增加了ΔE.请推导证明:W=ΔE.要求最后的表达式用已知量表示.
【答案】(1)a.
CE
I
t
= b.2
1
2
E CE
=(2)见解析
【解析】
试题分析:(1)a.设充电完毕电容器所带电量为Q,即时间t内通过电阻R的电量,此时电容器两端电
压等于电源的电动势
根据电容的定义(2分)
根据电流强度的定义(2分)
解得平均电流(2分)
b.根据q = Cu,画出q-u图像如图1所示(2分)
由图像可知,图线与横轴所围面积即为电容器储存的能量,如图2中斜线部分所示
由图像求出电容器储存的电能(2分)
解得(2分)
(2)设两极板间场强为,两极板正对面积为S
根据,,得,可知极板在移动过程中板间场强不变,两极板
间的相互作用力为恒力.两板间的相互作用可以看作负极板电荷处于正极板电荷产生的电场中,可知两板间的相互作用力.(2分)缓慢移动时有
根据功的定义有
代入已知量得出(2分)
电容器增加的能量(或)
(2分)
代入已知量得出(2分)
所以
考点:电容,电动势,能量守恒.
10.在电场方向水平向右的匀强电场中,一带电小球从A点竖直向上抛出,其运动的轨迹如下图所示.小球运动的轨迹上A、B两点在同一水平线上,M为轨迹的最高点.小球抛出时的动能为8.0J,在M点的动能为6.0J,不计空气的阻力.求:
(1)小球水平位移x1与x2的比值;
(2)小球落到B点时的动能E kB;
(3)小球从A点运动到B点的过程中最小动能E kmin.
【答案】(1)1:3(2)32J(3)24 7
J
【解析】
【详解】
(1)如图所示,带电小球在水平方向上受电场力的作用做初速度为零的匀加速运动,竖直方向上只受重力作用做竖直上抛运动,故从A到M和M到B的时间相等,则x1:x2=1:3 (2)小球从A到M,水平方向上电场力做功W电=6J
则由能量守恒可知,小球运动到B点时的动能为
E kB=E k0十4W电=32J
(3)由于合运动与分运动具有等时性,设小球所受的电场力为F,重力为G,则有:
1
2
2
6J
1
6J
2
Fx
F
t
m
=
=

2
2
8J
1
8J
2
Gh
G
t
m
=
=

联立解得
3
2
F
G
=
由图可知
33
tan sin
27
F
G
θθ
==⇒=
则小球从A运动到B的过程中速度最小时速度一定与等效重力G/垂直,故:
2
124
()J
27
kmin
E m v sinθ
==
11.如图(a)所示,平行板电容器的两个极板A、B分别接在电压为U的恒压电源的两极,电容器所带电荷量为Q,两极板间距为d,板长为L,α粒子从非常靠近上极板的C点以v0的速度沿垂直电场线方向的直线CO方向射入电场,经电场偏转后由D点飞出匀强电场,已知α粒子质量为m,电荷量为2e,不计α粒子重力.求:
(1)平行板电容器的电容;
(2)CD两点间电势差;
(3)若A、B板上加上如图(b)所示的周期性的方波形电压,t=0时A板比B板的电势高,
为使
4
T
时刻射入两板间的α粒子刚好能由O点水平射出,则电压变化周期T和板间距离d 各应满足什么条件?(用L、U、m、e、v0表示)
【答案】(1)Q C U = (2)2222
0eU L U md v =
(3) ≥d (n=1,2,3,…) 【解析】 【详解】
(1)依电容定义有:平行板电容器的电容Q C U
=
(2)两板之间为匀强电场U E d
=
粒子在电场中加速度F qE a m m
=
= 粒子的偏移量:212
y at =
运动时间0
L t v =
解得:2
20
2qUL y mdv = CD 两点的电势差为:22220
==eU L U Ey md v (3)为使a 粒子刚好由O 点水平射出,α粒子在一个周期内竖直方向的分位移应为零, 必须从4
T
t nT =+
进入电场, 且在电场中运动时间与电压变化周期T 的关系为t =nT ,(n =1,2,3,…). 则0
=
=t L T n nv 竖直方向向下的最大分位移应满足:2
12()24
T a d ⨯
≤ 即:
2
2()4eU L d md nv ⋅≤
解得:0
22≥
L eU
d nv m
(n =1,2,3,…) 【点睛】
本题考查了电容的定义式匀强电场中场强与电势差的关系,熟练运用运动的分解法研究类平抛运动,抓住几何关系是解答的关键.
12.如图,带电荷量为q =+2×10-3C 、质量为m =0.1kg 的小球B 静置于光滑的水平绝缘板右端,板的右侧空间有范围足够大的、方向水平向左、电场强度E =103N/C 的匀强电场.与B 球形状相同、质量为0.3kg 的绝缘不带电小球A 以初速度0v =10m/s 向B 运动,两球发生弹性碰撞后均逆着电场的方向进入电场,在电场中两球又发生多次弹性碰撞,已知每次碰撞时间极短,小球B 的电荷量始终不变,重力加速度g 取10m/s 2求: (1)第一次碰撞后瞬间两小球的速度大小; (2)第二次碰撞前瞬间小球B 的动能; (3)第三次碰撞的位置
【答案】25.(1)5m/s ;15m/s (2)6.25J ;(3)第三次碰撞的位置是在第一次碰撞点右方5m 、下方20m 处. 【解析】 【分析】 【详解】
(1)第一次碰撞时,
两小球动量守恒,即3mv 0=3mv 1+mv 2
机械能守恒,即
22201211133222
mv mv mv ⋅=⋅+ 解得碰后A 的速度v 1=5m/s ,B 的速度v 2=15m/s
(2)碰后AB 两球进入电场,竖直方向二者相对静止均做自由落体运动;水平方向上,A 做匀速运动,
B 做匀减速直线运动,其加速度大小a B =
qE
m
=20m/s 2 设经过t 时间两小球再次相碰,则有v 1t =v 2t -1
2
a B t 2 解得t =1s
此时,B 的水平速度为v x =v 2-a B t =-5 m/s (负号表明方向向左) 竖直速度为v y =gt =10 m/s
故第二次碰前B 的动能22211() 6.2522
KB B x y E mv m v v J =
=+= (3)第二次碰撞时,AB 小球水平方向上动量守恒'
'
1133x x mv mv mv mv +=+ 机械能守恒,即
2222'2'2'2
'21111113()()3()()2222
y x y y x y m v v m v v m v v m v v ⋅++⋅+=⋅++⋅+ 解得第二次碰后水平方向A 的速度'10v =,B 的速度'
x v =10m/s
故第二次碰撞后A 竖直下落(B 在竖直方向上的运动与A 相同), 水平方向上, B 做匀减速直线运动,
设又经过t '时间两小球第三次相碰,则有 '
2
1'02
x B v t a t -= 解得t '=1s
因此,第三次相碰的位置在第一次碰撞点右方x =v 1t =5m 下方y =
1
2
g (t +t ')2=20m
三、必修第3册 电路及其应用实验题易错题培优(难)
13.某同学通过实验制作一个简易的温控装置,实验原理电路图如图11–1图所示,继电器与热敏电阻R t 、滑动变阻器R 串联接在电源E 两端,当继电器的电流超过15 mA 时,衔铁被吸合,加热器停止加热,实现温控.继电器的电阻约为20 Ω,热敏电阻的阻值R t 与温度t 的关系如下表所示
(1)提供的实验器材有:电源E 1(3 V ,内阻不计)、电源E 2(6 V ,内阻不计)、滑动变阻器R 1(0~200 Ω)、滑动变阻器R 2(0~500 Ω)、热敏电阻R t ,继电器、电阻箱(0~999.9 Ω)、开关S 、导线若干.
为使该装置实现对30~80 ℃之间任一温度的控制,电源E 应选用______(选填“E 1”或“E 2”),滑动变阻器R 应选用______(选填“R 1”或“R 2”).
(2)实验发现电路不工作.某同学为排查电路故障,用多用电表测量各接点间的电压,则应将如图11–2图所示的选择开关旋至______(选填“A ”、“B ”、“C ”或“D ”). (3)合上开关S ,用调节好的多用电表进行排查,在题11–1图中,若只有b 、c 间断路,则应发现表笔接入a 、b 时指针______(选填“偏转”或“不偏转”),接入a 、c 时指针______(选填“偏转”或“不偏转”).
(4)排除故障后,欲使衔铁在热敏电阻为50 ℃时被吸合,下列操作步骤正确顺序是
_____.(填写各步骤前的序号)
①将热敏电阻接入电路
②观察到继电器的衔铁被吸合
③断开开关,将电阻箱从电路中移除
④合上开关,调节滑动变阻器的阻值
⑤断开开关,用电阻箱替换热敏电阻,将阻值调至108.1 Ω
【答案】E2R2C不偏转偏转⑤④②③①
【解析】
(1)由表格数据知,当温度为30 ℃时,热敏电阻阻值为199.5 Ω,继电器的阻值R0=20 Ω,当电流为15 mA时,E=I(R t+R0)=3.3 V,所以电源选E2,80 ℃时,热敏电阻阻值
R t=49.1 Ω,则
E2=I(R t+R0+R),此时变阻器阻值R=330.9 Ω,所以变阻器选择R2;(2)多用电表做电压表测量电压,旋钮旋至直流电压挡C处;(3)若只有b、c间断路,表笔接入a、b时,整个回路断路,电表指针不偏转,接入a、c时电流流经电表,故指针偏转;(4)50 ℃时,热敏电阻阻值为108.1 Ω,所以应将电阻箱阻值调至108.1 Ω,调节变阻器,使衔铁吸合,再将电阻箱换成热敏电阻,故顺序为⑤④②③①.
【名师点睛】结合表格中数据,利用欧姆定律估算电动势和电阻的数值,选择电源和滑动变阻器.明确实验的目的是实现对30~80 ℃之间任一温度的控制,其中30~80 ℃就是提示的信息,结合表格数据,可知电阻值的取值.
14.实验室有一个阻值约200Ω左右的待测电阻R x
(1)甲同学用伏安法测定待测电阻R x的阻值,实验室提供如下器材:
电池组E:电动势3V,内阻不计
电流表A1:量程0~15mA,内阻约为100Ω
电流表A2:量程0~600μA,内阻为1000Ω
滑动变阻器R1:阻值范围0~20Ω,额定电流2A
电阻箱R2,阻值范围0~9999Ω,额定电流1A
电键S、导线若干
①为了测量待测电阻两端的电压,该同学将电流表A2与电阻箱串联,并将电阻箱阻值调到__________Ω时,将电流表A2改装成一个量程为3.0V的电压表。

②为了尽可能准确地测量R x的阻值,在方框中画完整测量R x阻值的电路图,并在图中标明器材代号__________________。

③调节滑动变阻器R1,两表的示数如图所示,可读出电流表A1的示数是___mA,电流表A2的示数是____μA,则待测电阻R x的阻值是____Ω。

(2)乙同学则直接用多用电表测R x的阻值,多用电表电阻挡有3种倍率,分别是×100、×10、×1.该同学选择×100倍率,用正确的操作方法测量时,发现指针转过角度太大.为了准确地进行测量,请你从以下给出的操作步骤中,选择必要的步骤,并排出合理顺序:______.(填步骤前的字母)
A.旋转选择开关至欧姆挡“×l”
B.旋转选择开关至欧姆挡“×10”
C.旋转选择开关至“OFF”,并拔出两表笔
D.将两表笔分别连接到Rx的两端,读出阻值后,断开两表笔
E.将两表笔短接,调节欧姆调零旋钮,使指针对准刻度盘上欧姆挡的零刻度,断开两表笔按正确步骤测量时,指针指在图示位置,R x的测量值为______Ω.
【答案】4000Ω 8.0mA 300μA187.5Ω B、E、
D、C 220Ω
【解析】
【详解】
(1)①[1]为了测量待测电阻两端的电压,可以将电流表A2电阻箱串联组成电压表;改装后电压表量程是3V,则电阻箱阻值
26
3
10004000
60010
A
g
U
R r
I-
=-=-=Ω

②[2]因改装后的电压表内阻已知,则采用电流表A1外接,电路如图:
③[3][4][5]由图可知,电流表A1的示数是8mA,电流表A2的示数是300μA,则待测电阻R x 的阻值是
6
22
3
12
()30010(10004000)
187.5
(80.3)10
A
x
I r R
R
I I
-
-
+⨯+
===Ω
--⨯。

(2)①[6]该同学选择×100倍率,用正确的操作方法测量时,发现指针转过角度太大,说明倍率档选择过大,应该选择×10倍率档,然后调零再进行测量;即操作顺序是:BEDC;
②[7]Rx的测量值为22×10Ω=220Ω。

15.材料的电阻随磁场的增强而增大的现象称为磁阻效应,利用这种效应可以测量磁感应强度。

如图所示为某磁敏电阻在室温下的电阻—磁感应强度特性曲线,其中R B、R0分别表示有、无磁场时磁敏电阻的阻值。

为了测量磁感应强度B,需先测量磁敏电阻处于磁场中的电阻值R B。

请按要求完成下列实验。

(1)设计一个可以测量磁场中该磁敏电阻阻值的电路,并在图中的虚线框内画出实验电路原理图(磁敏电阻及所处磁场已给出,待测磁场磁感应强度大小约为0.6~1.0 T,不考虑磁场对电路其他部分的影响)。

要求误差较小______;
提供的器材如下:
A.磁敏电阻,无磁场时阻值R0=150 Ω
B.滑动变阻器R,总电阻约为20 Ω
C.电流表A,量程2.5 mA,内阻约30 Ω
D.电压表V,量程3 V,内阻约3 kΩ
E.直流电源E,电动势3 V,内阻不计
F.开关S,导线若干
(2)正确接线后,将磁敏电阻置入待测磁场中,测量数据如下表:
123456
U(V)0.000.450.91 1.50 1.79 2.71
I(mA)0.000.300.60 1.00 1.20 1.80
根据上表可求出磁敏电阻的测量值R B=___Ω,结合题图可知待测磁场的磁感应强度B=
___T;
(3)试结合题图简要回答,磁感应强度B在0~0.2T和0.4~1.0T范围内磁敏电阻阻值的变化规律有何不同?
_______;
(4)某同学在查阅相关资料时看到了图所示的磁敏电阻在一定温度下的电阻—磁感应强度特性曲线(关于纵轴对称),由图线可以得到什么结论_______。

【答案】 1500 0.90 在0~0.2T 范围内,磁敏电阻的阻
值随磁感应强度非线性变化(或不均匀变化);在0.4~1.0T 范围内,磁敏电阻的阻值随磁感应强度线性变化(或均匀变化) 磁场反向,磁敏电阻的阻值不变 【解析】 【分析】 【详解】
(1)[1]当B =0.6T 时,磁敏电阻阻值约为
6×150Ω=900Ω
当B =1.0T 时,磁敏电阻阻值约为
11×150Ω=1650Ω
由于滑动变阻器全电阻20Ω比磁敏电阻的阻值小得多,故滑动变阻器选择分压式接法;由
于x V
A x
R R R R >,所以电流表应内接。

电路图如图所示。

(2)[2]方法一:根据表中数据可以求得磁敏电阻的阻值分别为
130.4515000.3010R -=Ω=Ω⨯,2
30.91
1516.70.6010R -=Ω=Ω⨯ 331.5015001.0010R -=
Ω=Ω⨯,4
3
1.79
1491.71.2010R -=Ω=Ω⨯ 53
2.71
15051.8010R -=
Ω=Ω⨯,
故电阻的测量值为
1
2345
15035
R R R R R R ++++=
Ω=Ω(1500~1503Ω都算正确。


[3]由于
0150010150
R R ==,从图1中可以读出 B =0.9T
方法二:作出表中的数据作出U -I 图像,图像的斜率即为电阻(略)。

(3)[4]在0~0.2T 范围,图线为曲线,故磁敏电阻的阻值随磁感应强度非线性变化(或非均匀变化);在0.4~1.0T 范围内,图线为直线,故磁敏电阻的阻值随磁感应强度线性变化(或均匀变化);
(4)[5]从图3中可以看出,当加磁感应强度大小相等、方向相反的磁场时,磁敏电阻的阻值相等,故磁敏电阻的阻值与磁场方向无关。

【点睛】
本题以最新的科技成果为背景,考查了电学实验的设计能力和实验数据的处理能力。

从新材料、新情景中舍弃无关因素,会看到这是一个考查伏安法测电阻的电路设计问题,及如何根据测得的U 、I 值求电阻。

第(3)、(4)问则考查考生思维的灵敏度和创新能力。

总之本题是一道以能力立意为主,充分体现新课程标准的三维目标,考查学生的创新能力、获取新知识的能力、建模能力的一道好题。

16.某小组设计实验对电流表内阻进行测量,电路如图甲,其中 A 1是标准电流表(量程 100mA ,内阻约15Ω),电流表A 2(量程略小于 100mA ,内阻约 18Ω)表刻度盘刻度完整但缺少刻度值。

R 1、R 2为电阻箱,实验步骤如下:
①使用螺丝刀,调整A 2机械调零旋钮,使指针指向“0”刻度; ②分别将 R 1和 R 2的阻值调至最大
③断开S 2,合上开关 S 1,调节 R 1 使A 2的指针达到满偏刻度,记下此时A 1的示数I 0 ④开关S 2 接到1,反复调节R 1和R 2,使A 1的示数仍为I 0,记录不同R 2 阻值和对应电流表A 2示数为I 0的 n 倍(n<1)即 n I 0。

⑤做出 n -1—R -1 图象,如图乙所示。

(1)根据图甲和题给条件,将图丙中的实物连线补充完整; (____)
(2)电流表A2的量程为______(用所测物理量表示);根据图象可计算电流表A2内阻为
_____Ω;(保留两位有效数字)
(3)一同学认为该电路可以进一步测量电流表A1内阻,他把单刀双掷开关接到2,调整电阻箱R1和R2阻值,使电流表A1和电流表A2示数恰当,并分别记下电流表示数I1,I2,请用R1、R2、I1和I2表示电流表 A1内阻R=_____________________________________ 。

【答案】I0202212
1
I
R R R
I
--
【解析】
【分析】
【详解】
(1)[1].电路连线如图:
(2) [2].使A2的指针达到满偏刻度时,此时A1的示数I0,可知电流表A2的量程为I0;
[3].根据电路的结构可得
2
2
00
2
A
R
nI I
R R
=
+
可得
2
2
1
1
A
R
n R
=+
所以11
n R
--
-图象斜率表示A2内阻,内阻为
2
2.0 1.0
20
0.05
A
R k
-
==Ω=Ω;
(3)[4].当单刀双掷开关接到2,根据并联关系
12
211
I R
I I R R
=
-+
所以
2
212
1
I
R R R R
I
=--
17.热敏电阻是传感电路中常用的电子元件,某实验小组欲研究该电阻在常温下的伏安特性曲线,实验仪器如下:
A.待测热敏电阻x R,(常温电阻值约为5Ω)
B.电流表A1(满偏电流10mA,内阻1100
r=Ω)
C .电流表A2(量程0~0.6A,内阻20.5
r=Ω)
D.滑动变阻器R1(0~20Ω,额定电流2A)
E.滑动变阻器R2(0~100Ω,额定电流0.5A)
F.定值电阻R3(阻值等于5Ω)
G.定值电阻电阻R4(阻值等于200Ω)
H.盛有水的保温杯(含温度计)
I.电源(3V,内阻可忽略)
G.开关,导线若干
(1)要使测量数据尽量精确,绘制曲线完整,需要将以上仪器进行适当的改装,定值电阻选____,滑动变阻器选__________。

(填仪器前的字母序号)
(2)请在方框内画出实验电路图,并将各元件字母代码标在该元件的符号旁,根据电路图在实物图上连线
(_____)
(3)热敏电阻包括正温度系数电阻器(PTC)和负温度系数电阻器(NTC),正温度系数电阻器的电阻随温度的升高而增大,负温度系数电阻器的电阻随温度的升高而减小,测得该热敏电阻的21
I I
-图像如图所示,请分析说明该曲线对应的热敏电阻是______(选填“PTC”或“NTC”)热敏电阻。

(4)若将该热敏电阻直接接到一电动势为3V,内阻为6Ω的电源两端,则热敏电阻消耗的电功率为________W.(结果保留2位小数)。

【答案】4R1R PTC 0.34
【解析】
【详解】
(1)[1][2].根据电源电动势,电路中的电流大概为0.6A
E
I
R
==,故电流表选用
2
A,把电流表1
A,串联定值电阻改装成电压表,200
x
x
E
R r
I
=-=Ω,故定值电阻选
4
R,描绘伏安特性曲线需要从零开始读书,因此采用滑动变阻器分压接法,所以选用阻值较小的1
R.
(2)[3].待测电阻同电压表(电流表1
A和定值电阻
4
R)即电流表
2
A相比,与电流表2
A相差倍数比较小,属于小电阻,因此电流表采用外接法,滑动变阻器分压式连接。

原理图,实物图如下:
(3)[4].由图线可知,随电流增大,电阻阻值增大,即随温度升高,电阻阻值增大,该电阻是正温度系数(PTC)热敏电阻;
(4)[5].在21
I I
-图中作出电源对应U-I图线,即
U=E-Ir
1412
()
A
I R R E I r
+=-

2
I=时,
1
10
I mA
=,
1
I=时,
2
0.5
E
I A
r
==,两图像交点处等效电压为
3
3.5 1.05
10
V
⨯=,电流为0.32A,则热敏电阻的功率为
P=UI=1.05×0.32W=0.34W.
18.某课外探究小组做“描绘小灯泡的伏安特性曲线”的实验,小灯泡的额定电压4V,额定功率为1.9W左右。

实验室准备了以下实验器材:
A.蓄电池(电动势为6V,内阻约为1 Ω);
B.电压表(量程为0~4.5 V,内阻约为8 kΩ);
C.电压表(量程为0~3 V,内阻约为5 kΩ);
D.电流表(量程为0~1.2 A,内阻约为0.8 Ω);
E.电流表(量程为0~500 mA,内阻约为0.3 Ω);
F.滑动变阻器(0~5 Ω,1.5 A);
G.滑动变阻器(0~50 Ω,1.2 A);
H.开关、导线若干。

(1)实验中所用电压表应选用________,电流表应选用________,滑动变阻器应选用
_______;(填写器材前的字母)。

相关文档
最新文档