思想方法 第3讲 分类讨论思想

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

思想方法第3讲
分类讨论思想 思想概述分类讨论思想是当问题的对象不能进行统一研究时,需对研究的对象按某个标准进行分类,然后对每一类分别研究,给出每一类的结论,最终综合各类结果得到整个问题的解答.实质上分类讨论就是“化整为零,各个击破,再集零为整”的数学思想.
方法一 由概念、公式、法则、计算性质引起的讨论 概念、定理分类整合即利用数学中的基本概念、定理对研究对象进行分类,如绝对值的定义、不等式的转化、等比数列{a n }的前n 项和公式等,然后分别对每类问题进行解决. 例1
(1)(2022·滁州质检)已知过点P (0,1)的直线l 与圆x 2+y 2+2x -6y +6=0相交于A ,B 两点,则当|AB |=23时,直线l 的方程为( )
A .x =0
B .15x -8y -8=0
C .3x -4y +4=0或x =0
D .3x +4y -4=0或x =0
________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________
(2)已知数列{a n }满足a 1=-2,a 2=2,a n +2-2a n =1-(-1)n ,则下列选项不正确的是( )
A .{a 2n -1}是等比数列
B.∑i =15
(a 2i -1+2)=-10
C .{a 2n }是等比数列
D.∑i =110
a i =52
________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________
规律方法 解题时应准确把握数学概念的本质,根据需要对所有情形分类.本例中,设直线方程需分斜率存在和不存在两种情况,数列中含(-1)n 需分奇偶两种情况,要注意分类讨论要有理有据、不重不漏.
方法二 由图形位置或形状引起的讨论
图形位置、形状分类整合是指由几何图形的不确定性而引起的分类讨论,这种方法适用于对几何图形中点、线、面的位置关系以及解析几何中直线与圆锥曲线的位置关系的研究. 例2
设F 1,F 2为椭圆x 29+y 24
=1的两个焦点,点P 为椭圆上一点,已知点P ,F 1,F 2是一个直角三角形的三个顶点,且|PF 1|>|PF 2|,则|PF 1||PF 2|
=________. ________________________________________________________________________ ________________________________________________________________________
规律方法 圆锥曲线的形状、焦点位置不确定时要分类讨论;立体几何中点、线、面的位置变化,三角形和平行四边形的不确定性都要进行分类讨论.
方法三 由参数变化引起的分类讨论
某些含有参数的问题,由于参数的取值不同会导致所得的结果不同,需对参数进行讨论,如含参数的方程、不等式、函数等.解决这类问题要根据需要合理确定分类标准,讨论中做到不重不漏,结论整合要周全.
例3 (2022·湖北七市(州)联考)已知函数f (x )=x +1x (x >0),若f (x )[f (x )]2+a
的最大值为25,则正实数a =________.
________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________
规律方法 若遇到题目中含有参数的问题,常常结合参数的意义和对结果的影响进行分类讨论,此类题目为含参型,应全面分析参数变化引起的结论的变化情况,在分类讨论时要遵循分类的原则:一是分类的标准要一致,二是分类时要做到不重不漏,三是能不分类的要尽量避免分类,杜绝无原则的分类讨论.。

相关文档
最新文档