14.3统计图表 讲义-2021-2022学年高一下学期数学苏教版(2019)必修第二册

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

029 14.3
目标要求
1、理解并掌握扇形统计图、折线统计图、频率直方图和画频率直方图的步骤.
2、理解并掌握扇形统计图、折线统计图、频率直方图的简单综合应用.
3、理解并掌握频率直方图的画法.
4、理解并掌握频率直方图的应用.
学科素养目标
数据能够帮助人们认识世界、作出决策和预测,而统计正是与数据打交道的科学,用一句话来概括统计:统计是用以“收集数据、整理数据、分析数据、由数据得出结论”的概念、法则和方法.由此可以看出,学习统计学有助于学生适应现代社会的需要,有助于培养学生形成数据意识以及运用数据进行推断的思考方式,有助于学生形成以数学的眼光看世界的习惯,增强学生运用数学分析问题、解决问题的能力.
在学习运用样本估计总体的过程中,要通过对具体数据的分析,使学生体会到由于样本数据具有随机性,样本所提供的信息在一定程度上反映了总体的有关特征,但与总体有一定的偏差.但是,如果抽样的方法比较合理,样本信息可以比较好地反映总体的信息,从而为人们合理地决策提供依据.由此使学生认识统计思维的特点和作用,体会统计思维与确定性思维的差异.
重点难点
重点:频率直方图的画法;
难点:频率直方图的应用.
教学过程
基础知识点
1.扇形统计图、折线统计图、频数直方图
(1)扇形统计图
扇形统计图可以形象地表示出各部分数据在全部数据中所占的________情况.扇形统计图中,每一个扇形的___________以及弧长,都与这一部分表示的数据大小成正比.
(2)折线统计图
一般地,如果数据是随时间变化的,可将数据用折线图来表示.
(3)频数直方图
频数直方图(也称为条形图)可以直观描述不同类别或分组数据的频数.
【思考】
(1)统计图表对于数据分析能够起到什么作用?
(2)扇形统计图、折线统计图、频数直方图这三种统计图中,哪些可以从图中看出原始数据?
2.画频率直方图的步骤
(1)求极差:极差是一组数据中___________与___________的差;
(2)决定组距与组数:当样本容量不超过100时,常分成___________组,为了方便起见,
一般取等长组距,并且组距应力求“取整”.
(3)将数据分组.
(4)列频率分布表:一般分四列:分组、________、频率、_________.其中频数合计应是
样本容量,频率合计是_______.
(5)画频率直方图:横轴表示分组,纵轴表示_______.小长方形的面积=组距×_____=______.各小长方形的面积和等于1.
【思考】
(1)画频率直方图为什么要对样本数据进行分组?
(2)频数直方图与频率直方图有什么不同?
【课前小题演练】
题1.为了解学生在“弘扬传统文化,品读经典文学”月的阅读情况,现从全校学生中随机抽取了部分学生,并统计了他们的阅读时间(阅读时间t∈[0,50]),分组整理数据得到如图所示的频率分布直方图.则图中a的值为( )
A.0.028 B.0.030 C.0.280 D.0.300
题2.某校200名学生数学竞赛成绩的频率分布直方图如图所示,成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100],则该次数学成绩在[50,60)内的人数为( )
A.20 B.15 C.10 D.5
题3.统计某校n名学生的某次数学同步练习成绩(满分150分),根据成绩分数分成六组:[90,100),[100,110),[110,120),[120,130),[130,140),[140,150],绘制频率分布直方图如图所示,若已知不低于140分的人数为110,则n的值是( )
A.800 B.900 C.1 200 D.1 000
题4.从2021年参加奥运知识竞赛的学生中抽出60名,将其成绩(均为整数)整理后画出的频率分布直方图如图所示.观察图形,估计这次奥运知识竞赛的及格率(大于或等于60分为及格)为________.
题5.某超市对某种产品每天的销售量(单位:件)进行为期一个月(按30天计算)的数据统计分析,并得出了这种产品该月销售量的频率分布直方图(如图).假设用直方图中所得的频率来估计相应事件发生的概率.
(1)求频率分布直方图中a的值;
(2)若该超市在一天的销售量不低于25件,则上级商企会给超市赠送100元的礼金,估计该超市在一年内获得的礼金数.
【当堂巩固训练】
题6.某中学统计了初中毕业班一次模拟考试后学生的数学成绩,所得频率分布直方图结果如图所示,若已知83%的学生的数学成绩不高于x分,则x的估计值为( )
A.84 B.86 C.88 D.90
题7.为落实《国家学生体质健康标准》达标测试工作,全面提升学生的体质健康水平,某校高二年级体育组教师在高二年级随机抽取部分男生,测试了立定跳远项目,依据测试数据绘制了如图所示的频率直方图.已知立定跳远200 cm以上成绩为及格,255 cm以上成绩为优秀,根据图中的数据估计该校高二年级男生立定跳远项目的优秀率和图中的a分别是( )
A.3%,0.010 B.3%,0.012
C.6%,0.010 D.6%,0.012
题8. 2020年10月1日是中秋节和国庆节双节同庆,很多人外出旅行或回家探亲,因此交通比较拥堵.某交通部门为了解从A城到B城实际通行所需时间,随机抽取了n台车辆进行统计,结果显示这些车辆的通行时间(单位:分钟)都在[30,55]内,按通行时间分为[30,35),[35,40),[40,45),[45,50),[50,55]五组,频率分布直方图如图所示,其中通行时间在[30,35)内的车辆有235台,则通行时间在[45,50)内的车辆台数是( )
A.450 B.325 C.470 D.500
题9.某班同学进行社会实践,对[25,55]岁的人群随机抽取n人进行了生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图,则图表中的p,a的值分别为( )
组数分组低碳族的人数占本组的频率
第一组[25,30) 120 0.6
第二组[30,35) 195 p
第三组[35,40) 100 0.5
第四组[40,45) a0.4
第五组[45,50) 30 0.3
第六组[50,55] 15 0.3
0.7920 0.19540
C.0.65,60 D.0.975,80
题10.学校为了解新课程标准中提升阅读要求对学生阅读兴趣的影响情况,随机抽取100名学生进行调查.根据调查结果绘制学生周末阅读时间的频率分布直方图如图所示.将阅读时间不低于30 min的学生称为阅读霸,则下列结果正确的是( )
A.抽样表明,该校约有一半学生为阅读霸
B.抽取的100名学生中有50名学生为阅读霸
C.该校学生中有50名学生不是阅读霸
D.抽样表明,该校有50名学生为阅读霸
题11.某学校为了调查学生在一周生活方面的支出情况,抽出了一个容量为n的样本,其频率分布直方图如图所示,其中支出在[50,60]元的学生有60人,则下列说法正确的是( )
A.样本中支出在[50,60]元的频率为0.03
B.样本中支出不少于40元的人数为132
C.n的值为200
D.若该校有2000名学生,则定有600人支出在[50,60]元
题12.每年六月二十六日是国际禁毒日.为了让同学们“珍惜生命,远离毒品”,六盘水市某学校组织全校学生参加了禁毒知识网络竞赛,通过统计,得到学生成绩的频率分布直方图,如图所示,数据的分组依次为[20,40),[40,60),[60,80),[80,100],若该校的学生总人数为2000,则成绩超过80分的学生人数大约为________.
题13.某中学为了了解高三年级女生的体重(单位:千克)情况,从中随机抽测了100名女生的体重,所得数据均在区间[48,58]中,其频率分布直方图如图所示,则在抽测的100名女生中,体重在区间[50,56)的女生数为________.
题14.某城市100户居民的月平均用电量(单位:千瓦时),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分组的频率分布直方图如图所示.
(1)求直方图中x的值;
(2)在月平均用电量为[220,240),[240,260),[260,280)的三组用户中,用分层抽样的方法抽取10户居民,则月平均用电量在[240,260)的用户中应抽取多少户?
【综合突破拔高】
题15.为了改善市民的生活环境,某沿江城市决定对本市的1 000家中小型化工企业进行污染情况摸排,并把污染情况综合折算成标准分100分,如图为该市被调查的化工企业的污染情况标准分的频率分布直方图,根据该图可估计本市标准分不低于50分的企业数为( )
A.400 B.500 C.600 D.800
题16.在一次期末考试中,随机抽取200名学生的成绩,成绩全部在50分至100分之间,将成绩按如下方式分成5组:[50,60),[60,70),[70,80),[80,90),[90,100].据此绘制了如下图所示的频率分
200
A.30名B.40名C.50名D.60名
题17.某市举行“中学生诗词大赛”,分初赛和复赛两个阶段进行,规定:初赛成绩大于90分的具有复赛资格,某校有800名学生参加了初赛,所有学生的成绩均在区间[30,150]内,其频率分布直方图如图.则获得复赛资格的人数为( )
A.640 B.520 C.280 D.240
题18.为了解某市居民用水情况,通过抽样,获得了100位居民某年的月均用水量(单位:吨),将该数据按照[0,0.5),[0.5,1),…,[4.4.5]分成9组,绘制了如图所示的频率分布直方图,政府要试行居民用水定额管理,制定了一个用水量标准a,使88%的居民用水量不超过a(假设a为整数),按平价收水费,超出a的部分按议价收费,则a的最小值为________.
题19.某中学有初中学生1800人,高中学生1200人.为了解学生本学期课外阅读情况,现采用分层随机抽样的方法,从中抽取了100名学生,先统计了他们的课外阅读时间,然后按初中学生和高中学生分为两组,再将每组学生的阅读时间(单位:h)分为5组:[1,10),[10,20),[20,30),[30,40),[40,50],并分别加以统计,得到如图所示的频率分布直方图,试估计该校所有学生中,阅读时间不小于30 h的学生人数为________.
题20.某学校现有学生3000人,为了解学生的体质健康情况,对学生进行了体质测评,得分分布在[50,100]之间,按[50,60),[60,70),[70,80),[80,90),[90,100]分组,得到的频率分布直方图如图所示:
(1)求a的值;
(2)估计该校学生体质测评分数在[70,90)的人数.
题21.某制造商为运动会生产一批直径为40 mm的乒乓球,现随机抽样检查20只,测得每只球的直径(单位:mm,保留两位小数)如下:
40.02 40.00 39.98 40.00 39.99
40.00 39.98 40.01 39.98 39.99
40.00 39.99 39.95 40.01 40.02
39.98 40.00 39.99 40.00 39.96
(1)完成下面的频率分布表,并补全图中频率分布直方图和频率分布折线图.
分组频数频率频率组距
[39.95,39.97) 2 0.10 5 [39.97,39.99) 4 10
[39.99,40.01) 10 0.50
[40.01,40.03) 4 0.20 10
合计20 1.00 50
(2)假定乒乓球的直径误差不超过0.02 mm为合格品,若这批乒乓球的总数为10000只,试根据抽样检查结果估计这批产品的合格只数.
029 14.3
目标要求
1、理解并掌握扇形统计图、折线统计图、频率直方图和画频率直方图的步骤.
2、理解并掌握扇形统计图、折线统计图、频率直方图的简单综合应用.
3、理解并掌握频率直方图的画法.
4、理解并掌握频率直方图的应用.
学科素养目标
数据能够帮助人们认识世界、作出决策和预测,而统计正是与数据打交道的科学,用一句话来概括统计:统计是用以“收集数据、整理数据、分析数据、由数据得出结论”的概念、法则和方法.由此可以看出,学习统计学有助于学生适应现代社会的需要,有助于培养学生形成数据意识以及运用数据进行推断的思考方式,有助于学生形成以数学的眼光看世界的习惯,增强学生运用数学分析问题、解决问题的能力. 在学习运用样本估计总体的过程中,要通过对具体数据的分析,使学生体会到由于样本数据具有随机性,样本所提供的信息在一定程度上反映了总体的有关特征,但与总体有一定的偏差.但是,如果抽样的方法比较合理,样本信息可以比较好地反映总体的信息,从而为人们合理地决策提供依据.由此使学生认识统计思维的特点和作用,体会统计思维与确定性思维的差异.
重点难点
重点:频率直方图的画法; 难点:频率直方图的应用.
教学过程
基础知识点
1.扇形统计图、折线统计图、频数直方图 (1)扇形统计图
扇形统计图可以形象地表示出各部分数据在全部数据中所占的__比例___情况.扇形统计图中,每一个扇形的____圆心角___以及弧长,都与这一部分表示的数据大小成正比. (2)折线统计图
一般地,如果数据是随时间变化的,可将数据用折线图来表示. (3)频数直方图
频数直方图(也称为条形图)可以直观描述不同类别或分组数据的频数. 【思考】
(1)统计图表对于数据分析能够起到什么作用? 提示:①从数据中获取有用的信息; ②直观、准确地理解相关的结果.
(2)扇形统计图、折线统计图、频数直方图这三种统计图中,哪些可以从图中看出原始数据?
提示:扇形统计图适合表示总体的各个部分所占比例的问题,折线统计图能看到原始数据,频数直方图只能看到每组中数据的个数,但不是原始数据. 2.画频率直方图的步骤
(1)求极差:极差是一组数据中___最大值____与___最小值____的差;
(2)决定组距与组数:当样本容量不超过100时,常分成___5~12___组,为了方便起见, 一般取等长组距,并且组距应力求“取整”. (3)将数据分组.
(4)列频率分布表:一般分四列:分组、__频数___、频率、 频率
组距
.其中频数合计应是 样本容量,频率合计是_1_.
(5)画频率直方图:横轴表示分组,纵轴表示
频率组距.小长方形的面积=组距× 频率
组距
=__频率___.各小长方形的面积和等于1.
【思考】
(1)画频率直方图为什么要对样本数据进行分组?
提示:不分组很难看出样本中的数字所包含的信息,分组后,计算出频率,从而估计总体的分布特征. (2)频数直方图与频率直方图有什么不同?
提示:频数直方图能使我们清楚地知道数据分布在各个小组的个数,而频率直方图则是从各个小组数据在样本容量中所占比例大小的角度来表示数据分布的规律. 【课前小题演练】
题1.为了解学生在“弘扬传统文化,品读经典文学”月的阅读情况,现从全校学生中随机抽取了部分学生,并统计了他们的阅读时间(阅读时间t ∈[0,50]),分组整理数据得到如图所示的频率分布直方图.则图中a 的值为( )
A .0.028
B .0.030
C .0.280
D .0.300
【解析】选A .由(0.006+a +0.040+0.020+0.006)×10=1得a =0.028.
题2.某校200名学生数学竞赛成绩的频率分布直方图如图所示,成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100],则该次数学成绩在[50,60)内的人数为( )
A .20
B .15
C .10
D .5
【解析】选C .由频率分布直方图得,该次数学成绩在[50,60)内的频率为:1
2 (1-0.04×10-0.03×10
-0.02×10)=0.05,所以该次数学成绩在[50,60)内的人数为200×0.05=10.
题3.统计某校n 名学生的某次数学同步练习成绩(满分150分),根据成绩分数分成六组:[90,100),[100,110),[110,120),[120,130),[130,140),[140,150],绘制频率分布直方图如图所示,若已知不低于140分的人数为110,则n 的值是( )
A.800 B.900 C.1 200 D.1 000
【解析】选D.由频率分布直方图的性质得:
10(0.031+0.020+0.016+0.016+m+0.006)=1,
解得m=0.011.因为不低于140分的频率为0.011×10=0.11,
所以n=110
0.11
=1 000.
题4.从2021年参加奥运知识竞赛的学生中抽出60名,将其成绩(均为整数)整理后画出的频率分布直方图如图所示.观察图形,估计这次奥运知识竞赛的及格率(大于或等于60分为及格)为________.
【解析】1-0.1-0.15=0.75.
答案:0.75
题5.某超市对某种产品每天的销售量(单位:件)进行为期一个月(按30天计算)的数据统计分析,并得出了这种产品该月销售量的频率分布直方图(如图).假设用直方图中所得的频率来估计相应事件发生的概率.
(1)求频率分布直方图中a的值;
(2)若该超市在一天的销售量不低于25件,则上级商企会给超市赠送100元的礼金,估计该超市在一年内获得的礼金数.
【解析】(1)由题意可得a=1
5
[1-(0.01+0.06+0.07+0.04)×5]=0.02.
(2)根据频率分布直方图知,日销售量不低于25件的天数为:(0.04+0.02)×5×30=9(天),一个月可获得的礼金数为9×100=900(元),
依此可以估计该超市一年内获得的礼金数为900×12=10 800元.
【当堂巩固训练】
6
已知83%的学生的数学成绩不高于x分,则x的估计值为( )
A.84 B.86 C.88 D.90
【解析】选A.由频率分布直方图知(2a+0.02+0.03+0.04)×10=1,解得a=0.005.
因为前三组的频率之和为(0.005+0.04+0.03)×10=0.75<0.83,而前四组的频率之和为(0.005+0.04+0.03+0.02)×10=0.95>0.83,所以由(x-80)×0.02=0.83-0.75,解得x=84,即x的估计值为84. 题7.为落实《国家学生体质健康标准》达标测试工作,全面提升学生的体质健康水平,某校高二年级体育组教师在高二年级随机抽取部分男生,测试了立定跳远项目,依据测试数据绘制了如图所示的频率直方图.已知立定跳远200 cm以上成绩为及格,255 cm以上成绩为优秀,根据图中的数据估计该校高二年级男生立定跳远项目的优秀率和图中的a分别是( )
A.3%,0.010 B.3%,0.012
C.6%,0.010 D.6%,0.012
【解析】选C.由频率分布直方图可得,优秀率为0.003×20×100%=6%;由(0.003+0.014+0.020+a+0.003)×20=1,解得a=0.010.
题8. 2020年10月1日是中秋节和国庆节双节同庆,很多人外出旅行或回家探亲,因此交通比较拥堵.某交通部门为了解从A城到B城实际通行所需时间,随机抽取了n台车辆进行统计,结果显示这些车辆的通行时间(单位:分钟)都在[30,55]内,按通行时间分为[30,35),[35,40),[40,45),[45,50),[50,55]五组,频率分布直方图如图所示,其中通行时间在[30,35)内的车辆有235台,则通行时间在[45,50)内的车辆台数是( )
A.450 B.325 C.470 D.500
0.10.250.40.05,
所以通行时间在[45,50)内的频率是1-0.1-0.25-0.4-0.05=0.2,通过的车辆台数是235×2=470. 题9.某班同学进行社会实践,对[25,55]岁的人群随机抽取n 人进行了生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图,则图表中的p ,a 的值分别为( )
组数 分组 低碳族的人数
占本组的频率
第一组 [25,30) 120 0.6 第二组 [30,35) 195 p 第三组 [35,40) 100 0.5 第四组 [40,45) a 0.4 第五组 [45,50) 30 0.3 第六组
[50,55]
15
0.3
A .0.79,20
B .0.195,40
C .0.65,60
D .0.975,80
【解析】选C .第一组人数为120÷0.6=200人,由频率分布直方图可得第一组频率为5×0.04=0.2, 所以n =200
0.2 =1 000,所以第三组200人,第四组5×0.03×1 000=150人,第五组100人,第六组50
人,所以第二组300人,p =195
300
=0.65,a =150×0.4=60.
题10.学校为了解新课程标准中提升阅读要求对学生阅读兴趣的影响情况,随机抽取100名学生进行调查.根据调查结果绘制学生周末阅读时间的频率分布直方图如图所示.将阅读时间不低于30 min 的学生称为阅读霸,则下列结果正确的是( )
A .抽样表明,该校约有一半学生为阅读霸
B .抽取的100名学生中有50名学生为阅读霸
50 D .抽样表明,该校有50名学生为阅读霸 【解析】选AB .根据频率分布直方图可列下表:
阅读时间/min [0,10) [10,20) [20,30) [30,40) [40,50) [50,60]
抽样人数/名
10
18
22
25
20
5
抽取的100名学生中有50名为阅读霸,据此可判断该校约有一半学生为阅读霸.
题11.某学校为了调查学生在一周生活方面的支出情况,抽出了一个容量为n 的样本,其频率分布直方图如图所示,其中支出在[50,60]元的学生有60人,则下列说法正确的是( )
A .样本中支出在[50,60]元的频率为0.03
B .样本中支出不少于40元的人数为132
C .n 的值为200
D .若该校有2000名学生,则定有600人支出在[50,60]元
【解析】选BC .样本中支出在[50,60]元的频率为1-(0.01+0.024+0.036)×10=0.3,故A 错误; 样本中支出不少于40元的人数为0.0360.03 ×60+60=132,故B 正确;n =60
0.3 =200,故n 的值为200,故
C 正确;
若该校有2000名学生,则可能有0.3×2000=600人支出在[50,60]元,故D 错误.
题12.每年六月二十六日是国际禁毒日.为了让同学们“珍惜生命,远离毒品”,六盘水市某学校组织全校学生参加了禁毒知识网络竞赛,通过统计,得到学生成绩的频率分布直方图,如图所示,数据的分组依次为[20,40),[40,60),[60,80),[80,100],若该校的学生总人数为2000,则成绩超过80分的学生人数大约为________.
【解析】由题意,该校成绩超过80分的学生人数大约为2000×0.015×20=600. 答案:600
题13.某中学为了了解高三年级女生的体重(单位:千克)情况,从中随机抽测了100名女生的体重,所得数据均在区间[48,58]中,其频率分布直方图如图所示,则在抽测的100名女生中,体重在区间[50,56)的女生数为________.
【解析】由频率分布直方图可知,体重在区间[50,56)的频率为2×(0.100+0.150+0.125)=0.75,所以体重在区间[50,56)的女生数为0.75×100=75. 答案:75
题14.某城市100户居民的月平均用电量(单位:千瓦时),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分组的频率分布直方图如图所示.
(1)求直方图中x 的值;
(2)在月平均用电量为[220,240),[240,260),[260,280)的三组用户中,用分层抽样的方法抽取10户居民,则月平均用电量在[240,260)的用户中应抽取多少户?
【解析】(1)由频率分布直方图得:(0.002+0.0095+0.011+x +0.0075+0.005+0.0025)×20=1, 解得x =0.0125.
(2)月平均用电量在[220,240)的用户有0.0125×20×100=25(户),月用电量在[240,260)的用户有0.0075×20×100=15(户)
月平均用电量在[260,280)的用户有0.005×20×100=10(户),抽取比例为:1025+15+10 =15 ,所以月
平均用电量在[240,260)的用户中应该抽取:15×1
5 =3(户).
【综合突破拔高】
题15.为了改善市民的生活环境,某沿江城市决定对本市的1 000家中小型化工企业进行污染情况摸排,并把污染情况综合折算成标准分100分,如图为该市被调查的化工企业的污染情况标准分的频率分布直方图,根据该图可估计本市标准分不低于50分的企业数为( )
.400 500 600 800
【解析】选B.根据频率分布直方图经计算得50分以上的频率为1-(0.005×20+0.0125×20+0.015×10)=0.50,所以本市标准分不低于50分的企业数为500家.
题16.在一次期末考试中,随机抽取200名学生的成绩,成绩全部在50分至100分之间,将成绩按如下方式分成5组:[50,60),[60,70),[70,80),[80,90),[90,100].据此绘制了如下图所示的频率分布直方图.则这200名学生中成绩在[80,90)中的学生有( )
A.30名B.40名C.50名D.60名
【解析】选B.由题知,成绩在[80,90)内的学生所占的频率为1-(0.005×2+0.025+0.045)×10=0.2,所以这200名同学中成绩大于等于80分且小于90分的学生有200×0.2=40名.
题17.某市举行“中学生诗词大赛”,分初赛和复赛两个阶段进行,规定:初赛成绩大于90分的具有复赛资格,某校有800名学生参加了初赛,所有学生的成绩均在区间[30,150]内,其频率分布直方图如图.则获得复赛资格的人数为( )
A.640 B.520 C.280 D.240
【解析】选B.初赛成绩大于90分的具有复赛资格,某校有800名学生参加了初赛,
所有学生的成绩均在区间[30,150]内,
由频率分布直方图得到初赛成绩大于90分的频率为:
1-(0.0025+0.0075+0.0075)×20=0.65.
所以获得复赛资格的人数为:0.65×800=520.
题18.为了解某市居民用水情况,通过抽样,获得了100位居民某年的月均用水量(单位:吨),将该数据按照[0,0.5),[0.5,1),…,[4.4.5]分成9组,绘制了如图所示的频率分布直方图,政府要试行居民用水定额管理,制定了一个用水量标准a,使88%的居民用水量不超过a(假设a为整数),按平价收水费,超出a的部分按议价收费,则a的最小值为________.
【解析】[0,0.5)的频数为0.08×0.5×100=4,
[0.5,1)的频数为0.16×0.5×100=8,
[1,1.5)的频数为0.30×0.5×100=15,
[1.5,2)的频数为0.44×0.5×100=22,
[2,2.5)的频数为0.5×0.5×100=25,
[2.5,3)的频数为0.28×0.5×100=14.
[3,3.5)的频数为0.12×0.5×100=6,
[3.5,4)的频数为0.08×0.5×100=4,
[4,4.5]的频数为0.04×0.5×100=2,
4+8+15+22+25+14=88,所以前6组占88%,a为3吨.
答案:3吨
题19.某中学有初中学生1800人,高中学生1200人.为了解学生本学期课外阅读情况,现采用分层随机抽样的方法,从中抽取了100名学生,先统计了他们的课外阅读时间,然后按初中学生和高中学生分为两组,再将每组学生的阅读时间(单位:h)分为5组:[1,10),[10,20),[20,30),[30,40),[40,50],并分别加以统计,得到如图所示的频率分布直方图,试估计该校所有学生中,阅读时间不小于30 h的学生人数为________.
【解析】由分层随机抽样,知抽取的初中生有60名,高中生有40名.因为初中学生中阅读时间不小于30 h的频率为(0.02+0.005)×10=0.25,所以该校所有的初中学生中,阅读时间不小于30 h的学生人数约为0.25×1800=450,同理,高中学生中阅读时间不小于30 h的频率为(0.03+0.005)×10=0.35,故该校所有的高中学生中,阅读时间不小于30 h的学生人数约为0.35×1 200=420.所以该校所有学生中,阅读时间不小于30 h的学生人数约为450+420=870.
答案:870
题20.某学校现有学生3000人,为了解学生的体质健康情况,对学生进行了体质测评,得分分布在[50,100]之间,按[50,60),[60,70),[70,80),[80,90),[90,100]分组,得到的频率分布直方图如图
(1)求a的值;
(2)估计该校学生体质测评分数在[70,90)的人数.
【解析】(1)由频率分布直方图可得:(0.01+0.015+0.035+a+0.01)×10=1,解得:a=0.03;
(2)由频率分布直方图可得,样本中该校学生体质测评分数在[70,90)的频率为(0.035+0.03)×10=0.65,因此该校学生体质测评分数在[70,90)的人数为3 000×0.65=1 950.
题21.某制造商为运动会生产一批直径为40 mm的乒乓球,现随机抽样检查20只,测得每只球的直径(单位:mm,保留两位小数)如下:
40.02 40.00 39.98 40.00 39.99
40.00 39.98 40.01 39.98 39.99
40.00 39.99 39.95 40.01 40.02
39.98 40.00 39.99 40.00 39.96
(1)完成下面的频率分布表,并补全图中频率分布直方图和频率分布折线图.
分组频数频率频率组距
[39.95,39.97) 2 0.10 5
[39.97,39.99) 4 10
[39.99,40.01) 10 0.50
[40.01,40.03) 4 0.20 10
合计20 1.00 50
(2)假定乒乓球的直径误差不超过0.02 mm为合格品,若这批乒乓球的总数为10000只,试根据抽样检查结果估计这批产品的合格只数.
【解析】(1)频率分布表如下:
分组 频数 频率 频率
组距 [39.95,39.97) 2 0.10 5 [39.97,39.99) 4 0.20 10 [39.99,40.01) 10 0.50 25 [40.01,40.03)
4 0.20 10 合计
20
1.00
50
频率分布直方图、频率分布折线图如图所示.
(2)因为抽样的20只产品中在[39.98,40.02]范围内的有18只,所以合格率为18
20 ×100%=90%.
所以根据抽样检查结果,可以估计这批产品的合格只数为9000.。

相关文档
最新文档