中考数学压轴题---《工程、生产类问题》例题讲解

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学压轴题---《工程、生产类问题》例题讲解
例1、(2022•聊城)为了解决雨季时城市内涝的难题,我市决定对部分老街道的地下管网进行改造.在改造一段长3600米的街道地下管网时,每天的施工效率比原计划提高了20%,按这样的进度可以比原计划提前10天完成任务.
(1)求实际施工时,每天改造管网的长度;
(2)施工进行20天后,为了减少对交通的影响,施工单位决定再次加快施工进度,以确保总工期不超过40天,那么以后每天改造管网至少还要增加多少米?【解答】解:(1)设原计划每天改造管网x米,则实际施工时每天改造管网(1+20%)x米,
由题意得:﹣=10,
解得:x=60,
经检验,x=60是原方程的解,且符合题意.
此时,60×(1+20%)=72(米).
答:实际施工时,每天改造管网的长度是72米;
(2)设以后每天改造管网还要增加m米,
由题意得:(40﹣20)(72+m)≥3600﹣72×20,
解得:m≥36.
答:以后每天改造管网至少还要增加36米.
【变式1-1】(2022•四会市一模)为全面推进“三供一业”分离移交工作,甲、乙两个工程队承揽了某社区2400米的电路管道铺设工程.已知甲队每天铺设管道
的长度是乙队每天铺设管道长度的1.5倍,若两队各自独立完成1200米的铺设任务,则甲队比乙队少用10天.
(1)求甲、乙两工程队每天分别铺设电路管道多少米;
(2)若甲队参与该项工程的施工时间不得超过20天,则乙队至少施工多少天才能完成该项工程?
【解答】解:(1)设乙队每天铺设电路管道x米,则甲队每天铺设电路管道1.5x 米,
依题意,得:.
解得:x=40,
经检验,x=40是原方程的解,且符合题意,
∴1.5x=1.5×40=60.
答:甲队每天铺设电路管道60米,乙队每天铺设电路管道40米.
(2)设乙队施工m天正好完成该项工程,
依题意,得:≤20,
解得:m≥30.
答:若甲队参与该项工程的施工时间不得超过20天,则乙队至少施工30天才能完成该项工程.
【变式1-2】(2022•永州)为提高耕地灌溉效率,小明的爸妈准备在耕地A、B、C、D四个位置安装四个自动喷洒装置(如图1所示),A、B、C、D四点恰好在边长为50米的正方形的四个顶点上,为了用水管将四个自动喷洒装置相互连通,
爸妈设计了如下两个水管铺设方案(各图中实线为铺设的水管).
方案一:如图2所示,沿正方形ABCD的三边铺设水管;
方案二:如图3所示,沿正方形ABCD的两条对角线铺设水管.
(1)请通过计算说明上述两方案中哪个方案铺设水管的总长度更短;
(2)小明看了爸妈的方案后,根据“蜂巢原理”重新设计了一个方案(如图4所示).
满足∠AEB=∠CFD=120°,AE=BE=CF=DF,EF∥AD.请将小明的方案与爸妈的方案比较,判断谁的方案中铺设水管的总长度更短,并说明理由.(参考数据:≈1.4,≈1.7)
【解答】解:(1)方案一:铺设水管的总长度为50×3=150(米),
方案二:铺设水管的总长度为2=100≈140(米),
∵140<150,
∴方案二铺设水管的总长度更短;
(2)小明的方案中铺设水管的总长度最短,理由如下:
如图:
∵AE=BE,GE⊥AB,
∴AG=BG=AB=25米,∠AEG=∠BEG=∠AEB=60°,
同理DH=CH=25米,∠DFH=∠CFH=60°,
在Rt△AEG中,
GE==(米),AE==(米),
同理FH=米,BE=CF=DF=AE=米
∴EF=GH﹣GE﹣FH=(50﹣)米,
∴方案中铺设水管的总长度为×4+50﹣=50+50≈135(米),∵135<140<150,
∴小明的方案中铺设水管的总长度最短.
【变式1-3】(2022•呼和浩特)今年我市某公司分两次采购了一批土豆,第一次花费30万元,第二次花费50万元,已知第一次采购时每吨土豆的价格比去年的平均价格上涨了200元,第二次采购时每吨土豆的价格比去年的平均价格下降了200元,第二次的采购数量是第一次采购数量的2倍.
(1)问去年每吨土豆的平均价格是多少元?
(2)该公司可将土豆加工成薯片或淀粉,因设备原因,两种产品不能同时加工,
若单独加工成薯片,每天可加工5吨土豆,每吨土豆获利700元;若单独加工成淀粉,每天可加工8吨土豆,每吨土豆获利400元,由于出口需要,所有采购的土豆必须全部加工完且用时不超过60天,其中加工成薯片的土豆数量不少于加工成淀粉的土豆数量的,为获得最大利润,应将多少吨土豆加工成薯片?最大利润是多少?
【解答】解:(1)设去年每吨土豆的平均价格是x元,则今年第一次采购每吨土豆的平均价格为(x+200)元,第二次采购每吨土豆的平均价格为(x﹣200)元,由题意得:×2=,
解得:x=2200,
经检验,x=2200是原分式方程的解,且符合题意,
答:去年每吨土豆的平均价格是2200元;
(2)由(1)得:今年采购的土豆数为:×3=375(吨),
设应将m吨土豆加工成薯片,则应将(375﹣m)吨加工成淀粉,
由题意得:,
解得:150≤m≤175,
设总利润为y元,
则y=700m+400(375﹣m)=300m+150000,
∵300>0,
∴y随m的增大而增大,
∴当m=175时,y的值最大=300×175+150000=202500,
答:为获得最大利润,应将175吨土豆加工成薯片,最大利润是202500元.【变式1-4】(2022•随州)2022年的冬奥会在北京举行,其中冬奥会吉祥物“冰墩墩”深受人们喜爱,多地出现了“一墩难求”的场面.某纪念品商店在开始售卖当天提供150个“冰墩墩”后很快就被抢购一空,该店决定让当天未购买到的顾客可通过预约在第二天优先购买,并且从第二天起,每天比前一天多供应m 个(m为正整数).经过连续15天的销售统计,得到第x天(1≤x≤15,且x 为正整数)的供应量y1(单位:个)和需求量y2(单位:个)的部分数据如下表,其中需求量y2与x满足某二次函数关系.(假设当天预约的顾客第二天都会购买,当天的需求量不包括前一天的预约数)
12
(2)已知从第10天开始,有需求的顾客都不需要预约就能购买到(即前9天的总需求量超过总供应量,前10天的总需求量不超过总供应量),求m的值;(参考数据:前9天的总需求量为2136个)
(3)在第(2)问m取最小值的条件下,若每个“冰墩墩”售价为100元,求第4天与第12天的销售额.
【解答】解:(1)根据题意得:y1=150+(x﹣1)m=mx+150﹣m,
设y2=ax2+bx+c,将(1,220),(2,229),(6,245)代入得:

解得,
∴y2=﹣x2+12x+209;
(2)前9天的总供应量为150+(150+m)+(150+2m)+......+(150+8m)=(1350+36m)个,
前10天的供应量为1350+36m+(150+9m)=(1500+45m)个,
在y2=﹣x2+12x+209中,令x=10得y=﹣102+12×10+209=229,
∵前9天的总需求量为2136个,
∴前10天的总需求量为2136+229=2365(个),
∵前9天的总需求量超过总供应量,前10天的总需求量不超过总供应量,∴,
解得19≤m<21,
∵m为正整数,
∴m的值为20或21;
(3)由(2)知,m最小值为20,
∴第4天的销售量即供应量为y1=4×20+150﹣20=210,
∴第4天的销售额为210×100=21000(元),
而第12天的销售量即需求量为y2=﹣122+12×12+209=209,∴第12天的销售额为209×100=20900(元),
答:第4天的销售额为21000元,第12天的销售额为20900元.。

相关文档
最新文档