昌江区高级中学2018-2019学年上学期高二数学12月月考试题含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

昌江区高级中学2018-2019学年上学期高二数学12月月考试题含解析 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 函数f (x )的图象向右平移1个单位长度,所得图象与曲线y=e x 关于y 轴对称,则f (x )=( ) A .e x+1 B .e x ﹣1 C .e ﹣x+1 D .e ﹣x ﹣1
2. cos80cos130sin100sin130︒︒-︒︒等于( )
A B .12 C .1
2
- D . 3. 某几何体的三视图如图所示,其中正视图是腰长为2的等腰三角形,俯视图是半径为 1的半圆,则其侧视图的面积是( )
A .
B .
C .1
D .
4. 已知在数轴上0和3之间任取一实数,则使“2log 1x <”的概率为( ) A .
14 B .18 C .23 D .112
5. 命题“∀a ∈R ,函数y=π”是增函数的否定是( )
A .“∀a ∈R ,函数y=π”是减函数
B .“∀a ∈R ,函数y=π”不是增函数
C .“∃a ∈R ,函数y=π”不是增函数
D .“∃a ∈R ,函数y=π”是减函数
6. 从1,2,3,4,5中任取3个不同的数,则取出的3个数可作为三角形的三边边长的概率是( )
A .
B .
C .
D .
7. 已知点M (﹣6,5)在双曲线C :﹣
=1(a >0,b >0)上,双曲线C 的焦距为12,则它的渐近线
方程为( )
A .y=±
x B .y=±
x C .y=±x
D .y=±x
8. 在ABC ∆中,角A ,B ,C 的对边分别是,,,BH 为AC 边上的高,5BH =,若
2015120aBC bCA cAB ++=,则H 到AB 边的距离为( )
A .2
B .3 C.1 D .4 9. 已知集合
,则
A0或 B0或3
C1或
D1或3
10.设{}n a 是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是( )
A .1
B .2
C .4
D .6 11.给出下列结论:①平行于同一条直线的两条直线平行;②平行于同一条直线的两个平面平行; ③平行于同一个平面的两条直线平行;④平行于同一个平面的两个平面平行.其中正确的个数是( ) A .1个 B .2个 C .3个 D .4个 12.已知a ∈R ,复数z=(a ﹣2i )(1+i )(i 为虚数单位)在复平面内对应的点为M ,则“a=0”是“点M 在第四象限”的( )
A .充分而不必要条件
B .必要而不充分条件
C .充分必要条件
D .既不充分也不必要条件
二、填空题
13.函数y=f (x )的图象在点M (1,f (1))处的切线方程是y=3x ﹣2,则f (1)+f ′(1)= .
14.如果实数,x y 满足等式()2
2
23x y -+=,那么
y
x
的最大值是 .
15.在(1+x )(x 2+)6的展开式中,x 3的系数是 .
16.在数列
中,则实数a= ,b= .
17.在ABC ∆中,有等式:①sin sin a A b B =;②sin sin a B b A =;③cos cos a B b A =;④
sin sin sin a b c
A B C
+=+.其中恒成立的等式序号为_________. 18.要使关于x 的不等式2
064x ax ≤++≤恰好只有一个解,则a =_________.
【命题意图】本题考查一元二次不等式等基础知识,意在考查运算求解能力.
三、解答题
19.从某居民区随机抽取10个家庭,获得第i 个家庭的月收入x i (单位:千元)与月储蓄y i (单位:千元)
的数据资料,计算得
x i =80,
y i =20,
x i y i =184,
x i 2=720.
(1)求家庭的月储蓄对月收入的回归方程; (2)判断月收入与月储蓄之间是正相关还是负相关;
(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.
20.如图,在四边形ABCD 中,,,3,2,45AD DC AD BC AD CD AB DAB ⊥===∠=, 四 边形绕着直线AD 旋转一周.
(1)求所成的封闭几何体的表面积; (2)求所成的封闭几何体的体积.
21.(1)计算:(﹣
)0+lne ﹣
+8
+log 62+log 63;
(2)已知向量=(sin θ,cos θ),=(﹣2,1),满足∥,其中θ∈(,π),求cos θ的值.
22.已知函数f(x)=lnx﹣ax+(a∈R).
(Ⅰ)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)若函数y=f(x)在定义域内存在两个极值点,求a的取值范围.
23.已知函数f(x)=log a(1+x)﹣log a(1﹣x)(a>0,a≠1).
(Ⅰ)判断f(x)奇偶性,并证明;
(Ⅱ)当0<a<1时,解不等式f(x)>0.
24.如图,点A是以线段BC为直径的圆O上一点,AD⊥BC于点D,过点B作圆O的切线,与CA的延长线相交于点E,点G是AD的中点,连接CG并延长与BE相交于点F,延长AF与CB的延长线相交于点P.(1)求证:BF=EF;
(2)求证:PA是圆O的切线.
昌江区高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案) 一、选择题
1. 【答案】D
【解析】解:函数y=e x 的图象关于y 轴对称的图象的函数解析式为y=e ﹣x

而函数f (x )的图象向右平移1个单位长度,所得图象与曲线y=e x
的图象关于y 轴对称,
所以函数f (x )的解析式为y=e ﹣(x+1)
=e ﹣x ﹣1.即f (x )=e ﹣x ﹣1.
故选D .
2. 【答案】D 【解析】
试题分析:原式()()cos80cos130sin80sin130cos 80130cos210cos 30180cos30=︒︒-︒︒=︒+︒=︒=︒+︒=-︒
=. 考点:余弦的两角和公式. 3. 【答案】B
【解析】解:由三视图知几何体的直观图是半个圆锥,
又∵正视图是腰长为2的等腰三角形,俯视图是半径为1的半圆,
∴半圆锥的底面半径为1,高为

即半圆锥的侧视图是一个两直角边长分别为1和的直角三角形,
故侧视图的面积是,
故选:B .
【点评】本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状.
4. 【答案】C 【解析】
试题分析:由2log 1x <得02x <<,由几何概型可得所求概率为202
303
-=-.故本题答案选C. 考点:几何概型. 5. 【答案】C
【解析】解:因为全称命题的否定是特称命题,所以,命题“∀a ∈R ,函数y=π”是增函数的否定是:“∃a ∈R ,函数y=π”不是增函数. 故选:C .
【点评】本题考查命题的否定,特称命题与全称命题的否定关系,是基础题.
6.【答案】A
【解析】解:从1,2,3,4,5中任取3个不同的数的基本事件有(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5)共10个,
取出的3个数可作为三角形的三边边长,根据两边之和大于第三边求得满足条件的基本事件有(2,3,4),(2,4,5),(3,4,5)共3个,
故取出的3个数可作为三角形的三边边长的概率P=.
故选:A.
【点评】本题主要考查了古典概型的概率的求法,关键是不重不漏的列举出所有的基本事件.
7.【答案】A
【解析】解:∵点M(﹣6,5)在双曲线C:﹣=1(a>0,b>0)上,
∴,①
又∵双曲线C的焦距为12,
∴12=2,即a2+b2=36,②
联立①、②,可得a2=16,b2=20,
∴渐近线方程为:y=±x=±x,
故选:A.
【点评】本题考查求双曲线的渐近线,注意解题方法的积累,属于基础题.
8.【答案】D
【解析】
考点:1、向量的几何运算及平面向量基本定理;2、向量相等的性质及勾股定理.
【方法点睛】本题主要考查向量的几何运算及平面向量基本定理、向量相等的性质及勾股定理,属于难题,平面向量问题中,向量的线性运算和数量积是高频考点,当出现线性运算问题时,注意两个向量的差
OA OB BA -=,这是一个易错点,两个向量的和2OA OB OD +=(D 点是AB 的中点),另外,要选好基底
向量,如本题就要灵活使用向量,AB AC ,当涉及到向量数量积时,要记熟向量数量积的公式、坐标公式、几何意义等.
9.
【答案】B 【解析】

,故

,解得


,又根据集合元素的互异性
,所以
或。

10.【答案】B 【解析】
试题分析:设{}n a 的前三项为123,,a a a ,则由等差数列的性质,可得1322a a a +=,所以12323a a a a ++=,
解得24a =,由题意得1313
812a a a a +=⎧⎨=⎩,解得1326a a =⎧
⎨=⎩或1362a a =⎧⎨=⎩,因为{}n a 是递增的等差数列,所以
132,6a a ==,故选B .
考点:等差数列的性质. 11.【答案】B 【解析】

点:空间直线与平面的位置关系.
【方法点晴】本题主要考查了空间中直线与平面的位置关系的判定与证明,其中解答中涉及到直线与直线平行的判定与性质、直线与平面平行的判定与性质的应用,着重考查了学生分析问题和解答问题的能力,属于中档试题,本题的解答中熟记直线与直线平行和直线与平面平行的判定与性质是解答的关键.
12.【答案】A
【解析】解:若a=0,则z=﹣2i (1+i )=2﹣2i ,点M 在第四象限,是充分条件,
若点M 在第四象限,则z=(a+2)+(a ﹣2)i ,推出﹣2<a <2,推不出a=0,不是必要条件; 故选:A .
【点评】本题考查了充分必要条件,考查了复数问题,是一道基础题.
二、填空题
13.【答案】4.
【解析】解:由题意得f′(1)=3,且f(1)=3×1﹣2=1
所以f(1)+f′(1)=3+1=4.
故答案为4.
【点评】本题主要考查导数的几何意义,要注意分清f(a)与f′(a).
14.
【解析】
考点:直线与圆的位置关系的应用. 1
【方法点晴】本题主要考查了直线与圆的位置关系的应用,其中解答中涉及到点到直线的距离公式、直线与圆相切的判定与应用,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力和转化与化归的思想方
的最值转化为直线与圆相切是解答的关键,属于中档试题.
法,本题的解答中把y
x
15.【答案】20.
【解析】解:(1+x)(x2+)6的展开式中,
x3的系数是由(x2+)6的展开式中x3与1的积加上x2与x的积组成;
又(x2+)6的展开式中,
通项公式为 T r+1=•x 12﹣3r ,
令12﹣3r=3,解得r=3,满足题意;
令12﹣3r=2,解得r=
,不合题意,舍去;
所以展开式中x 3
的系数是=20.
故答案为:20.
16.【答案】a= ,b= . 【解析】解:由5,10,17,a ﹣b ,37知, a ﹣b=26, 由3,8,a+b ,24,35知,
a+b=15,
解得,a=,b=;
故答案为:


【点评】本题考查了数列的性质的判断与归纳法的应用.
17.【答案】②④ 【解析】
试题分析:对于①中,由正弦定理可知sin sin a A b B =,推出A B =或2
A B π
+=
,所以三角形为等腰三角
形或直角三角形,所以不正确;对于②中,sin sin a B b A =,即sin sin sin sin A B B A =恒成立,所以是正
确的;对于③中,cos cos a B b A =,可得sin()0B A -=,不满足一般三角形,所以不正确;对于④中,由
正弦定理以及合分比定理可知
sin sin sin a b c
A B C
+=+是正确,故选选②④.1 考点:正弦定理;三角恒等变换.
18.【答案】±.
【解析】分析题意得,问题等价于2
64x ax ++≤只有一解,即2
20x ax ++≤只有一解,
∴2
80a a ∆=-=⇒=±,故填:±.
三、解答题
19.【答案】
【解析】解:(1)由题意,n=10, =
x
i =8, =
y i =2,
∴b=
=0.3,a=2﹣0.3×8=﹣0.4,
∴y=0.3x ﹣0.4; (2)∵b=0.3>0,
∴y 与x 之间是正相关;
(3)x=7时,y=0.3×7﹣0.4=1.7(千元).
20.【答案】(1)(8π+;(2)20
3
π. 【解析】

点:旋转体的概念;旋转体的表面积、体积. 21.【答案】
【解析】(本小题满分12分)
解析:(1)原式=1+1﹣5+2+1=0; …(6分)
(2)∵向量=(sin θ,cos θ),=(﹣2,1),满足∥,
∴sin θ=﹣2cos θ,①…(9分)
又sin 2θ+cos 2θ+=1,②
由①②解得cos 2θ=,…(11分)
∵θ∈(,π),∴cosθ=﹣.…(12分)
【点评】本题考查对数运算法则以及三角函数的化简求值,向量共线的应用,考查计算能力.22.【答案】
【解析】解:(Ⅰ)当a=1时,f(x)=lnx﹣x+,
∴f(1)=1,
∴切点为(1,1)
∵f′(x)=﹣1﹣=,
∴f′(1)=﹣2,
∴切线方程为y﹣1=﹣2(x﹣1),
即2x+y﹣3=0;
(Ⅱ)f(x)的定义域是(0,+∞),
f′(x)=,
若函数y=f(x)在定义域内存在两个极值点,
则g(x)=ax2﹣x+2在(0,+∞)2个解,
故,
解得:0<a<.
23.【答案】
【解析】解:(Ⅰ)由,得,
即﹣1<x<1,即定义域为(﹣1,1),
则f(﹣x)=log a(1﹣x)﹣log a(1+x)=﹣[log a(1+x)﹣log a(1﹣x)]=﹣f(x),
则f(x)为奇函数.
(Ⅱ)当0<a<1时,由f(x)>0,
即log a(1+x)﹣log a(1﹣x)>0,
即log a(1+x)>log a(1﹣x),
则1+x<1﹣x,
解得﹣1<x<0,
则不等式解集为:(﹣1,0).
【点评】本题主要考查函数奇偶性的判断以及对数不等式的求解,利用定义法以及对数函数的单调性是解决本题的关键.
24.【答案】
【解析】证明:(1)∵BC是圆O的直径,BE是圆O的切线,∴EB⊥BC.
又∵AD⊥BC,∴AD∥BE.
可得△BFC∽△DGC,△FEC∽△GAC.
∴,得.
∵G是AD的中点,即DG=AG.
∴BF=EF.
(2)连接AO,AB.
∵BC是圆O的直径,∴∠BAC=90°.
由(1)得:在Rt△BAE中,F是斜边BE的中点,
∴AF=FB=EF,可得∠FBA=∠FAB.
又∵OA=OB,∴∠ABO=∠BAO.
∵BE是圆O的切线,
∴∠EBO=90°,得∠EBO=∠FBA+∠ABO=∠FAB+∠BAO=∠FAO=90°,
∴PA⊥OA,由圆的切线判定定理,得PA是圆O的切线.
【点评】本题求证直线是圆的切线,着重考查了直角三角形的性质、相似三角形的判定与性质和圆的切线判定定理等知识,属于中档题.。

相关文档
最新文档