多层统计分析模型PPT教学课件

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
yij 00 01w1 j 1 x1ij 10 z1ij 11w1 j z1ij u0 j u1 j z1ij eij
total :
25
一般模型
level 1 : yij 0 j p x pij qj z qij eij

16
多层统计模型的优点
同时分析组效应和个体效应; 不需有独立性假设; 对稀疏(sparse)数据,即每组样本很少 的数据,特别有效; 特别适合对发展模型(GM)的分析。

17
多层统计模型的局限性(1)
模型复杂,不够简约; 需较大样本以保证稳定性; 组群数量较少,会出现偏倚; 高水平单位并非严格抽样获得; 某些场景变量通常是各组个体的聚集性测 量,而不是总体内个体的聚集性测量;
9
探索(2)—传统回归

用传统的固定效应回归模型中一般的交互项理解 多层数据中的跨层(cross-level)交互作用。
yij 0 1xij 2 z j 3 xij z j ij
10
探索(3)—两步模型 (two-stage model)
第一步模型,对各组分别进行同一回归模 型估计,获得一系列的系数; 对这些系数的恒定性进行检验; 如果不恒定,则进行第二步模型,以组变 量为因变量,系数为自变量进行回归。11来自探索(3)—两步模型的问题
无论哪一步均使用OLS,并不适用; 当组群过多,则十分麻烦; 某些组内样本量很少时,进行回归不稳定; 将每个组群认为是不相关的,忽略了其为 从一大样本中抽取的事实。

12
多层统计模型的出现

研究的学者很多; 系统的主要为两; 研究的理论没有根本上的分歧; 双方研究成果的发布时间基本相同(上世纪80年 代末90年代初); 分别有各自分析的成熟的软件; 目前,大家基本上接受两组人分别独立开发出同 一模型的结果。
多层统计分析模型
1
绪论
2
青蛙与池塘(“Frog-pond theory”)

青蛙—学生个体;

池塘—学校环境;

学生的成绩好坏不仅受到个体本身的影响, 也受到学校环境的影响!
3
多层数据

低一层(低水平)单位(个体)的数据嵌 套(nested)于高一层(高水平)的单位 (组群)之中。 结局变量,个体解释变量,场景变量 (contextual variables)
ICC


2 w

2 b
2 b


组间方差占总方差的比例。 可使用对“空模型”的拟合获得; 值域在0到1之间,越接近1,说明相关越明显; 对ICC的检验是是否选择多层模型的依据。
22
两水平模型的公式表达
23
空模型(又称截距模型)
level 1 : level 2 : total : yij 0 j eij
0 j 00 u0 j
yij 00 u0 j eij
24
两个水平1自变量、一个水平2自变量
level 1 : level 2 : yij 0 j 1 x1ij 1 j z1ij eij
0 j 00 01w1 j u0 j 1 j 10 11w1 j u1 j
专门软件:HLM;MLwiN;SuperMIX; aML;EGRET;LISREL;Mplus等。 通用统计学软件:SAS;SPSS;stata;Splus/R等。

20
线性多层统计模型
基础知识
21
组内相关系数
(Intra-Class Correlation Coefficient, ICC)

5
多层数据的常见来源
复杂抽样; 多中心临床试验; 纵向研究(longitudinal studies)与重复测 量(repeated measures); “高低搭配”; Meta分析; ……

6
多层统计模型的研究内容
哪些个体解释变量会影响结局变量; 哪些场景变量会影响结局变量; 个体解释变量对结局变量的影响是否会受 到场景变量的影响。

7
多层统计模型出现前 对多层数据进行分析 的探索
8
探索(1)—分别估计

在个体水平和组群水平分别进行分析; 试图用单一的个体水平模型的分析结果来推论另 一水平的统计结果。
level 1 : yij 0 1 xij ij level 2 : y j 0 1 x j j
13
S. Raudenbush与A. Bryk


模型称为:hierarchical linear model; 软件为:HLM
14
H. Goldstein


模型称为:multilevel models; 软件为:MLwiN(早期版本称ML3,MLn)
15
多层统计模型的名称
multilevel models hierarchical linear model random-effect model random coefficient model various component model mixed-effect model empirical Bayes model

4
组内观察相关
(within-group observation dependence) 同一组内的个体,较不同组的个体而言, 在观念、行为等很多方面更为接近或相似; 即便不是刻意分组,也是如此。 组内同质(within-group homogeneity), 组间异质(between-group heterogeneity) 很小的相关将导致很大的I类错误。

18
多层统计模型的局限性(2)
研究对象一般具有流动性,即受到群组影 响的程度不同,虽可用出入时间进行控制, 但此信息一般不可知; 依然存在自变量带有测量误差的问题,必 需借助于结构方程模型(SEM); 完全嵌套假设,即每一个低水平单位嵌套、 且仅嵌套于一个高水平单位。

19
用于多层统计模型的软件
相关文档
最新文档