电力电子技术

合集下载

电力电子技术及应用

电力电子技术及应用

电力电子技术及应用第一章电力电子技术的概述电力电子技术是指利用电子器件和电路技术,对电力进行变换、调节、控制和保护等处理的技术。

它既是电力系统的重要组成部分,又是电力工业中的核心技术之一。

电力电子技术是将电力与电子技术相结合的交叉学科,是研究电力驱动及其控制、电力变换及其调节等基础理论和应用技术,其主要应用领域包括电力系统、电力驱动、能量转换、新能源等。

第二章电力电子技术的基本理论电力电子技术的基本理论包括电力电子器件、电力电子电路、电力控制、电力调节等方面。

1. 电力电子器件电力电子器件是电力电路中的基础元件,包括晶闸管、功率晶体管、MOSFET管、IGBT管和二极管等。

其中晶闸管是最早被应用的电力电子器件,其功率比较大,但开关速度慢,一般用于直流电路中;功率晶体管、MOSFET管、IGBT管在开关速度和功率特性方面都得到了较大的提高,广泛应用于交流电路。

2. 电力电子电路电力电子电路是利用电力电子器件构成的一种特殊电路,主要包括直流-直流电路、直流-交流电路和交流-交流电路等。

直流-直流电路主要用于直流电源的升压、降压、变换和稳压等,是各种电力变换电路的核心部分;直流-交流电路主要用于交流电源的变换和调节,是各种交流电力驱动和照明装置的核心部分;交流-交流电路主要用于交流电动机的调速等。

3. 电力控制电力控制是指利用控制电路实现电力电子器件与电路的开关控制、脉宽调制、相位控制等,从而实现电力的调节和控制。

电力控制系统包括开关电源、逆变电源、直流调速、交流调速等,而控制策略主要包括脉宽调制、空间矢量调制等。

4. 电力调节电力调节是指通过电力电子技术对电力进行调节和变换。

其主要应用在变频调速、交流稳压、电动车充电等领域。

电力调节系统一般包括电源、滤波器、逆变器、负载等组成。

第三章电力电子技术的应用1. 电力系统电力电子技术在电力系统中广泛应用,主要包括无功补偿、市电汇流、直流输电等。

其中无功补偿系统是减小交流系统无功功率流的有效措施,可以提高电网的稳定性和可靠性,提高电力的使用率。

电力电子技术

电力电子技术

图7.32 电压型交直交系统再生制动时的等值电路
38
电力电子技术 PWM整流器在可再生能源中的应用
– 可再生能源(风能、太阳能、潮汐发电、水 力发电等)不可控 ,不能直接并入电网 。
– 太阳能发电并网系统
TD1 TD3 TD5
L C
Salor Array
VDC
Lf
Cf
TD4
TD6
TD2
图7.36 太阳能发电并网系统原理图
18
电力电子技术
其它方面的应用
• 常规电源:不停电电源、开关电源、微机及仪器 仪表电源、航空电源、通信电源等。 • 专用电源:电化学电源、蓄电池充电放电、电子 模拟负载、电解水电源、交流电子稳 压电源、脉冲功率电源等; • 新型能源:如太阳能电池,风力发电等; • 节能: 如利用变频器调节电动机转速
30
电力电子技术
三、整流电路基本工作原理
• 整流——交流到直流的变换
– 不控整流(二极管) – 相控整流(晶闸管) – PWM整流(IGBT)
31
电力电子技术
相控整流电路的一般结构
• 主电路: -交流电源:工频电网或整流变压器
-滤波器:为保证电流连续
-负载:阻性负载、阻感负载、反电势负载等 • 控制电路:模拟控制、数字控制、单片机、DSP
32
电力电子技术
单相桥式全控整流电路
• 工作原理(正半周)
ud
0 π
2 π
-ωt=:发脉冲,T1T4导通
-ωt=π:iT1=iT4=Id,T1T4仍然 导通,T2T3承受正电压
Ud
ωt
a
i2
u2 u2
i2 Id
u2
-ωt =π+:T2T3导通,T1T4

电力电子技术课件

电力电子技术课件
电力电子学 (Power Electronics)名称60年代 出现; 1974年,美国的W. Newell用图1的倒三角形 对电力电子学进行了描 述,被全世界普遍接受;
电子学 电力 电子学
连续、离散
电力学
控制 理论
图1 描述电力电子学的倒三角形 7
与电子学(信息电子学)的关系 电子学(信息电子学)
3
1.1
信息电子技术
电力电子与信息电子
电力电子技术---电力电子技术----使用电 ----使用电 力电子器件对电能进行变换
电力电子技术
电子技术
和控制的技术,包括电压、 频率、电流、波形等电量的 变换技术。即用于电力领域 的电子技术。
模拟电子技术
数字电子技术
信息电子技术——信息处理 信息电子技术——信息处理 电力电子技术——电力变换 电力电子技术——电力变换 电子技术一般即指信息 电子技术,广义而言,也包 括电力电子技术。
目前电力电子器件均用半 导体制成,也称电力半导体 器件。 电力电子技术变换的“电 力”,可大到数百MW甚至 力”,可大到数百MW甚至 GW,也可小到数W甚至 GW,也可小到数W mW级。 mW级。 4
1.2
两大分支
电力电子器件制造技术 电力电子技术的基础, 电力电子技术的基础,理论基础是半导体物理 变流技术(电力电子器件应用技术) 变流技术(电力电子器件应用技术) 用电力电子器件构成电力变换电路和对其 进行控制的技术, 进行控制的技术,以及构成电力电子装置 和电力电子系统的技术。 和电力电子系统的技术。 电力电子技术的核心, 电力电子技术的核心,理论基础是电路理 论。
8
与电力学(电气工程)的关系 电力学(电气工程)
•电力电子技术广泛用于电气工程中

电力电子技术_基础知识

电力电子技术_基础知识

电力电子系统集成化研ቤተ መጻሕፍቲ ባይዱ成为热点,目前主要集中
于电力电子器件与控制电路的集成、磁性元件的集 成两大块。
三、电力电子技术的应用
电源
弧焊电源 电解、电镀电源 不停电电源(UPS) 恒频恒压电源 直流开关电源 充电电源 感应加热电源 脉冲电源、激光电源 。。。
数码产品广泛应用各类开关电源
新能源应用
风能、太阳能、潮汐能、地热能等应用
电网电源常见问题波形示意图
未来电力系统将大量应用电力电子 技术以提高电力品质和供电效率
风力、太阳能发电系统
风力发电
太阳能发电
三、电力电子技术的应用
照明
各类气体放电灯 电子镇流器 LED照明驱动器
西湖夜景
杭州湾大桥
集中运行中心
面向军事应用领域举例
电力电子技术与电能控制的关系
一、什么是电力电子学
典型的电力电子系统
电流采样
二、电力电子技术的发展与现状
电力电子器件的进步推动电力电子学的变革发展
1957年通用电气公司发明晶闸管,标志着电力电子技术的 诞生,相控变换技术广泛应用;
20世纪70年代后期,GTO、GTR、P-MOSFET迅速发
展,PWM控制技术推广应用; 20世纪80年代后期,IGBT开始推广应用,大功率变换进
入以IGBT+PWM技术为主流的时代;
20世纪90年代,为降低器件开关损耗,软开关技术开始推 广应用;
二、电力电子技术的发展与现状
进入21世纪以后
为了实现高频和低 EMI 的大功率变换,多电平变换 技术逐步推广应用;
船用操作变流器模块
配电模块
燃料电池

《电力电子技术》学习资料

《电力电子技术》学习资料

《电力电子技术》学习资料概述本文档旨在提供关于电力电子技术的研究资料,帮助读者了解该领域的基本概念和原理。

1. 电力电子技术简介- 电力电子技术是指利用电子器件和电力技术,将电能进行控制、变换和传输的技术领域。

- 电力电子技术广泛应用于电力系统、工业控制、电动车辆、电力传输等领域。

2. 电力电子技术的重要原理与器件2.1 可控硅器件- 可控硅器件是电力电子技术中最基本的器件之一。

- 可控硅器件可以实现对电能的方向、大小以及周期进行控制,广泛应用于电动机控制、电能变换等领域。

2.2 逆变器与变频器- 逆变器用于将直流电转换为交流电,常用于太阳能发电系统、UPS系统等。

- 变频器用于控制交流电机的转速和转矩,广泛应用于变频空调、工业驱动等领域。

2.3 共模电路- 共模电路用于电力系统的滤波和隔离。

- 共模电路能够有效抑制电力系统中的干扰信号和电磁波。

2.4 光伏逆变器- 光伏逆变器是将光伏电池所产生的直流电转换为交流电的装置。

- 光伏逆变器广泛应用于太阳能发电系统,为电网注入可再生能源。

3. 电力电子技术的应用3.1 电力系统- 电力电子技术在电力系统中起到重要作用,可以实现电力的传输、分配和控制。

- 电力电子技术能够提高电力系统的稳定性和效率。

3.2 工业控制- 电力电子技术在工业控制中应用广泛,如电动机控制、自动化生产线等。

- 电力电子技术可以实现对电力的精确控制和调节。

3.3 电动车辆- 电力电子技术是电动车辆关键技术之一。

- 电力电子技术可以实现电动车辆的电能转换和控制,提高能源利用效率。

3.4 可再生能源- 电力电子技术在可再生能源的应用中起到重要作用。

- 电力电子技术可以将风能、光能等可再生能源转换为可用的电能,推动可再生能源的开发利用。

总结本文档介绍了电力电子技术的基本概念、重要原理与器件,以及其在电力系统、工业控制、电动车辆和可再生能源中的应用。

通过学习电力电子技术,读者可以更深入了解和应用这一领域的知识。

电力电子技术

电力电子技术

电力电子技术1.1:电力变换通常可分为四大类,即交流变直流(AC-DC)、直流变交流(DC-AC)、直流变直流(DC-DC)和交流变交流(AC-AC )。

交流变直流称为 整流 ,直流变交流称为 逆变 。

1.2:(1);晶闸管是通过对门极的控制能够使其导通而不能使其关断的器件,属于 半控型器型 。

对晶闸管电路的控制方式主要是相位控制方式,简称 相控方式 。

(2);才用全控型器件的电路的主要控制方式为脉冲宽度调制(PWM)方式。

相对应相位控制方式,可称为斩波控制方式,简称 斩控方式 。

2.1.2:电力电子器件在实际应用中,一般是由 控制电路 、 驱动电路 、和以 电力电子器件 为核心的主电路组成一个系统。

2.1.3:电力电子器件分为以下三类:1)通过控制信号可以控制其导通而不能控制其关断的电力电子器件被称为 半控型器件 。

2)通过控制信号既可以控制其导通,又可以控制其关断的女电力电子器件被称为全控型器件 。

3)也有不能用控制信号来控制其通断的电力电子器件,因此也就不需要驱动电路,这就是 电力二极管 ,又被称为 不可控器件 。

2.2.1:从外形上看,电力二极管可以有 螺栓形 、 平板形 等多种封装。

2.3.2:晶闸管正常工作的特性如下:1)当晶闸管承受反向电压时,无论门极是否有触发电流,晶闸管都 不会导通 。

2)当晶闸管承受正向电压时,仅在门极有触发电流的情况下晶闸管 才能导通 。

3)晶闸管一旦导通,门极就失去控制作用,无论门极触发电流是否还存在,晶闸管都 保持导通 。

4)若要使已导通的晶闸管 关断 ,只能利用外加电压电路的作用使流过晶闸管的电流降到接近零的某一数值以下。

2.3.4:晶闸管的派生器件分为哪几类 快速晶闸管 、 双向晶闸管 、 逆导晶闸管 、光控晶闸管 。

3.1.1:(1)从晶闸管开始承受正向阳极电压起,到施加触发脉冲止的电角度称为 触发延迟角 ,α用表示,也称 触发角 或 控制角 。

电力电子技术

电力电子技术

拓扑结构
常见的升降压型DC/DC变换器拓 扑结构包括Buck-Boost电路、
Zeta电路等。
应用领域
升降压型DC/DC变换器在需要宽 范围电压输入的场合中得到了广 泛应用,如电动汽车充电桩、工
业自动化设备、通信设备等。
2024/1/28
19
05交流-Leabharlann 流变换技术2024/1/28
20
交流调压电路原理及分类
分类
根据控制信号的性质,交流调功电路可分为 模拟控制交流调功电路和数字控制交流调功 电路。
2024/1/28
22
交流电力电子开关及应用
交流电力电子开关
是一种能够控制交流电通断的开关器件,具 有快速、可靠、节能等优点。常见的交流电 力电子开关有晶闸管、双向晶闸管、可关断 晶闸管等。
2024/1/28
拓扑结构
应用领域
升压型DC/DC变换器在太阳能发电、 风力发电等新能源领域,以及电动汽 车、电动自行车等交通工具中得到了 广泛应用。
常见的升压型DC/DC变换器拓扑结构 包括Boost电路、Sepic电路等。
2024/1/28
18
升降压型DC/DC变换器
工作原理
升降压型DC/DC变换器结合了降 压型和升压型变换器的特点,可 以实现输入电压的升降压转换。
电力电子技术
2024/1/28
1
目录 CONTENTS
• 电力电子技术概述 • 电力电子器件 • 整流与逆变技术 • 直流-直流变换技术 • 交流-交流变换技术 • 电力电子技术应用实例分析
2024/1/28
2
01
电力电子技术概述
2024/1/28
3
定义与发展历程

电力电子技术概述

电力电子技术概述

电力电子技术概述电力电子技术是指在电力系统中应用电子元器件和电子技术,从而实现对电能的调节、变换和控制的一门技术。

它在现代电力系统中扮演着重要的角色,对于提高电力传输、转换和利用效率起到至关重要的作用。

本文将概述电力电子技术的基本原理、应用领域和未来发展趋势。

一、基本原理电力电子技术的基本原理是通过应用晶体管、二极管、开关等电子元件,实现对电能的调节和控制。

通过改变电压、电流的形状、频率和幅值来实现对电能的变换。

电力电子技术的核心是开关技术和变换技术。

1. 开关技术:开关技术是指通过控制开关的通断状态,来控制电流和电压的变化。

常见的开关元件有晶体管、功率开关管等。

通过合理的开关控制,可以实现电流的调节、电压的变换等功能。

2. 变换技术:变换技术是指通过变换电流和电压的形状、频率和幅值,将电能从一种形式转换为另一种形式。

常见的变换技术有直流-直流变换、直流-交流变换等。

通过变换技术,可以将电能从电网中提取出来,或者将直流电能转换为交流电能。

二、应用领域电力电子技术在多个领域广泛应用,其中包括能源转换、电力传输和利用、电动汽车等。

1. 能源转换:电力电子技术在可再生能源领域发挥着重要作用。

通过电力电子技术,可以将太阳能、风能等可再生能源转换为电能,从而实现清洁能源的利用。

2. 电力传输和利用:电力电子技术在电力系统中的传输和利用环节起着关键作用。

通过电力电子技术,可以实现高压交流输电与变频无级调速控制,提高电力传输效率和系统稳定性。

3. 电动汽车:电力电子技术在电动汽车领域的应用不断增加。

通过电力电子技术,可以实现电动汽车的充电与放电控制、能量回馈、效率提升等功能,推动电动汽车的发展与普及。

三、未来发展趋势随着能源需求的不断增长和环境问题的日益突出,电力电子技术将在未来得到更广泛的应用和发展。

1. 高效能源转换:未来电力电子技术将更加注重能源转换的高效率。

通过研究和改进电力电子器件的性能,提高能源转换效率,减少能源损失,从而推动清洁能源的大规模利用。

电力电子技术完整版全套PPT电子课件

电力电子技术完整版全套PPT电子课件
电力电子技术完整 版全套PPT电子课 件
contents
目录
• 电力电子技术概述 • 电力电子器件 • 电力电子电路 • 电力电子技术的控制策略 • 电力电子技术的实验与仿真
01
电力电子技术概述
电力电子技术的定义与发展
定义
电力电子技术是一门研究利用半 导体器件对电能进行变换和控制 的科学。
发展历程
饱和压降等特性
05
广泛应用于电机控制、电源转
换等领域
06
03
电力电子电路
整流电路
整流电路的工作原理
介绍整流电路的基本工作原理,包括 半波整流、全波整流和桥式整流等。
整流电路的应用
列举整流电路在电力电子领域的应用 ,如电源供应器、电池充电器和电机 驱动器等。
整流电路的类型
详细阐述不同类型的整流电路,如单 相半波整流电路、单相全波整流电路 、三相半波整流电路和三相全波整流 电路等。
光调光器和电加热温度控制器等。
一般工业应用
01
02
03
电动机控制
利用电力电子技术实现对 电动机的启动、调速、制 动等控制,提高工业生产 效率。
电热控制
通过电力电子技术对电热 设备进行控制,实现精确 的温度控制和节能效果。
照明控制
利用电力电子技术研发的 照明控制系统,可实现对 照明设备的智能控制和节 能管理。

应用领域
适用于对控制精度要求不高、成 本敏感的场合,如某些电源管理
、电机驱动等。
优缺点分析
优点在于实现简单、成本低;缺 点在于控制精度低、易受干扰、
调试困难。
数字控制技术
原理与特点
基于数字电路和微处理器实现控制,具有控制精度高、灵活性好 、易于实现复杂控制算法等特点。

电力电子技术第5版pdf-2024鲜版

电力电子技术第5版pdf-2024鲜版
应用领域
无源逆变电路常用于一些对输出波形要求不高的场合,如小功率电源 、照明等。
2024/3/28
23
逆变电路的应用与特点
应用领域:逆变电路在新能源发电、电动汽车、UPS、 电力拖动等领域有着广泛的应用,是实现电能高效转换 和利用的关键技术之一。 能够实现直流电能与交流电能之间的转换;
具有较高的转换效率和功率因数;
UPS主要由整流器、逆变器、蓄电池组和静态开关等组成,根据工作方式可分为在 线式、后备式和在线互动式三种类型。
2024/3/28
UPS广泛应用于计算机、通信、数据中心、医疗设备等领域,保障关键负载在市电 异常时的正常运行。
35
变频调速器
变频调速器是一种通过改变电机供电频率来实现电机速度调节的装置,广泛应用于风机、水泵、压缩 机等负载的节能控制。
晶闸管
一种具有三个PN结的四层结构的大功率半导体器件,可以承受高电压和大电流,具有开 关速度快、寿命长等优点。在交流电力电子开关中广泛应用。
可关断晶闸管(GTO)
具有自关断能力的一种晶闸管,可以通过门极负脉冲或阳极电流下降来实现关断。GTO具 有高电压、大电流、高开关速度等优点,适用于高压、大功率的交流电力电子开关。
环保意识的提高将推动电力电子技术向绿色化方向发展,减少对环境 的影响,提高能源利用效率。
集成化
随着集成电路技术的不断发展,电力电子技术的集成度将不断提高, 实现更小的体积和更高的可靠性。
6
02
电力电子器件
2024/3/28
7
不可控器件
工作原理
利用PN结的单向导电性
特点
结构简单、价格低廉、工作可靠
源的转换、储存和并网等功能。
5
电力电子技术的未来趋势

2024版《电力电子技术》PPT课件

2024版《电力电子技术》PPT课件

电力电子技术的定义与发展01020304定义晶闸管时代可控硅时代现代电力电子时代用于高压直流输电、无功补偿、有源滤波等,提高电力系统的稳定性和效率。

用于电动汽车、电动自行车、电梯等电机驱动系统,实现高效、节能的电机控制。

用于太阳能、风能等新能源发电系统,实现能源的高效利用和转换。

用于自动化生产线、机器人等工业设备,实现设备的精确控制和高效运行。

电力系统电机驱动新能源工业自动化数字化与智能化随着计算机技术和人工智能的发展,电力电子技术将实现数字化和智能化,提高系统的自适应能力和智能化水平。

高频化与高效化随着半导体材料和器件的发展,电力电子技术将实现更高频率和更高效率的电能转换。

绿色化与环保化随着环保意识的提高,电力电子技术将更加注重绿色、环保的设计理念,降低能耗和减少对环境的影响。

工作原理特点应用整流电路、续流电路等工作原理通过门极触发导通,无法自行关断特点耐压高、电流大、开关速度快应用直流电机调速、交流调压等工作原理特点应用工作原理特点应用逆变器、斩波器、电机驱动等工作原理特点应用工作原理开关速度快、耐压高、电流大、热稳定性好应用逆变器、斩波器、电机驱动等高端应用领域特点VS整流电路的作用整流电路的分类整流电路的工作原理整流电路的应用整流电路逆变电路逆变电路的作用逆变电路的分类逆变电路的工作原理逆变电路的应用直流-直流变流电路直流-直流变流电路的作用直流-直流变流电路的分类直流-直流变流电路的工作原理直流-直流变流电路的应用交流-交流变流电路交流-交流变流电路的作用交流-交流变流电路的工作原理A B C D交流-交流变流电路的分类交流-交流变流电路的应用电机驱动照明控制加热与焊接030201一般工业应用交通运输应用电动汽车驱动轨道交通牵引航空电源电力系统应用高压直流输电柔性交流输电通过电力电子技术可实现高压直流输电,减少输电损耗和占地面积。

智能电网风能发电通过电力电子技术可实现风能发电系统的变速恒频控制和并网运行。

电力电子技术

电力电子技术

交直流电流变换器
功率调节器
返回 上页 下页 第十三页,共五十二页。
变流技术
第一章电力电子技术的发展
电力——交流和直流两种
从公用电网直接得到的是交流,从蓄电池和干电池得到 的是直流。
电力变换四大类
交流变直流、直流变交流、直流变直流、交流变交流
输入
表1 电力变换的种类
输出
直流
交流
整流
交流
交流电力控制 变频、变相
返回 上页 下页 第三页,共五十二页。
第一章电力电子技术的发展
电力电子类似于微电子学技术,都是基于硅材料应用 科学的一个分支,采用硅分子渗透技术。
交流电 脉冲
电磁辐射
电能量 激光束
直流电
返回 下 页 第四页,共五十二页。
第一章电力电子技术的发展
电力电子技术市场取决于它的成本、可靠性,以及电力应 用中新技术有效性。
二者同根同源。
返回 上页 下页 第九页,共五十二页。
第一章电力电子技术的发展
※ 与相关学科的关系
与电力学(电气工程)的关系
电力电子技术广泛用于电气工程中
高压直流输电 静止无功补偿 电力机车牵引 交直流电力传动 电解、电镀、电加热、高性能交直流电源
国内外均把电力电子技术归为电气工程的一个
分支。
电力电子技术是电气工程学科中最为活跃的一个
返回 上页 下页 第三十三页,共五十二页。
第一章电力电子技术的发展
静电感应式晶体管(SIT) 静电感应式晶闸管(SITH) MOS晶闸管(MCT)
开关频率高
耐压性高 电流容量大
可以构成大功率、高频的电力电子电路。
IGBT开关频率比BJT高很多,在正向偏置安全工作 区内可以不需要缓冲器。

电力电子技术

电力电子技术

1、什么是逆变失败?如何防止逆变失败?答:在生产实践中,存在着与整流过程相反的要求,即要求把直流电转变成交流电,这种对应于整流的逆向过程,定义为逆变.为防止逆变失败应主要注意以下情况:①采用可靠的触发电路,保证能够适时、准确地给各闸管分配脉冲,使晶闸管能正常换相.②使用质量性能良好的晶闸管,保证在该阻断时阻断,该导通时能够正常导通.③在逆变过程中,保证交流电源的可靠性,避免出现交流电源发生缺相或突然消失.④保证留有足够的换相裕量角.2、单相桥式全控整流电路、三相桥式全控整流电路中,当负载分别为电阻负载或电感负载时,晶闸管的α角移相范围分别是多少?答:单相桥式全控整流电路,当负载为电阻负载时,晶闸管角的移相范围为(0~180)负载为阻感负载时,晶闸管角的移相范围为(0~90);三相半波可控整流电路:当负载为电阻负载时,晶闸管角的移相范围为(0~150)负载为阻感负载时,晶闸管角的移相范围为(0~90);三相桥式全控整流电路,当负载为电阻负载时,晶闸管角的移相范围为(0~120),负载为阻感负载时,晶闸管角的移相范围为(0~90)。

3、无源逆变电路和有源逆变电路有何不同?答:两种电路的不同主要是:有源逆变电路的交流侧接电网,而无源逆变电路的交流侧直接和负载联接。

4、换流方式各有那几种?各有什么特点?答:换流方式有4种:器件换流:利用全控器件的自关断能力进行换流。

全控型器件采用此换流方式。

电网换流:由电网提供换流电压,只要把负的电网电压加在欲换流的器件上即可。

负载换流:由负载提供换流电压,当负载为电容性负载即负载电流超前于负载电压时,可实现负载换流。

强迫换流:设置附加换流电路,给欲关断的晶闸管强迫施加反向电压换流称为强迫换流。

通常是利用附加电容上的能量实现,也称电容换流。

晶闸管电路不能采用器件换流,根据电路形式的不同采用电网换流、负载换流和强迫换流3种方式。

5、 三相桥式电压型逆变电路,180°导电方式,U d =100V 。

电力电子技术

电力电子技术

电力电子技术第一部分一、电力电子技术的定义电力电子技术是一门利用电力电子器件、电路理论和控制技术对电能进行处理、控制和变换的学科,是现代电子学的一个重要分支,也是电工技术的分支之一。

电力电子技术是应用于电力领域的电子技术。

具体地说,就是使用电力电子器件对电能进行变换和控制的技术。

二、电力电子技术的研究内容电力电子技术的研究内容:1、电力电子器件2、变流技术3、控制技术或者说,电力电子技术的研究内容:电子学、电力学、控制理论三、与其它学科的关系1、与微电子学的关系三个相同点:(1)都分为电子器件和电子电路两大分支,二者同根同源(2)两类器件制造技术的理论基础相同;(3)制造工艺也基本相同。

两个不同点:(1)应用目的不同——前者用于电力变换,后者用于信息处理;(2)工作状态不同——在微电子技术中,器件既可以处于放大状态,也可以处于开关状态;而在电力电子技术中为避免功率损耗过大,电力电子器件总是工作在开关状态。

2、与电力学(电气工程)的关系(1)电力电子技术广泛用于电气工程中;(2)国内外均把电力电子技术归为电气工程的一个分支;(3)电力电子技术是电气工程学科中最为活跃的一个分支。

3、与控制理论的关系(1)控制理论广泛用于电力电子系统中;(2)电力电子技术是弱电控制强电的技术,是弱电和强电的接口,控制理论是这种接口的有力纽带;(3)电力电子装置是自动化技术的基础元件和重要支撑技术。

四、电力电子技术的发展历史美国通用电气公司研制出第一个工业用的普通晶闸管,标志电力电子技术的诞生1、传统电力电子技术电力电子器件以半控型的晶闸管为主,变流电路以相控电路为主,控制电路以模拟电路为主。

2、现代电力电子技术现代电力电子技术在器件、电路及其控制技术方面与传统电力电子技术相比主要有如下特点:A、集成化B、高频化C、全控化D、控制电路弱电化E、控制技术数字化3、电力电子技术的发展展望科学家预言,电力电子技术和运动控制一起,将和计算机技术共同成为未来科学技术的两大支柱。

电力电子技术与应用

电力电子技术与应用

电力电子技术与应用电力电子技术是指利用半导体器件和电磁元件等电子器件,对电力进行高效、稳定的转换与控制的技术领域。

它在现代电力系统和电力设备中扮演着至关重要的角色。

本文将从电力电子技术的定义、应用、发展趋势等方面进行探讨。

一、电力电子技术的定义电力电子技术是指利用电子器件对电能进行调节、变换、控制的技术。

电力电子器件一般具有高功率、高频率、高唯一性和高可靠性等特点,主要包括晶体管、可控硅、IGBT等。

电力电子技术通过改变电路的开关状态和电源工作方式,实现电能的调整和转换,从而满足电力系统对不同形式电能的需求。

二、电力电子技术的应用1. 高压直流输电技术高压直流输电是电力电子技术的一项重要应用。

通过将交流电能转换为直流电能,再进行输送,可以有效降低输电损耗,提高电网稳定性。

高压直流输电技术在远距离、大容量输电方面具有明显优势,已广泛应用于长距离跨区域输电工程。

2. 可再生能源发电技术电力电子技术在可再生能源发电中起到了关键作用。

风力发电、光伏发电等可再生能源具有不稳定性和间歇性,而电力电子技术可以实现对可再生能源的有效调节和控制,使其能够稳定地并入电力系统。

此外,电力电子技术还可以实现电能的质量改善和功率因数校正。

3. 变频调速技术变频调速技术是电力电子技术在电机控制领域的应用。

通过电力电子器件对电机进行调节,可以实现电机转速的连续调整和转矩的精确控制。

变频调速技术广泛应用于电力、化工、交通等行业,可以实现能量的高效利用和运行的平稳可靠。

4. 无功补偿技术无功补偿是电力电子技术在电力系统中的重要应用之一。

通过电力电子器件对无功功率的生成和吸收进行调节,可以实现电网的无功功率平衡和电压稳定控制。

无功补偿技术对提高电力系统的电能质量和稳定性具有重要意义。

三、电力电子技术的发展趋势1. 高功率、高可靠性随着电力需求的增长和电力器件技术的不断进步,电力电子技术将朝着高功率、高可靠性方向发展。

电力电子器件的集成化和可靠性的提升将进一步推动电力电子技术的发展。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《电力电子技术》
习题一:
一、填空题
1、根据能被驱动(触发)电路输出控制信号所控制的程度,可将功率半导体器
件分为(、、)等3种。

2、如将功率半导体器件与电力电子装置控制系统中的检测环节、驱动电路、故
障保护、(、)等电路制作在同一芯片上,则构成功率集成电路PIC。

3、单相半波可控硅整流电路输出直流电压U d=( )。

4、在三相半波可控整流电路中,晶闸管承受的最大反向电压U RM=()。

5、变流装置在整流工作状态下,功率因数与装置所带负载性质无关,主要决定
于()的余弦。

6、交—交变频电路是一种可直接将某()交流交变成(可调
频率)交流的频率变换电路。

7、交流调压电路一般有三种控制方式:
()
8、将直流电逆变成电网频率的恒频交流并输送给电网称()逆
变。

9、直流斩波技术可以用来(),俗称“直流变压器”。

10、在三相晶闸管电路中,选择()电路的同步信号是一个很重
要的问题。

二、画图题
1、试画出晶闸管阳极伏安特性曲线。

2、试画出单相半波可控整流电路(电阻性负载)原理图及相关波形。

3、试画出DC—DC变换器原理电路及工作波形,并写出输出电压方程式。

4、试画出三相输入-单相输出AC—AC变频器原理图及工作波形。

三、简答题
1、试简述IPM(智能功率模块)的特点。

2、试简述多重化技术。

四、综合分析题
1、试分析一相桥式电压源型逆变器基本构成及工作特点。

2、试分析一相桥式电流源型逆变器基本构成及工作特点。

五、计算题
1、有一理想Buck变换电路,斩波频率20kHz,滤波元件参数为L=2mH,C=220
微法拉。

若电源电压E=12v,希望输出电压U
0=5v,输出平均电流I
=200mA,试计
算:
1)电感上电流纹波△I
L

2)输出电压纹波比值△Uc/U。

习题二
一、填空题
1、如型号为ZP50—16型的大功率二极管表示:
(、、)。

2、单相半波可控硅整流电路输出直流电压U d=( )。

3、在三相半波可控整流电路中,晶闸管承受的最大反向电压U RM=
()。

4、变流装置在整流工作状态下,功率因数与装置所带负载性质无关,主要决定
于()的余弦。

5、交—交变频电路是一种可直接将某()交流交变成(可调频
率)交流的频率变换电路。

6、在交—交变频电路中,一个输出周期中所包含的电源电压片段数越多,波形
就越接近正弦,通常要采用()或()的三相桥式电路来构成。

7、交流调压电路一般有三种控制方式:
(、、)
8、将直流电逆变成电网频率的恒频交流并输送给电网称()逆变。

9、直流斩波技术可以用来(),俗称“直流变压器”。

10、在三相晶闸管电路中,选择()电路的同步信号是一个很重
要的问题。

二、画图题
试画出晶闸管的串联均压电路。

2、试画出单相半波可控整流电路(电阻性负载)原理图及相关波形。

5、试画出DC—AC变换器原理电路及工作波形。

6、试画出三相输入-单相输出AC—AC变频器原理图及工作波形。

三、简答题
1、试简述逆变产生的条件。

2、试简述整流电路带来的谐波及功率因数问题。

四、综合分析题
1、试分析一相桥式电压源型逆变器基本构成及工作特点。

2、试分析一相桥式电流源型逆变器基本构成及工作特点。

五、计算题
1、有一理想Buck变换电路,斩波频率20kHz,滤波元件参数为L=2mH,C=220
微法拉。

若电源电压E=12v,希望输出电压U
0=5v,输出平均电流I
=200mA,试计
算: P159
1)电感上电流纹波△I
L

2)输出电压纹波比值△Uc/U。

习题一二答案:
一、填空题
1、
根据能被驱动(触发)电路输出控制信号所控制的程度,可将功率半导体器件分为(不控型器件、半控型器件、全控型器件P3 )等3种。

2、如型号为ZP50—16型的大功率二极管表示:(普通型大功率二极管、额定
电流为50A、额定电压为1600V 8 )。

3、如将功率半导体器件与电力电子装置控制系统中的检测环节、驱动电路、故
障保护、(缓冲环节、自诊断39 )等电路制作在同一芯片上,则构成功率集成电路PIC。

4、单相半波可控硅整流电路输出直流电压U d=(0.45U2(1+cosa)/2 99)。

5、三相可控整流电路的运行特性、各处波形、基本数量关系不仅与负载性质有
关,而且与(控制角a 110)有很大关系,应按不同a进行分析。

6、在三相半波可控整流电路中,晶闸管承受的最大反向电压U RM=(√6U2 113)。

7、晶闸管变流装置的(功率因数 138)是指装置交流侧有功功率与视在功率之
比。

8、变流装置在整流工作状态下,功率因数与装置所带负载性质无关,主要决定
于(控制角a 139)的余弦。

9、将大小固定的直流电压变换成大小可调的直流电压的变换称为(DC—DC 152)
变换,或称直流斩波。

10、交—交变频电路是一种可直接将某(固定频率 236)交流交变成(可调
频率)交流的频率变换电路。

11、在交—交变频电路中,一个输出周期中所包含的电源电压片段数越多,
波形就越接近正弦,通常要采用(六脉波 238)或(十二脉波)的三相桥式
电路来构成。

12、交流调压电路一般有三种控制方式:(通断控制、相位控制、斩波控制
224)
13、将直流电逆变成电网频率的恒频交流并输送给电网称(有源 178)逆变。

14、直流斩波技术可以用来(降压、升压和变阻 153),俗称“直流变压器”。

15、在三相晶闸管电路中,选择(触发 60)电路的同步信号是一个很重要的
问题。

二、画图题
1、试画出晶闸管阳极伏安特性曲线13.
2、试画出晶闸管的串联均压电路 64.
3、试画出单相半波可控整流电路(电阻性负载)原理图及相关波形。

98
4、试画出DC—DC变换器原理电路及工作波形,并写出输出电压方程式。

153
5、试画出DC—AC变换器原理电路及工作波形。

179
6、试画出三相输入-单相输出AC—AC变频器原理图及工作波形。

237
三、简答题
1、试简述IPM(智能功率模块)的特点。

40
2试简述逆变产生的条件。

128
3、试简述多重化技术。

192
4、试简述整流电路带来的谐波及功率因数问题。

137
1、试分析一相桥式电压源型逆变器基本构成及工作特点。

P181
2、试分析一相桥式电流源型逆变器基本构成及工作特点。

P182
五、计算题
1、有一理想Buck变换电路,斩波频率20kHz,滤波元件参数为L=2mH,C=220
微法拉。

若电源电压E=12v,希望输出电压U
0=5v,输出平均电流I
=200mA,试计
算: P159
1)电感上电流纹波△I
L

2)输出电压纹波比值△Uc/U。

相关文档
最新文档