第二章 电力电子拓扑基础 《高等电力电子技术》课件
电力电子技术概述PPT课件
电力电子技术概述PPT课件•电力电子技术基本概念•电力电子器件•电力电子变换技术•电力电子系统分析与设计•典型应用案例剖析•发展趋势与挑战01电力电子技术基本概念它涉及到电力、电子、控制等多个领域,是现代电力工业的重要组成部分。
电力电子技术的核心是对电能进行高效、可靠、可控的转换,以满足各种用电设备的需求。
电力电子技术是一门研究利用半导体器件对电能进行转换和控制的学科。
电力电子技术定义从早期的整流器、逆变器到现在的高频开关电源、智能电网等,电力电子技术经历了多个发展阶段。
发展历程目前,电力电子技术已经广泛应用于工业、交通、通信、家电等各个领域,成为现代社会不可或缺的一部分。
现状随着新能源、智能电网等技术的不断发展,电力电子技术的应用前景将更加广阔。
未来趋势发展历程及现状工业领域电机驱动、电力系统自动化、工业加热等。
电动汽车、高速铁路、航空航天等。
通信电源、数据中心、云计算等。
变频空调、LED照明、智能家居等。
随着新能源技术的不断发展,电力电子技术在太阳能、风能等领域的应用将更加广泛;同时,智能电网的建设也将为电力电子技术的发展提供新的机遇。
交通领域家电领域前景展望通信领域应用领域与前景02电力电子器件电力二极管(Power Diode)结构简单,工作可靠导通和关断不可控主要用于整流电路晶闸管(Thyristor)四层半导体结构,三个电极导通可控,关断不可控主要用于相控整流电路可关断晶闸管(GTO)通过门极负脉冲可使其关断关断时间较长,需要较大的关断电流主要用于大容量场合电力晶体管(GTR)电流驱动的双极型晶体管导通和关断可控,但驱动电路复杂主要用于中等容量场合电力场效应晶体管(Power MOSFET )电压驱动的单极型晶体管导通电阻小,开关速度快01主要用于中小容量场合02绝缘栅双极型晶体管(IGBT)03结合了MOSFET和GTR的优点01电压驱动,大电流容量,快速开关02目前应用最广泛的电力电子器件之一03电力电子变换技术整流电路的作用整流电路的分类整流电路的工作原理整流电路的应用将交流电转换为直流电。
《电力电子技术》PPT 第2章
图2-12 射极接地NPN型晶体管的静特性
图2-13 射极接地型晶体管电路图
小型晶体管最主要功能是作为线性放大器来使用,而功率 晶体管的主要是用于开关,充分发挥其功耗小、无触点的 优点。 图2-15为双极型晶体管的开关动特性。该特性对其它器件如 MOSFET、IGBT、SCR、GTO均适用。因为,它们都要考 虑电荷蓄积时间造成开关时间滞后的问题,不同的元件只 是滞后时间大小不同而已。图中输入信号为基极电流,输 出波形是指集电极电流与时间的关系。
图2-22 IGBT兼有BJT和MOS的优点
由图2-24(a)的IGBT的等效电路可见,IGBT是 以BJT为主导元件、MOS为驱动元件的达林顿结 构器件。其电路图符号如图2-24(b)所示。
图2-22 IGBT等效电路
2.2.4 晶闸管 1 普通晶闸管
晶闸管是四层(PNPN)三端(AKG)器件。A是阳极, K为阴极,G为门极。它有三个PN结J1、J2、J3。在一 般情况下,由于器件存在着反向PN结,因而,无论是承 受正压还是反压,器件均不能导通。
下面再解释一下图2-8(c),如果在PN结上 加与图2-7相反极性的电压,则在结合面上电 位壁垒将大大提高,该结合面仿佛变成了一 个电容器,使得电流不可能再流通。当然, 严格的说,也有接近0的微安级漏电流流过, 此电流称为反向电流。
2.2.3 电力晶体管
电力晶体管根据产生主电流载流子不同分为双极 型和单极型两类。前者载流子为空穴和电子,后 者只是电子(或空穴)。 单极型晶体管是在控制极加上电压形成电场,进行 电流控制。这类晶体管又称场效应晶体管(field effect transistor)简称FET,在后面章节还要详述。
2.4 电力电子器件的模块化
模块是在单个元件基础上发展起来的新器件, 它是有若干个半导体芯片按不同的用途和目的 进行接线后,封装成一个块状整体。90年代已 经开始普及,除少数超大功率器件外,一般中 小功率器件均模块化。其优点是外部接线简单, 抗干扰能力增强。
《电力电子技术》 ppt课件
《电力电子技术》
电力电子技术
《电力电子技术》
引言 电力电子器件 电力电子电路 脉宽调制(PWM)技术和软开关技术
第2页
电力电子技术
《电力电子技术》
➢ 什么是电力电子技术? ➢ 电力电子技术的发展史 ➢ 电力电子技术的应用
第3页
电力电子技术
《电力电子技术》
➢ 电子技术: 信息电子技术 电力电子技术
电力电子技术
IGBT的结构(显示图)
– 图a—N沟道VDMOSFET与GTR组合——N沟道IGBT
(N-IGBT)。 – IGBT比VDMOSFET多一层P+注入区,形成了一个大面
积的P+N结J1。 – ——使IGBT导通时由P+注入区向N基区发射少子,从
而对漂移区电导率进行调制,使得IGBT具有很强的通流 能力。 – 简化等效电路表明,IGBT是GTR与MOSFET组成的达林 顿结构,一个由MOSFET驱动的厚基区PNP晶体管。 – RN为晶体管基区内的调制电阻。
第17页
电力电子技术
《电力电子技术》
1.不可控器件——电力二极管
2.半控型器件——晶闸管 3. 典型全控型器件
(1)门极可关断晶闸管 (2)电力晶体管 (3)电力场效应晶体管 (4)绝缘栅双极晶体管
★
第18页
电力电子技术
《电力电子技术》
1. IGBT的结构和工作原理
三端器件:栅极G、集电极C和发射极E
➢ 全控型器件(复合型器件)
80年代后期开始,以绝缘栅极双极型晶体管(IGBT)为代 表的全控型器件因驱动功率小、开关速度快、载流能力大等得 到迅猛的发展。
★
第10页
电力电子技术
(2024年)电力电子技术完整版全套PPT电子课件
实验报告撰写与答辩
讲解实验报告的撰写要求和答辩技巧 ,提高学生的综合素质和能力。
36
08
电力电子技术应用案例
2024/3/26
37
新能源发电系统中电力电子技术应用
光伏发电系统
最大功率点跟踪(MPPT )技术、逆变器并网技术 、孤岛检测与保护技术等 。
2024/3/26
风力发电系统
变桨距控制技术、变速恒 频技术、直驱式永磁风力 发电技术等。
2024/3/26
13
可控整流电路分析与应用
可控整流电路原理
可控整流电路通过控制触发角α的大小,实现对输出电压的调 节。
2024/3/26
可控整流电路应用
可控整流电路广泛应用于直流调速、电力拖动、电解、电镀 等领域。
14
滤波电路原理与设计方法
滤波电路原理
滤波电路是利用电容、电感等元件对交流电的频率特性进行滤波,从而得到平 滑的直流电的电路。
高性能器件选择
选用高性能的功率器件和驱动电路,提高电路的工作频率和可靠性。例如,选用低导通电阻和低栅极电荷的 MOSFET可以降低电路的导通损耗和开关损耗;选用高耐压和高电流的IGBT可以提高电路的带负载能力等 。
系统优化与热设计
对系统进行全面的优化和热设计,确保电路在高负载、高温等恶劣环境下仍能稳定可靠地工作。例如,采用 合理的散热结构和风扇控制策略可以降低电路的工作温度;采用模块化设计可以提高电路的维修性和可扩展 性等。
2024/3/26
功率场效应晶体管(Power MOSFE…
阐述Power MOSFET和IGBT的结构、特点以及在电力电子电路中的 广泛应用。
11
03
整流与滤波技术
2024/3/26
电力电子技术第二章201909
+4
+4
+4
+4
+4
+45
+45
+4
+4
+4
+4
+4
施主杂质
电力电子技术
2.2.1 PN结原理
P型半导体 (空穴型半导体:多数载流子-空穴;少数载流子-电子)) (空穴
型半导体) 在本征半导体中掺入三价的元素(硼)
空穴 (多数载流子)
+4
+4
+4
+4
+4
+43
+43
+4
+4
+4
+4
+4
受主 杂质
电力电子技术
对控制电路的信号进行适当功率放大,这就是电 力电子器件的驱动电路(Driving Circuit)
电力电子技术
2.1.1 电力电子器件的特点
4)电力电子器件工作时常需配置缓冲和保护电路
• 电力电子器件的过压、过流能力较弱 • 开关过程中电压、电流会发生急剧变化 •为了增强可靠性通常需要缓冲电路抑制电压电流变化率 • 保护电路用于防止电压和电流超过器件极限值
晶体管 晶闸管
双极型电力晶体管(GTR) 电力场效应晶体管(PMOSFET)
绝缘栅双极电力晶体管(IGBT)
静电感应型晶体管(SIT)
门极可关断晶闸管(GTO) 场控晶闸管(MCT) 静电感应型晶闸管(SITH)
电力电子技术
2.1.2 电力电子器件的分类
2、按照驱动电路加在器件控制端和公共端之间信号的性质, 分为两类:
空穴—共价键中的空位
《电力电子技术》PPT课件-2024鲜版
34
设置仿真参数
设置仿真时间、步长等参数,以满足仿真精度和速度的要求。
运行仿真并分析结果
运行仿真,观察仿真波形和数据,分析电力电子技术的性能。
2024/3/27
32
实验与仿真的比较与选择
实验的优点
实验的缺点
仿真的优点
仿真的缺点
选择依据
实验结果真实可靠,能 够反映实际电路的性能 。
2024/3/27
实验成本高,操作复杂 ,受实验条件和人为因 素影响较大。
变频电路、变压电路等。
交流-交流变流电路的应用
电机调速、风力发电、太阳能发电并网等。
21
一般工业应用
01
02
03
电机驱动
电力电子技术可用于控制 电机的速度和转矩,提高 电机的效率和性能。
2024/3/27
照明控制
通过电力电子技术可实现 对照明设备的调光和调色 ,提高照明质量和节能效 果。
加热与焊接
2024/3/27
6
02
电力电子器件
2024/3/27
7
不可控器件
工作原理
利用PN结的单向导电性
特点
结构简单、价格低廉、耐高压、耐大电流
2024/3/27
8
不可控器件
应用
整流电路、续流电路等
工作原理
通过门极触发导通,无法自行关断
2024/3/27
9
不可控器件
特点
耐压高、电流大、开关速度快
应用
直流电机调速、交流调压等
2024/3/27
10
半控型器件
工作原理
门极可关断,但需要较大的关断电流
特点
开关速度快、耐压高、可关断
电力电子技术概述 PPT课件
1.1 什么是电力电子技术
电力电子技术与控制理论的关系
1) 控制理论广泛用于电力电子技术,使电力电子装置和系统 的性能满足各种需求
2) 电力电子技术可看成“弱电控制强电”的技术,是“弱电 和强电的接口”,控制理论是实现该接口的强有力纽带
3) 控制理论和自动化技术密不可分,而电力电子装置是自动 化技术的基础元件和重要支撑技术
➢ 在变电所中,给操作系统提供可靠的交直流操作电 源,给蓄电池充电等都需要电力电子装置
1.3 电力电子技术的应用
4) 电子装置用电源
➢ 各种电子装置一般都需要不同电压等级的直流电源供电。通信 设备中的程控交换机所用的直流电源以前用晶闸管整流电源, 现在已改为采用全控型器件的高频开关电源。大型计算机所需 的工作电源、微型计算机内部的电源现在也都采用高频开关电 源。在各种电子装置中,以前大量采用线性稳压电源供电,由 于高频开关电源体积小、重量轻、效率高,现在已逐渐取代了 线性电源。因为各种信息技术装置都需要电力电子装置提供电 源,所以可以说信息电子技术离不开电力电子技术。
➢ 电动汽车的电机靠电力电子装置进行电力变换和 驱动控制其蓄电池的充电也离不开电力电子装置。 一台高级汽车中需要许多控制电机,它们也要靠 变频器和斩波器驱动并控制
➢ 飞机、船舶需要很多不同要求的电源,因此航空 和航海都离不开电力电子技术
➢ 如果把电梯也算做交通运输,那么它也需要电力 电子技术。以前的电梯大都采用直流调速系统, 而近年来交流变频调速已成为主流
1.3 电力电子技术的应用
➢ 传统的发电方式是火力发电、水力发电以及后来 兴起的核能发电。能源危机后,各种新能源、可 再生能源及新型发电方式越来越受到重视。其中 太阳能发电、风力发电的发展较快,燃料电池更 是备受关注。太阳能发电和风力发电受环境的制 约,发出的电力质量较差,常需要储能装置缓冲, 需要改善电能质量,这就需要电力电子技术。当
《电力电子》课件
智能控制是一种基于人工智能的控制 方法,其工作原理是通过人工智能算 法实现电力电子设备的智能控制。
数字控制
数字控制是一种现代的控制方法,其 工作原理是通过数字电路和微控制器 实现电力电子设备的控制。
03
电力电子系统设计
系统设计方法
确定系统目标
明确电力电子系统的功能要求,如电压转换、功 率控制等。
电力电子的发展历程
1940年代
1950年代
1960年代
1970年代
1980年代至今
开关管和硅整流器的出 现,开始应用于信号放 大和处理。
晶体管的发明,开始应 用于信号放大和处理以 及无线通信等领域。
可控硅整流器(SCR) 的出现,开始应用于电 机控制和电力系统等领 域。
出现了可关断晶闸管( GTO)等更加高效的电 力电子器件。
• 高效性:电力电子技术可以实现高效地转换和控制电能,从而提高能源利用效率。 • 灵活性:电力电子器件具有较小的体积和重量,可以方便地集成到各种系统中,实现灵活的电能转换和控制。 • 应用广泛:电力电子技术在能源转换、电机控制、电网管理和可再生能源系统中有着广泛的应用。
电力电子的应用领域
电机控制
电网管理
05
电力电子技术技术
随着电力电子器件性能的不断提 升,电力电子系统的频率逐渐提 高,实现了更高的转换效率和更 小的体积。
高效化技术
为了降低能源消耗和减少环境污 染,电力电子系统正在不断追求 更高的效率。高效化技术包括拓 扑结构优化、控制策略改进等。
电力电子在智能电网中的应用前景
THANK YOU
感谢观看
IGBT是一种广泛应用于电力电子领域的半导体器 件,其工作原理是通过控制栅极电压来调节漏极 和源极之间的电流。
2024年电力电子技术课件
电力电子技术课件1.引言电力电子技术是现代电力系统的重要组成部分,涉及到电力电子器件、电路及其应用。
随着科技的不断发展,电力电子技术在能源、交通、工业等领域发挥着越来越重要的作用。
本课件旨在介绍电力电子技术的基本概念、原理和应用,帮助读者了解电力电子技术的相关知识。
2.电力电子器件电力电子器件是电力电子技术的基础,主要包括二极管、晶体管、晶闸管等。
这些器件具有开关速度快、控制精度高、效率高等优点,广泛应用于电力变换和控制领域。
2.1二极管二极管是一种具有单向导电特性的半导体器件,主要用于整流和隔离。
根据结构的不同,二极管可分为点接触二极管和面接触二极管。
点接触二极管具有高频性能好、反向电压高等特点,适用于高频和小功率的工作;面接触二极管具有反向电压低、电流容量大等特点,适用于低频和大功率的工作。
2.2晶体管晶体管是一种具有放大和开关功能的半导体器件,根据结构的不同,可分为双极型晶体管(BJT)和场效应晶体管(FET)。
双极型晶体管具有输入阻抗低、输出阻抗高、电流放大能力强等特点,适用于模拟信号放大和开关控制;场效应晶体管具有输入阻抗高、输出阻抗低、开关速度快等特点,适用于数字信号放大和开关控制。
2.3晶闸管晶闸管是一种具有双向导电特性的半导体器件,具有开关速度快、控制精度高、效率高等优点,广泛应用于电力变换和控制领域。
根据结构的不同,晶闸管可分为单向晶闸管(SCR)和双向晶闸管(TRIAC)。
单向晶闸管具有单向导电特性,适用于交流电源的整流和调节;双向晶闸管具有双向导电特性,适用于交流电源的开关和控制。
3.电力电子电路电力电子电路是电力电子技术的核心,主要包括整流电路、逆变电路、斩波电路等。
这些电路通过对电力电子器件的控制,实现电能的变换和控制。
3.1整流电路整流电路是一种将交流电转换为直流电的电路,根据整流方式的不同,可分为半波整流电路、全波整流电路和桥式整流电路。
半波整流电路具有结构简单、成本低等优点,但输出电压脉动较大;全波整流电路具有输出电压脉动小、效率高等优点,但结构复杂;桥式整流电路具有输出电压脉动小、效率高等优点,但需要使用四个二极管。
第2篇 电力电子电路拓扑
2.1 变流电路拓扑概述
➢ 逆变电路( DC→AC) 有源逆变 晶闸管三相桥式可控变流电路、双桥12脉可控变流电路 无源逆变 单相逆变:半桥逆变、全桥逆变、推挽逆变电路 三相逆变:三相三桥臂桥式逆变、三相四桥臂桥式逆变 单相逆变组合、波形重构技术、多电平逆变 DC变换式逆变:两台DC变换器合成 高频链逆变:高频变实现输入输出隔离
• 由于0<D<1,所以输出电压小 于输入电压的,即降压斩波;
降压斩波电路及波形
• 输出电压与输入电压同极性。
Buck电路工作特点:V导通,电源向负载供电,V关断,电 源不供电;
2-26
2.3 直流变换电路
➢ Boost电路
储存
工作原理
电能
[0, ton]:V导通,D截至,电 源给电感L供电,储能,有:
u(t) 2U sin(t u )
对于周期性的非正弦波电压,可分解为傅里叶级数:
基波(fundamental)——频率与工频相同的分量
谐波——频率为基波频率大于1整数倍的分量
谐波次数——谐波频率和基波频率的整数比
示n电次:流谐谐波波电总流H畸含R变I有n率率TII以1nHDH1i(R00ITn%o(taHl aHramrmonoincicRdaitsiotofrotrioInn))表定
2-24
2.3 直流变换电路
DC→DC 直流电路种类繁多,根据是否有高频变压器隔离措 施,其电路结构也有相应的区别。
非隔离的直流变换电路
非隔离直流变换电路不含高频变压器,变换电路相对简单, 变换效率也较高。最基本的电路有6种:Buck电路、Boost 电路、Buck-Boost电路、Cuk电路、Sepic电路、Zeta电路
输出电压在工频周期内脉动6 次,输出直流侧谐波含量为 mk(m=6, k=1,2,3...)次;
电力电子技术完整版课件全套ppt教程 (2)全文编辑修改
1.断态电压临界上升率du/dt du/dt是在额定结温和门极开路的情况下,不导致晶闸管从断态到通 态转换的最大阳极电压上升率。在实际使用时的电压上升率必须低于此
规定值。
表1-3 断态电压临界上升率(du / dt)的等级
du /
dt
V
25
/μs
级 别
A
50 100 200 500 800 1000
8
800
20
9
900
22
10 1000 24
12 1200 26
14 1400 28
16 1600 30
18 1800
2000 2200 2400 2600 2800 3000
表1-2 晶闸管正向通态平均电压的组别
正向 通态 平均 电压 V
组别 代号
正向 通态 平均 电压 V
组别 代号
UT(AV) ≤0.4
晶闸管承受断态重复峰值电压UDRM 和反向重复峰值电压URRM 时的 峰值电流。
5. 浪涌电流ITSM ITSM是一种由于电路异常情况引起的使结温超过额定结温的不重 复性最大正向过载电流,用峰值表示。它是用来设计保护电路的。
按标准,普通晶闸管型号的命名含义如下:
(三)门极触发电流IGT和门极触发电压UGT IGT是在室温下,给晶闸管施加6V正向阳极电压时,使元件由断态转 入通态所必需的最小门极电流。
4.通态(峰值)电压UTM UTM 是晶闸管通以π倍或规定倍数额定通态平均电流值
时的瞬态峰值电压。从减小损耗和器件发热的观点出发,应
该选择UTM较小的晶闸管。 5.通态平均电压(管压降)UT(AV) 当元件流过正弦半波的额定电流平均值和稳定的额定结
电力电子技术全套课件
整流电路具有将交流电转换为直流电的功能,是电力电子设备中不可或缺的组成部分。同时,整流电 路的性能直接影响到电力电子设备的整体性能。因此,在设计整流电路时,需要根据实际需求选择合 适的电路类型和器件,并进行合理的布局和走线,以确保整流电路的稳定性和可靠性。
04
逆变电路
逆变电路的工作原理与分类
技术特点与优势
分析高压直流输电的技术特点和优势,如远距离输电损耗 小、系统稳定性高等。
工程应用与发展趋 势
介绍高压直流输电在国内外的典型工程应用,并探讨其未 来发展趋势和技术挑战。
THANKS
感谢观看
制。
逆变电路的应用与特点
应用
逆变电路广泛应用于电力电子变换器、不间断电源、变频调 速系统、新能源发电系统等领域。
特点
逆变电路具有高效率、高功率因数、低谐波污染等优点,能 够实现能量的双向流动和电网的并网运行。同时,随着电力 电子技术的发展,逆变电路的性能和可靠性也在不断提高。
05
直流-直流变流电路
升压型直流-直流变流电路
工作原理
升压型直流-直流变流电路通过开关管的导通和关断,控制电感的 充放电过程,从而实现输入电压到输出电压的升压转换。
电路组成
升压型直流-直流变流电路主要由开关管、电感、电容、二极管等 元件组成,与降压型电路类似,但元件的连接方式和参数有所不同 。
应用场景
升压型直流-直流变流电路广泛应用于各种需要升压的电子设备中, 如电动汽车、太阳能发电系统等。
02
电力电子器件
不可控器件
电力二极管(Power Diode) 工作原理及特性
主要参数与选型
不可控器件
01
晶闸管(Thyristor)
第2章 电力电子技术课件(完整)
学习要点:
最重要的是掌握其基本特性。 掌握电力电子器件的型号命名法,以及其参数和特性 曲线的使用方法。 了解电力电子器件的半导体物理结构和基本工作原理 了解某些主电路中对其它电路元件的特殊要求。
1-10
2.2
不可控器件—电力二极管· 引言
自20世纪50年代初期就获得应用,但其结构和原理简 单,工作可靠,直到现在电力二极管仍然大量应用于 许多电气设备当中。 在采用全控型器件的电路中电力二极管往往是不可缺 少的,特别是开通和关断速度很快的快恢复二极管和 肖特基二极管,具有不可替代的地位。
1)概念:
电力电子器件(Power Electronic Device)
——可直接用于主电路中,实现电能的变换或控制的电 子器件。
主电路(Main Power Circuit)
——电气设备或电力系统中,直接承担电能的变换或控 制任务的电路。
2)分类:
电真空器件 半导体器件 (汞弧整流器、闸流管) (采用的主要材料硅)
1-26
2.3.1 晶闸管的结构与工作原理
常用晶闸管的结构
螺栓型晶闸管
晶闸管模块
平板型晶闸管外形及结构
1-27
2.3.1 晶闸管的结构与工作原理
按晶体管的工作原理 ,得:
I c1 1I A I CBO1
I c 2 2 I K I CBO2
(2-1)
(2-2)
(2-3) (2-4)
——通过从控制端注入或者抽出电流来实现导通或者 关断的控制。
电压驱动型
——仅通过在控制端和公共端之间施加一定的电压信 号就可实现导通或者关断的控制。
1-9
2.1.4
本章内容:
本章学习内容与学习要点
《电力电子技术》PPT第2章
《电力电子技术》PPT第2章2.4电力电子器件的模块化模块是在单个元件基础上发展起来的新器件,它是有若干个半导体芯片按不同的用途和目的进行接线后,封装成一个块状整体。
90年代已经开始普及,除少数超大功率器件外,一般中小功率器件均模块化。
其优点是外部接线简单,抗干扰能力增强。
2.5 智能电力电子模块(IPM)IPM(IntelligentPowerModule)智能电力电子模块是功率集成电路PIC(PowerIntegratedCircuits)的一种。
一类称为高压集成电路,简称HVIC,它是横向高耐压电力半导体器件与控制电路的单片集成;另一类即IPM,它是纵向电力半导体器件与控制电路保护电路以及传感器电路等多功能集成。
由于高度集成化使模块结构十分紧凑,避免了由于分布参数、保护延迟等带来的一系列技术难题,使变频器的可靠性得到进一步提高。
IPM的智能化表现为可以实现控制、保护、接口三大功能,构成混合式电力集成电路。
2.6全控型电力电子器件的比较1电压、电流的比较图2-45电压、电流的比较2性能的比较200200200200125150最高工作结温(℃)中等高高高低中等di/dt高高高高低中等du/dt中等低低很低中等高门栅极驱动功耗100200×10320×103501050最大开关速度(kHz)10倍额定值5倍额定值5倍额定值5倍额定值10倍额定值3倍额定值浪涌电流耐压量100~500306604030正向导通电流密度(A/cm2)220200100~12400~1003500400正向电流范围(A)500~450050~150050~1000200~2500500~9000100~1400正向阻断电压范围(V)500~450000200~2500500~6500<50反向电压阻断能力(V)导通/关断导通/关断阻断阻断阻断阻断常态电压电压电压电压电流电流控制方式S.ITHS.ITVDMOSIGBTGTOBJT器件名称2.7电力电子器件的相关技术1串并联技术图2-47直流输电用晶闸管变换装置的一个模块(桥式电路的一个臂)该模块均衡电路由以下几部分构成。
第二章 电力电子拓扑基础 《高等电力电子技术》课件
V
Io
V
Us
Io
Uo V Is
e)
f)
g)
h)
图2-10 输入部分和中间部分的前级缓冲器的拓扑组合方式
高等电力电子技术
2.1.3基本开关变换器的拓扑组合规则
规则5 输入电压源不能通过开关直接与电压缓冲器或电压负载相连;输入 电流源不能通过开关直接与电流缓冲器或电流负载相连
若变换器没有中间部分,只有输入端和输出端,那么输入端有两种电路拓扑同样输出 端也只有两种电路结构,其拓扑组合形式有8种,如图2-11所示。
高等电力电子技术
2.1.2 开关变换器拓扑的基本开关单元
三端口开关单元对外有三个端:功率开关 端口,称为有源端,用a表示;二极管端口, 称为无源端,用p表示;功率开关管和二极 管相连接的端口,称为公共端,用c表示。 这样是形成三端开关单元,如图2-5所示。
ac p
图2-5 三端开关单元
注意:三端开关单元中的功率开关管和二极管的开 关状态互补,即:当功率开关管导通时二极管关断 ,而二极管导通时功率开关管关断。
高等电力电子技术
Advanced Power Electronics
高等电力电子技术
高等电力电子技术
高等电力电子技术
高等电力电子技术
2.1.1开关变换器的基本拓扑
在电力电子技术中,一般将开关变换器按能量变换形式分为四大类, AC-DC变换器,DC-AC变换器,DC-DC变换器,AC-AC变换器。无论是何种 变换类型,开关变换器都存在一些基本的拓扑结构。
高等电力电子技术
2.1.3基本开关变换器的拓扑组合规则
规则1 :输入端只有两种正确的拓扑形式,即电压源和功率开关管 串联或电流源和功率开关管并联
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
L V
Us
VD C R
L Us
VD
V
C
R
VD V
Us
L
C
R
L1
C1
L2
L1
C1
C1
L2
Us
V
VD R
Us
V
L2
C2 R
Us
L1
VD
C2 R
V VD
从上图所示的6种基本开关变换器拓扑中可以发现:各变换器都有一个功率开 关管和一个二极管组成的基本单元,其中功率开关管和二极管反向连接且连接 节点输出,因此称该结构的基本单元为三端口开关单元,如上图虚线框所示。
a)
b)
图2-1 单向开关单元电路拓扑
a) 单向不可控开关单元 b) 单向可控开关单元
高等电力电子技术
2.1.2 开关变换器拓扑的基本开关单元
(2)准双向开关单元
准双向开关单元是指电流或电压能双向通过,但只有正向可控的基本开关单 元。准双向开关单元分为准双向电流开关单元和准双向电压开关单元,它们 都同时包括二极管和功率开关管。
高等电力电子技术
2.1.2 开关变换器拓扑的基本开关单元
将含有二极管或功率开关管的基本单元称之为“基本开关单 元”。根据功率开关器件所在不同开关变换器中的拓扑结构和特 点,可将其分为三类。
二端开关单元
基
本
开
三端开关单元
关
单
元
基本变换单元
高等电力电子技术
12.1二.2端开开关关变单换元器拓扑的基本开关单元
飞跨电 容式多 电平桥
矩阵式
V1 VD1
V2
VD2 V1
C1 VD5
V2
0
VD6
V3
C2
V4
VD1 VD2
VD3 VD4
V1
VD1
C1
V2
0
C3
V3 C2
VD2 VD3
V4
输入
a
b
c
VD4
S11 S12 S13 S21 S22 S23 S31 S32 S33
u v 输出 w
驱动不需隔离,变 变压器绕组利用率低, 适合低压输入的 压器双端磁化,只 功率开关管耐压应力为 场合 要 两 个 功 率 开 关 管 。输 入 电 压 的 两 倍 , 会 出
VD1
大。
V2 VD2
V1
V2
VD1
V3
V4
VD3
电 压 利 用 率 高 , 结构复杂 ,需要四个 适用于大容量 功 率 开 关 管 的 电 功 率 开 关 管 , 成 本 高 。场合 VD2 压 应 力 和 电 流 应 力都较小。
VD4
高等电力电子技术
2.1.1开关变换器的基本拓扑
推挽式
二极管 钳位式 多电平 桥
输入电流、输出电 功率器件数量多且结构 适合能量可双向
压、功率因数均可 复杂,控制难度大。 流动的高品质电
控,且能量能双向
能转换
流动。
高等电力电子技术
2.1.1开关变换器的基本拓扑
为讨论简便起见,本课程将以BUCK、BOOST、 BUCK-BOOST、CUK、SEPIC、ZETA六种基本 开关变换器为基础研究电力电子拓扑结构的相关 规律。
现偏磁。
不存在动态均压问 需要多个钳位二极管, 适合高压大功率 题。输出波形质量 存在直流分压电容电压 场合 有较大改善,输出 不平衡问题,增加了系 电压的 也相对减小,统动态控制的难度。 动态响应好。
开关方式灵活,对 需要多个钳位电容,也 适合高压大功率 功率器件保护能力 存在直流分压电容电压 场合 有功功率又能控制 不平衡问题,增加了系 无功功率较强,既 统动态控制的难度。 能控制。
a)
b)
图2-2 准双向开关单元电路拓扑
a) 准双向电流开关单元 b) 准双向电压开关单元
高等电力电子技术
2.1.2 开关变换器拓扑的基本开关单元
(3) 双向开关单元
双向开关单元是指电流能双向可控的基本开关单元。双向开关单元主要包括四 种结构:二极管桥式、共射背靠背式、共集背靠背式、双管反并式。
a)二极管桥
b)共射背靠背式
c)共集背靠背式
d)双管反并式
图2-3 双向开关单元电路拓扑
高等电力电子技术
2.1三.2端开开关关变单换元器拓扑的基本开关单元
三端开关单元:由功率开关和二极管构成的具有三端 口输出的基本开关单元。 那么三端开关单元具有怎样的拓扑结构呢?
高等电力电子技术
2.1.2 开关变换器拓扑的基本开关单元
高等电力电子技术 2.1.1开关变换器的基本拓扑
由于各种开关变换器基本拓扑结构的不同,使得其各自的用途 、特点等都各不相同,以下列出几种相关开关变换器的拓扑及 其基本特征。
高等电力电子技术
2.1.1开关变换器的基本拓扑
Sepic
L1
C1
VD
输 入 输 出 极 性 相 结 构 复 杂 , 效 率 变 低 ,既可升压也可 同,控制灵活。 且 体 积 和 重 量 相 对 大 。降压
高等电力电子技术
高等电力电子技术
2.1.2 开关变换器拓扑的基本开关单元
三端口开关单元对外有三个端:功率开关 端口,称为有源端,用a表示;二极管端口, 称为无源端,用p表示;功率开关管和二极 管相连接的端口,称为公共端,用c表示。 这样是形成三端开关单元,如图2-5所示。
ac p
图2-5 三端开关单元
注意:三端开关单元中的功率开关管和二极管的开 关状态互补,即:当功率开关管导通时二极管关断 ,而二极管导通时功率开关管关断。
二端开关单元是指:由二极管和功率开关管 组成的具有二个端口的基本开关单元,主要 包括:单向开关单元、准双向开关单元以及 双向开关单元三种拓扑结构。
高等电力电子技术
2.1.2 开关变换器拓扑的基本开关单元
(1)单向开关单元
单向开关单元是指电流只能单向流通的基本开关单元。单向开关单元包 括可控和不可控单向开关两种基本单元,其中单向不可控开关单元由单个 二极管构成;而单向可控开关单元则由单个功率开关管构成。
Us
V
L2
C2 R
Zeta
V
C1
L2
Us
L1
VD
C2 R
输 入 输 出 极 性 相 结 构 复 杂 , 效 率 变 低 ,既可升压也可
同,控制灵活。 且体积和重量大。
降压
半桥式 全桥式
结 构 简 单 , 只 要 电压利用率低 ,功率 适合低电流输
V1
两 个 功 率 开 关 管 。开 关 管 的 电 流 应 力 较 入的场合
高等电力电子技术
Advanced Power Electronics
高等电力电子技术
高等电力电子技术
高等电力电子技术
高等电力电子技术
2.1.1开关变换器的基本拓扑
在电力电子技术中,一般将开关变换器按能量变换形式分为四大类, AC-DC变换器,DC-AC变换器,DC-DC变换器,AC-AC变换器。无论是何种 变换类型,开关变换器都存在一些基本的拓扑结构。