电力电子技术基础知识ppt课件

合集下载

电力电子技术概述PPT课件

电力电子技术概述PPT课件

电力电子技术概述PPT课件•电力电子技术基本概念•电力电子器件•电力电子变换技术•电力电子系统分析与设计•典型应用案例剖析•发展趋势与挑战01电力电子技术基本概念它涉及到电力、电子、控制等多个领域,是现代电力工业的重要组成部分。

电力电子技术的核心是对电能进行高效、可靠、可控的转换,以满足各种用电设备的需求。

电力电子技术是一门研究利用半导体器件对电能进行转换和控制的学科。

电力电子技术定义从早期的整流器、逆变器到现在的高频开关电源、智能电网等,电力电子技术经历了多个发展阶段。

发展历程目前,电力电子技术已经广泛应用于工业、交通、通信、家电等各个领域,成为现代社会不可或缺的一部分。

现状随着新能源、智能电网等技术的不断发展,电力电子技术的应用前景将更加广阔。

未来趋势发展历程及现状工业领域电机驱动、电力系统自动化、工业加热等。

电动汽车、高速铁路、航空航天等。

通信电源、数据中心、云计算等。

变频空调、LED照明、智能家居等。

随着新能源技术的不断发展,电力电子技术在太阳能、风能等领域的应用将更加广泛;同时,智能电网的建设也将为电力电子技术的发展提供新的机遇。

交通领域家电领域前景展望通信领域应用领域与前景02电力电子器件电力二极管(Power Diode)结构简单,工作可靠导通和关断不可控主要用于整流电路晶闸管(Thyristor)四层半导体结构,三个电极导通可控,关断不可控主要用于相控整流电路可关断晶闸管(GTO)通过门极负脉冲可使其关断关断时间较长,需要较大的关断电流主要用于大容量场合电力晶体管(GTR)电流驱动的双极型晶体管导通和关断可控,但驱动电路复杂主要用于中等容量场合电力场效应晶体管(Power MOSFET )电压驱动的单极型晶体管导通电阻小,开关速度快01主要用于中小容量场合02绝缘栅双极型晶体管(IGBT)03结合了MOSFET和GTR的优点01电压驱动,大电流容量,快速开关02目前应用最广泛的电力电子器件之一03电力电子变换技术整流电路的作用整流电路的分类整流电路的工作原理整流电路的应用将交流电转换为直流电。

《电力电子技术》 ppt课件

《电力电子技术》 ppt课件
电力电子技术
《电力电子技术》
电力电子技术
《电力电子技术》
引言 电力电子器件 电力电子电路 脉宽调制(PWM)技术和软开关技术
第2页
电力电子技术
《电力电子技术》
➢ 什么是电力电子技术? ➢ 电力电子技术的发展史 ➢ 电力电子技术的应用
第3页
电力电子技术
《电力电子技术》
➢ 电子技术: 信息电子技术 电力电子技术
电力电子技术
IGBT的结构(显示图)
– 图a—N沟道VDMOSFET与GTR组合——N沟道IGBT
(N-IGBT)。 – IGBT比VDMOSFET多一层P+注入区,形成了一个大面
积的P+N结J1。 – ——使IGBT导通时由P+注入区向N基区发射少子,从
而对漂移区电导率进行调制,使得IGBT具有很强的通流 能力。 – 简化等效电路表明,IGBT是GTR与MOSFET组成的达林 顿结构,一个由MOSFET驱动的厚基区PNP晶体管。 – RN为晶体管基区内的调制电阻。
第17页
电力电子技术
《电力电子技术》
1.不可控器件——电力二极管
2.半控型器件——晶闸管 3. 典型全控型器件
(1)门极可关断晶闸管 (2)电力晶体管 (3)电力场效应晶体管 (4)绝缘栅双极晶体管

第18页
电力电子技术
《电力电子技术》
1. IGBT的结构和工作原理
三端器件:栅极G、集电极C和发射极E
➢ 全控型器件(复合型器件)
80年代后期开始,以绝缘栅极双极型晶体管(IGBT)为代 表的全控型器件因驱动功率小、开关速度快、载流能力大等得 到迅猛的发展。

第10页
电力电子技术

电力电子技术(完整幻灯片PPT

电力电子技术(完整幻灯片PPT
1-3
2.1.1 电力电子器件的概念和特征
电力电子器件的损耗 通态损耗
主要损耗 断态损耗 开关损耗
开通损耗 关断损耗
通态损耗是器件功率损耗的主要成因。
器件开关频率较高时,开关损耗可能成为器件功率损 耗的主要因素。
1-4
2.1.2 应用电力电子器件系统组成
电力电子系统:由控制电路、驱动电路、保护电路
恢复特性的软度:下降时间与
延复迟系时数间,用的S比r表值示tf。/td,或称恢uFFra bibliotek2V0
b) tfr
t
图2-6 电力二极管的动态过程波形
a) 正向偏置转换为反向偏置
b) 零偏置转换为正向偏置
1-17
2.2.2 电力二极管的基本特性
关断过程
IF
diF
dt
trr
须经过一段短暂的时间才能重新获 UF
td
A
G
KK
A A
G
G
P1 N1 P2 N2
J1 J2 J3
K
K G
A
a)
b)
c)
图2-7 晶闸管的外形、结构和电气图形符号
a) 外形 b) 结构 c) 电气图形符号
外形有螺栓型和平板型两种封装。
四层三结三极。
螺栓型封装,通常螺栓是其阳极,能与散热器紧 密联接且安装方便。
平板型晶闸管可由两个散热器将其夹在中间。
电力电子技术(完整幻灯片 PPT
本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢!

(2024年)电力电子技术完整版全套PPT电子课件

(2024年)电力电子技术完整版全套PPT电子课件

实验报告撰写与答辩
讲解实验报告的撰写要求和答辩技巧 ,提高学生的综合素质和能力。
36
08
电力电子技术应用案例
2024/3/26
37
新能源发电系统中电力电子技术应用
光伏发电系统
最大功率点跟踪(MPPT )技术、逆变器并网技术 、孤岛检测与保护技术等 。
2024/3/26
风力发电系统
变桨距控制技术、变速恒 频技术、直驱式永磁风力 发电技术等。
2024/3/26
13
可控整流电路分析与应用
可控整流电路原理
可控整流电路通过控制触发角α的大小,实现对输出电压的调 节。
2024/3/26
可控整流电路应用
可控整流电路广泛应用于直流调速、电力拖动、电解、电镀 等领域。
14
滤波电路原理与设计方法
滤波电路原理
滤波电路是利用电容、电感等元件对交流电的频率特性进行滤波,从而得到平 滑的直流电的电路。
高性能器件选择
选用高性能的功率器件和驱动电路,提高电路的工作频率和可靠性。例如,选用低导通电阻和低栅极电荷的 MOSFET可以降低电路的导通损耗和开关损耗;选用高耐压和高电流的IGBT可以提高电路的带负载能力等 。
系统优化与热设计
对系统进行全面的优化和热设计,确保电路在高负载、高温等恶劣环境下仍能稳定可靠地工作。例如,采用 合理的散热结构和风扇控制策略可以降低电路的工作温度;采用模块化设计可以提高电路的维修性和可扩展 性等。
2024/3/26
功率场效应晶体管(Power MOSFE…
阐述Power MOSFET和IGBT的结构、特点以及在电力电子电路中的 广泛应用。
11
03
整流与滤波技术
2024/3/26

2024版电工电子技术全套课件(完整版)

2024版电工电子技术全套课件(完整版)
介绍电气控制技术的定义、作用、应用领域等基本概念。
电气控制原理
详细阐述电气控制的基本原理,包括电气控制系统的组成、 工作原理、控制方式等。
基本控制环节
深入讲解电气控制中的基本控制环节,如启动、停止、保 护、联锁等,并分析其实现方法和特点。
2024/1/29
24
可编程控制器(PLC)原理及应用
PLC概述
简要介绍PLC的定义、发展历程、 应用领域等基本概念。
PLC原理
详细阐述PLC的工作原理,包括硬 件组成、软件编程、工作原理等方 面。
2024/1/29
PLC应用
深入讲解PLC在工业自动化领域的 应用,如顺序控制、过程控制、运 动控制等,并分析其实现方法和特 点。
25
典型电气控制系统案例分析
案例分析一
信号发生器
信号发生器的分类、工作原理及 性能指标。
晶体管毫伏表
晶体管毫伏表的工作原理及使用 注意事项。
6
02
直流电路与交流电路
2024/1/29
7
直流电路分析方法
01
02
03
基尔霍夫定律
介绍基尔霍夫电流定律和 电压定律,以及其在电路 分析中的应用。
2024/1/29
电阻的串并联
详细讲解电阻的串联、并 联及混联电路的分析方法, 包括等效电阻、电压和电 流的计算。
介绍一个典型的电气控制系统案例,分析其控制需求、设计方案、 实现方法等。
案例分析二
再介绍一个不同类型的电气控制系统案例,同样分析其控制需求、 设计方案、实现方法等。
案例总结
对两个案例进行总结,归纳出电气控制系统的设计思路、实现方法、 注意事项等。
2024/1/29
26

《电力电子技术》PPT课件

《电力电子技术》PPT课件

可控硅时代
通过控制电流导通角,实现电 压和功率的调节。
现代电力电子时代
以IGBT、MOSFET等为代表 ,实现高效、快速的电能转换

电力电子技术的应用领域
电力系统
用于高压直流输电、无 功补偿、有源滤波等, 提高电力系统的稳定性
和效率。
电机驱动
用于电动汽车、电动自 行车、电梯等电机驱动 系统,实现高效、节能
照明控制
通过电力电子技术可实现 对照明设备的调光和调色 ,提高照明质量和节能效 果。
加热与焊接
电力电子技术可用于控制 加热设备的功率和温度, 实现精确控温和高效能焊 接。
交通运输应用
电动汽车驱动
电力电子技术是电动汽车 驱动系统的核心,可实现 高效能、低排放的驱动控 制。
轨道交通牵引
通过电力电子技术可实现 轨道交通车辆的牵引控制 和制动能量回收。
交流-交流变流电路的工作原理
通过电力电子器件的开关作用,改变输入交流电 的电压和频率,得到所需的输出交流电。Fra bibliotekABCD
交流-交流变流电路的分类
变频电路、变压电路等。
交流-交流变流电路的应用
电机调速、风力发电、太阳能发电并网等。
一般工业应用
01
02
03
电机驱动
电力电子技术可用于控制 电机的速度和转矩,提高 电机的效率和性能。
通过求解系统微分方程或差分方程,得到系统输 出与输入之间的关系,进而分析系统性能。
频域分析法
利用傅里叶变换将时域信号转换为频域信号,通 过分析系统频率响应特性来评估系统性能。
3
状态空间分析法
通过建立系统状态空间模型,分析系统状态变量 的变化规律,从而研究系统的稳定性和动态性能 。

电力电子技术概述 PPT课件

电力电子技术概述 PPT课件
代化以巨大的推动力
1.1 什么是电力电子技术
电力电子技术与控制理论的关系
1) 控制理论广泛用于电力电子技术,使电力电子装置和系统 的性能满足各种需求
2) 电力电子技术可看成“弱电控制强电”的技术,是“弱电 和强电的接口”,控制理论是实现该接口的强有力纽带
3) 控制理论和自动化技术密不可分,而电力电子装置是自动 化技术的基础元件和重要支撑技术
➢ 在变电所中,给操作系统提供可靠的交直流操作电 源,给蓄电池充电等都需要电力电子装置
1.3 电力电子技术的应用
4) 电子装置用电源
➢ 各种电子装置一般都需要不同电压等级的直流电源供电。通信 设备中的程控交换机所用的直流电源以前用晶闸管整流电源, 现在已改为采用全控型器件的高频开关电源。大型计算机所需 的工作电源、微型计算机内部的电源现在也都采用高频开关电 源。在各种电子装置中,以前大量采用线性稳压电源供电,由 于高频开关电源体积小、重量轻、效率高,现在已逐渐取代了 线性电源。因为各种信息技术装置都需要电力电子装置提供电 源,所以可以说信息电子技术离不开电力电子技术。
➢ 电动汽车的电机靠电力电子装置进行电力变换和 驱动控制其蓄电池的充电也离不开电力电子装置。 一台高级汽车中需要许多控制电机,它们也要靠 变频器和斩波器驱动并控制
➢ 飞机、船舶需要很多不同要求的电源,因此航空 和航海都离不开电力电子技术
➢ 如果把电梯也算做交通运输,那么它也需要电力 电子技术。以前的电梯大都采用直流调速系统, 而近年来交流变频调速已成为主流
1.3 电力电子技术的应用
➢ 传统的发电方式是火力发电、水力发电以及后来 兴起的核能发电。能源危机后,各种新能源、可 再生能源及新型发电方式越来越受到重视。其中 太阳能发电、风力发电的发展较快,燃料电池更 是备受关注。太阳能发电和风力发电受环境的制 约,发出的电力质量较差,常需要储能装置缓冲, 需要改善电能质量,这就需要电力电子技术。当

《电力电子》课件

《电力电子》课件

智能控制是一种基于人工智能的控制 方法,其工作原理是通过人工智能算 法实现电力电子设备的智能控制。
数字控制
数字控制是一种现代的控制方法,其 工作原理是通过数字电路和微控制器 实现电力电子设备的控制。
03
电力电子系统设计
系统设计方法
确定系统目标
明确电力电子系统的功能要求,如电压转换、功 率控制等。
电力电子的发展历程
1940年代
1950年代
1960年代
1970年代
1980年代至今
开关管和硅整流器的出 现,开始应用于信号放 大和处理。
晶体管的发明,开始应 用于信号放大和处理以 及无线通信等领域。
可控硅整流器(SCR) 的出现,开始应用于电 机控制和电力系统等领 域。
出现了可关断晶闸管( GTO)等更加高效的电 力电子器件。
• 高效性:电力电子技术可以实现高效地转换和控制电能,从而提高能源利用效率。 • 灵活性:电力电子器件具有较小的体积和重量,可以方便地集成到各种系统中,实现灵活的电能转换和控制。 • 应用广泛:电力电子技术在能源转换、电机控制、电网管理和可再生能源系统中有着广泛的应用。
电力电子的应用领域
电机控制
电网管理
05
电力电子技术技术
随着电力电子器件性能的不断提 升,电力电子系统的频率逐渐提 高,实现了更高的转换效率和更 小的体积。
高效化技术
为了降低能源消耗和减少环境污 染,电力电子系统正在不断追求 更高的效率。高效化技术包括拓 扑结构优化、控制策略改进等。
电力电子在智能电网中的应用前景
THANK YOU
感谢观看
IGBT是一种广泛应用于电力电子领域的半导体器 件,其工作原理是通过控制栅极电压来调节漏极 和源极之间的电流。

2024版电工电子技术完整课件全套课件

2024版电工电子技术完整课件全套课件

自动控制系统的分类
包括开环控制系统、闭环控制系统、复合控制系统等。
经典控制理论的基本概念和原理
包括传递函数、频率特性、根轨迹法等。
经典控制理论在自动控制系统设计中的应用
包括PID控制器设计、超前校正和滞后校正等。
2024/1/26
经典控制理论的局限性 对于复杂系统难以建立精确的数学模型,难以实现最优控制等。
介绍脉冲信号的基本概念、特点,以及常见的脉冲信号波形和参数。
脉冲信号的产生方法
详细讲解脉冲信号的产生方法,如RC充放电电路、555定时器及其 应用等。
脉冲信号的整形与变换
介绍脉冲信号的整形和变换方法,如施密特触发器、单稳态触发器、 多谐振荡器等的工作原理和应用。
12
03
模拟电子技术基础
2024/1/26
用。
2024/1/26
17
04
电力电子技术基础
2024/1/26
18
电力电子器件介绍与特性分析
电力电子器件概述:定义、分类、 发展历程等
可关断晶闸管(GTO)的特性与 工作原理
电力场效应晶体管(MOSFET) 的特性与工作原理
2024/1/26
晶闸管(SCR)的特性与工作原 理
电力晶体管(GTR)的特性与工 作原理
电工电子技术完整 课件全套课件
2024/1/26
1
目录
• 电工电子技术基础 • 数字电子技术基础 • 模拟电子技术基础 • 电力电子技术基础 • 传感器与检测技术基础 • 自动化控制理论基础
2024/1/26
2
01
电工电子技术基础
2024/1/26
3
电工基本概念与电路元件
01
02

电力电子技术1-4.ppt

电力电子技术1-4.ppt

史前期 (黎明期)
晶闸管问 世,(公元
元年)
全控型器件 迅速发展
晶体管诞生
1904
1930
1947 1957 1970 1980 1990 2000 t(年)
电子管 问世
水银(汞 弧)整流 器时代
晶闸管时代
IGBT出现 功率集成器件
电力电子技术的发展史是以电力电子器件的发展史为纲的
电力电子技术的发展史(续)
及其家族器件(FST、RCT、TRIAC、LCT)
❖ 全控型器件: 通过控制极(门极或基极或柵极) 是否施加驱动信号既能控制管子导通又能控制管
子关断,如GTO、GTR、IGBT、 MOSFET及其它新
型场控器件MCT、IGCT、SIT、SITH、IPM等
2020/4/9
1-38
➢ 按器件内部载流子参与导电的种类分类: ❖单极型器件:只有一种载流子参与导电,如 MOSFET、SIT等
2020/4/9
1-37
5、分类
➢ 按其开关控制性能分类:
❖ 不控型器件: 无控制极,器件的导通与关断完 全由其在主电路中承受的电压和电流决定,正偏 置导通、反偏置关断,如电力二极管(D)
❖ 半控型器件: 控制极(门极)只能控制管子导 通而不能控制管子关断,器件的关断完全由其在
主电路中承受的电压和电流决定,如晶闸管(SCR)
1-43
2.2 电力(功率)二极管
一、工作原理(基本与普通二极管相同) ➢PN结:正向导通 反向截止
二、外形
2020/4/9
A
K A
a)
• 现代电力电子技术与传统电力电子技术相比较, 有如下特点:
➢高频化(减小体积、重量、静音) ➢模块化(器件、控制单元、系统) ➢全控型(IGBT为主) ➢控制技术数字化(DSP) ➢绿色化(节能、减少污染)

电力电子技术PPT课件

电力电子技术PPT课件
➢ 控制方式: PWM控制技术成为主导

绪论第15页
复合型器件和功率集成电路
➢ 80年代后期开始
复合型器件:以绝缘栅极双极型晶体管(IGBT)
为代表
➢IGBT是MOSFET和BJT的复合
它集MOSFET的驱动功率小、开关速度快的 优点和BJT通态压降小、载流能力大的优点于 一身,性能十分优越,使之成为现代电力电 子技术的主导器件
绪论第10页
2. 电力电子技术的发展史
1958年美通用电气公司制造的第一只晶闸管 标志电力电子器件和技术的诞生。
电力电子器件的发展对电力电子技术的发展起着决 定性的作用,因此,电力电子技术的发展史就是电 力电子器件的发展史。

绪论第11页
2. 电力电子技术的发展史
〔四个阶段〕
➢ 史前期(1957年以前): 使用水银整流器(汞整流器),其性能和晶闸管类似。 这段时间,各种整流、逆变、周波变流的电路和理论已经成熟并广泛应用。
技术研究的也就是电源技术。
➢ 电力电子技术对节省电能有重要意义。特别在大型风机、 水泵采用变频调速方面,在使用量十分庞大的照明电源 等方面,电力电子技术的节能效果十分显著,因此它也
被称为是节能技术。

绪论第23页
4. 本课程的内容简介
分为三大部分
➢ 第一部分:电力电子器件
主要介绍各种电力电子器件的基本结构、工作原理、主要 参数、应用特性,以及驱动、缓冲、保护、串并 联等器 件应用的共性问题和基础性问题
1.什么是电力电子技术
➢ 定义:
电力电子技术(power electronics): 是电子技术的分支
电子技术: 信息电子技术 电力电子技术
信息电子技术——模拟电子技术和数字电子技术

电力电子技术ppt课件

电力电子技术ppt课件

② 按照内部载流子的工作性质分: 单极型器件:导通时只有空穴或电子一种载流子导电的器件。功率场
效应晶体管,器件的特点主要是工作频率高、导通压降较大,单个器 件容量较小。 双极型器件:导通时的载流子既有空穴也有电子导电的器件。功率二 极管、晶闸管及派生器件、可关断晶闸管、双极型功率晶体管等。器 件的特点主要是功率较高、而工作频率较低。 复合型器件:复合型既含有单极型器件的结构,又有双极型器件的结 构,通常其控制部分采用单极性结构,主功率部分采用双极型结构。 绝缘栅双极型晶体管、MOS控制晶闸管等。结合了两者的优点,具有 卓越的电气性能,是电力电子器件的发展方向。
电力电子技术
(第3版)
绪论
1. 电力电子技术的内容 2. 电力电子技术的发展 3. 电力电子技术的应用 4. 电力电子技术课程的学习要求
1. 电力电子技术的内容
电力电子学 , 又 称 功 率 电 子 学 (Power Electronics)。它主要 研究各种电力电子器件,以及由 这些电力电子器件所构成的各式 各样的电路或装置,以完成对电 能的变换和控制。
4. 电力电子技术课程的学习要求
熟悉和掌握常用电力电子器件的工作机理、特性和参数,能正确选 择和使用它们。
熟悉和掌握各种基本变换器的工作原理,特别是各种基本电路中的 电磁过程,掌握其分析方法、工作波形分析和变换器电路的初步设 计计算。
了解各种开关元件的控制电路、缓冲电路和保护电路。 了解各种变换器的特点、性能指标和使用场合。 掌握基本实验方法与训练基本实验技能。
电力电子器件的电压、电流、开关频率是影响它们使用的关键参数 ➢电压容量从低到高的顺序依次为功率场效应晶体管、绝缘栅双极型晶体 管、双极型功率晶体管、可关断晶闸管、晶闸管,其中绝缘栅双极型晶 体管、双极型功率晶体管电压容量接近,可关断晶闸管、晶闸管电压容 量接近。 ➢电流容量从低到高的顺序依次为功率场效应晶体管、绝缘栅双极型晶体 管、双极型功率晶体管、可关断晶闸管、晶闸管,其中绝缘栅双极型晶 体管、双极型功率晶体管电流容量接近。 ➢开关频率从低到高的顺序依次为晶闸管、可关断晶闸管、双极型功率晶 体管、绝缘栅双极型晶体管、功率场效应晶体管,其中绝缘栅双极型晶 体管、双极型功率晶体管的开关频率接近。

《电力电子技术 》课件

《电力电子技术 》课件

电机控制
电机控制是指通过电力电子技术实现对电机速度 、方向和位置的精确控制。
电机控制广泛应用于工业自动化、交通运输、家 用电器等领域,如变频空调、电动汽车等。
电机控制有助于提高能源利用效率,降低能耗, 实现更智能化的生产和制造。
新能源发电系统
新能源发电系统是指利用可再生能源进行发电 的系统,如太阳能、风能等。
、更高可靠性和更小体积的方向发展。
系统集成和智能化的发展
系统集成
随着电力电子系统规模的不断扩大,系统集成成为了一个重要的研究方向,通过将多个电力电子模块集成在一个系统 中,可以实现更高的功率密度和更小的体积。
智能化
智能化是电力电子技术的另一个重要发展方向,通过引入人工智能和机器学习等技术,可以实现电力电子系统的自适 应控制和智能管理,提高系统的稳定性和可靠性。
针对高效能转换的挑战,需要不断研 究和开发新的电力电子器件、电路拓 扑和控制策略,以实现更高的转换效 率和更低的能耗。
技术瓶颈
目前电力电子技术面临的主要挑战是 如何进一步提高转换效率,降低能耗 ,以满足不断增长的高效能转换需求 。
新材料和新技术的发展
01
新材料的应用
随着新材料技术的不断发展,新型半导体材料如碳化硅(SiC)和氮化
电力电子技术的应用实例
不间断电源(UPS)
不间断电源(UPS)是一种能够提供持续电力供应的电源设备,主要用于保护重要 设备和数据免受电力中断的影响。
UPS通过使用电力电子转换技术,将电池或其他形式的储能装置与电网连接,确保 在电网故障或停电时,能够继续为设备提供稳定的电力。
UPS在医疗、金融、通信等领域有广泛应用,对于保证关键设备和服务的正常运行 至关重要。
详细描述

电力电子技术全套课件

电力电子技术全套课件
特点
整流电路具有将交流电转换为直流电的功能,是电力电子设备中不可或缺的组成部分。同时,整流电 路的性能直接影响到电力电子设备的整体性能。因此,在设计整流电路时,需要根据实际需求选择合 适的电路类型和器件,并进行合理的布局和走线,以确保整流电路的稳定性和可靠性。
04
逆变电路
逆变电路的工作原理与分类
技术特点与优势
分析高压直流输电的技术特点和优势,如远距离输电损耗 小、系统稳定性高等。
工程应用与发展趋 势
介绍高压直流输电在国内外的典型工程应用,并探讨其未 来发展趋势和技术挑战。
THANKS
感谢观看
制。
逆变电路的应用与特点
应用
逆变电路广泛应用于电力电子变换器、不间断电源、变频调 速系统、新能源发电系统等领域。
特点
逆变电路具有高效率、高功率因数、低谐波污染等优点,能 够实现能量的双向流动和电网的并网运行。同时,随着电力 电子技术的发展,逆变电路的性能和可靠性也在不断提高。
05
直流-直流变流电路
升压型直流-直流变流电路
工作原理
升压型直流-直流变流电路通过开关管的导通和关断,控制电感的 充放电过程,从而实现输入电压到输出电压的升压转换。
电路组成
升压型直流-直流变流电路主要由开关管、电感、电容、二极管等 元件组成,与降压型电路类似,但元件的连接方式和参数有所不同 。
应用场景
升压型直流-直流变流电路广泛应用于各种需要升压的电子设备中, 如电动汽车、太阳能发电系统等。
02
电力电子器件
不可控器件
电力二极管(Power Diode) 工作原理及特性
主要参数与选型
不可控器件
01
晶闸管(Thyristor)

2024版电力电子技术ppt课件

2024版电力电子技术ppt课件

•电力电子技术概述•电力电子器件•整流电路与逆变电路•直流-直流变换器目录•交流-交流变换器•电力电子技术应用实例定义与发展历程定义发展历程应用领域及重要性应用领域重要性提高能源利用效率、实现节能减排、促进可再生能源发展等方面具有不可替代的作用。

基本原理与分类基本原理分类0203PNPN四层半导体结构阳极、阴极和控制极晶闸管的基本结构和工作原理01触发导通和关断过程晶闸管的派生器件快速晶闸管01 02 03电力晶体管(GTR)结构特点和工作原理驱动电路和保护电路电力场效应管(结构特点和工作原理驱动电路和保护电路主要参数和特性曲线01 02 031 2 3010203040102 03整流电路原理整流电路分类整流电路应用逆变电路原理逆变电路分类逆变电路应用030201PWM控制技术PWM控制技术原理通过调节脉冲宽度或频率,实现对输出电压或电流的控制。

PWM控制技术应用电机调速、电源管理、照明控制等。

PWM控制技术优势高效率、高精度、低噪声等。

工作原理电路结构控制方式应用领域电路结构工作原理应用领域控制方式两种,也可采用滞环控制等非线性控制方法。

应用领域应用于需要宽范围电压输出的场合,如太阳能逆变器、不间断电源(UPS )等。

工作原理通过控制开关管的导通和关断时间,实现输入电压到输出电压的升降压变换。

电路结构升降压型变换器主要由输入滤波电路、开关管、储能元件(如电感或电容)和输出滤波电路组成,与升压型变换器类似,但增加了降压功能。

控制方式可采用PWM 、PFM 或滞环控制等非线性控制方法,实现输出电压的稳定调节。

升降压型变换器工作原理通过控制晶闸管的导通角来调节输出电压的大小。

优点结构简单,控制方便,效率高。

缺点输出电压波形畸变较大,谐波含量高。

应用领域灯光控制、电机软启动等。

工作原理能够实现快速、无级调节负载功率。

优点缺点应用领域01020403电加热、电焊机等。

通过控制晶闸管的通断时间来调节负载功率的大小。

2024版电力电子技术完整版全套PPT电子课件

2024版电力电子技术完整版全套PPT电子课件

contents•电力电子技术概述•电力电子器件目录•电力电子电路•电力电子技术的控制策略•电力电子技术的实验与仿真电力电子技术的定义与发展定义发展历程如太阳能、风能等可再生能源的转换与利用。

如电动汽车、电动自行车等电机驱动系统的控制。

如智能电网、分布式发电等电力系统的优化与控制。

如变频器、伺服系统等工业自动化设备的控制。

能源转换电机驱动电力系统工业自动化高效率、高功率密度智能化、数字化绿色化、环保化多学科交叉融合晶闸管(Thyristor 可控的单向导电性,用于可控整流电路Power Diode )具有单向导电性,可用于整流电路010402050306电力晶体管(Giant Transistor,GTR)具有耐压高、电流大、开关特性好等优点通过在门极施加负脉冲使其关断电流控制型器件,通过控制基极电流来控制集电极电流可关断晶闸管(Gate Turn-OffThyristor,GTO)具有可控的开关特性,适用于高电压、大电流场合01电力场效应晶体管(Power MOSFET )02电压控制型器件,通过控制栅源电压来控制漏极电流03具有开关速度快、输入阻抗高、热稳定性好等优点04绝缘栅双极型晶体管(Insulated Gate Bipolar Transistor ,IGBT )05结合了MOSFET 和GTR 的优点,具有电压控制、大电流、低饱和压降等特性06广泛应用于电机控制、电源转换等领域整流电路整流电路的工作原理介绍整流电路的基本工作原理,包括半波整流、全波整流和桥式整流等。

整流电路的类型详细阐述不同类型的整流电路,如单相半波整流电路、单相全波整流电路、三相半波整流电路和三相全波整流电路等。

整流电路的应用列举整流电路在电力电子领域的应用,如电源供应器、电池充电器和电机驱动器等。

逆变电路逆变电路的工作原理01逆变电路的类型02逆变电路的应用031 2 3直流-直流变流电路的工作原理直流-直流变流电路的类型直流-直流变流电路的应用交流-交流变流电路的工作原理01交流-交流变流电路的类型02交流-交流变流电路的应用03电动机控制电热控制照明控制030201一般工业应用交通运输应用电动汽车驱动轨道交通牵引飞机电源系统电力系统应用高压直流输电柔性交流输电分布式发电与微电网新能源应用风能发电太阳能发电风力发电机组中采用电力电子技术实现变速恒频控制,提高风能发电的稳定性和可靠性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
备用负载配电和控制
辅助系统
功率源
交流 发电机
双向 逆变器
双向逆变器
发动机
传送带
能量管理和控制
四、本课程主要教学内容



绪 论 第一章 第二章 第三章 第四章 第五章 第六章
电力电子器件及其应用 直流-直流变换技术 直流-交流变换技术 交流-直流变换技术 交流-交流变换技术 软开关与多电平变换技术(自学)

新能源应用

电网电源常见问题波形示意图
未来电力系统将大量应用电力电子 技术以提高电力品质和供电效率
风力、太阳能发电系统
风力发电
太阳能发电
三、电力电子技术的应用

照明


各类气体放电灯 电子镇流器 LED照明驱动器
西湖夜景
杭州湾大桥
集中运行中心
面向军事应用领域举例
功率控制模块
耐故障的固态配电系统 电抗冰装置 电动制动
人工心脏电源
三、电力电子技术的应用

电力传动

风机、泵类节能调速 精密调速与特种调速 牵引传动 电气化轨道交通
电气化轨道交通
电动汽车
三、电力电子技术的应用

电力系统

高压直流输电技术 大型发电机的静止励磁控制 水力、风力发电机的变速恒频励磁控制 无功补偿与谐波抑制 柔性交流输电与分布式智能供电系统 风能、太阳能、潮汐能、地热能等应用
一、什么是电力电子学

典型的电力电子系统
电流采样
二、电力电子技术的发展与现状

电力电子器件的进步推动电力电子学的变革发展

1957年通用电气公司发明晶闸管,标志着电力电子技术的 诞生,相控变换技术广泛应用;

20世纪70年代后期,GTO、GTR、P-MOSFET迅速发
展,PWM控制技术推广应用; 20世纪80年代后期,IGBT开始推广应用,大功率变换进

在工程应用中通常称为电力电子技术。
一、什么是电力电子学

电力电子技术的特征


在电能的产生与使用之间建立一种联系;
电路中的电力半导体器件工作于开关状态(模拟电子技
术也可以实现变换,但电力半导体器件工作于线性放大
状态,损耗大效率低);

电路变换效率高。
一、什么是电力电子学

电力电子系统的组成

永磁马达
电传动辅助设备; 环境控制系统; 发动机辅助设备
发动机
固态功率控制器
分区配电系统
船用操作变流器模块
标准电力电子模块
发电模块
船用操作逆变器模块
固态遥 控端口
电源 负载 功率 端口 功率端口 控制 系统控制
备用功率单 元发电机
电动飞行 执行机构
船用操作变流器模块
配电模块
燃料电池
双向逆变器 储能
电动机控制器

入以IGBT+PWM技术为主流的时代;

20世纪90年代,为降低器件开关损耗,软开关技术开始推 广应用;
二、电力电子技术的发展与现状

进入21世纪以后

为了实现高频和低 EMI 的大功率变换,多电平变换 技术逐步推广应用;

电力电子系统集成化研究成为热点,目前主要集中
于电力电子器件与控制电路的集成、磁性元件的集 成两大块。
电力电子技术_基础知识
一、什么是电力电子学

电力电子学(Power Elctronics)的概念

有效利用电力半导体器件、应用电路和设计理论、分析 开发工具,实现对电能的高效变换和控制的一门技术, 包括电压、电流、频率和波形的变换。

应用于电力技术领域的电子学,是电气工程、电子科学
与技术、控制理论三大学科的交叉科学。
主电路:完成电能变换 控制电路:协调整个系统正常工作 缓冲电路:在主电路中保护半导体器件 驱动电路:传递控制信号,控制半导体器件开关

保护电路:分为两部分,一部分在主电路中实现故障保
护,多为熔断器与机械开关;另一部分融合 于控制电路中,通过电子检测实现故障保护。
一、什么是电力电子学
电力电子技术与电能控制的关系
三、电力电子技术的应用

电源

弧焊电源 电解、电镀电源 不停电电源(UPS) 恒频恒压电源 直流开关电源 充电电源 感应加热电源 脉冲电源、激光电源 。。。
数码产品广泛应用各类开关电源
手机
电脑
数码相机
复印打印机
摄像机
平板电视
超导储能电源
感应加热电源
塑料薄膜加工等离子体放电装置
相关文档
最新文档