人教版七年级下册数学期末模拟试卷及答案-百度文库

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版七年级下册数学期末模拟试卷及答案-百度文库
一、选择题
1.把多项式228x -分解因式,结果正确的是( )
A .22(8)x -
B .22(2)x -
C .
D .42()x x x
- 2.如果 x 2﹣kx ﹣ab =(x ﹣a )(x +b ),则k 应为( )
A .a ﹣b
B .a +b
C .b ﹣a
D .﹣a ﹣b 3.如图,∠1=50°,如果AB ∥D
E ,那么∠D=( )
A .40°
B .50°
C .130°
D .140°
4.如图,下列结论中不正确的是( )
A .若∠1=∠2,则AD ∥BC
B .若AE ∥CD ,则∠1+∠3=180°
C .若∠2=∠C ,则AE ∥C
D D .若AD ∥BC ,则∠1=∠B
5.将一副三角板(含30°、45°的直角三角形)摆放成如图所示,图中∠1的度数是( )
A .90°
B .120°
C .135°
D .150°
6.观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187,试利用上述规律判断算式:3+32+33+34+…+32020结果的末位数字是( )
A .0
B .1
C .3
D .7 7.将下列三条线段首尾相连,能构成三角形的是( )
A .1,2,3
B .2,3,6
C .3,4,5
D .4,5,9 8.下列各式中,能用平方差公式计算的是( )
A .(p +q )(p +q )
B .(p ﹣q )(p ﹣q )
C .(p +q )(p ﹣q )
D .(p +q )(﹣p ﹣q ) 9.若(2x+3y)(mx-ny)=9y 2-4x 2,则m 、n 的值为 ( )
A .m=2,n=3
B .m=-2,n=-3
C .m=2,n=-3
D .m=-2,n=3
10.若一个三角形的两边长分别为3和6,则第三边长可能是( )
A .6
B .3
C .2
D .10
二、填空题
11.用简便方法计算:10.12﹣2×10.1×0.1+0.01=_____.
12.若分解因式2
21(3)()x mx x x n +-=++,则m =__________. 13.在第八章“幂的运算”中,我们学习了①同底数幂的乘法:a m ⋅a n =a m +n ;②积的乘方:(ab )n =a n b n ;③幂的乘方:(a m )n =a mn ;④同底数幂的除法:a m ÷a n =a m -n 等运算法则,请问算式()()33
33232369111228x y x y x y ⎛⎫⎛⎫-=-⋅⋅=- ⎪ ⎪⎝⎭⎝⎭中用到以上哪些运算法则_________(填序号).
14.
1111111111112018201920182019202020182019202020182019⎛⎫⎛⎫⎛⎫⎛⎫--++----+ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭________.
15.如图,一个宽度相等的纸条按如图所示方法折叠一下,则1∠=________度.
16.如图,已知AB ∥CD ,BC ∥DE .若∠A =20°,∠C =105°,则∠AED 的度数是_____.
17.下列各数中: 3.14-,327-,π,2,17
-,是无理数的有______个. 18.一个容量为40的样本的最大值为35,最小值为15,若取组距为4,则应该分的组数是为_______.
19.我国开展的月球探测工程(即“嫦娥工程”)为人类和平使用月球作出了新的贡献.地球与月球之间的平均距离大约为384000km ,384000用科学记数法可表示为_______.
20.如图,已知AE 是△ABC 的边BC 上的中线,若AB=8cm,△ACE 的周长比△AEB 的周长多2cm,则AC=_____.
三、解答题
21.如图,边长为1的正方形ABCD 被两条与边平行的线段EF ,GH 分割成四个小长方形,EF 与GH 交于点P ,设BF 长为a ,BG 长为b ,△GBF 的周长为m ,
(1)①用含a ,b ,m 的式子表示GF 的长为 ;
②用含a ,b 的式子表示长方形EPHD 的面积为 ;
(2)已知直角三角形两直角边的平方和等于斜边的平方,
例如在图1,△ABC 中,∠ABC=900,则222AB BC AC +=,
请用上述知识解决下列问题:
①写出a ,b ,m 满足的等式 ;
②若m=1,求长方形EPHD 的面积;
③当m 满足什么条件时,长方形EPHD 的面积是一个常数?
22.把下列各式分解因式:
(1)4x 2-12x 3
(2)x 2y +4y -4xy
(3)a 2(x -y )+b 2(y -x )
23.问题情境:如图1,AB CD ∥,130PAB ∠=︒,120PCD ∠=︒,求APC ∠的度数.
小明的思路是:如图2,过P 作PE AB ,通过平行线性质,可得APC ∠=______. 问题迁移:如图3,AD BC ∥,点P 在射线OM 上运动,ADP α∠=∠,
BCP β∠=∠.
(1)当点P 在A 、B 两点之间运动时,CPD ∠、α∠、β∠之间有何数量关系?请说明理由.
(2)如果点P 在A 、B 两点外侧运动时(点P 与点A 、B 、O 三点不重合),请你直接写出CPD ∠、α∠、β∠之间有何数量关系.
24.如图,直线MN ∥GH ,直线l 1分别交直线MN 、GH 于A 、B 两点,直线l 2分别交直线MN 、GH 于C 、D 两点,且直线l 1、l 2交于点E ,点P 是直线l 2上不同于C 、D 、E 点的动点.
(1)如图①,当点P 在线段CE 上时,请直写出∠NAP 、∠HBP 、∠APB 之间的数量关系: ;
(2)如图②,当点P 在线段DE 上时,(1)中的∠NAP 、∠HBP 、∠APB 之间的数量关系还成立吗?如果成立,请说明成立的理由;如果不成立,请写出这三个角之间的数量关系,并说明理由.
(3)如果点P 在直线l 2上且在C 、D 两点外侧运动时,其他条件不变,请直接写出∠NAP 、∠HBP 、∠APB 之间的数量关系 .
25.先化简,再求值:(a -1)(2a +1)+(1+a )(1-a ),其中a =2.
26.已知8m a =,2n a = .
(1)填空:m n a += ; m n a -=__________.
(2)求m 与n 的数量关系.
27.如图,AB ∥CD ,点E 、F 在直线AB 上,G 在直线CD 上,且∠EGF =90°,∠BFG =140°,求∠CGE 的度数.
28.疫情初期,武汉物资告急,全国一心,各地纷纷运送物资到武汉.已知3辆大货车与2辆小货车可以一次运货17吨,5辆大货车与4辆小货车可以一次运货29吨,则2辆大货车与1辆小货车可以一次运货多少吨?
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.C
解析:C
【解析】
试题分析:首先进行提取公因式,然后利用平方差公式进行因式分解.原式=2(2x-4)=2(x+2)(x-2).
考点:因式分解.
2.A
解析:A
【分析】
根据多项式与多项式相乘知(x﹣a)(x+b)=x2+(b﹣a)x﹣ab,据此可以求得k的值.【详解】
解:∵(x﹣a)(x+b)=x2+(b﹣a)x﹣ab,
又∵x2﹣kx﹣ab=(x﹣a)(x+b),
∴x2﹣kx﹣ab=x2+(b﹣a)x﹣ab,
∴﹣k=b﹣a,
k=a﹣b,
故选:A.
【点睛】
本题主要考查多项式与多项式相乘,熟记计算方法是解题的关键.
3.C
解析:C
【解析】
试题分析:∵∠1与∠2为对顶角,∴∠1=∠2=50°,∵AB∥DE,∴∠2+∠D=180°,则
∠D=130°,故选C.
考点:平行线的性质.
4.D
解析:D
【分析】
由平行线的性质和判定解答即可.
【详解】
解:A、∵∠1=∠2,
∴AD∥BC,原结论正确,故此选项不符合题意;
B、∵AE∥CD,
∴∠1+∠3=180°,原结论正确,故此选项不符合题意;
C、∵∠2=∠C,
∴AE∥CD,原结论正确,故此选项不符合题意;
D、∵AD∥BC,
∴∠1=∠2,原结论不正确,故此选项符合题意;
故选:D.
【点睛】
本题考查了平行线的判定与性质;熟练掌握平行线的判定与性质是解决问题的关键,注意它们之间的区别.
5.B
解析:B
【详解】
解:根据题意得:∠1=180°-60°=120°.
故选:B
【点睛】
本题考查直角三角板中的角度的计算,难度不大.
6.A
解析:A
【分析】
观察所给等式发现规律末位数字为:3,9,7,1,3,9,7,…,每4个数一组循环,进而可得算式:3+32+33+34+…+32020结果的末位数字.
【详解】
解:观察下列等式:
31=3,32=9,33=27,34=81,35=243,36=729,37=2187,…,
发现规律:
末位数字为:3,9,7,1,3,9,7,…,
每4个数一组循环,
所以2020÷4=505,
而3+9+7+1=20,
20×505=10100.
所以算式:3+32+33+34+…+32020结果的末位数字是0.
故选:A.
【点睛】
本题考查了规律型-数字的变化类,解决本题的关键是根据数字的变化寻找规律.
7.C
解析:C
构成三角形的三边应满足:任意两边之和大于第三边,任意两边之差小于第三边,只有同时满足以上的两个条件,才能构成三角形,根据该定则,就可判断选项正误.
【详解】
解:A选项:1+2=3,两边之和没有大于第三边,∴无法组成三角形;
B选项:2+3<6,两边之和没有大于第三边,∴无法组成三角形;
C选项:3+4>5,两边之和大于第三边,且满足两边之差小于第三边,∴可以组成三角形;D选项:4+5=9,两边之和没有大于第三边,∴无法组成三角形,
故选:C.
【点睛】
本题主要考察了三角形的三边关系定则:在一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边,只有同时满足以上的两个条件,才能构成三角形.
8.C
解析:C
【分析】
利用完全平方公式和平方差公式对各选项进行判断.
【详解】
(p+q)(p+q)=(p+q)2=p2+2pq+q2;
(p﹣q)(p﹣q)=(p﹣q)2=p2﹣2pq+q2;
(p+q)(p﹣q)=p2﹣q2;
(p+q)(﹣p﹣q)=﹣(p+q)2=﹣p2﹣2pq﹣q2.
故选:C.
【点睛】
本题考查了完全平方公式和平方差公式,熟练掌握公式的结构及其运用是解答的关键.9.B
解析:B
【解析】
【分析】
先把等式左边利用多项式乘多项式的法则展开并整理,根据对应项系数相等列出等式,求解即可.
【详解】
解:将(2x+3y)(mx-ny)展开,得2mx2-2nxy+3mxy-3ny2,
根据题意可得2mx2-2nxy+3mxy-3ny2=9y2-4x2,
根据多项式相等,则对应项及其系数相等,可得2m=-4,-3n=9,
解得m=-2,n=-3
故选B.
【点睛】
本题是一道有关多项式乘法的题目,明确多项式的乘法法则是解题的关键.
10.A
【分析】
根据三角形三边关系即可确定第三边的范围,进而可得答案.
【详解】
解:设第三边为x,则3<x<9,
纵观各选项,符合条件的整数只有6.
故选:A.
【点睛】
本题考查了三角形的三边关系,属于基础题型,熟练掌握三角形的任意两边之和大于第三边,任意两边之差小于第三边是解题的关键.
二、填空题
11.100
【分析】
利用完全平方公式解答.
【详解】
解:原式=(10.1﹣0.1)2=102=100.
故答案是:100.
【点睛】
本题考查了完全平方公式,能够把已知式子变成完全平方的形式,求得(
解析:100
【分析】
利用完全平方公式解答.
【详解】
解:原式=(10.1﹣0.1)2=102=100.
故答案是:100.
【点睛】
本题考查了完全平方公式,能够把已知式子变成完全平方的形式,求得(10.1-0.1)的值.12.【分析】
将分解因式的结果式子展开,与原式各项对应,再计算字母的值即可.
【详解】
解:,
∴,
解得:,
故答案为:.
【点睛】
此题考查因式分解,正确利用多项式乘多项式法则进行计算是解此题的关 解析:4-
【分析】
将分解因式的结果式子展开,与原式各项对应,再计算字母的值即可.
【详解】
解:2(3)()(3)3x x n x n x n ++=+++,
∴3321n m n +=⎧⎨=-⎩
, 解得:74n m =-⎧⎨=-⎩
, 故答案为:4-.
【点睛】
此题考查因式分解,正确利用多项式乘多项式法则进行计算是解此题的关键.
13.②③
【分析】
在的运算过程中,第一步用到了积的乘方,第二步用到了幂的乘方,据此判断即可.
【详解】
在的运算过程中,运用了上述幂的运算中的②③.
故答案为:②③.
【点睛】
此题主要考查了幂的乘方
解析:②③
【分析】 在()()33
33232369111228x y x y x y ⎛⎫⎛⎫-=-⋅⋅=- ⎪ ⎪⎝⎭⎝⎭的运算过程中,第一步用到了积的乘方,第二步用到了幂的乘方,据此判断即可.
【详解】 在()()3333232369111228x y x y x y ⎛⎫⎛⎫-=-⋅⋅=- ⎪ ⎪⎝⎭⎝⎭
的运算过程中,运用了上述幂的运算中的②③.
故答案为:②③.
【点睛】
此题主要考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m )n =a mn (m ,n 是正整数);②(ab )n =a n b n (n 是正整数).
14.【分析】
设,代入原式化简即可得出结果.
【详解】
原式
故答案为:.
【点睛】
本题考查了整式的混合运算,设将式子进行合理变形是解题的关键. 解析:12020
【分析】 设1120182019
m =
+,代入原式化简即可得出结果. 【详解】 原式()111120202020m m m m ⎛⎫⎛⎫=-+--- ⎪ ⎪⎝
⎭⎝⎭ 221202*********
m m m m m m =-+
--++ 12020= 故答案为:
12020
. 【点睛】 本题考查了整式的混合运算,设1120182019
m =+将式子进行合理变形是解题的关键. 15.65
【分析】
根据两直线平行内错角相等,以及折叠关系列出方程求解则可.
【详解】
解:如图,由题意可知,
AB ∥CD ,
∴∠1+∠2=130°,
由折叠可知,∠1=∠2,
∴2∠1=130°,

解析:65
【分析】
根据两直线平行内错角相等,以及折叠关系列出方程求解则可.
【详解】
解:如图,由题意可知,
AB∥CD,
∴∠1+∠2=130°,
由折叠可知,∠1=∠2,
∴2∠1=130°,
解得∠1=65°.
故答案为:65.
【点睛】
本题考查了平行线的性质和折叠的知识,题目比较灵活,难度一般.
16.95°.
【分析】
延长DE交AB于F,根据两直线平行,同旁内角互补求出∠B,再根据两直线平行,同位角相等求出∠AFE,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.
【详解
解析:95°.
【分析】
延长DE交AB于F,根据两直线平行,同旁内角互补求出∠B,再根据两直线平行,同位角相等求出∠AFE,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.
【详解】
解:如图,延长DE交AB于F,
∵AB∥CD,
∴∠B=180°﹣∠C=180°﹣105°=75°,
∵BC∥DE,
∴∠AFE=∠B=75°,
在△AEF 中,∠AED =∠A +∠AFE =20°+75°=95°,
故答案为:95°.
【点睛】
本题考查了平行线的性质,三角形的外角的性质,熟练掌握平行线的性质是解题的关键.
17.【分析】
根据无理数的定义判断即可.
【详解】
解:在,,,,五个数中,无理数有,,两个.
故答案为:2.
【点睛】
本题考查了无理数的判断,无理数指无限不循环小数,熟记无理数的定义是解题关键.
解析:2
【分析】
根据无理数的定义判断即可.
【详解】
解:在 3.14-,π,17-
五个数中,无理数有π,两个. 故答案为:2.
【点睛】
本题考查了无理数的判断,无理数指无限不循环小数,熟记无理数的定义是解题关键. 18.5
【分析】
根据组数=(最大值-最小值)÷组距计算,注意小数部分要进位.
【详解】
解:在样本数据中最大值为35,最小值为15,它们的差是,
已知组距为4,那么由于,故可以分成5组.
故答案为:
解析:5
【分析】
根据组数=(最大值-最小值)÷组距计算,注意小数部分要进位.
【详解】
解:在样本数据中最大值为35,最小值为15,它们的差是351520-=,
已知组距为4,那么由于
2054
=,故可以分成5组. 故答案为:5.
【点睛】
本题考查的是组数的计算,属于基础题,只要根据组数的定义“数据分成的组的个数称为组数”来解即可.
19.【分析】
根据科学记数法,把一个大于10的数表示成的形式,使用的是科学记数法,即可表示出来.
【详解】
解:∵,
故答案为.
【点睛】
本题目考查的是科学记数法,难度不大,是中考的常考题型,熟练掌 解析:53.8410⨯
【分析】
根据科学记数法,把一个大于10的数表示成10n a ⨯的形式()110a ≤<,使用的是科学记数法,即可表示出来.
【详解】
解:∵5384000=3.8410⨯,
故答案为53.8410⨯.
【点睛】
本题目考查的是科学记数法,难度不大,是中考的常考题型,熟练掌握其转化方法是顺利解题的关键.
20.10cm
【分析】
依据AE 是△ABC 的边BC 上的中线,可得CE =BE ,再根据AE =AE ,△ACE 的周长比△AEB 的周长多2cm ,即可得到AC 的长.
【详解】
解:∵AE 是△ABC 的边BC 上的中线,
解析:10cm
【分析】
依据AE 是△ABC 的边BC 上的中线,可得CE =BE ,再根据AE =AE ,△ACE 的周长比△AEB 的周长多2cm ,即可得到AC 的长.
【详解】
解:∵AE 是△ABC 的边BC 上的中线,
∴CE =BE ,
又∵AE =AE ,△ACE 的周长比△AEB 的周长多2cm ,
∴AC−AB =2cm ,即AC−8cm =2cm ,
∴AC =10cm ,
故答案为10cm.
【点睛】
本题考查了三角形中线的有关计算,分析得到两个三角形的周长的差等于两边的差是解题的关键.
三、解答题
21.(1)①m a b --;②1a b ab --+;(2)①22220m ma mb ab --+=;②12
;③m=1 【分析】
(1)①直接根据三角形的周长公式即可;
②根据BF 长为a ,BG 长为b ,表示出EP ,PH 的长,根据求长方形EPHD 的面积;
(2)①直接根据直角三角形两直角边的平方和等于斜边的平方,表示出a ,b ,m 之间的关系式;
②根据线段之间的关系利用勾股定理求出长方形EPHD 的面积的值;
③结合①的结论和②的作法即可求解.
【详解】
(1)①∵BF 长为a ,BG 长为b ,△GBF 的周长为m ,
∴GF m a b =--,
故答案为:m a b --;
②∵正方形ABCD 的边长为1 ,
∴AB=BC=1,
∵BF 长为a ,BG 长为b ,
∴AG=1-b ,FC=1-a ,
∴EP=AG=1-b ,PH=FC=1-a ,
∴长方形EPHD 的面积为:(1)(1)1a b a b ab --=--+,
故答案为:1a b ab --+;
(2)①△ABC 中,∠ABC=90°,则222AB BC AC +=,
∴在△GBF 中, GF m a b =--,
∴()2
22m a b a b --=+, 化简得,22220m ma mb ab --+=
故答案为:22220m ma mb ab --+=;
②∵BF=a ,GB=b ,
∴FC=1-a ,AG=1-b ,
在Rt △GBF 中,22222GF BF BG a b ==+=+,
∵Rt △GBF 的周长为1, ∴
1BF BG GF a b ++=+=
即1a b =--,
即222212(()b a b a b a +=-+++),
整理得12220a b ab --+= ∴12
a b ab +-=, ∴矩形EPHD 的面积••S PH EP FC AG ==
()()11a b =--
1a b ab =--+
11122
=-=. ③由①得: 22220m ma mb ab --+=, ∴212
ab ma mb m =+-
. ∴矩形EPHD 的面积••S PH EP FC AG == ()()11a b =--
1a b ab =--+
2112
ma mb a m b +-=--+ ()()21112
1m a m m b =--+-+, ∴要使长方形EPHD 的面积是一个常数,只有m=1.
【点睛】
本题考查了正方形的特殊性质和勾股定理,根据正方形的特殊性质和勾股定理推出22220m ma mb ab --+=是解题的关键.
22.(1)4x 2(1-3x )(2)y (x -2)2(2)(x -y )(a +b )(a -b )
【分析】
(1)直接利用提公因式法分解因式即可;
(2)先提取公因式,然后利用完全平方公式分解因式即可;
(3)先提取公因式,然后利用平方差公式分解因式即可.
【详解】
(1)()232
412413x x x x =--; (2)()()222
44442x y y xy y x x y x +-=+-=-; (3)()()()()()2222()()a x y b y x x y a b x y a b a b =--=-+--+-.
【点睛】
本题考查了分解因式,解题的关键是熟练掌握提取公因式法和公式法分解因式.
23.110︒;(1)CPD αβ∠=∠+∠;理由见解析;(2)当点P 在B 、O 两点之间时,CPD αβ∠=∠-∠;当点P 在射线AM 上时,CPD βα∠=∠-∠.
【分析】
问题情境:理由平行于同一条直线的两条直线平行得到 PE ∥AB ∥CD ,通过平行线性质来求∠APC .
(1)过点P 作PQ AD ,得到PQ AD BC 理由平行线的性质得到
ADP DPQ ∠=∠,BCP CPQ ∠=∠,即可得到
CPD DPQ CPQ ADP BCP αβ∠=∠+∠=∠+∠=∠+∠
(2)分情况讨论当点P 在B 、O 两点之间,以及点P 在射线AM 上时,两种情况,然后构造平行线,利用两直线平行内错角相等,通过推理即可得到答案.
【详解】
解:问题情境:
∵AB ∥CD ,PE AB
∴PE ∥AB ∥CD , ∴∠A+∠APE=180°,∠C+∠CPE=180°,
∵∠PAB=130°,∠PCD=120°,
∴∠APE=50°,∠CPE=60°,
∴∠APC=∠APE+∠CPE=50°+60°=110°;
(1)CPD αβ∠=∠+∠
过点P 作PQ AD .
又因为AD BC ∥,所以PQ AD BC
则ADP DPQ ∠=∠,BCP CPQ ∠=∠
所以CPD DPQ CPQ ADP BCP αβ∠=∠+∠=∠+∠=∠+∠
(2)情况1:如图所示,当点P 在B 、O 两点之间时
过P作PE∥AD,交ON于E,
∵AD∥BC,
∴AD∥BC∥PE,
∴∠DPE=∠ADP=∠α,∠CPE=∠BCP=∠β,
∴∠CPD=∠DPE-∠CPE=∠α-∠β
情况2:如图所示,当点P在射线AM上时,
过P作PE∥AD,交ON于E,
∵AD∥BC,
∴AD∥BC∥PE,
∴∠DPE=∠ADP=∠α,∠CPE=∠BCP=∠β,
∴∠CPD=∠CPE-∠DPE=∠β-∠α
【点睛】
本题主要借助辅助线构造平行线,利用平行线的性质进行推理.
24.(1)∠APB=∠NAP+∠HBP;(2)见解析;(3)∠HBP=∠NAP+∠APB 【分析】
(1)过P点作PQ∥GH,根据平行线的性质即可求解;
(2)过P点作PQ∥GH,根据平行线的性质即可求解;
(3)根据平行线的性质和三角形外角的性质即可求解.
【详解】
解:(1)如图①,过P点作PQ∥GH,
∵MN∥GH,
∴MN∥PQ∥GH,
∴∠APQ=∠NAP,∠BPQ=∠HBP,
∵∠APB=∠APQ+∠BPQ,
∴∠APB=∠NAP+∠HBP,
故答案为:∠APB=∠NAP+∠HBP;
(2)如图②,过P点作PQ∥GH,
∵MN∥GH,
∴MN∥PQ∥GH,
∴∠APQ+∠NAP=180°,∠BPQ+∠HBP=180°,
∵∠APB=∠APQ+∠BPQ,
∴∠APB=(180°﹣∠NAP)+(180°﹣∠HBP)=360°﹣(∠NAP+∠HBP);
(3)如备用图,
∵MN∥GH,
∴∠PEN=∠HBP,
∵∠PEN=∠NAP+∠APB,
∴∠HBP=∠NAP+∠APB.
故答案为:∠HBP=∠NAP+∠APB.
【点睛】
此题考查了平行公理的推论:平行于同一条直线的两直线平行,以及平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补,熟记定理是解题的关键.
25.a2-a,2
【分析】
分别根据多项式的乘法法则和平方差公式计算每一项,再合并同类项,然后把a的值代入化简后的式子计算即可.
【详解】
解:(a-1)(2a+1)+(1+a)(1-a)
=2a2-a-1+1-a2
= a2-a,
当a=2时,原式=22-2=2.
【点睛】
本题考查了整式的混合运算和代数式求值,属于基本题型,熟练掌握多项式的乘法法则是解题的关键.
26.(1)16;4;(2)m=3n;
【分析】
(1)利用a m +n =a m ⋅a n 和a m -n =a m ÷a n 进行计算;(2)利用23=8再结合同底数幂的运算法则进行分析计算.
【详解】
(1)m n a +=a m ×a n =16;m n a -=a m ÷a n
=4; (2)∵, ∴

【点睛】 本题考察了同底数幂的运算法则,熟练掌握同底数幂的运算法则是解题的关键.
27.50︒.
【分析】
先根据平行线的性质得出BFG FGC ∠=∠,再根据CGE FGC EGF ∠=∠-∠结合已知角度即可求解.
【详解】
证明://AB CD ,∠BFG =140°,
BFG FGC ∴∠=∠=140°,
又∵CGE FGC EGF ∠=∠-∠,∠EGF =90°,
1409050CGE ∴∠=︒-︒=︒. 【点睛】
本题考查的是平行线的性质,熟知平行线及角平分线的性质是解答此题的关键.解题时注意:两直线平行,内错角相等.
28.2辆大货车与1辆小货车可以一次运货11吨
【分析】
设1辆大货车一次运货x 吨,1辆小货车一次运货y 吨,根据“3辆大货车与2辆小货车可以一次运货17吨,5辆大货车与4辆小货车可以一次运货29吨”,即可得出关于x ,y 的二元一次方程组,解之即可得出x ,y 的值,将其代入(2)x y +中即可求出结论.
【详解】
设1辆大货车一次运货x 吨,1辆小货车一次运货y 吨
由题意得:32175429x y x y +=⎧⎨+=⎩
解得:51x y =⎧⎨=⎩
则225111x y +=⨯+=
答:2辆大货车与1辆小货车可以一次运货11吨.
【点睛】
本题考查了二元一次方程组的实际应用,理解题意,正确列出方程组是解题关键.。

相关文档
最新文档