西安区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析(1)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

西安区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 函数f (x )=lnx ﹣的零点所在的大致区间是( )
A .(1,2)
B .(2,3)
C .(1,)
D .(e ,+∞)
2. 函数f (x )=1﹣xlnx 的零点所在区间是( )
A .(0,)
B .(,1)
C .(1,2)
D .(2,3)
3. 若关于的不等式
2
043
x a
x x +>++的解集为31x -<<-或2x >,则的取值为( ) A . B .12 C .1
2
- D .2-
4. 在平行四边形ABCD 中,AC 为一条对角线,
=(2,4),
=(1,3),则
等于( )
A .(2,4)
B .(3,5)
C .(﹣3,﹣5)
D .(﹣2,﹣4)
5. 三个实数a 、b 、c 成等比数列,且a+b+c=6,则b 的取值范围是( )
A .[﹣6,2]
B .[﹣6,0)∪( 0,2]
C .[﹣2,0)∪( 0,6]
D .(0,2]
6. 已知全集U={0,1,2,3,4},集合A={0,1,3},B={0,1,4},则(∁U A )∪B 为( ) A .{0,1,2,4} B .{0,1,3,4} C .{2,4} D .{4}
7. 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知a=3,,A=60°,则满足条件的三角形个数为( ) A .0
B .1
C .2
D .以上都不对
8. 如果执行如图所示的程序框图,那么输出的a=( )
A .2
B .
C .﹣1
D .以上都不正确
9. 如图,网格纸上的正方形的边长为1,粗线画出的是某几何体的三视图,则这个几何体的体积为( )
A .30
B .50
C .75
D .150
10.如图,1111D C B A ABCD -为正方体,下面结论:① //BD 平面11D CB ;② BD AC ⊥1;③ ⊥1AC 平面11D CB .其中正确结论的个数是( )
A .
B .
C .
D .
11.S n 是等差数列{a n }的前n 项和,若3a 8-2a 7=4,则下列结论正确的是( ) A .S 18=72 B .S 19=76 C .S 20=80 D .S 21=84
12.已知,则f{f[f (﹣2)]}的值为( ) A .0
B .2
C .4
D .8
二、填空题
13.空间四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点.
①若AC=BD ,则四边形EFGH 是 ;
②若AC ⊥BD ,则四边形EFGH 是 .
14.在矩形ABCD 中,=(1,﹣3),
,则实数k= .
15.要使关于x 的不等式2
064x ax ≤++≤恰好只有一个解,则a =_________.
【命题意图】本题考查一元二次不等式等基础知识,意在考查运算求解能力.
16.已知i 是虚数单位,且满足i 2=﹣1,a ∈R ,复数z=(a ﹣2i )(1+i )在复平面内对应的点为M ,则“a=1”是“点M 在第四象限”的 条件(选填“充分而不必要”“必要而不充分”“充要”“既不充分又不必要”) 17.设全集
______. 18.以点(1,3)和(5,﹣1)为端点的线段的中垂线的方程是 .
三、解答题
19.(本小题满分12分)已知过抛物线2
:2(0)C y px p =>的焦点,
斜率为的直线交抛物线于11A x y (,) 和22B x y (,)(12x x <)两点,且9
2
AB =
. (I )求该抛物线C 的方程;
(II )如图所示,设O 为坐标原点,取C 上不同于O 的点S ,以OS 为直径作圆与C 相交另外一点R , 求该圆面积的最小值时点S 的坐标.
20.已知函数()2
1ln ,2
f x x ax x a R =-
+∈. (1)令()()()1g x f x ax =--,讨论()g x 的单调区间;
(2)若2a =-,正实数
12,x x 满足()()12120f x f x x x ++=,证明121
2
x x +≥.
21.已知数列{a n}的前n项和S n=2n2﹣19n+1,记T n=|a1|+|a2|+…+|a n|.
(1)求S n的最小值及相应n的值;
(2)求T n.
22.设f(x)=ax2﹣(a+1)x+1
(1)解关于x的不等式f(x)>0;
(2)若对任意的a∈[﹣1,1],不等式f(x)>0恒成立,求x的取值范围.
23.在长方体ABCD﹣A1B1C1D1中,AB=BC=1,AA1=2,E为BB1中点.
(Ⅰ)证明:AC⊥D1E;
(Ⅱ)求DE与平面AD1E所成角的正弦值;
(Ⅲ)在棱AD上是否存在一点P,使得BP∥平面AD1E?若存在,求DP的长;若不存在,说明理由.
24.(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)
(不等式选做题)设,且,则的最小值为
(几何证明选做题)如图,中,,以为直径的半圆分别交于点,若,则
西安区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案) 一、选择题
1. 【答案】B
【解析】解:函数的定义域为:(0,+∞),有函数在定义域上是递增函数,所以函数只有唯一一个零点.
又∵f (2)﹣ln2﹣1<0,f (3)=ln3﹣>0 ∴f (2)•f (3)<0,
∴函数f (x )=lnx ﹣的零点所在的大致区间是(2,3). 故选:B .
2. 【答案】C
【解析】解:∵f (1)=1>0,f (2)=1﹣2ln2=ln <0, ∴函数f (x )=1﹣xlnx 的零点所在区间是(1,2). 故选:C .
【点评】本题主要考查函数零点区间的判断,判断的主要方法是利用根的存在性定理,判断函数在给定区间端点处的符号是否相反.
3. 【答案】D 【解析】
试题分析:由题意得,根据不等式与方程的关系可知,不等式解集的端点就是对应的方程的根,可得方程
2043
x a
x x +=++,解得3,1,x x x a =-=-=-,其对应的根分别为3,1,2x x x =-=-=,所以2a =-,故选
D.
考点:不等式与方程的关系. 4. 【答案】C
【解析】解:∵,
∴=
=(﹣3,﹣5).
故选:C .
【点评】本题考查向量的基本运算,向量的坐标求法,考查计算能力.
5. 【答案】B
【解析】解:设此等比数列的公比为q , ∵a+b+c=6,
∴=6,
∴b=.
当q>0时,=2,当且仅当q=1时取等号,此时b∈(0,2];
当q<0时,b=﹣6,当且仅当q=﹣1时取等号,此时b∈[﹣6,0).
∴b的取值范围是[﹣6,0)∪(0,2].
故选:B.
【点评】本题考查了等比数列的通项公式、基本不等式的性质、分类讨论思想方法,考查了推理能力与计算能力,属于中档题.
6.【答案】A
【解析】解:∵U={0,1,2,3,4},集合A={0,1,3},
∴C U A={2,4},
∵B={0,1,4},
∴(C U A)∪B={0,1,2,4}.
故选:A.
【点评】本题考查集合的交、交、补集的混合运算,是基础题.解题时要认真审题,仔细解答.
7.【答案】B
【解析】解:∵a=3,,A=60°,
∴由正弦定理可得:sinB===1,
∴B=90°,
即满足条件的三角形个数为1个.
故选:B.
【点评】本题主要考查三角形个数的判断,利用正弦定理是解决本题的关键,考查学生的计算能力,属于基础题.
8.【答案】B
【解析】解:模拟执行程序,可得
a=2,n=1
执行循环体,a=,n=3
满足条件n≤2016,执行循环体,a=﹣1,n=5
满足条件n≤2016,执行循环体,a=2,n=7
满足条件n≤2016,执行循环体,a=,n=9

由于2015=3×671+2,可得:
n=2015,满足条件n≤2016,执行循环体,a=,n=2017
不满足条件n≤2016,退出循环,输出a的值为.
故选:B.
9.【答案】B
【解析】解:该几何体是四棱锥,
其底面面积S=5×6=30,
高h=5,
则其体积V=S×h=30×5=50.
故选B.
10.【答案】D
【解析】
考点:1.线线,线面,面面平行关系;2.线线,线面,面面垂直关系.
【方法点睛】本题考查了立体几何中的命题,属于中档题型,多项选择题是容易出错的一个题,当考察线面平行时,需证明平面外的线与平面内的线平行,则线面平行,一般可构造平行四边形,或是构造三角形的中位线,可证明线线平行,再或是证明面面平行,则线面平行,一般需在选取一点,使直线与直线外一点构成平面证明
面面平行,要证明线线垂直,可转化为证明线面垂直,需做辅助线,转化为线面垂直. 11.【答案】
【解析】选B.∵3a 8-2a 7=4, ∴3(a 1+7d )-2(a 1+6d )=4,
即a 1+9d =4,S 18=18a 1+18×17d 2=18(a 1+17
2d )不恒为常数.
S 19=19a 1+19×18d
2=19(a 1+9d )=76,
同理S 20,S 21均不恒为常数,故选B. 12.【答案】C 【解析】解:∵﹣2<0 ∴f (﹣2)=0
∴f (f (﹣2))=f (0) ∵0=0
∴f (0)=2即f (f (﹣2))=f (0)=2 ∵2>0
∴f (2)=22
=4
即f{f[(﹣2)]}=f (f (0))=f (2)=4 故选C .
二、填空题
13.【答案】 菱形 ; 矩形 .
【解析】解:如图所示:①∵EF ∥AC ,GH ∥AC 且EF=AC ,GH=AC
∴四边形EFGH 是平行四边形
又∵AC=BD ∴EF=FG
∴四边形EFGH 是菱形.
②由①知四边形EFGH 是平行四边形
又∵AC ⊥BD , ∴EF ⊥FG
∴四边形EFGH 是矩形.
故答案为:菱形,矩形
【点评】本题主要考查棱锥的结构特征,主要涉及了线段的中点,中位线定理,构成平面图形,研究平面图形的形状,是常考类型,属基础题.
14.【答案】4.
【解析】解:如图所示,
在矩形ABCD中,=(1,﹣3),,
∴=﹣=(k﹣1,﹣2+3)=(k﹣1,1),
∴•=1×(k﹣1)+(﹣3)×1=0,
解得k=4.
故答案为:4.
【点评】本题考查了利用平面向量的数量积表示向量垂直的应用问题,是基础题目.
15.【答案】±.
【解析】分析题意得,问题等价于264
++≤只有一解,
x ax
x ax
++≤只有一解,即220
∴280
∆=-=⇒=±,故填:±.
a a
16.【答案】充分不必要
【解析】解:∵复数z=(a﹣2i)(1+i)=a+2+(a﹣2)i,
∴在复平面内对应的点M的坐标是(a+2,a﹣2),
若点在第四象限则a+2>0,a﹣2<0,
∴﹣2<a<2,
∴“a=1”是“点M在第四象限”的充分不必要条件,
故答案为:充分不必要.
【点评】本题考查条件问题,考查复数的代数表示法及其几何意义,考查各个象限的点的坐标特点,本题是一个基础题.
17.【答案】{7,9}
【解析】∵全集U={n ∈N|1≤n ≤10},A={1,2,3,5,8},B={1,3,5,7,9}, ∴(∁U A )={4,6,7,9 },∴(∁U A )∩B={7,9}, 故答案为:{7,9}。

18.【答案】 x ﹣y ﹣2=0 .
【解析】解:直线AB 的斜率 k AB =﹣1,所以线段AB 的中垂线得斜率k=1,又线段
AB 的中点为(3,1),
所以线段AB 的中垂线得方程为y ﹣1=x ﹣3即x ﹣y ﹣2=0, 故答案为x ﹣y ﹣2=0.
【点评】
本题考查利用点斜式求直线的方程的方法,此外,本题还可以利用线段的中垂线的性质(中垂线上的点到线段的2个端点距离相等)来求中垂线的方程.
三、解答题
19.【答案】
【解析】【命题意图】本题考查抛物线标准方程、抛物线定义、直线和抛物线位置关系等基础知识,意在考查转化与化归和综合分析问题、解决问题的能力.

为12y y ≠,20y ≠,化简得12216y y y ⎛⎫=-+
⎪⎝⎭
,所以221222256323264y y y =++≥=, 当且仅当2
222
256y y =
即2
2y =16,24y =?时等号成立.
圆的直径OS =因为21y ≥64,所以当21y =64即1y =±8时,
min OS =S 的坐标为
168±(,). 20.【答案】(1)当0a ≤时,函数单调递增区间为()0,+∞,无递减区间,当0a >时,函数单调递增区间为10,
a ⎛⎫ ⎪⎝⎭,单调递减区间为1,a ⎛⎫
+∞ ⎪⎝⎭
;(2)证明见解析.
【解析】

题解析:
(2)当2a =-时,()2
ln ,0f x x x x x =++>,
由()()12120f x f x x x ++=可得22
121122ln 0x x x x x x ++++=,
即()()2
12121212ln x x x x x x x x +++=-,
令()12,ln t x x t t t ϕ==-,则()11
1t t t t
ϕ-'=-=

则()t ϕ在区间()0,1上单调递减,在区间()1,+∞上单调递增,
所以()()11t ϕϕ≥=,所以()()2
12121x x x x +++≥,
又120x x +>,故121
2
x x +≥, 由120,0x x >>可知120x x +>.1
考点:函数导数与不等式.
【方法点晴】解答此类求单调区间问题,应该首先确定函数的定义域,否则,写出的单调区间易出错. 解决含参数问题及不等式问题注意两个转化:(1)利用导数解决含有参数的单调性问题可将问题转化为不等式恒成立问题,要注意分类讨论和数形结合思想的应用.(2)将不等式的证明、方程根的个数的判定转化为函数的单调性问题处理.
请考生在第22、23二题中任选一题作答,如果多做,则按所做的第一题记分.解答时请写清题号. 21.【答案】
【解析】解:(1)S n =2n 2
﹣19n+1=2﹣,
∴n=5时,S n 取得最小值=﹣44.
(2)由S n =2n 2
﹣19n+1,
∴n=1时,a 1=2﹣19+1=﹣16.
n ≥2时,a n =S n ﹣S n ﹣1=2n 2﹣19n+1﹣[2(n ﹣1)2﹣19(n ﹣1)+1]=4n ﹣21.
由a n ≤0,解得n ≤5.n ≥6时,a n >0. ∴n ≤5时,T n =|a 1|+|a 2|+…+|a n |=﹣(a 1+a 2+…+a n )=﹣S n =﹣2n 2
+19n ﹣1.
n ≥6时,T n =﹣(a 1+a 2+…+a 5)+a 6+…+a n
=﹣2S 5+S n =2n 2﹣19n+89.
∴T n =

【点评】本题考查了等差数列的通项公式及其前n 项和公式、不等式的解法、绝对值数列求和问题,考查了分类讨论方法推理能力与计算能力,属于中档题.
22.【答案】
【解析】解:(1)f (x )>0,即为ax 2
﹣(a+1)x+1>0,
即有(ax ﹣1)(x ﹣1)>0,
当a=0时,即有1﹣x >0,解得x <1;
当a <0时,即有(x ﹣1)(x ﹣)<0,
由1>可得<x <1;
当a=1时,(x ﹣1)2
>0,即有x ∈R ,x ≠1;
当a>1时,1>,可得x>1或x<;
当0<a<1时,1<,可得x<1或x>.
综上可得,a=0时,解集为{x|x<1};
a<0时,解集为{x|<x<1};
a=1时,解集为{x|x∈R,x≠1};
a>1时,解集为{x|x>1或x<};
0<a<1时,解集为{x|x<1或x>}.
(2)对任意的a∈[﹣1,1],不等式f(x)>0恒成立,
即为ax2﹣(a+1)x+1>0,
即a(x2﹣1)﹣x+1>0,对任意的a∈[﹣1,1]恒成立.
设g(a)=a(x2﹣1)﹣x+1,a∈[﹣1,1].
则g(﹣1)>0,且g(1)>0,
即﹣(x2﹣1)﹣x+1>0,且(x2﹣1)﹣x+1>0,
即(x﹣1)(x+2)<0,且x(x﹣1)>0,
解得﹣2<x<1,且x>1或x<0.
可得﹣2<x<0.
故x的取值范围是(﹣2,0).
23.【答案】
【解析】(Ⅰ)证明:连接BD
∵ABCD﹣A1B1C1D1是长方体,∴D1D⊥平面ABCD,
又AC⊂平面ABCD,∴D1D⊥AC…1分
在长方形ABCD中,AB=BC,∴BD⊥AC…2分
又BD∩D1D=D,∴AC⊥平面BB1D1D,…3分
而D1E⊂平面BB1D1D,∴AC⊥D1E…4分
(Ⅱ)解:如图建立空间直角坐标系Dxyz,则A(1,0,0),D1(0,0,2),E(1,1,1),B(1,1,0),
∴…5分
设平面AD1E的法向量为,则,即
令z=1,则…7分
∴…8分
∴DE与平面AD1E所成角的正弦值为…9分
(Ⅲ)解:假设在棱AD上存在一点P,使得BP∥平面AD1E.
设P的坐标为(t,0,0)(0≤t≤1),则
∵BP∥平面AD1E
∴,即,
∴2(t﹣1)+1=0,解得,…12分
∴在棱AD上存在一点P,使得BP∥平面AD1E,此时DP的长.…13分.
24.【答案】
【解析】A
B。

相关文档
最新文档