2014年广东省初中毕业生学业考试数学试卷
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年广东省初中毕业生学业考试数学试卷
D
(4) 这次被调查的同学共有 名;
(5) 把条形统计图(题22-1图)补充完整;
(6) 校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐。
据此估算,该校18 000名学生一餐浪费的食物可供多少人食用一餐?
五、解答题(三)(本大题3小题,每小题9分,共27分)
23、如题23图,已知A 14,2⎛⎫- ⎪⎝
⎭,B (-1,2)是一次函数y kx b =+与反比例函数m y x = (0,0m m ≠<)图象的两个交点,AC ⊥x 轴于C ,BD ⊥y 轴于D 。
(1) 根据图象直接回答:在第二象限内,当x 取何值时,一次函数大于反比
例函数的值?
(2) 求一次函数解析式及m 的值;
(3) P 是线段AB 上的一点,连接PC ,PD ,若△PCA 和△PDB 面积相等,求点P 坐标。
题23图 题24图
24、如题24图,⊙O 是△ABC 的外接圆,AC 是直径,过点O 作OD ⊥AB 于点D ,延长DO 交⊙O 于点P ,过点P 作PE ⊥AC 于点E ,作射线DE 交BC 的延长线于F 点,连接PF 。
(1)若∠POC=60°,AC=12,求劣弧PC 的长;(结果保留π)
(2)求证:OD=OE ;
(3)PF 是⊙O 的切线。
y x C
D C O O b F A B D P E
25、如题25-1图,在△ABC 中,AB=AC ,AD ⊥AB 点D ,BC=10cm ,AD=8cm ,点P 从点B 出发,在线段BC 上以每秒3cm 的速度向点C 匀速运动,与此同时,垂直于AD 的直线m 从底边BC 出发,以每秒2cm 的速度沿DA 方向匀速平移,分别交AB 、AC 、AD 于E 、F 、H ,当点P 到达点C 时,点P 与直线m 同时停止运动,设运动时间为t 秒(t >0)。
(1)当t=2时,连接DE 、DF ,求证:四边形AEDF 为菱形;
(2)在整个运动过程中,所形成的△PEF 的面积存在最大值,当△PEF 的面积最大时,求线段BP 的长;
(3)是否存在某一时刻t ,使△PEF 为直角三角形?若存在,请求出此时刻t 的值,若不存在,请说明理由。
题25-1图 题25备用图
F H E A B D P。