【常考题】高三数学上期中第一次模拟试卷(及答案)(2)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【常考题】高三数学上期中第一次模拟试卷(及答案)(2)
一、选择题
1.设ABC ∆的三个内角, , A B C 成等差数列,sin A 、sin B 、sin C 成等比数列,则这
个三角形的形状是 ( ) A .直角三角形
B .等边三角形
C .等腰直角三角形
D .钝角三角形
2.定义在()(),00,-∞⋃+∞上的函数()f x ,如果对于任意给定的等比数列{}n a ,若
(){}n
f a 仍是比数列,则称()f x 为“保等比数列函数”.现有定义在()()
,00,-∞⋃+∞上的如下函数: ①()3
f x x =;
②()x
f x e =;
③(
)f x =
④()ln f x x =
则其中是“保等比数列函数”的()f x 的序号为( ) A .①②
B .③④
C .①③
D .②④
3.已知实数x ,y 满足521802030x y x y x y +-≤⎧⎪
-≥⎨⎪+-≥⎩
,若直线10kx y -+=经过该可行域,则实数k
的最大值是( ) A .1
B .
32
C .2
D .3
4.已知{}n a 为等差数列,n S 为其前n 项和,若3572a a +=,则13S =( ) A .49
B .91
C .98
D .182
5.已知等比数列{}n a 中,31174a a a =,数列{}n b 是等差数列,且77b a =,则59b b +=( ) A .2
B .4
C .16
D .8
6.已知ABC ∆中,A ,B ,C 的对边分别是a ,b ,c ,且3b =
,c =,
30B =︒,则AB 边上的中线的长为( )
A
B .
3
4 C .32

D .
34
7.已知等比数列{}n a 的各项均为正数,若3132312log log log 12a a a ++⋯+=,则67a a =( ) A .1
B .3
C .6
D .9
8.某校运动会开幕式上举行升旗仪式,旗杆正好处在坡度的看台的某一列的正前方,从这一列的第一排和最后一排测得旗杆顶部的仰角分别为

,第一排和最后一排
的距离为5
6米(如图所示),旗杆底部与第一排在同一个水平面上.若国歌长度约为秒,要使国歌结束时国旗刚好升到旗杆顶部,升旗手升旗的速度应为()(米 /秒)
A .
110
B .
310
C .
12
D .
710
9.若a ,b ,c ,d∈R,则下列说法正确的是( ) A .若a >b ,c >d ,则ac >bd B .若a >b ,c >d ,则a+c >b+d C .若a >b >0,c >d >0,则
c d a b
> D .若a >b ,c >d ,则a ﹣c >b ﹣d
10.在ABC ∆中,角A ,B ,C 所对的边分别是a ,b ,c ,60A =︒,3a
=4b =,则B =( ) A .30B =︒或150B =︒ B .150B =︒ C .30B =︒
D .60B =︒
11.已知正项数列{}n a *12(1)
()2
n n n a a a n N +=∈L ,则数列{}n a 的通项公式为( ) A .n a n =
B .2
n a n =
C .2
n n
a =
D .2
2
n n a =
12.数列{}n a 中,()1121n
n n a a n ++-=-,则数列{}n a 的前8项和等于( ) A .32
B .36
C .38
D .40
二、填空题
13.在△ABC 中,2a =,4c =,且3sin 2sin A B =,则cos C =____.
14.已知实数x y ,满足2,2,03,x y x y y +≥⎧⎪
-≤⎨⎪≤≤⎩
则2z x y =-的最大值是____.
15.已知数列{}n a 满足11a =,11
1n n
a a +=-
+,*n N ∈,则2019a =__________. 16.设a ∈R ,若x >0时均有[(a -1)x -1]( x 2-ax -1)≥0,则a =__________.
17.我国古代数学名著《九章算术》里有问题:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增十三里;驽马初日行九十七里,日减半里;良马先至齐,复还迎驽马,二马相逢,问:__________日相逢?
18.(理)设函数2
()1f x x =-,对任意3,2x ⎡⎫∈+∞⎪⎢⎣⎭

2()4()(1)4()x
f m f x f x f m m
-≤-+恒成立,则实数m 的取值范围是______. 19.若已知数列的前四项是
2112+、2124+、2136+、2
1
48
+,则数列前n 项和为______. 20.已知无穷等比数列{}n a 的各项和为4,则首项1a 的取值范围是__________.
三、解答题
21.已知等差数列{}n a 的前n 项和为n S ,公差0d ≠,且3550S S +=,1a ,4a ,13a 成等比数列.
(1)求数列{}n a 的通项公式;
(2)设n n b a ⎧⎫
⎨⎬⎩⎭
是首项为1公比为2的等比数列,求数列{}n b 前n 项和n T .
22.在ABC V 中,角A ,B ,C 所对的边分别是a ,b ,c ,已知()sin sin sin B C m A m +=∈R ,且
240a bc -=.
(1)当5
2,4
a m ==
时,求,b c 的值; (2)若角为锐角,求m 的取值范围.
23.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,且
3cos cos (tan tan 1)1A C A C -=.
(Ⅰ)求sin B 的值; (Ⅱ)若33a c +=,3b =
,求的面积.
24.各项均为整数的等差数列{}n a ,其前n 项和为n S ,11a =-,2a ,3a ,41S +成等比数列.
(1)求{}n a 的通项公式;
(2)求数列{(1)}n
n a -•的前2n 项和2n T .
25.首届世界低碳经济大会在南昌召开,本届大会以“节能减排,绿色生态”为主题,某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本
y (元)与月处理量x (吨)之间的函数关系可近似地表示为21200800002
y x x =-+,且每处
理一吨二氧化碳得到可利用的化工产品价值为100元.
(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?
(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则需要国家至少补贴多少元才能使该单位不亏损?
26.数列{}n a 中,11a = ,当2n ≥时,其前n 项和n S 满足2
1()2
n n n S a S =⋅-.
(1)求n S 的表达式; (2)设n b =
21
n
S n +,求数列{}n b 的前n 项和n T .
【参考答案】***试卷处理标记,请不要删除
一、选择题 1.B 解析:B 【解析】 【分析】
先由ABC ∆的三个内角, , A B C 成等差数列,得出2,3
3
B A
C π
π
=
+=
,又因为sin A 、sin B 、sin C 成等比数列,所以23
sin sin sin 4
B A
C =⋅=,整理计算即可得出答案.
【详解】
因为ABC ∆的三个内角, , A B C 成等差数列,
所以2,3
3
B A
C π
π=
+=
, 又因为sin A 、sin B 、sin C 成等比数列, 所以2
3sin sin sin 4
B A
C =⋅=
所以222sin sin sin sin cos sin cos 333A A A A A πππ⎛⎫⎛
⎫⋅-=⋅- ⎪ ⎪⎝⎭⎝

2111113
2sin 2cos 2sin 22442344
A A A A A π⎛⎫=
+=-+=-+= ⎪⎝⎭ 即sin 213A π⎛⎫
-
= ⎪⎝

又因为203
A π<< 所以3
A π
=
故选B 【点睛】
本题考查数列与三角函数的综合,关键在于求得2,3
3
B A
C π
π
=+=
,再利用三角公式转化,属于中档题.
2.C
解析:C 【解析】 【分析】
设等比数列{}n a 的公比为q ,验证()
()
1n n f a f a +是否为非零常数,由此可得出正确选项. 【详解】
设等比数列{}n a 的公比为q ,则
1
n n
a q a +=. 对于①中的函数()3f x x =,()()3
3
131
12n n n n n n f a a a q f a a a +++⎛⎫=== ⎪⎝⎭
,该函数为“保等比数列函
数”;
对于②中的函数()x
f x e =,
()()1
11n n n n a a a n a n f a e e f a e
++-+==不是非零常数,该函数不是“保等比数列函数”; 对于③中的函数(
)f x =()
(
)
1n n f a f a +==
=,该函数为“保等比数
列函数”;
对于④中的函数()ln f x x =,()()1
1ln ln n n n n
a f a f a a ++=不是常数,该函数不是“保等比数列函
数”.故选:C. 【点睛】
本题考查等比数列的定义,着重考查对题中定义的理解,考查分析问题和解决问题的能力,属于中等题.
3.B
解析:B 【解析】 【分析】
先根据约束条件画出可行域,再利用直线20kx y -+=过定点()0,1,再利用k 的几何意义,只需求出直线10kx y -+=过点()2,4B 时,k 值即可. 【详解】
直线20kx y -+=过定点()0,1, 作可行域如图所示,

由5218020
x y x y +-=⎧⎨-=⎩,得()2,4B . 当定点()0,1和B 点连接时,斜率最大,此时413
202
k -==-, 则k 的最大值为:32
故选:B . 【点睛】
本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题.
4.B
解析:B 【解析】
∵3572a a +=,∴11272(4)a d a d ++=+,即167a d +=,∴
13711313(6)13791S a a d ==+=⨯=,故选B .
5.D
解析:D 【解析】 【分析】
利用等比数列性质求出a 7,然后利用等差数列的性质求解即可. 【详解】
等比数列{a n }中,a 3a 11=4a 7, 可得a 72=4a 7,解得a 7=4,且b 7=a 7, ∴b 7=4,
数列{b n }是等差数列,则b 5+b 9=2b 7=8. 故选D .
【点睛】
本题考查等差数列以及等比数列的通项公式以及简单性质的应用,考查计算能力.
6.C
解析:C 【解析】 【分析】
由已知利用余弦定理可得29180a a -+=,解得a 值,由已知可求中线1
2
BD c =
,在BCD V 中,由余弦定理即可计算AB 边上中线的长. 【详解】
解:3,33,30b c B ===o Q ,
∴由余弦定理2222cos b a c ac B =+-,可得23927233a a =+-⨯⨯⨯,
整理可得:29180a a -+=,∴解得6a =或3.
Q 如图,CD 为AB 边上的中线,则1332BD c ==,
∴在BCD V 中,由余弦定理2222cos CD a BD a BD B =+-⋅⋅,可得:
222333336(
)26CD =+-⨯⨯⨯,或222333333()23CD =+-⨯⨯⨯
, ∴解得AB 边上的中线32CD =
或37
2
. 故选C .
【点睛】
本题考查余弦定理在解三角形中的应用,考查了数形结合思想和转化思想,属于基础题.
7.D
解析:D 【解析】 【分析】
首先根据对数运算法则,可知()31212log ...12a a a =,再根据等比数列的性质可知
()6
121267.....a a a a a =,最后计算67a a 的值.
【详解】
由3132312log log log 12a a a +++=L ,
可得31212log 12a a a =L ,进而可得()6
121212673a a a a a ==L ,
679a a ∴= .
【点睛】
本题考查了对数运算法则和等比数列性质,属于中档题型,意在考查转化与化归和计算能力.
8.B
解析:B 【解析】
试题分析: 如下图:
由已知,在ABC ∆中,105,45,56ABC ACB BC ∠=∠==o o ,从而可得:30BAC ∠=o 由正弦定理,得:
56
sin 45AB =o 103AB ∴=
那么在Rt ADB ∆中,60ABD o ∠=,3
sin 60103152
AD AB ∴===o , 即旗杆高度为15米,由3155010÷=,知:升旗手升旗的速度应为3
10
(米 /秒). 故选B .
考点:解三角形在实际问题中的应用.
9.B
解析:B 【解析】 【分析】
利用不等式的性质和通过举反例否定一个命题即可得出结果. 【详解】
A 项,虽然41,12>->-,但是42->-不成立,所以不正确;
B 项,利用不等式的同向可加性得知,其正确,所以成立,即B 正确;
C 项,虽然320,210>>>>,但是
32
21
>不成立,所以C 不正确;
D 项,虽然41,23>>-,但是24>不成立,所以D 不正确; 故选B. 【点睛】
该题考查的是有关正确命题的选择问题,涉及到的知识点有不等式的性质,对应的解题的方法是不正确的举出反例即可,属于简单题目.
10.C
解析:C 【解析】 【分析】
将已知代入正弦定理可得1
sin 2
B =
,根据a b >,由三角形中大边对大角可得:60B <︒,即可求得30B =︒. 【详解】
解:60A =︒Q ,a
=4b =
由正弦定理得:sin 1
sin
2b A B a =
== a b >Q 60B ∴<︒
30B ∴=︒
故选C. 【点睛】
本题考查了正弦定理、三角形的边角大小关系,考查了推理能力与计算能力.
11.B
解析:B 【解析】 【分析】
()()
1122
n n n n +-=
-
的表达式,可得出数列{}n a 的通项公式. 【详解】
(1)(1)
,(2)22
n n n n n n +-=
-=≥ 1= ,所以
2,(1),n n n a n =≥= ,选B.
【点睛】
给出n S 与n a 的递推关系求n a ,常用思路是:一是利用1,2n n n a S S n -=-≥转化为n a 的递推关系,再求其通项公式;二是转化为n S 的递推关系,先求出n S 与n 之间的关系,再
求n a . 应用关系式11,1
{,2
n n n S n a S S n -==-≥时,一定要注意分1,2n n =≥两种情况,在求出
结果后,看看这两种情况能否整合在一起.
12.B
解析:B 【解析】 【分析】
根据所给数列表达式,递推后可得()
1
21121n n n a a n ++++-=+.并将原式两边同时乘以
()
1n
-后与变形后的式子相加,即可求得2n n a a ++,即隔项和的形式.进而取n 的值,代入
即可求解. 【详解】
由已知()1121n
n n a a n ++-=-,① 得()
1
21121n n n a a n ++++-=+,②
由()1n ⨯-+①②得()()()212121n
n n a a n n ++=-⋅-++,
取1,5,9n =及2,6,10n =,易得13572a a a a +=+=,248a a +=,6824a a +=, 故81234836S a a a a a =++++⋅⋅⋅+=. 故选:B. 【点睛】
本题考查了数列递推公式的应用,对数列表达式进行合理变形的解决此题的关键,属于中档题.
二、填空题
13.【解析】在△中且故故答案为:点睛:本题主要考查正弦定理边角互化及余弦定理的应用与特殊角的三角函数属于简单题对余弦定理一定要熟记两种形式:(1);(2)同时还要熟练掌握运用两种形式的条件另外在解与三角
解析:1
4
-
【解析】
在△ABC 中,2a =,4c =,且3sin 2sin A B =,故
2221
32,3,cos .24
a b c a b b c ab +-=∴===-
故答案为:1
4
-
. 点睛:本题主要考查正弦定理边角互化及余弦定理的应用与特殊角的三角函数,属于简单题. 对余弦定理一定要熟记两种形式:(1)2222cos a b c bc A =+-;(2)
222
cos 2
b c a A bc
+-=
,同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住30,45,60o
o
o
等特殊角的三角函数值,以便在解题中直接应用.
14.7【解析】试题分析:根据约束条件画出可行域得到△ABC 及其内部其中A (53)B (﹣13)C (20)然后利用直线平移法可得当x=5y=3时z=2x ﹣y 有最大值并且可以得到这个最大值详解:根据约束条件画
解析:7 【解析】
试题分析:根据约束条件画出可行域,得到△ABC 及其内部,其中A (5,3),B (﹣1,3),C (2,0).然后利用直线平移法,可得当x=5,y=3时,z=2x ﹣y 有最大值,并且可以得到这个最大值. 详解:
根据约束条件2,2,03,x y x y y +≥⎧⎪
-≤⎨⎪≤≤⎩
画出可行域如图,
得到△ABC 及其内部,其中A (5,3),B (﹣1,3),C (2,0) 平移直线l :z=2x ﹣y ,得当l 经过点A (5,3)时, ∴Z 最大为2×5﹣3=7. 故答案为7.
点睛:在解决线性规划的小题时,我们常用“角点法”,其步骤为:①由约束条件画出可行域⇒②求出可行域各个角点的坐标⇒③将坐标逐一代入目标函数⇒④验证,求出最优解.
15.-2【解析】【分析】根据题干中所给的表达式得到数列的周期性进而得到结果【详解】根据题干表达式得到可以得数列具有周期性周期为3故得到故得到故答案为:-2【点睛】这个题目考查了求数列中的某些项一般方法是
解析:-2 【解析】 【分析】
根据题干中所给的表达式得到数列的周期性,进而得到结果. 【详解】
根据题干表达式得到234123
1111
,2, 1.1211a a a a a a =-
=-=-=-=-=+++ 56745
5
1111
,2, 1.1211a a a a a a =-
=-=-=-=-=+++ 可以得数列具有周期性,周期为3,故得到20193673.÷= 故得到2019 2.a =- 故答案为:-2. 【点睛】
这个题目考查了求数列中的某些项,一般方法是求出数列通项,对于数列通项不容易求的题目,可以列出数列的一些项,得到数列的周期或者一些其它规律,进而得到数列中的项.
16.【解析】【分析】【详解】当时代入题中不等式显然不成立当时令 都过定点考查函数令则与轴的交点为时均有也过点解得或(舍去)故 解析:3
2
a =
【解析】 【分析】 【详解】 当时,代入题中不等式显然不成立 当
时,令

,都过定点
考查函数,令
,则
与轴的交点为
时,均有
也过点
解得或(舍去),

17.9【解析】解:由题意可知:良马与驽马第天跑的路程都是等差数列设路程为由题意有:故:满足题意时数列的前n 项和为由等差数列前n 项和公式可得:解得:即二马相逢需9日相逢点睛:本题考查数列的实际应用题(1)
解析:9 【解析】
解:由题意可知:良马与驽马第n 天跑的路程都是等差数列,设路程为{}{},n n a b , 由题意有:()()1111031131390,97197222n n a n n b n n ⎛⎫=+-⨯=+=+-⨯-=-+ ⎪
⎝⎭
, 故:11
187
1222
n n n c a b n =+=+ , 满足题意时,数列{}n c 的前n 项和为112522250n S =⨯= ,
由等差数列前n 项和公式可得:11111871218712222222502
n n ⎛
⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭⨯= ,
解得:9n = . 即二马相逢,需9日相逢 点睛:本题考查数列的实际应用题. (1)解决数列应用题的基本步骤是:
①根据实际问题的要求,识别是等差数列还是等比数列,用数列表示问题的已知; ②根据等差数列和等比数列的知识以及实际问题的要求建立数学模型; ③求出数学模型,根据求解结果对实际问题作出结论. (2)数列应用题常见模型:
①等差模型:如果增加(或减少)的量是一个固定量,该模型是等差数列模型,增加(或减少)的量就是公差;
②等比模型:如果后一个量与前一个量的比是一个固定的数,该模型是等比数列模型,这个固定的数就是公比;
③递推数列模型:如果题目中给出的前后两项之间的关系不固定,随项的变化而变化时,应考虑是a n 与a n -1的递推关系,或前n 项和S n 与S n -1之间的递推关系.
18.或【解析】【分析】先化简不等式再变量分离转化为对应函数最值问题最后根据二次函数最值以及解不等式得结果【详解】即即因为当时所以或故答案为:或【点睛】本题考查不等式恒成立问题以及二次函数最值考查综合分析
解析:2m ≤
或2
m ≥ 【解析】 【分析】
先化简不等式,再变量分离转化为对应函数最值问题,最后根据二次函数最值以及解不等式得结果. 【详解】
2()4()(1)4()x
f m f x f x f m m
-≤-+Q
22222()14(1)(1)14(1)x
m x x m m
∴---≤--+- 即2
2
2
1(41)230m x x m +---≥ 即222123341,()2
m x m x x +-
≥+≥ 因为当3
2
x ≥时223238
3932
4
x x +≤+=
所以2
2
21834134m m m +-
≥∴≥∴2m ≤-或2
m ≥
故答案为:2m ≤-或2
m ≥ 【点睛】
本题考查不等式恒成立问题以及二次函数最值,考查综合分析求解能力,属中档题.
19.【解析】【分析】观察得到再利用裂项相消法计算前项和得到答案【详解】观察知故数列的前项和故答案为:【点睛】本题考查了数列的通项公式裂项相消求和意在考查学生对于数列公式方法的灵活运用
解析:
()()
323
4212n n n +-++ 【解析】 【分析】 观察得到2
1111222n a n n n n ⎛⎫
==- ⎪++⎝⎭
,再利用裂项相消法计算前n 项和得到答案. 【详解】 观察知()2111112222n a n n n n n n ⎛⎫=
==- ⎪+++⎝⎭
.
故数列的前n 项和11111
113111...232422212n S n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=
-+-++-=-- ⎪ ⎪ ⎪ ⎪⎢⎥+++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦
()()
323
4212n n n +=
-++. 故答案为:()()
3234212n n n +-++. 【点睛】
本题考查了数列的通项公式,裂项相消求和,意在考查学生对于数列公式方法的灵活运用.
20.【解析】【分析】由无穷等比数列的各项和为4得且从而可得的范围【详解】由题意可得且且 故答案为【点睛】本题主要考查了等比数列的前n 项和而
无穷等比数列的各项和是指当且时前n 项和的极限属于基础题 解析:(0,4)(4,8)⋃
【解析】 【分析】
由无穷等比数列{}n a 的各项和为4得,1
41a q
=-,,||1q <且0q ≠,从而可得1a 的范围. 【详解】 由题意可得,1
4,||11a q q
=<- , 且0q ≠
14(1)a q =- 108a ∴<<且14a ≠
故答案为(0,4)(4,8)⋃ 【点睛】
本题主要考查了等比数列的前n 项和,而无穷等比数列的各项和是指当,||1q <且0q ≠时前 n 项和的极限,属于基础题.
三、解答题
21.(1)21n a n =+;(2)()1212n
n +-⋅
【解析】 【分析】
()1由已知条件利用等差数列的前n 项和公式和通项公式以及等比数列的定义,求出首项
和公差,由此能求出21n a n =+.
(2()111)
2,2212n n n n
n n n
b b a n a ---==⋅=+⋅,由此利用错位相减法能求出数列{}n b 前n 项和n T . 【详解】
解:(1)Q 等差数列{}n a 的前n 项和为n S ,公差0d ≠, 且3550S S +=,1a ,4a ,13a 成等比数列.
()()1
121
113254355022312a d a d a d a a d ⨯⨯⎧+++=⎪∴⎨⎪+=⋅+⎩,
解得132a d =⎧⎨=⎩
()()1132121n a a n d n n ∴=+-=+-=+,
21n a n ∴=+
(2)n n b a ⎧⎫
⎨⎬⎩⎭Q 是首项为1公比为2的等比数列,
()1112,2212n n n n
n n n
b b a n a ---∴
==⋅=+⋅ ()0121325272212n n T n -∴=⨯+⨯+⨯+⋯++⋅...①
()()12312325272212212n n n T n n -=⨯+⨯+⨯+⋯+-⋅++⋅...②
两式相减得:
()()12123221212
n n n T n --=--⨯
++⋅-
()1212n n =+-⋅
【点睛】
本题主要考查了等差数列的通项公式,考查等差数列的前n 项和,还考查了错位相减法求和,考查计算能力,属于中档题。

22.(1)2 12b c =⎧⎪⎨=⎪⎩或122
b c ⎧
=⎪⎨
⎪=⎩; (2)6
2m <<. 【解析】
试题分析: 本题考查正弦定理和余弦定理;(1)先利用正弦定理将角角关系转化为边边关系,再通过解方程组求解;(2)利用余弦定理进行求解. 试题解析:由题意得2
,40b c ma a bc +=-=. (1)当52,4a m ==
时,5
,12
b c bc +==, 解得212b c =⎧⎪
⎨=⎪⎩
或122b c ⎧=⎪⎨
⎪=⎩; (2)()22222
2cos 22b c bc a b c a A bc bc
+--+-===()2
2
222
2232
a ma a m a --=-, ∵为锐角,∴()2cos 230,1A m =-∈,∴2
322
m <<,
又由b c ma +=可得0m >, 6
2m << 点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件
灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:
第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向. 第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化. 第三步:求结果.
23.(1)3
; (2) 【解析】 【分析】
(Ⅰ)已知等式括号中第一项利用同角三角函数间基本关系化简,整理后求出cosB 的值,确定出sinB 的值,
(Ⅱ)利用余弦定理表示出cosB ,利用完全平方公式变形后,将a+b ,b ,cosB 的值代入求出ac 的值,再由sinB 的值,利用三角形面积公式即可求出三角形ABC 面积. 【详解】
(Ⅰ)由()3cos cos tan tan 11A C A C -=得,sin sin 3cos cos 11cos cos A C A C A C ⎛⎫
-=
⎪⎝⎭
,
3sin sin cos cos )1A C A C ∴-=(,即()1cos 3A C ∴+=-, 1
cos 3
B ∴=,
又0B π<< , sin 3
B ∴=
. (Ⅱ)由余弦定理得:2221cos 23a c b B ac +-== ()2
221
23
a c ac
b a
c +--∴=,
又a c +=,b =
9ac =,
1
sin 2
ABC S ac B ∆∴=
=. 【点睛】
本题考查了余弦定理,两角和与差的正弦函数公式,二倍角的正弦、余弦函数公式,以及同角三角函数间的基本关系,熟练掌握余弦定理是解本题的关键. 24.(1) 23n a n =- (2) 22n T n = 【解析】 【分析】
(1)由题意,可知2
324(1)a a S =⋅+,解得2d =,即可求解数列的通项公式;
(2)由(1),可知12n n a a --=,可得
()()()21234212...n n n T a a a a a a -=-++-+++-+,即可求解.
【详解】
(1)由题意,可知数列{}n a 中,11a =-,2a ,3a ,41S +成等比数列.
则2
324(1)a a S =⋅+,即()()()2
12136d d d -+=-+-+,解得2d =,
所以数列的通项公式23n a n =-. (2)由(1),可知12n n a a --=,
所以()()()21234212...2n n n T a a a a a a n -=-++-+++-+=. 【点睛】
本题主要考查了等差数列的通项公式的求解,以及“分组求和”的应用,其中解答中熟记等差数列的通项公式和等比中项公式,准确求得等差数列的公差是解答的关键,着重考查了运算与求解能力,属于基础题.
25.(1)该单位月处理量为400吨时,才能使每吨的平均处理成本最低,最低成本为200元/吨;(2)该单位每月不获利,需要国家每月至少补贴40000元才能不亏损. 【解析】 【分析】
(1)根据已知得平均处理成本为
y
x
,得到关系式后利用基本不等式求得平均处理成本的最小值,并根据基本不等式等号成立条件求得每月处理量;(2)获利
()2
130********
10x S x y =-=-
--,根据二次函数图象可求得[]80000,40000S ∈--,可知不获利,同时求得国家至少补贴40000元.
【详解】
(1)由题意可知,二氧化碳每吨的平均处理成本为:
1800002002002002y x x x =+-≥= 当且仅当180000
2x x
=,即400x =时取等号 ∴月处理量为400吨时,才能使每吨的平均处理成本最低,最低成本为200元/吨
(2)不获利
设该单位每月获利为S 元
()222110010020080000113008000030035000
222S x y x x x x x x ⎛⎫
=-=--+ ⎪=-+-=---⎝⎭
[]400,600x ∈Q []80000,40000S ∴∈--
故该单位每月不获利,需要国家每月至少补贴40000元才能不亏损 【点睛】
本题考查构造函数模型解决实际问题,主要涉及的内容是利用基本不等式求解函数的最值、利用二次函数图象求解最值的问题. 26.(1)1
()21
n S n N n =∈-;(2)21n n +。

【解析】 【分析】
(1)运用数列的递推公式1(2)n n n a S S n -=-≥,代入化简整理,再由等差数列的定义和通项公式,即可求解n S ;
(2)求得3
10120C =,运用数列的求和方法:裂项相消求和,结合不等式的性质,即可求
解. 【详解】
(1)()()2
2
11111112222
n n n n n n n n n n n n a S S n S S S S S S S S S ----⎛⎫=-≥=--
=--+ ⎪⎝⎭由得 得()1122n n n n S S S S n ---=≥ ()1
11
22n n n S S -∴
-=≥ 111
,2n S S 是以为首项以为公差的等差数列⎧⎫∴⎨⎬⎩⎭
,
1
21,n
n S ∴
=- ()1
21
n S n N n =
∈- (2)()()1
111212122121n b n n n n ⎛⎫=
=- ⎪-+-+⎝⎭
111111111 (12335212122121)
n n T n n n n ⎛⎫⎛⎫∴=
-+-++-=-= ⎪ ⎪-+++⎝⎭⎝⎭. 【点睛】
本题主要考查了数列的递推公式的应用,以及数列的裂项法求和,其中解答中确定通项公式是基础,准确计算求和是关键,易错点是在“错位”之后求和时,弄错等比数列的项数.本题将数列与解析几何结合起来,适当增大了难度,能较好的考查考生的数形结合思想、逻辑思维能力及基本计算能力等.。

相关文档
最新文档