青海省西宁市2016-2017学年高一下学期期末考试数学试题 扫描版含答案
西宁市高一下学期期末数学试卷(I)卷
![西宁市高一下学期期末数学试卷(I)卷](https://img.taocdn.com/s3/m/9a49d82be45c3b3567ec8b82.png)
西宁市高一下学期期末数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)已知点P()在第三象限,则角是()A . 第一象限角B . 第二象限角C . 第三象限角D . 第四象限角2. (2分)已知,,,则△ABC的形状是()A . 等腰三角形B . 锐角三角形C . 直角三角形D . 钝角三角形3. (2分)某学生解选择题出错的概率为0.1,该生解三道选择题至少有一道出错的概率是()A .B .C .D .4. (2分) (2016高二上·马山期中) cosα=﹣,α∈(,π),sinβ=﹣,β是第三象限角,则cos(β﹣α)=()A .C .D .5. (2分)在△ABC中,P是BC上一点,若=m+,则实数m的值为()A .B .C .D .6. (2分)某车间加工零件的数量与加工时间y的统计数据如表:零件数(个)182022加工时间y(分钟)273033现已求得上表数据的回归方程 = x+ 中的值为0.9,则据此回归模型可以预测,加工100个零件所需要的加工时间约为()A . 84分钟B . 94分钟C . 102分钟D . 112分钟7. (2分) (2017高三上·蕉岭开学考) 已知直线l:x﹣y=1与圆Γ:x2+y2﹣2x+2y﹣1=0相交于A,C两点,点B,D分别在圆Γ上运动,且位于直线l的两侧,则四边形ABCD面积的最大值为()B .C .D .8. (2分)若某市8所中学参加中学生合唱比赛的得分用茎叶图表示(如图),其中茎为十位数,叶为个位数,则这组数据的中位数是()A . 91B . 91.5C . 92D . 92.59. (2分)执行如图所示的程序框图.当输入﹣2时,输出的y值为()A . -2B . 0C . 2D . 210. (2分)若,,定义一种向量积:,已知,,且点P(x,y)在函数y=sinx的图象上运动,点Q在函数y=f(x)的图象上运动,且点P和点Q满足:(其中O为坐标原点),则函数y=f(x)的最大值a及最小正周期t分别为()A .B .C .D .11. (2分)已知圆C:x2+y2=1,在线段AB:x﹣y+2=0(﹣2≤x≤3)上任取一点M,过点M作圆C切线,求“点M与切点的距离不大于3”的概率P为()A .B .C .D .12. (2分)已知||=5,||=3,且•=﹣12,则向量在向量上的投影等于()A .B . 4C . -D . -4二、填空题 (共4题;共4分)13. (1分) (2016高一下·驻马店期末) 某电视传媒公司为了了解某类体育节目的收视情况,随机抽取了100名观众进行调查,如图是根据调查结果绘制的观众日均收看该类体育节目时间的频率分布直方图,其中收看时间分组区间是:[0,10),[10,20),[20,30),[30,40),[40,50),[50,60].将日均收看该类体育节目时间不低于40分钟的观众称为“体育迷”.则抽取的100名观众中“体育迷”有________名.14. (1分)已知向量,满足||=4,在方向上的投影是,则•=________15. (1分)设α∈(0,π),若cos(π﹣α)= ,则tan(α+π)=________.16. (1分)(2017·仁寿模拟) △ABC的外接圆的圆心为O,半径为1,2 + + = ,且| |=||,则向量在方向上的投影________.三、解答题 (共6题;共55分)17. (10分)根据微信同程旅游的调查统计显示,参与网上购票的1000位购票者的年龄(单位:岁)情况如图所示.(1)已知中间三个年龄段的网上购票人数成等差数列,求a,b的值;(2)为鼓励大家网上购票,该平台常采用购票就发放酒店入住代金券的方法进行促销,具体做法如下:年龄在[30,50)岁的每人发放20元,其余年龄段的每人发放50元,先按发放代金券的金额采用分层抽样的方式从参与调查的1000位网上购票者中抽取5人,并在这55人中随机抽取3人进行回访调查,求此3人获得代金券的金额总和为90元的概率.18. (5分) (2018高二下·遵化期中) 在直角坐标系中,曲线的参数方程为(为参数),曲线在以该直角坐标系的原点为极点,轴的正半轴为极轴的极坐标系下的方程为 .(Ⅰ)求曲线的普通方程和曲线的直角坐标方程;(Ⅱ)设曲线和曲线的交点为、,求 .19. (15分)函数f(x)=Asin(ωx+ϕ)(A>0,ω>0,|ϕ|<π)在一个周期上的图象如图所示,(1)求函数f(x)的解析式;(2)求函数f(x)的单调递减区间;(3)若,求sinα的值.20. (10分) (2018高一下·集宁期末) 已知为第三象限角,.(1)化简(2)若,求的值.21. (10分) (2015高一上·秦安期末) 已知圆C:(x﹣1)2+(y﹣2)2=25,直线l:(2m+1)x+(m+1)y﹣7m﹣4=0.(1)求证:直线l恒过定点;(2)求直线l被圆C截得的弦长最长与最短的方程.22. (5分)已知A(2,1),B(0,2)且过点P(1,﹣1)的直线l与线段AB有公共点,求直线l的斜率k 的取值范围.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共6题;共55分) 17-1、17-2、18-1、19-1、19-2、19-3、20-1、20-2、21-1、21-2、22-1、。
青海省西宁市2016-2017学年高一数学下学期第二次月考试题(含解析)
![青海省西宁市2016-2017学年高一数学下学期第二次月考试题(含解析)](https://img.taocdn.com/s3/m/7b0dd04d302b3169a45177232f60ddccda38e6bf.png)
青海省西宁市2016-2017学年⾼⼀数学下学期第⼆次⽉考试题(含解析)西宁市16—17学年第⼆学期第⼆次⽉考试卷⾼⼀数学⼀、选择题:(本⼤题共12⼩题,每⼩题5分,满分60分。
在每⼩题给出的四个选项中,只有⼀项是符合题⽬要求的)1. 若aA. a|c|B. abC. a-cD.【答案】C【解析】选项A中c=0时不成⽴;选项B中a≤0时不成⽴;选项D中取a=-2,b=-1,c =1验证,不成⽴,故选C.2. 等⽐数列x,3x+3,6x+6,…的第四项等于( )A. -24B. 0C. 12D. 24【答案】A【解析】由x,3x+3,6x+6成等⽐数列得选A.考点:该题主要考查等⽐数列的概念和通项公式,考查计算能⼒.3. 当x>1时,不等式x+≥a恒成⽴,则实数a的取值范围是( )A. (-∞,2]B.【答案】D考点:基本不等式.4. 等差数列{a n}满⾜,则其前10项之和为( )A. -9B. -15C. 15D. ±15【答案】D【解析】由已知(a4+a7)2=9,所以a4+a7=±3,从⽽a1+a10=±3.所以S10=×10=±15.故选D.5. 已知△ABC中,三内⾓A、B、C成等差数列,边a、b、c依次成等⽐数列,则△ABC是( )A. 直⾓三⾓形B. 等边三⾓形C. 锐⾓三⾓形D. 钝⾓三⾓形【答案】B【解析】∵△ABC中,三内⾓的度数成等差数列,∴,⼜,∴°.⼜边依次成等⽐数列,∴,在△ABC中,由余弦定理得:,∴,∴,∴,∴,⼜,∴为等边三⾓形。
故选B.6. 设变量x,y满⾜约束条件,则Z=x+2y的最⼤值为( )A. 1B. 2C. 6D. 7【答案】A【解析】作出⼀组平⾏线的,这⼀组平⾏线与平⾯区域有公共点时,且直线在y轴的截距最⼤,则最⼤.由图可知,当经过直线和的交点B(3,2)时,最⼤.最⼤值为=7.故选D.点睛:本题是常规的线性规划问题,线性规划问题常出现的形式有:①直线型,转化成斜截式⽐较截距,要注意前⾯的系数为负时,截距越⼤,值越⼩;②分式型,其⼏何意义是已知点与未知点的斜率;③平⽅型,其⼏何意义是距离,尤其要注意的是最终结果应该是距离的平⽅;④绝对值型,转化后其⼏何意义是点到直线的距离.7. 已知数列{a n}满⾜(n+2)a n+1=(n+1)a n,且a2=,则a n等于( )A. B. C. D.【答案】A【解析】因为(n+2)·a n+1=(n+1)a n,所以,⼜当n=1时,3a2=2a1,所以a1=a2=.所以.故选A.8. 已知,则f(x)>-1的解集为( )A. (-∞,-1)∪(0,+∞)B. (-∞,-1)∪(0,1)∪(1,+∞)C. (-1,0)∪(1,+∞)D. (-1,0)∪(0,1)【答案】B【解析】依题意,若,则x>0且x≠1;若>-1,则x<-1,综上所述.故选B.9. 在平⾯直⾓坐标系中,已知第⼀象限的点(a,b)在直线2x+3y-1=0上,则的最⼩值为()A. 24B. 2 5C. 26D. 27【答案】A【解析】∵第⼀象限的点在直线上,∴,且,即,∴.当且仅当,即时,的最⼩值为,故选B.点睛:在⽤基本不等式求最值时,应具备三个条件:⼀正⼆定三相等.①⼀正:关系式中,各项均为正数;②⼆定:关系式中,含变量的各项的和或积必须有⼀个为定值;③三相等:含变量的各项均相等,取得最值.10. 执⾏如图所⽰的程序框图,如果输出S=132,则判断框中应填()A. i≥10?B. i≥11?C. i≥12?D. i≤11?【答案】C【解析】程序执⾏过程中的数据变化如下:,,,,不成⽴,输出.故选:B.11. 已知等⽐数列{a n}满⾜=,,则=( )A. 2B. 1C.D.【答案】B【解析】试题分析:设等⽐数列{a n}的公⽐为q,则由已知得:,即:,解得:,因此,故选C.考点:等⽐数列.12. 设是等差数列{a n}的前项和,若,则()A. B. C. D.【答案】D【解析】试题分析:由等差数列的性质可得,,,仍成等差数列,∵,∴,∴,∴,,∴两式相加可得,∴,∴,故选A.考点:等差数列的前项和.⼆、填空题:(本⼤题共4⼩题,每⼩题5分,共20分)13. 在△ABC中,∠C=90°,M是BC的中点.若sin∠BAM=,则sin∠BAC=________.【答案】【解析】因为,所以.如图,在△ABM中,利⽤正弦定理,得,所以.在Rt△ACM中,有.由题意知BM=CM,所以.化简,得.所以,解.再结合,∠BAC为锐⾓可解得=.14. 在等差数列{a n}中,若a3+a4+a5+a6+a7=25,则a2+a8=________.【答案】10【解析】试题分析:据等差数列的性质可知,项数之和相等的两项之和相等,化简已知的等式即可求出a5的值,然后把所求的式⼦也利⽤等差数列的性质化简后,将a5的值代⼊即可求出值.解:由a3+a4+a5+a6+a7=(a3+a7)+(a4+a6)+a5=5a5=450,得到a5=90,则a2+a8=2a5=180.故答案为:180.考点:等差数列的性质.15. ⽤秦九韶算法求多项式f(x)=6+5+4+3+2+x当x=2时的值时,=________.【答案】【解析】. 当x=2时的值时,点评:利⽤秦九韶算法求多项式的值⾸先要将多项式改写为每个括号内为关于x的⼀次式的形式,由内层括号到外层括号依次为.16. 不等式(a-2)+2(a-2) x-4<0对⼀切x R恒成⽴,则实数的取值范围是________.【答案】3【解析】试题分析:当时恒成⽴,当时,利⽤⼆次函数图象知,所以答案应填:.考点:含参⼆次不等式恒成⽴.【思路点晴】本题主要考查是含参数⼆次不等式的恒成⽴问题,属于中档题.解题时⼀定注意对的分类讨论,不能忘记的情况,同时,要结合⼆次函数图象及⽅程根的情况,应该开⼝向下,判别式⼩于零,列出满⾜的条件求解.三、解答题:(本⼤题共6⼩题,共70分)17. 设△ABC的内⾓A,B,C的对边分别为a,b,c,a=b tan A,且B为钝⾓.(1)证明:B-A=;(2)求sin A+sin C的取值范围.【答案】(1)见解析;(2).【解析】试题分析:(Ⅰ)运⽤正弦定理将化简变形,再解三⾓⽅程即可获解;(Ⅱ)将⾓⽤表⽰,换元法求函数的值域即可.试题解析:(Ⅰ)由及正弦定理,得,∴,即,⼜为钝⾓,因此,故,即;(Ⅱ)由(1)知,,∴,于是,∵,∴,因此,由此可知的取值范围是.考点:正弦定理、三⾓变换,⼆次函数的有关知识和公式的应⽤.18. 公差不为零的等差数列{a n}中,a3=7,且a2,a4,a9成等⽐数列.(1)求数列{a n}的通项公式;(2)设b n=2a n,求数列{b n}的前n项和S n.【答案】(1)a n=3n-2;(2).【解析】试题分析:(1)设数列的公差为d,根据a3=7,⼜a2,a4,a9成等⽐数列,可得(7+d)2=(7-d)(7+6d),从⽽可得d=3,进⽽可求数列{a n}的通项公式;(2)先确定数列{b n}是等⽐数列,进⽽可求数列{b n}的前n项和S n.试题解析:(1)由数列{a n}为公差不为零的等差数列,设其公差为d,且d≠0.因为a2,a4,a9成等⽐数列,所以a=a2·a9,即(a1+3d)2=(a1+d)(a1+8d),整理得d2=3a1d.因为d≠0,所以d=3a1.①因为a3=7,所以a1+2d=7.②由①②解得a1=1,d=3,所以a n=1+(n-1)×3=3n-2.故数列{a n}的通项公式是a n=3n-2.(2)由(1)知b n=23n-2,因为==8,所以{b n}是等⽐数列,且公⽐为8,⾸项b1=2,所以S n==.19. 已知函数f(x)=x2-2x-8,g(x)=2x2-4x-16.(1)求不等式g(x)<0的解集;(2)若对⼀切x>2,均有f(x)≥(m+2)x-m-15成⽴,求实数m的取值范围.【答案】(1){x|-2【解析】试题分析:(1)通过分解因式法进⾏求解;(2)作差,分离常数,将问题转化为求最值问题,再利⽤基本不等式求最值.试题解析:(1)g(x)=2x2-4x-16<0,∴(2x+4)(x-4)<0,∴-2<x<4,∴不等式g(x)<0的解集为{x|-2<x<4}.(2)∵f(x)=x2-2x-8.当x>2时,f(x)≥(m+2)x-m-15恒成⽴,∴x2-2x-8≥(m+2)x-m-15,即x2-4x+7≥m(x-1).∴对⼀切x>2,均有不等式成⽴.⽽=(x-1)+-2≥2-2=2(当且仅当x=3时等号成⽴),∴实数m的取值范围是(-∞,2].考点:1.⼀元⼆次不等式的解法;2.基本不等式.【⽅法点睛】本题考查⼀元⼆次不等式的解法、基本不等式的应⽤以及含参数的不等式恒成⽴问题,属于中档题;在处理含参数的不等式恒成⽴问题时,往往利⽤“分离参数法”将参数进⾏分离,使不等式恒成⽴问题转化为求函数的最值问题,如本题中将“对于恒成⽴”转化为“对于恒成⽴”,即求的最⼩值.20. 设数列{a n}的前n项和为S n=2n2,{b n}为等⽐数列,且a1=b1,b2(a2-a1)=b1.(1)求数列{a n}和{b n}的通项公式;(2)设c n=,求数列{c n}的前n项和T n.【答案】(1)a n=4n-2,;(2)T n=.【解析】略21. 在锐⾓△ABC中,三个内⾓A,B,C所对的边分别为a,b,c,且ac sin C=(a2+c2-b2)·sin B.(1)若C=,求A的⼤⼩;(2)若a≠b,求的取值范围.【答案】(1);(2).【解析】试题分析:(1)将已知等式变形,整理得, 可得,由此可得C=2B或C+2B=π,最后结合三⾓形内⾓和定理和∠C, 即可算出∠A的⼤⼩.(2)根据三⾓形为⾮等腰三⾓形,结合(1)中化简的结果可得C=2B,利⽤△ABC是锐⾓三⾓形,得到B 的范围,⼜即可得范围.试题解析:(1)因为ac sin C=(a2+c2-b2)sin B,所以==2=2cos B,所以sin C=sin 2B,所以C=2B或C+2B=π.若C=2B,C=,则A= (舍去).若C+2B=π,C=,则A=.故A=.(2)若三⾓形为⾮等腰三⾓形,则C=2B且A=π-B-C=π-3B,⼜因为三⾓形为锐⾓三⾓形,因为0<2B<,0<π-3B<,故<B<.⽽==2cos B,所以∈(,).22. 某⼯⼚建造⼀间地⾯⾯积为12的背⾯靠墙的矩形⼩房,房屋正⾯的造价为1200元,房屋侧⾯的造价为800元,屋顶的造价为5800元.若墙⾼为3,且不计房屋背⾯的费⽤,则建造此⼩房的最低总造价是多少元?【答案】当|AB|=3 m,|BC|=4 m时,能使整个框架⽤材料最少.【解析】试题分析:试题解析:设总造价为Z元,则有.∴.当时,即时,Z有最⼩值34600,此时答:长4m,宽3m.最低总造价为34600元点睛:在⽤基本不等式求最值时,应具备三个条件:⼀正⼆定三相等.①⼀正:关系式中,各项均为正数;②⼆定:关系式中,含变量的各项的和或积必须有⼀个为定值;③三相等:含变量的各项均相等,取得最值.。
2017-2018学年青海省西宁市高一(下)期末数学试卷及答案
![2017-2018学年青海省西宁市高一(下)期末数学试卷及答案](https://img.taocdn.com/s3/m/cf91c5157375a417866f8fda.png)
2017-2018学年青海省西宁市高一(下)期末数学试卷一、选择题:共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)设a,b,c∈R,且a>b,则下列选项中一定成立的是()A.ac>bc B.C.a2>b2D.a3>b32.(5分)如图为一串白黑相间排列的珠子,按这种规律往下排起来,那么第36颗珠子的颜色是()A.白色B.黑色C.白色可能性大D.黑色可能性大3.(5分)奥林匹克会旗中央有5个互相套连的圆环,颜色自左至右,上方依次为蓝、黑、红,下方依次为黄、绿,象征着五大洲.在手工课上,老师将这5个环分发给甲、乙、丙、丁、戊五位同学制作,每人分得1个,则事件“甲分得红色”与“乙分得红色”是()A.对立事件B.不可能事件C.互斥但不对立事件D.不是互斥事件4.(5分)在△ABC中,∠A=60°,,,则△ABC解的情况()A.无解B.有唯一解C.有两解D.不能确定5.(5分)一组数据的茎叶图如图所示,则数据落在区间[22,30]内的概率为()A.0.2B.0.4C.0.5D.0.66.(5分)设M=(a+1)(a﹣3),N=2a(a﹣2),则()A.M>A B.M≥N C.M<N D.M≤N7.(5分)若x,2x+2,3x+3是某个等比数列的连续三项,则x=()A.﹣4B.﹣1C.1或4D.﹣1或﹣4 8.(5分)某班有49位同学玩“数字接龙”游戏,具体规则按如图所示的程序框图执行(其中a为座位号),并以输出的值作为下一个输入的值,若第一次输入的值为8,则第三次输出的值为()A.8B.15C.29D.369.(5分)用系统抽样法从160名学生中抽取容量为20的样本,将160名学生从1~160编号.按编号顺序平均分成20组(1~8号,9~16号,153~160号),若第15组中抽出的号码为118,则第一组中按此抽签方法确定的号码是()A.8B.6C.4D.210.(5分)具有线性相关关系得变量x,y,满足一组数据如表所示,若y与x的回归直线方程为=3x﹣,则m的值()A.4B.C.5D.611.(5分)若不等式组表示的平面区域是一个三角形,则a的取值范围是()A.a<5B.a≥7C.5≤a<7D.a<5或a≥712.(5分)公比不为1的等比数列{a n}的前n项和为S n,且﹣2a1,﹣成等差数列,若a1=1,则S4=()A.﹣5B.0C.5D.7二、填空题(本大题共4小题,每小题5分,满分20分,请将答案填写在题中的横线上.)13.(5分)二次函数y=ax2+bx+c(x∈R)的部分对应值如表,则不等式ax2+bx+c<0的解集是.14.(5分)如图是一个边长为4的正方形二维码,为了测算图中黑色部分的面积,在正方形区域内随机投掷400个点,其中落入黑色部分的有225个点,据此可估计黑色部分的面积为.15.(5分)若数列{a n}的前n项和为S n=2n2,则a3+a4的值为.16.(5分)已知x>2,求f(x)=2x+的最小值.三、解答题(共6小题,满分70分,解答写出文字说明、证明过程或演算过程.)17.(10分)渔政船在东海某海域巡航,已知该船正以15海里/时的速度向正北方向航行,该船在A点处时发现在北偏东30°方向的海面上有一个小岛,继续航行20分钟到达B 点,此时发现该小岛在北偏东60°方向上,若该船向正北方向继续航行,船与小岛的最小距离为多少海里?18.(12分)在“六一”联欢会上设有一个抽奖游戏.抽奖箱中共有12张纸条,分一等奖、二等奖、三等奖、无奖四种.从中任取一张,不中奖的概率为,中二等奖或三等奖的概率.(Ⅰ)求任取一张,中一等奖的概率;(Ⅱ)若中一等奖或二等奖的概率是,求任取一张,中三等奖的概率.19.(12分)已知等差数列{a n}的前n项和为S n,且a3=7,a5+a7=26.(Ⅰ)求a n及S n;(Ⅱ)令b n=(n∈N+),求证:数列{b n}为等差数列.20.(12分)某中学从高三男生中随机抽取n名学生的身高,将数据整理,得到的频率分布表如下所示:(Ⅰ)求出频率分布表中①和②位置上相应的数据,并完成下列频率分布直方图;(Ⅱ)为了能对学生的体能做进一步了解,该校决定在第3,4,5组中用分层抽样抽取6名学生进行不同项目的体能测试,若在这6名学生中随机抽取2名学生进行引体向上测试,则第4组中至少有一名学生被抽中的概率.21.(12分)在锐角△ABC中,角A,B,C的对边分别为a,b,c,且a=2c sin A.(Ⅰ)确定角C的大小;(Ⅱ)若c=,且△ABC的面积为,求a+b的值.22.(12分)设函数f(x)=x2﹣3x.(Ⅰ)若不等式f(x)≥m对任意x∈[0,1]恒成立,求实数m的取值范围;(Ⅱ)在(I)的条件下,当m取最大值时,设x>0,y>0且2x+4y+m=0,求+的最小值.2017-2018学年青海省西宁市高一(下)期末数学试卷参考答案与试题解析一、选择题:共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.【考点】R3:不等式的基本性质.【解答】解:当c=0时,显然ac=bc,故A错误;当a>0>b时,,故B错误;当0>a>b时,a2<b2,故C错误;∵y=x3是增函数,且a>b,∴a3>b3,故D正确.故选:D.【点评】本题考查了不等式的基本性质,属于基础题.2.【考点】8B:数列的应用.【解答】解:由题图知三白二黑周而复始相继排列,根据36÷5=7余1,可得第36颗应与第1颗珠子的颜色相同,即白色.故选:A.【点评】本题考查数列的应用,考查合情推理,属于基础题.3.【考点】C4:互斥事件与对立事件.【解答】解:甲、乙不能同时得到红色,因而这两个事件是互斥事件;又甲、乙可能都得不到红色,即“甲或乙分得红色”的事件不是必然事件,故这两个事件不是对立事件.∴事件“甲分得红色”与“乙分得红色”是互斥但不对立事件.故选:C.【点评】本题考查了互斥事件和对立事件,关键是对概念的理解,是基础的概念题.4.【考点】HP:正弦定理.【解答】解:∵△ABC中,∠A=60°,a=,b=,∴根据正弦定理,得sin B===,∵∠A=60°,得∠B+∠C=120°∴由sin B=,得∠B=30°,从而得到∠C=90°因此,满足条件的△ABC有且只有一个.故选:B.【点评】本题给出三角形ABC的两条边的一个角,求满足条件的三角形个数.着重考查了利用正弦定理解三角形的知识,属于基础题.5.【考点】BA:茎叶图.【解答】解:茎叶图中的数据为18,19,21,22,22,27,29,30,30,33;则落在区间[22,30]内的数据为22,22,27,29,30,30共6个,∴所求的概率值为P==0.6.故选:D.【点评】本题考查了茎叶图的应用问题,是基础题.6.【考点】72:不等式比较大小.【解答】解:N﹣M=2a(a﹣2)﹣(a+1)(a﹣3)=2a2﹣4a﹣(a2﹣2a﹣2)=a2﹣2a+2=(a﹣1)2+1>0,即M<N,故选:C.【点评】本题主要考查不等式大小的比较,利用作差法结合配方法是解决本题的关键.7.【考点】88:等比数列的通项公式.【解答】解:由题意可得(2x+2)2=x(3x+3),化简可得(x+1)(x+4)=0解之可得x=﹣1,或x=﹣4当x=﹣1时,2x+2=0不合题意,应舍去,故选:A.【点评】本题考查等比数列的通项公式,验证是否有0项是本题的易错点,属基础题.8.【考点】EF:程序框图.【解答】解:输入a=8后,满足进条件,则输出a=15,输入a=15后,满足条件,则输出a=29,输入a=29后,不满足条件,则输出a=8,故第三次输出的值为8,故选:A.【点评】本题考查的知识点是程序框图,模拟运行法是解答此类问题常用的方法,要注意分析模拟过程中变量值的变化情况.9.【考点】B4:系统抽样方法.【解答】解:由题意,可知系统抽样的组数为20,间隔为8,设第一组抽出的号码为x,则由系统抽样的法则,可知第n组抽出个数的号码应为x+8(n﹣1),所以第15组应抽出的号码为x+8(15﹣1)=118,解得x=6.故选:B.【点评】系统抽样形象地讲是等距抽样,系统抽样适用于总体中的个体数较多的情况,系统抽样属于等可能抽样.10.【考点】BK:线性回归方程.【解答】解:由表中数据得:=,=,由于由最小二乘法求得回归方程=3x﹣,将=,=代入回归直线方程,得m=4.故选:A.【点评】本题考查数据的回归直线方程,利用回归直线方程恒过样本中心点是关键.11.【考点】7B:二元一次不等式(组)与平面区域.【解答】解:由图可知5≤a<7,故选:C.【点评】本题考查二元一次不等式组表示的平面区域,考查作图能力和对图形的分析能力.12.【考点】8M:等差数列与等比数列的综合.【解答】解:设公比q不为1的等比数列{a n},﹣2a1,﹣成等差数列,可得﹣a2=﹣2a1+a3,若a1=1,可得﹣q=﹣2+q2,解得q=﹣2(1舍去),则S4===﹣5.故选:A.【点评】本题考查等比数列的通项公式和求和公式的运用,等差数列中项的性质,考查运算能力,属于中档题.二、填空题(本大题共4小题,每小题5分,满分20分,请将答案填写在题中的横线上.)13.【考点】3V:二次函数的性质与图象;73:一元二次不等式及其应用.【解答】解:由二次函数y=ax2+bx+c(x∈R)的部分对应值知,x=﹣2时,y=0;x=3时,y=0;且函数y的图象开口向上,∴不等式ax2+bx+c<0的解集是(﹣2,3).故答案为:(﹣2,3).【点评】本题考查了一元二次不等式的解法与应用问题,是基础题.14.【考点】CF:几何概型.【解答】解:设黑色部分的面积为S,∵如图是一个边长为4的正方形二维码,为了测算图中黑色部分的面积,在正方形区域内随机投掷400个点,其中落入黑色部分的有225个点,∴=,解得S=9.据此可估计黑色部分的面积为9.故答案为:9.【点评】本题考查面积的求法,考查几何概型等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.15.【考点】8H:数列递推式.【解答】解:由题意数列{a n}的前n项和为S n=2n2,∴S1=a1=2;∴a n=S n﹣S n﹣1=2n2﹣2(n﹣1)2=4n﹣2,(n≥1,n∈N*)则a3+a4=10+14=24.故答案为:24.【点评】数列的通项a n或前n项和S n中的n通常是对任意n∈N成立,因此可将其中的n 换成n+1或n﹣1等,这种办法通常称迭代或递推.了解数列的递推公式,明确递推公式与通项公式的异同;会根据数列的递推公式写出数列的前几项.16.【考点】7F:基本不等式及其应用.【解答】解:由x>2,则x﹣2>0那么:f(x)=2x+=2(x﹣2)+=2.(当且仅当x=时,等号成立),故答案为:.【点评】本题考查了基本不等式在求最值中的应用,属于中档题.三、解答题(共6小题,满分70分,解答写出文字说明、证明过程或演算过程.)17.【考点】HU:解三角形.【解答】解:如图所示,过点C作CD⊥AB,垂足为D.由题意可得:AB=15×=5.∵∠A=30°,∠DBC=60°.∴∠ACB=180°﹣120°﹣30°=30°,∴BC=AB=5.∴在Rt△BCD中,DC=BC•sin60°=×=7.5海里.该船向正北方向继续航行,船与小岛的最小距离为7.5海里.【点评】本题考查了直角三角形边角关系、解三角形、速度与路程的关系,考查了推理能力与计算能力,属于中档题.18.【考点】C5:互斥事件的概率加法公式.【解答】解:(Ⅰ)设任取一张,抽得一等奖、二等奖、三等奖、不中奖的事件分别为A,B,C,D,它们是互斥事件,由题意得:P(D)=,P(B+C)=P(B)+P(C)=,由对立事件的概率公式得:P(A)=1﹣P(B+C+D)=1﹣P(B+C)﹣P(D)=1﹣=,∴任取一张,中一等奖的概率为.(Ⅱ)∵P(A+B)=,又P(A+B)=P(A)+P(B),∴P(B)==,又P(B+C)=P(B)+P(C)=,∴P(C)=,∴任取一张,中三等奖的概率为.【点评】本题考查概率的求法,考查对立事件概率计算公式、互斥事件概率加法公式等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.19.【考点】83:等差数列的性质;85:等差数列的前n项和.【解答】解:(Ⅰ)设等差数列的首项为a1,公差为d,∵a3=7,a3+a2=26.∴由题意得,解得a1=3,d=2,∴a n=a1+(n﹣1)d=3+2(n﹣1)=2n+1.==n(n+2).证明:(Ⅱ)∵=,b n+1﹣b n=n+3﹣(n+2)=1,∴数列{b n}为等差数列.【点评】本题考查等差数列的通项公式、前n项和公式的求法,考查等差数列的证明,考查等差数列的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.20.【考点】B8:频率分布直方图;CB:古典概型及其概率计算公式.【解答】解:(Ⅰ)由题意知,第1组:0.050=,解得n=100,第2组的频数为:0.350×100=35人,第3组的频率为:=0.300,∴①处的数字为35,②处的数据为0.300.完成频率分布直方图如下:(Ⅱ)∵第3,4,5组共有60名学生,∴利用分层抽样,有60名学生中抽取6名学生,每组分别为:第3组:人,第4组:人,第5组:人,∴第3,4,5组分别抽取3人,2 人,1人,设第3组的3位同学分别为A1,A2,A3,第4组的2位同学分别为:B1,B2,第5组的1位同学为C,则从6位同学中抽两位同学的可能有:A 1A2,A1A3,,A1B2,A1C,A2A3,A2B1,A2B2,A2C,A3B1,A3B2,A3C,B1B2,B1C,B2C,共15种,其中第4组的两位同学至少有一位同学被选中的有:,A1B2,A2B1,A2B2,A3B1,A3B2,B1B2,B1C,B2C,共9种可能,∴第4组中至少有一名学生被抽中的概率P=.【点评】本题考查概率的求法,考查频率分布直方图、列举法等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.21.【考点】HP:正弦定理;HR:余弦定理.【解答】解:(1)由及正弦定理得:,∵sin A≠0,∴在锐角△ABC中,.(2)∵,,由面积公式得,即ab=6①由余弦定理得,即a2+b2﹣ab=7②由②变形得(a+b)2=25,故a+b=5.【点评】本题主要考查了正弦定理和余弦定理的运用.对于这两个定理的基本公式和变形公式应熟练记忆,并能灵活运用.22.【考点】3V:二次函数的性质与图象;7F:基本不等式及其应用.【解答】解:(Ⅰ)函数f(x)=x2﹣3x的图象是开口朝上,且以直线x=为对称轴的抛物线,故函数f(x)=x2﹣3x在[0,1]上单调递减,当x=1时,函数取最小值﹣2,若不等式f(x)≥m对任意x∈[0,1]恒成立,则m≤﹣2;(Ⅱ)由(I)得:m=﹣2,即2x+4y=2,即x+2y=1由x>0,y>0故+=(+)(x+2y)=3++≥3+2=3+2即+的最小值为3+2.【点评】本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质是解答的关键.。
青海省西宁市2017_2018学年高一数学下学期期末考试试题(含解析)
![青海省西宁市2017_2018学年高一数学下学期期末考试试题(含解析)](https://img.taocdn.com/s3/m/dc223b3d844769eae109ed26.png)
五位同学制作,每人分得 1 个,则事件“甲分得红色”与“乙分得红色”是 ( )
A. 对立事件
B. 不可能事件 D. 不是互斥事件
C. 互斥但不对立事件 【答案】C 【解析】
甲、乙不能同时得到红色,因而这两个事件是互斥事件 ; 又甲、乙可能都得不到红色,即“ 甲或乙分得红色”的事件不是必然事件,故这两个事件不是对立事件.选 C. 4.4.在ΔABC中,∠A = 60°,a = 6,b = 2,则ΔABC解的情况( ) A. 无解 【答案】B 【解析】 【分析】 根据正弦定理,结合题中数据解出sinB,再由∠B + ∠C = 180 ∘ −∠A = 120 ∘ ,得出
2
1
5.5.一组数据的茎叶图如图所示,则数据落在区间[22,30]内的概率为
A. 0.2 【答案】D 【解析】 【分析】
B. 0.4
C. 0.5
D. 0.6
根据茎叶图10个原始数据落在区间[20,30]内的个数,由古典概型的概率公式可得结论. 【详解】由茎叶图10个原始数据,数出落在区间[20,30]内的共有 6 个, 包括 2 个22,1个27,1个29,2 个 30, 所以数据落在区间[20,30]内的概率为10 = 0.6,故选 D. 【点睛】本题主要考查古典概型概率公式的应用,属于简单题. 在解古典概型概率题时,首 先求出样本空间中基本事件的总数n,其次求出概率事件中含有多少个基本事件m,然后根 据公式P = n 求得概率. 6.6.设M = (a + 1)(a−3),N = 2a(a−2),则( A. M > N 【答案】C 【解析】 【分析】 利用“作差法”,只需证明N−M > 0即可得结果. 【详解】 ∵ N = 2a(a−2),M = (a + 1)(a−3), ∴ N−M = 2a(a−2)−(a + 1)(a−3),
青海省西宁市2017-2018学年高一数学下学期期末考试试题
![青海省西宁市2017-2018学年高一数学下学期期末考试试题](https://img.taocdn.com/s3/m/75fa4378650e52ea54189824.png)
西宁市2017-2018学年度第二学期末调研测试卷高一数学第Ⅰ卷(共60分)一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的,请把你认为正确的选项序号填入相应题号的表格内) 1. 设a ,b ,c R ∈,且a b >,则下列选项中一定成立的是( ) A . ac bc > B .11a b< C . 22a b > D .33a b > 2. 如图为一串白黑相间排列的珠子,按这种规律往下排起来,那么第36颗珠子应是什么颜色( )A .白色B .黑色C .白色可能性大D .黑色可能性大3. 奥林匹克会旗中央有5个互相套连的圆环,颜色自左至右,上方依次为蓝、黑、红,下方依次为黄、绿,象征着五大洲.在手工课上,老师将这5个环分发给甲、乙、丙、丁、戊五位同学制作,每人分得1个,则事件“甲分得红色”与“乙分得红色”是( )A .对立事件B .不可能事件C . 互斥但不对立事件D .不是互斥事件4. 在ABC ∆中,60A ∠=︒,a =b =ABC ∆解的情况( )A . 无解B .有唯一解 C. 有两解 D .不能确定 5. 一组数据的茎叶图如图所示,则数据落在区间[]22,30内的概率为A .0.2B . 0.4 C. 0.5 D .0.6 6. 设()()13M a a =+-,()22N a a =-,则( )A .M N >B .M N ≥ C. M N < D .M N ≤ 7. 已知x ,22x +,33x +是一个等比数列的前三项,则x 的值为( ) A .-4或-1 B . -4 C. -1 D .4或18. 某班有49位同学玩“数字接龙”游戏,具体规则按如图所示的程序框图执行(其中a 为座位号),并以输出的值作为下一轮输入的值.若第一次输入的值为8,则第三次输出的值为( )A . 8B .15 C. 20 D .369. 用系统抽样法从160名学生中抽取容量为20的样本,将160名学生从1-160编号.按编号顺序平均分成20组(1~8号,9~16号,…,153~160号),若第15组中抽出的号码为118,则第一组中按此抽签方法确定的号码是( ) A . 7 B . 6 C. 5 D .410. 具有线性相关关系的变量x ,y 满足的一组数据如表所示,若y 与x 的回归直线方程为3ˆ32yx =-,则m 的值为( ) A . 4 B .92C. 5 D .6 11. 若不等式组,50,02,y a x y x ≥⎧⎪-+≥⎨⎪≤≤⎩表示的平面区域是一个三角形,则实数a 的取值范围为( )A .5a <B . 7a ≥ C. 57a ≤< D .5a <或7a ≥ 12. 公比不为1的等比数列{}n a 的前n 项和为n S ,且12a -,212a -,3a 成等差数列,若11a =,则4S =( )A . -5B . 0 C. 5 D .7二、填空题(本大题共4小题,每小题5分,共20分,将答案填写在题中的横线上) 13. 二次函数2()y ax bx c x R =++∈的部分对应值如下表:则不等式20ax bx c ++<的解集是 .14. 右图是一个边长为4的正方形二维码,为了测算图中黑色部分的面积,在正方形区域内随机投掷400个点,其中落入黑色部分的有225个点,据此可估计黑色部分的面积为 .15. 若数列{}n a 的前n 项和为22n S n =,则34a a +的值为 .16. 已知2x >,求()122f x x x =+-的最小值 . 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 渔政船在东海某海域巡航,已知该船正以/时的速度向正北方向航行,该船在A点处时发现在北偏东30︒方向的海面上有一个小岛,继续航行20分钟到达B 点,此时发现该小岛在北偏东60︒方向上,若该船向正北方向继续航行,船与小岛的最小距离为多少海里? 18. 在“六一”联欢会上设有一个抽奖游戏.抽奖箱中共有12张纸条,分一等奖、二等奖、三等奖、无奖四种.从中任取一张,不中奖的概率为12,中二等奖或三等奖的概率是512. (Ⅰ)求任取一张,中一等奖的概率; (Ⅱ)若中一等奖或二等奖的概率是14,求任取一张,中三等奖的概率. 19. 已知等差数列{}n a 的前n 项和为n S ,且37a =,5726a a +=. (Ⅰ)求n a 及n S ;(Ⅱ)令()nn S b n N n+=∈,求证:数列{}n b 为等差数列 20. 某中学从高三男生中随机抽取n 名学生的身高,将数据整理,得到的频率分布表如下所示,(Ⅰ)求出频率分布表中①和②位置上相应的数据,并完成下列频率分布直方图;(Ⅱ)为了能对学生的体能做进一步了解,该校决定在第3,4,5组中用分层抽样抽取6名学生进行不同项目的体能测试,若在这6名学生中随机抽取2名学生进行引体向上测试,则第4组中至少有一名学生被抽中的概率.21. 在锐角ABC ∆中,a ,b ,c 是角A ,B ,C 2sin c A =. (Ⅰ)求角C 的度数;(Ⅱ)若c =ABC ∆的面积为2,求a b +. 22. 设函数()23f x x x =-(Ⅰ)若不等式()f x m ≥对任意[]0,1x ∈恒成立,求实数m 的取值范围; (Ⅱ)在(Ⅰ)的条件下,当m 取最大值时,设0x >,0y >且240x y m ++=,求11x y+的最小值.西宁市2017-2018学年度第二学期末调研测试卷高一数学参考答案及评分意见一、选择题1-5: DACBD 6-10: CBABA 11、12:CA 二、填空题13. ()2,3- 14. 9 15. 24 16.4+ 三、解答题17. 解:根据题意画出相应的图形,如图所示,过C 作CD AD ⊥,由题意得:2060AB =⨯= (海里) ∵30A ∠=︒,60CBD ∠=︒ ∴30BCA ∠=︒,则ABC ∆为等腰三角形,所以BC =在BCD ∆中,∵60CBD ∠=︒,CD AD ⊥,BC =∴152CD =则该船向北继续航行,船与小岛的最小距离为7.5海里.18. 解:设任取一张,抽得一等奖、二等奖、三等奖、不中奖的事件分别为A ,B ,C ,D ,它们是互斥事件. 由条件可得1()2P D =,5()()()12P B C P B P C +=+=, (Ⅰ)由对立事件的概率公式知()()()()51111112212P A P B C D P B C P D =-++=-+-=--=, 所以任取一张,中一等奖的概率为112; (Ⅱ)∵1()4P A B +=,而()()()P A B P A P B +=+ ∴111()4126P B =-=, 又()()()512P B C P B P C +=+=,∴1()4P C = 所以任取一张,中三等奖的概率为14.19. 解:(Ⅰ)设等差数列的首项为1a ,公差为d ,由题意有1127.21026,a d a d +=⎧⎨+=⎩解得13a =,2d =,则()()1132121n a a n d n n =+-=+-=+,()()()1321222n n n n n a a S n n ++⎡⎤+⎣⎦===+(Ⅱ)因为(2)2n n S n n b n n n+===+, 又()1321n n b b n n +-=+-+=, 所以,数列{}n b 为等差数列.20. 解:(Ⅰ)由题可知,第1组:50.050n=,得100n =第2组的频数为0.35010035⨯=人, 第3组的频数为300.300100=. 即①处的数据为35,②处的数据为0.300.(Ⅱ)因为第3,4,5组共有60名学生,所以利用分层抽样,在60名学生中抽取6名学生,每组分别为:第3组:306360⨯=人; 第4组:206260⨯=人;第5组:106160⨯=人.所以第3,4,5组分别抽取3人,2人,1人.设第3组的3位同学为1A ,2A ,3A ,第4组的2位同学为1B ,2B ,第5组的1位同学为C , 则从6位同学中抽两位同学的可能有12A A ,13A A ,11A B ,12A B ,1A C ,23A A ,21A B ,22A B ,2A C ,31A B ,32A B ,3A C ,12B B ,1B C ,2B C 共15种;其中第4组的两位同学至少有一位同学被选中的有:11A B ,12A B ,21A B ,22A B ,31A B ,32A B ,12B B ,1B C ,2B C 共9种可能.所以第4组的两位同学至少有一位同学被选中的概率93155P ==.21. 解:2sin c A =2sin sin A C A =, 因为ABC ∆为锐角三角形,所以sin C =,故3C π=.(Ⅱ)因为1sin 2ABC S ab C ∆== 所以6ab =,又c =3C π=,由余弦定理2222cos c a b ab C =+-,得227a b ab =+-,所以()()227318a b ab a b =+-=+- 所以()225a b += 则5a b +=.22. 解:(Ⅰ)因为函数2()3f x x x =-的对称轴为32x =,且开口向上, 所以2()3f x x x =-在[]0,1x ∈上单调递减,所以()min ()1132f x f ==-=-, ∴2m ≤-.(Ⅱ)根据题意,由(Ⅰ)可得2m =-, 即2420x y +-=, 所以21x y +=. 所以21x y +=. ∵0x >,0y >则1111()(2)x y x y x y+=++ 2(3)y xx y=++3≥+3=+当且仅当2y xx y=,即1x =,12y =-时,等号成立.所以11x y+的最小值为3+.。
青海省西宁市高一下学期期末数学试卷
![青海省西宁市高一下学期期末数学试卷](https://img.taocdn.com/s3/m/74dba42b0242a8956aece4cc.png)
青海省西宁市高一下学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2017高二下·怀仁期末) 在锐角中,角的对边分别为,若,,则的取值范围是()A .B .C .D .2. (2分)若a、b、c∈R,,则下列不等式成立的是()A . <B .C . >D .3. (2分)下列四个结论:⑴两条直线都和同一个平面平行,则这两条直线平行。
⑵两条直线没有公共点,则这两条直线平行。
⑶两条直线都和第三条直线垂直,则这两条直线平行。
⑷一条直线和一个平面内无数条直线没有公共点,则这条直线和这个平面平行。
其中正确的个数为()A . 0B . 1C . 2D . 34. (2分)若数列{an}的通项公式为an=2n+5,则此数列是()A . 公差为2的等差数列B . 公差为5的等差数列C . 首项为5的等差数列D . 公差为n的等差数列5. (2分) (2017高二上·桂林月考) 在△ABC中,若acosB=bcosA ,则该三角形一定是()A . 等腰三角形B . 直角三角形C . 等边三角形D . 等腰直角三角形6. (2分) (2016高一下·黄冈期末) 下列命题错误的是()A . 如果平面α⊥平面β,那么平面α内所有直线都垂直于平面βB . 如果平面α⊥平面β,那么平面α内一定存在直线平行于平面βC . 如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥平面γD . 如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β7. (2分)在中,,则角的大小为()A .B .C .D .8. (2分)如图是一个几何体的三视图,则该几何体任意两个顶点间距离的最大值是()A . 3B . 3C . 4D . 59. (2分) (2016高三上·黑龙江期中) 设等差数列{an}的前n项和为Sn ,若a6=18﹣a7 ,则S12=()A . 18B . 54C . 72D . 10810. (2分) (2016高二上·郑州期中) 设a>0,b>0,若a+b=1,则的最小值为()A . 4B . 8C . 1D .11. (2分) (2017高一下·宜昌期中) 在△ABC中,角A、B、C的对边分别为a、b、c,若a2+c2﹣b2= ac,则角B的值为()A .B .C . 或D . 或12. (2分) (2016高二上·黄浦期中) 数列{an}的前n项和Sn=an﹣1,则关于数列{an}的下列说法中,正确的个数有()①一定是等比数列,但不可能是等差数列②一定是等差数列,但不可能是等比数列③可能是等比数列,也可能是等差数列④可能既不是等差数列,又不是等比数列⑤可能既是等差数列,又是等比数列.A . 4B . 3C . 2D . 1二、填空题 (共4题;共5分)13. (1分) (2016高三上·泰兴期中) =________.14. (2分)如图,在正方体ABCD−A1B1C1D1中判断下列位置关系:(1) AD1所在的直线与平面BCC1B1的位置关系是________;(2)平面A1BC1与平面ABCD的位置关系是________.15. (1分)已知数列{an}的首项为1,数列{bn}为等比数列,且,则a15=________.16. (1分) (2016高三上·大庆期中) 给出以下命题:①双曲线﹣x2=1的渐近线方程为y=± x;②命题P:∀x∈R+ , sinx+ ≥1是真命题;③已知线性回归方程为 =3+2x,当变量x增加2个单位,其预报值平均增加4个单位;④设随机变量ξ服从正态分布N(0,1),若P(ξ>1)=0.2,则P(﹣1<ξ<0)=0.6;则正确命题的序号为________.三、解答题 (共8题;共70分)17. (5分)(2017·襄阳模拟) 已知A、B分别在射线CM、CN(不含端点C)上运动,∠MCN= π,在△ABC 中,角A、B、C所对的边分别是a、b、c.(Ⅰ)若a、b、c依次成等差数列,且公差为2.求c的值;(Ⅱ)若c= ,∠ABC=θ,试用θ表示△ABC的周长,并求周长的最大值.18. (5分) (2016高二上·临沂期中) 数列{an}满足an+1+an=4n﹣3(n∈N*)(Ⅰ)若{an}是等差数列,求其通项公式;(Ⅱ)若{an}满足a1=2,Sn为{an}的前n项和,求S2n+1 .19. (10分) (2018高二下·辽宁期中) 如图,在三棱柱中,,,为的中点,.(1)求证:平面平面;(2)求到平面的距离.20. (10分) (2018高二上·泰安月考) 解下列关于的不等式:(1);(2) .21. (10分)(2017·成安模拟) 已知数列{an}满足a1= ,an+1=10an+1.(1)证明数列{an+ }是等比数列,并求数列{an}的通项公式;(2)数列{bn}满足bn=lg(an+ ),Tn为数列{ }的前n项和,求证:Tn<.22. (10分)已知α,β∈(0,),且sin(α+2β)= sinα.(1)求tan(α+β)﹣6tanβ的值;(2)若tanα=3tanβ,求α的值.23. (10分)(2020·秦淮模拟) 如图,在△ABC中,已知B ,AB=3,AD为边BC上的中线,设∠BAD =α,若cosα .(1)求AD的长;(2)求sinC的值.24. (10分) (2018高二下·衡阳期末) [选修4—5:不等式选讲]已知函数(1)求不等式的解集.(2)若不等式的解集非空,求的取值范围.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共5分)13-1、14-1、14-2、15-1、16-1、三、解答题 (共8题;共70分) 17-1、18-1、19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、23-1、23-2、24-1、24-2、。
2016-2017学年青海省西宁市高一数学下期末考试试题
![2016-2017学年青海省西宁市高一数学下期末考试试题](https://img.taocdn.com/s3/m/b7d6739bfc4ffe473268ab47.png)
西宁市2016-2017学年度第二学期末调研测试卷高一数学一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.若a b >,则下面一定成立的是( ) A .ac bc >B .1a b >C .11a b <D .22a c bc 32.把红、蓝、白3张纸牌随机地分发给甲、乙、丙三个人,每人分得1张,事件“甲分得红牌”与事件“乙分得红牌”是( )A .对立事件B .不可能事件C .互斥但不对立事件D .以上都不对3.不等式10x y +->表示的区域在直线10x y +-=的( ) A .右上方B .右下方C .左上方D .左下方4.已知在等比数列{}n a 中,11a =,59a =,则3a =( ) A .3±B .3C.5±D .5 5.下列叙述错误的是( )A .若事件A 发生的概率为()P A ,则()01P A #B .互斥事件不一定是对立事件,但是对立事件一定是互斥事件C.两个对立事件的概率之和为1 D .对于任意两个事件A 和B ,都有()()()P A B P A P B =+6.两灯塔,A B 与海洋观察站C 的距离都为a ,灯塔A 在C 的北偏东30°,B 在C 的南偏东60°,则,A B 两灯塔之间距离为() A .2a B .3a C.2a D .a7.如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件),若这两组数据的中位数相等,且平均值也相等,则x 和y 的值分别为( )A .3,5B .5,5 C.3,7 D .5,7。
青海西宁市数学高一下期末经典练习卷(含解析)
![青海西宁市数学高一下期末经典练习卷(含解析)](https://img.taocdn.com/s3/m/62763b77680203d8cf2f248a.png)
一、选择题1.(0分)[ID :12727]设n S 是等差数列{}n a 的前n 项和,若1353a a a ++=,则5S = A .5 B .7 C .9 D .112.(0分)[ID :12721]已知扇形的周长是12,面积是8,则扇形的中心角的弧度数是( ) A .1B .4C .1或4D .2或43.(0分)[ID :12716]已知集合{}220A x x x =-->,则A =RA .{}12x x -<<B .{}12x x -≤≤C .}{}{|12x x x x <-⋃D .}{}{|1|2x x x x ≤-⋃≥4.(0分)[ID :12714]在发生某公共卫生事件期间,有专业机构认为该事件在一段时间没有发生在规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是 A .甲地:总体均值为3,中位数为4 B .乙地:总体均值为1,总体方差大于0 C .丙地:中位数为2,众数为3D .丁地:总体均值为2,总体方差为35.(0分)[ID :12705]已知()()()sin cos ,02f x x x πωϕωϕωϕ=+++>,<,()f x 是奇函数,直线y =与函数()f x 的图象的两个相邻交点的横坐标之差的绝对值为2π,则( ) A .()f x 在3,88ππ⎛⎫⎪⎝⎭上单调递减 B .()f x 在0,4π⎛⎫⎪⎝⎭上单调递减 C .()f x 在0,4π⎛⎫⎪⎝⎭上单调递增 D .()f x 在3,88ππ⎛⎫⎪⎝⎭上单调递增 6.(0分)[ID :12685]已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x =f +x -,若(1)2f =,则(1)(2)f +f (3)(2020)f f +++=( )A .50B .2C .0D .50-7.(0分)[ID :12631]设函数f (x )=cos (x +3π),则下列结论错误的是 A .f(x)的一个周期为−2π B .y=f(x)的图像关于直线x=83π对称 C .f(x+π)的一个零点为x=6πD .f(x)在(2π,π)单调递减 8.(0分)[ID :12667]若函数()sin cos f x x x ωω=-(0)>ω在,22ππ⎛⎫- ⎪⎝⎭上单调递增,则ω的取值不可能为( )A .14B .15C .12D .349.(0分)[ID :12660]函数()lg ||f x x x =的图象可能是( )A .B .C .D .10.(0分)[ID :12645]如图,点N 为正方形ABCD 的中心,ECD ∆为正三角形,平面ECD ⊥平面,ABCD M 是线段ED 的中点,则( )A .BM EN =,且直线,BM EN 是相交直线B .BM EN ≠,且直线,BM EN 是相交直线C .BM EN =,且直线,BM EN 是异面直线D .BM EN ≠,且直线,BM EN 是异面直线11.(0分)[ID :12639]在ABC ∆中,内角,,A B C 所对的边分别是,,a b c .已知5a =,7b =,8c =,则A C +=A .90︒B .120︒C .135︒D .150︒12.(0分)[ID :12719]如图,在ABC 中,90BAC ︒∠=,AD 是边BC 上的高,PA ⊥平面ABC ,则图中直角三角形的个数是( )A .5B .6C .8D .1013.(0分)[ID :12681]若,αβ均为锐角,25sin α=()3sin 5αβ+=,则cos β=A B .25C 或25D .25-14.(0分)[ID :12657]函数()(1)lg(1)35f x x x x =-+--的零点个数为( ) A .3B .2C .1D .015.(0分)[ID :12652]将直线2x -y +λ=0沿x 轴向左平移1个单位,所得直线与圆x 2+y 2+2x -4y =0相切,则实数λ的值为( ) A .-3或7 B .-2或8 C .0或10D .1或11二、填空题16.(0分)[ID :12827]在直角ABC ∆中,三条边恰好为三个连续的自然数,以三个顶点为圆心的扇形的半径为1,若在ABC ∆中随机地选取m 个点,其中有n 个点正好在扇形里面,则用随机模拟的方法得到的圆周率π的近似值为__________.(答案用m ,n 表示) 17.(0分)[ID :12822]已知两个正数,x y 满足4x y +=,则使不等式14m x y+≥恒成立的实数m 的范围是__________18.(0分)[ID :12819]设n S 是数列{}n a 的前n 项和,且11a =-,11n n n a S S ++=,则n S =__________.19.(0分)[ID :12803]已知函数())ln1f x x =+,()4f a =,则()f a -=________.20.(0分)[ID :12794]若21cos 34πα⎛⎫-= ⎪⎝⎭,则sin 26πα⎛⎫+= ⎪⎝⎭________. 21.(0分)[ID :12787]已知数列{}n a 为正项的递增等比数列,1582a a +=,2481a a ⋅=,记数列2n a ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,则使不等式12019113n T ->成立的最大正整数n 的值是_______.22.(0分)[ID :12755]已知点()M a b ,在直线3415x y +=_______.23.(0分)[ID :12768]设0x >,0y >,24x y +=,则(1)(21)x y xy++的最小值为__________.24.(0分)[ID :12752]已知复数z x yi =+,且2z -yx的最大值为__________.25.(0分)[ID :12807]抛物线214y x =-上的动点M 到两定点(0,1)(1,3)--、的距离之和的最小值为__________.三、解答题26.(0分)[ID :12918]已知函数f (x )是定义在R 上的偶函数,且当x ≥0时,f (x )=x 2﹣2x .(1)求f (0)及f (f (1))的值; (2)求函数f (x )的解析式;(3)若关于x 的方程f (x )﹣m =0有四个不同的实数解,求实数m 的取值范围, 27.(0分)[ID :12889]已知:a b c 、、是同一平面内的三个向量,其中()1,2a = (1)若25c =,且//c a ,求c 的坐标; (2)若52b =,且2a b +与2a b -垂直,求a 与b 的夹角θ. (3)若()1,1b =,且a 与a b λ+的夹角为锐角,求实数λ的取值范围. 28.(0分)[ID :12875]已知向量(3,2)a =-,(2,1)=b ,(3,1)c =-,,m t ∈R . (1)求||a tb +的最小值及相应的t 的值; (2)若a mb -与c 共线,求实数m .29.(0分)[ID :12847]在ABC 中,a , b ,c 分别是角A , B ,C 的对边,3cos 5B =,21AB BC ⋅=- . (1)求ABC 的面积; (2)若7a = ,求角C .30.(0分)[ID :12838]我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准x (吨)、一位居民的月用水量不超过x 的部分按平价收费,超出x 的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[)[)0,0.5,0.5,1,...,[)4,4.5分成9组,制成了如图所示的频率分布直方图.(1)求直方图中a 的值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由; (3)若该市政府希望使85%的居民每月的用水量不超过标准x (吨),估计x 的值,并说明理由.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.A2.C3.B4.D5.A6.C7.D8.D9.D10.B11.B12.C13.B14.B15.A二、填空题16.【解析】【分析】【详解】由题意得的三边分别为则由可得所以三角数三边分别为因为所以三个半径为的扇形面积之和为由几何体概型概率计算公式可知故答案为【方法点睛】本题題主要考查面积型的几何概型属于中档题解决17.【解析】【分析】由题意将代入进行恒等变形和拆项后再利用基本不等式求出它的最小值根据不等式恒成立求出m的范围【详解】由题意知两个正数xy满足则当时取等号;的最小值是不等式恒成立故答案为【点睛】本题考查18.【解析】原式为整理为:即即数列是以-1为首项-1为公差的等差的数列所以即【点睛】这类型题使用的公式是一般条件是若是消就需当时构造两式相减再变形求解;若是消就需在原式将变形为:再利用递推求解通项公式19.【解析】【分析】发现计算可得结果【详解】因为且则故答案为-2【点睛】本题主要考查函数的性质由函数解析式计算发现是关键属于中档题20.【解析】【分析】根据诱导公式将三角函数式化简可得再由诱导公式及余弦的二倍角公式化简即可得解【详解】因为化简可得即由诱导公式化简得而由余弦的二倍角公式可知故答案为:【点睛】本题考查了诱导公式在三角函数21.6【解析】【分析】设等比数列{an}的公比q由于是正项的递增等比数列可得q>1由a1+a5=82a2•a4=81=a1a5∴a1a5是一元二次方程x2﹣82x+81=0的两个实数根解得a1a5利用通22.3【解析】【分析】由题意可知表示点到点的距离再由点到直线距离公式即可得出结果【详解】可以理解为点到点的距离又∵点在直线上∴的最小值等于点到直线的距离且【点睛】本题主要考查点到直线的距离公式的应用属于23.【解析】【分析】把分子展开化为再利用基本不等式求最值【详解】由得得等号当且仅当即时成立故所求的最小值为【点睛】使用基本不等式求最值时一定要验证等号是否能够成立24.【解析】【分析】根据复数z的几何意义以及的几何意义由图象得出最大值【详解】复数且复数z的几何意义是复平面内以点为圆心为半径的圆的几何意义是圆上的点与坐标原点连线的斜率由图可知:即的最大值为故答案为:25.4【解析】【分析】【详解】由题意得交点设作与准线垂直垂足为作与准线垂直垂足为则三、解答题26.27.28.29. 30.2016-2017年度第*次考试试卷 参考解析【参考解析】**科目模拟测试一、选择题 1.A 解析:A 【解析】1353333,1a a a a a ++===,5153355()25522S a a a a =+=⨯==,选A. 2.C解析:C 【解析】设扇形的半径为r ,弧长为 l ,则121282l r S lr +===,, ∴解得28r l ==, 或44r l ==,41lrα==或, 故选C .3.B解析:B 【解析】分析:首先利用一元二次不等式的解法,求出220x x -->的解集,从而求得集合A ,之后根据集合补集中元素的特征,求得结果. 详解:解不等式220x x -->得12x x -或, 所以{}|12A x x x =<->或,所以可以求得{}|12R C A x x =-≤≤,故选B.点睛:该题考查的是有关一元二次不等式的解法以及集合的补集的求解问题,在解题的过程中,需要明确一元二次不等式的解集的形式以及补集中元素的特征,从而求得结果.4.D解析:D 【解析】试题分析:由于甲地总体均值为,中位数为,即中间两个数(第天)人数的平均数为,因此后面的人数可以大于,故甲地不符合.乙地中总体均值为,因此这天的感染人数总数为,又由于方差大于,故这天中不可能每天都是,可以有一天大于,故乙地不符合,丙地中中位数为,众数为,出现的最多,并且可以出现,故丙地不符合,故丁地符合.考点:众数、中位数、平均数、方差5.A解析:A 【解析】 【分析】首先整理函数的解析式为()24f x x πωϕ⎛⎫=++ ⎪⎝⎭,由函数为奇函数可得4πϕ=-,由最小正周期公式可得4ω=,结合三角函数的性质考查函数在给定区间的单调性即可. 【详解】由函数的解析式可得:()24f x x πωϕ⎛⎫=++ ⎪⎝⎭,函数为奇函数,则当0x =时:()4k k Z πϕπ+=∈.令0k =可得4πϕ=-.因为直线2y =与函数()f x 的图像的两个相邻交点的横坐标之差的绝对值为2π结合最小正周期公式可得:22ππω=,解得:4ω=.故函数的解析式为:()24f x x =. 当3,88x ππ⎛⎫∈⎪⎝⎭时,34,22x ππ⎛⎫∈ ⎪⎝⎭,函数在所给区间内单调递减; 当0,4x π⎛⎫∈ ⎪⎝⎭时,()40,x π∈,函数在所给区间内不具有单调性; 据此可知,只有选项A 的说法正确. 故选A . 【点睛】本题主要考查辅助角公式的应用,考查了三角函数的周期性、单调性,三角函数解析式的求解等知识,意在考查学生的转化能力和计算求解能力.6.C解析:C 【解析】 【分析】利用()f x 是定义域为(,)-∞+∞的奇函数可得:()()f x f x -=-且()00f =,结合(1)(1)f x =f +x -可得:函数()f x 的周期为4;再利用赋值法可求得:()20f =,()32f =-,()40f =,问题得解.【详解】因为()f x 是定义域为(,)-∞+∞的奇函数, 所以()()f x f x -=-且()00f = 又(1)(1)f x =f +x -所以()()()()()21111f x f x f x f x f x ⎡⎤⎡⎤+=++=-+=-=-⎣⎦⎣⎦ 所以()()()()()4222f x f x f x f x f x ⎡⎤⎡⎤+=++=-+=--=⎣⎦⎣⎦ 所以函数()f x 的周期为4,在(1)(1)f x =f +x -中,令1x =,可得:()()200f f ==在(1)(1)f x =f +x -中,令2x =,可得:()()()3112f f f =-=-=- 在(1)(1)f x =f +x -中,令3x =,可得:()()()4220f f f =-=-= 所以(1)(2)f +f ()()()()2020(3)(2020)12344f f f f f f ⎡⎤+++=⨯+++⎣⎦ 50500=⨯=故选C 【点睛】本题主要考查了奇函数的性质及函数的周期性应用,还考查了赋值法及计算能力、分析能力,属于中档题.7.D解析:D 【解析】f (x )的最小正周期为2π,易知A 正确; f 8π3⎛⎫⎪⎝⎭=cos 8ππ33⎛⎫+ ⎪⎝⎭=cos3π=-1,为f (x )的最小值,故B 正确; ∵f (x +π)=cos ππ3x ⎛⎫++ ⎪⎝⎭=-cos π3x ⎛⎫+ ⎪⎝⎭,∴f ππ6⎛⎫+ ⎪⎝⎭=-cos ππ63⎛⎫+ ⎪⎝⎭=-cos 2π=0,故C 正确; 由于f 2π3⎛⎫⎪⎝⎭=cos 2ππ33⎛⎫+ ⎪⎝⎭=cosπ=-1,为f (x )的最小值,故f (x )在,2ππ⎛⎫ ⎪⎝⎭上不单调,故D 错误. 故选D.8.D解析:D 【解析】∵()sin cos (0)4f x x x x πωωωω⎛⎫=-=-> ⎪⎝⎭∴令22,242k x k k Z ππππωπ-+≤-≤+∈,即232,44k k x k Z ππππωωωω-+≤≤+∈ ∵()sin cos (0)f x x x ωωω=->在,22ππ⎛⎫-⎪⎝⎭上单调递增 ∴42ππω-≤-且342ππω≥ ∴102ω<≤故选D. 9.D 解析:D 【解析】 【分析】分析函数()y f x =的定义域、奇偶性及其在()0,1上的函数值符号,可得出结论. 【详解】函数()lg f x x x =的定义域为{}0x x ≠,定义域关于原点对称,()()lg lg f x x x x x f x -=--=-=-,函数()y f x =为奇函数,排除A 、C 选项;当01x <<时,lg 0x <,此时()lg 0f x x x =<,排除B 选项. 故选:D. 【点睛】本题考查由函数的解析式选择函数图象,一般分析函数的定义域、奇偶性、单调性、零点以及函数值符号,考查推理能力,属于中等题.10.B解析:B 【解析】 【分析】利用垂直关系,再结合勾股定理进而解决问题. 【详解】如图所示, 作EO CD ⊥于O ,连接ON ,过M 作MF OD ⊥于F . 连BF ,平面CDE ⊥平面ABCD .,EO CD EO ⊥⊂平面CDE ,EO ∴⊥平面ABCD ,MF ⊥平面ABCD ,MFB ∴∆与EON ∆均为直角三角形.设正方形边长为2,易知3,12EO ON EN ===, 35,,722MF BF BM ==∴=.BM EN ∴≠,故选B . 【点睛】本题考查空间想象能力和计算能力, 解答本题的关键是构造直角三角性.11.B解析:B【解析】 【分析】 由已知三边,利用余弦定理可得1cos 2B =,结合b c <,B 为锐角,可得B ,利用三角形内角和定理即可求A C +的值.【详解】在ABC ∆中,5a =,7b =,8c =,∴由余弦定理可得:2222564491cos 22582a cb B ac +-+-===⨯⨯, b c <,故B 为锐角,可得60B =︒,18060120A C ∴+=︒-︒=︒,故选B .【点睛】本题主要考查利用余弦定理解三角形以及三角形内角和定理的应用.12.C解析:C【解析】【分析】根据线面垂直得出一些相交直线垂直,以及找出题中一些已知的相交直线垂直,由这些条件找出图中的直角三角形.【详解】①PA ⊥平面ABC ,,,,PA AB PA AD PA AC PAB ∴⊥⊥⊥∴∆,,PAD PAC ∆∆都是直角三角形; ②90,BAC ABC ︒∠=∴是直角三角形; ③,,AD BC ABD ACD ⊥∴∆∆是直角三角形;④由,PA BC AD BC ⊥⊥得BC ⊥平面PAD ,可知:,,BC PD PBD PCD ⊥∴∆∆也是直角三角形.综上可知:直角三角形的个数是8个,故选C .【点睛】本题考查直角三角形个数的确定,考查相交直线垂直,解题时可以充分利用直线与平面垂直的性质得到,考查推理能力,属于中等题.13.B解析:B【解析】【分析】利用角的等量代换,β=α+β-α,只要求出α的余弦,α+β的余弦,利用复合角余弦公式展开求之.【详解】∵α为锐角,52sin 52α=s ,∴α>45°且55cos α= , ∵()3sin 5αβ+=,且132252< ,2παβπ∴+<<, ∴45cosαβ+=-() , 则cosβ=cos[(α+β)-α]=cos(α+β)cosα+sin(α+β)sinα453252555=-+= 故选B.【点睛】本题考查两角和与差的正弦、余弦函数公式,以及同角三角函数间的基本关系,熟练掌握公式是解本题的关键.14.B解析:B【解析】【分析】可采用构造函数形式,令()()()35lg 1,1x h x x g x x +=+=-,采用数形结合法即可求解 【详解】由题可知,1x >-,当1x =时,()80f x =-≠,令358()(1)lg(1)350lg(1)311x f x x x x x x x +=-+--=⇒+==+--, 令()()()35lg 1,1x h x x g x x +=+=-,画出函数图像,如图:则两函数图像有两交点,故函数()(1)lg(1)35f x x x x =-+--的零点个数为2个 故选:B【点睛】本题考查函数零点个数的求解,数形结合思想,属于中档题15.A解析:A【解析】试题分析:根据直线平移的规律,由直线2x ﹣y+λ=0沿x 轴向左平移1个单位得到平移后直线的方程,然后因为此直线与圆相切得到圆心到直线的距离等于半径,利用点到直线的距离公式列出关于λ的方程,求出方程的解即可得到λ的值.解:把圆的方程化为标准式方程得(x+1)2+(y ﹣2)2=5,圆心坐标为(﹣1,2),半径为,直线2x ﹣y+λ=0沿x 轴向左平移1个单位后所得的直线方程为2(x+1)﹣y+λ=0, 因为该直线与圆相切,则圆心(﹣1,2)到直线的距离d==r=,化简得|λ﹣2|=5,即λ﹣2=5或λ﹣2=﹣5,解得λ=﹣3或7故选A考点:直线与圆的位置关系.二、填空题16.【解析】【分析】【详解】由题意得的三边分别为则由可得所以三角数三边分别为因为所以三个半径为的扇形面积之和为由几何体概型概率计算公式可知故答案为【方法点睛】本题題主要考查面积型的几何概型属于中档题解决 解析:12n m【解析】【分析】【详解】由题意得ABC ∆的三边分别为,1,2x x x ++ 则由()()22221x x x +=++ 可得3n = ,所以,三角数三边分别为3,4,5,因为A B C π∠+∠+∠= ,所以三个半径为1 的扇形面积之和为211=22ππ⨯⨯ ,由几何体概型概率计算公式可知1122,1342n n m m ππ=∴=⨯⨯,故答案为12n m. 【方法点睛】本题題主要考查“面积型”的几何概型,属于中档题. 解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与面积有关的几何概型问题关鍵是计算问题的总面积以及事件的面积;几何概型问题还有以下几点容易造成失分,在备考时要高度关注:(1)不能正确判断事件是古典概型还是几何概型导致错误;(2)基本裏件对应的区域测度把握不准导致错误 ;(3)利用几何概型的概率公式时 , 忽视验证事件是否等可能性导致错误.17.【解析】【分析】由题意将代入进行恒等变形和拆项后再利用基本不等式求出它的最小值根据不等式恒成立求出m 的范围【详解】由题意知两个正数xy 满足则当时取等号;的最小值是不等式恒成立故答案为【点睛】本题考查 解析:94m ≤【解析】【分析】由题意将4x y +=代入14x y+进行恒等变形和拆项后,再利用基本不等式求出它的最小值,根据不等式恒成立求出m 的范围.【详解】由题意知两个正数x ,y 满足4x y +=, 则14559144444x y x y y x x y x y x y +++=+=++≥+=,当4y x x y=时取等号;14x y ∴+的最小值是94, 不等式14m x y +≥恒成立,94m ∴≤. 故答案为94m ≤. 【点睛】本题考查了利用基本不等式求最值和恒成立问题,利用条件进行整体代换和合理拆项再用基本不等式求最值,注意一正二定三相等的验证.18.【解析】原式为整理为:即即数列是以-1为首项-1为公差的等差的数列所以即【点睛】这类型题使用的公式是一般条件是若是消就需当时构造两式相减再变形求解;若是消就需在原式将变形为:再利用递推求解通项公式 解析:1n- 【解析】原式为1111n n n n n n n a S S S S S S ++++=⇔-=,整理为:1111n n S S +-= ,即1111n n S S +-=-,即数列1n S ⎧⎫⎨⎬⎩⎭是以-1为首项,-1为公差的等差的数列,所以()()1111n n n S =-+--=- ,即1n S n=- . 【点睛】这类型题使用的公式是11{n n n S a S S -=- 12n n =≥ ,一般条件是()n n S f a = ,若是消n S ,就需当2n ≥ 时构造()11n n S f a --= ,两式相减1n n n S S a --= ,再变形求解;若是消n a ,就需在原式将n a 变形为:1n n n a S S -=- ,再利用递推求解通项公式. 19.【解析】【分析】发现计算可得结果【详解】因为且则故答案为-2【点睛】本题主要考查函数的性质由函数解析式计算发现是关键属于中档题 解析:2-【解析】【分析】发现()()f x f x 2+-=,计算可得结果.【详解】因为()()))()22f x f x ln x 1ln x 1ln 122x x +-=+++=+-+=, ()()f a f a 2∴+-=,且()f a 4=,则()f a 2-=-.故答案为-2【点睛】本题主要考查函数的性质,由函数解析式,计算发现()()f x f x 2+-=是关键,属于中档题.20.【解析】【分析】根据诱导公式将三角函数式化简可得再由诱导公式及余弦的二倍角公式化简即可得解【详解】因为化简可得即由诱导公式化简得而由余弦的二倍角公式可知故答案为:【点睛】本题考查了诱导公式在三角函数 解析:78【解析】【分析】根据诱导公式,将三角函数式21cos 34πα⎛⎫-= ⎪⎝⎭化简可得1sin 64πα⎛⎫-= ⎪⎝⎭,再由诱导公式及余弦的二倍角公式,化简sin 26πα⎛⎫+⎪⎝⎭即可得解. 【详解】 因为21cos 34πα⎛⎫-= ⎪⎝⎭ 化简可得1cos 624ππα⎛⎫--= ⎪⎝⎭,即1cos 264ππα⎡⎤⎛⎫--= ⎪⎢⎥⎝⎭⎣⎦ 由诱导公式化简得1sin 64πα⎛⎫-= ⎪⎝⎭ 而sin 26πα⎛⎫+ ⎪⎝⎭ cos 226ππα⎛⎫=-- ⎪⎝⎭ cos 2cos 233ππαα⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭ cos 26πα⎛⎫=- ⎪⎝⎭ 由余弦的二倍角公式可知cos 26πα⎛⎫- ⎪⎝⎭ 212sin 6πα⎛⎫=-- ⎪⎝⎭ 2171248⎛⎫=-⨯= ⎪⎝⎭故答案为:78【点睛】 本题考查了诱导公式在三角函数化简中的应用,余弦二倍角公式的简单应用,属于中档题. 21.6【解析】【分析】设等比数列{an}的公比q 由于是正项的递增等比数列可得q >1由a1+a5=82a2•a4=81=a1a5∴a1a5是一元二次方程x2﹣82x+81=0的两个实数根解得a1a5利用通解析:6【解析】【分析】设等比数列{a n }的公比q ,由于是正项的递增等比数列,可得q >1.由a 1+a 5=82,a 2•a 4=81=a 1a 5,∴a 1,a 5,是一元二次方程x 2﹣82x+81=0的两个实数根,解得a 1,a 5,利用通项公式可得q ,a n .利用等比数列的求和公式可得数列{2na }的前n 项和为T n .代入不等式2019|13T n ﹣1|>1,化简即可得出. 【详解】 数列{}n a 为正项的递增等比数列,1582a a +=,a 2•a 4=81=a 1a 5,即15158281a a a a +=⎧⎨⋅=⎩解得15181a a =⎧⎨=⎩,则公比3q =,∴13n n a -=, 则2122221333n n T -=++++ 11132311313n n -⎛⎫=⨯=- ⎪⎝⎭-, ∴12019113n T ->,即1201913n ⨯>,得32019n <,此时正整数n 的最大值为6. 故答案为6.【点睛】本题考查了等比数列的通项公式与求和公式、一元二次方程的解法、不等式的解法,考查了推理能力与计算能力,属于中档题.22.3【解析】【分析】由题意可知表示点到点的距离再由点到直线距离公式即可得出结果【详解】可以理解为点到点的距离又∵点在直线上∴的最小值等于点到直线的距离且【点睛】本题主要考查点到直线的距离公式的应用属于 解析:3【解析】【分析】()0,0到点(),a b 的距离,再由点到直线距离公式即可得出结果.【详解】 22a b +可以理解为点()0,0到点(),a b 的距离,又∵点(),M a b 在直线:3425l x y +=上,∴22a b +的最小值等于点()0,0到直线34150x y +-=的距离,且22304015334d ⨯+⨯-==+.【点睛】本题主要考查点到直线的距离公式的应用,属于基础题型.23.【解析】【分析】把分子展开化为再利用基本不等式求最值【详解】由得得等号当且仅当即时成立故所求的最小值为【点睛】使用基本不等式求最值时一定要验证等号是否能够成立解析:92. 【解析】【分析】 把分子展开化为(1)(21)2212552x y xy x y xy xy xy xy xy++++++===+,再利用基本不等式求最值.【详解】由24x y +=,得2422x y xy +=≥,得2xy ≤ (1)(21)221255592222x y xy x y xy xy xy xy xy ++++++===+≥+=, 等号当且仅当2x y =,即2,1x y ==时成立.故所求的最小值为92. 【点睛】使用基本不等式求最值时一定要验证等号是否能够成立. 24.【解析】【分析】根据复数z 的几何意义以及的几何意义由图象得出最大值【详解】复数且复数z 的几何意义是复平面内以点为圆心为半径的圆的几何意义是圆上的点与坐标原点连线的斜率由图可知:即的最大值为故答案为: 解析:【解析】【分析】根据复数z 的几何意义以及y x的几何意义,由图象得出最大值. 【详解】复数z x yi =+且23z -=,复数z 的几何意义是复平面内以点(2,0)为圆心,3为半径的圆22(2)3x y -+=.y x的几何意义是圆上的点与坐标原点连线的斜率 由图可知:max 331y x ⎛⎫==⎪⎝⎭ 即y x3 3【点睛】本题主要考查了复数的几何意义的应用,属于中档题.25.4【解析】【分析】【详解】由题意得交点设作与准线垂直垂足为作与准线垂直垂足为则解析:4【解析】【分析】【详解】由题意得交点(0,1)F - ,设(1,3)A - ,作AN 与准线垂直,垂足为N ,作MH 与准线垂直,垂足为H ,则314MA MF MA MH AN +=+≥=+=三、解答题26.(1)f (0)=0,f (1)=﹣1(2)()222,02,0x x x f x x x x ⎧-≥=⎨+<⎩(3)(﹣1,0) 【解析】【分析】(1)根据题意,由函数的解析式,将x =0代入函数解析式即可得f (0)的值, 同理可得f (1)的值,利用函数的奇偶性分析可得f (f (1))的值;(2)设x <0,则﹣x >0,由函数的解析式分析f (﹣x )的解析式,进而由函数的奇偶性分析可得答案;(3)若方程f (x )﹣m =0有四个不同的实数解,则函数y =f (x )与直线y =m 有4个交点,作出函数f (x )的图象,由数形结合法分析即可得答案.【详解】(1)根据题意,当x ≥0时,f (x )=x 2﹣2x ;则f (0)=0,f (1)=1﹣2=﹣1,又由函数f (x )为偶函数,则f (1)=f (﹣1)=﹣1,则f (f (1))=f (﹣1)=﹣1;(2)设x <0,则﹣x >0,则有f (﹣x )=(﹣x )2﹣2(﹣x )=x 2+2x ,又由函数f (x )为偶函数,则f (x )=f (﹣x )=x 2+2x ,则当x <0时,f (x )=x 2+2x ,∴()222,02,0x x x f x x x x ⎧-≥=⎨+<⎩(3)若方程f (x )﹣m =0有四个不同的实数解,则函数y =f (x )与直线y =m 有4个交点,而y =f (x )的图象如图:分析可得﹣1<m <0;故m 的取值范围是(﹣1,0).【点睛】本题考查偶函数的性质以及函数的图象,涉及方程的根与函数图象的关系,注意利用数形结合法分析与应用,是中档题.27.(1)(2,4)或(-2,-4) (2)π (3)()5,00,3⎛⎫-⋃+∞ ⎪⎝⎭【解析】【分析】(1)设(,)c x y =,根据条件列方程组解出即可;(2)令(2)(2)0a b a b +⋅-=求出a b ⋅,代入夹角公式计算;(3)利用()0a a b λ+>⋅,且a 与a λb +不同向共线,列不等式求出实数λ的取值范围.【详解】解:设(,)c x y =, ∵25c =,且//c a ,∴222020y x x y -=⎧⎨+=⎩,解得24x y =⎧⎨=⎩或24x y =-⎧⎨=-⎩, ∴(2,4)c =或(2,4)c =--;(2)∵2a b +与2a b -垂直,∴(2)(2)0a b a b +⋅-=,即222320a a b b +⋅-=,∴52a b ⋅=-, ∴52cos 1||||5a b a b θ-⋅===-⋅,∴a 与b 的夹角为π; (3)a 与a λb +的夹角为锐角则()0a a b λ+>⋅,且a 与a λb +不同向共线, ()25(12)0a a a a b b λλλ+==+>∴⋅++⋅, 解得:53λ>-, 若存在t ,使()a b a t λ=+,0t > ()()1,21,1(1,2)a b λλλλ+=+=++则()1,2(1,2)t λλ=++,122t t t t λλ+=⎧∴⎨+=⎩,解得:10t λ=⎧⎨=⎩,所以53λ>-且0λ≠, 实数λ的取值范围是()5,00,3⎛⎫-⋃+∞ ⎪⎝⎭.【点睛】本题考查了平面向量的数量积运算,利用数量积研究夹角,注意夹角为锐角,数量积大于零,但不能同向共线,夹角为钝角,数量积小于零,但不能反向共线,本题是中档题. 28.(1)45t =2)35. 【解析】【分析】(1)利用向量的模长公式计算出||a tb +的表达式然后求最值.(2)先求出a mb -的坐标,利用向量平行的公式得到关于m 的方程,可解得答案.【详解】(1)∵(23,2)a tb t t +=-+,∴||(2a tb t +=-==当45t =时,||a tb +. (2)(32,2)a mb m m -=---.∵a mb -与c 共线,∴32630m m +-+=,则35m =. 【点睛】本题考查向量的模长的计算以及其最值和根据向量平行求参数的值,属于基础题. 29.(1)14;(2) 45C =︒. 【解析】 试题分析:(1)先求出ac 的值,再由同角三角函数基本关系式求出sinB ,从而求出三角形的面积即可;(2)根据余弦定理即正弦定理计算即可.试题解析:(1)∵21AB BC ⋅=- ,21BA BC ⋅= ,cos arccos 21BA BC BA BC B B ⋅=⋅⋅==∴35ac = ,∵3cos 5B = ,∴4sin 5B = ,∴114sin 3514225ABC S ac B ==⨯⨯= (2)35ac = ,7a = ,∴5c =由余弦定理得,2222cos 32b a c ac B =+-=∴b =,由正弦定理:sin sin c b C B = ,∴4sin sin 5c C B b === ∵c b < 且B 为锐角,∴C 一定是锐角,∴45C =︒30.(1)0.3;(2)3.6万;(3)2.9.【解析】【分析】【详解】试题分析:本题主要考查频率分布直方图、频率、频数的计算等基础知识,考查学生的分析问题、解决问题的能力. 第(1)问,由高×组距=频率,计算每组的频率,根据所有频率之和为1,计算出a 的值;第(2)问,利用高×组距=频率,先计算出每人月均用水量不低于3吨的频率,再利用频率×样本容量=频数,计算所求人数;第(3)问,将前6组的频率之和与前5组的频率之和进行比较,得出2.5≤x<3,再估计x 的值.试题解析:(1)由频率分布直方图知,月均用水量在[0,0.5)中的频率为0.08×0.5=0.04, 同理,在[0.5,1),[1.5,2),[2,2.5),[3,3.5),[3.5,4),[4,4.5)中的频率分别为0.08,0.20,0.26,0.06,0.04,0.02.由0.04+0.08+0.5×a+0.20+0.26+0.5×a+0.06+0.04+0.02=1, 解得a=0.30.(2)由(1),100位居民每人月均用水量不低于3吨的频率为0.06+0.04+0.02=0.12. 由以上样本的频率分布,可以估计全市30万居民中月均用水量不低于3吨的人数为 300 000×0.12="36" 000.(3)因为前6组的频率之和为0.04+0.08+0.15+0.20+0.26+0.15=0.88>0.85,而前5组的频率之和为0.04+0.08+0.15+0.20+0.26=0.73<0.85,所以2.5≤x<3.由0.3×(x –2.5)=0.85–0.73, 解得x=2.9.所以,估计月用水量标准为2.9吨时,85%的居民每月的用水量不超过标准.【考点】频率分布直方图【名师点睛】本题主要考查频率分布直方图、频率、频数的计算公式等基础知识,考查学生的分析问题、解决问题的能力.在频率分布直方图中,第n 个小矩形的面积就是相应组的频率,所有小矩形的面积之和为1,这是解题的关键,也是识图的基础.。
2017-2018年青海省西宁市高一(下)期末数学试卷(解析版)
![2017-2018年青海省西宁市高一(下)期末数学试卷(解析版)](https://img.taocdn.com/s3/m/74d38e32a76e58fafab00352.png)
2017-2018学年青海省西宁市高一(下)期末数学试卷一、选择题:共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)设a,b,c∈R,且a>b,则下列选项中一定成立的是()A.ac>bc B.C.a2>b2D.a3>b32.(5分)如图为一串白黑相间排列的珠子,按这种规律往下排起来,那么第36颗珠子的颜色是()A.白色B.黑色C.白色可能性大D.黑色可能性大3.(5分)奥林匹克会旗中央有5个互相套连的圆环,颜色自左至右,上方依次为蓝、黑、红,下方依次为黄、绿,象征着五大洲.在手工课上,老师将这5个环分发给甲、乙、丙、丁、戊五位同学制作,每人分得1个,则事件“甲分得红色”与“乙分得红色”是()A.对立事件B.不可能事件C.互斥但不对立事件D.不是互斥事件4.(5分)在△ABC中,∠A=60°,,,则△ABC解的情况()A.无解B.有唯一解C.有两解D.不能确定5.(5分)一组数据的茎叶图如图所示,则数据落在区间[22,30]内的概率为()A.0.2B.0.4C.0.5D.0.66.(5分)设M=(a+1)(a﹣3),N=2a(a﹣2),则()A.M>A B.M≥N C.M<N D.M≤N7.(5分)若x,2x+2,3x+3是某个等比数列的连续三项,则x=()A.﹣4B.﹣1C.1或4D.﹣1或﹣4 8.(5分)某班有49位同学玩“数字接龙”游戏,具体规则按如图所示的程序框图执行(其中a为座位号),并以输出的值作为下一个输入的值,若第一次输入的值为8,则第三次输出的值为()A.8B.15C.29D.369.(5分)用系统抽样法从160名学生中抽取容量为20的样本,将160名学生从1~160编号.按编号顺序平均分成20组(1~8号,9~16号,153~160号),若第15组中抽出的号码为118,则第一组中按此抽签方法确定的号码是()A.8B.6C.4D.210.(5分)具有线性相关关系得变量x,y,满足一组数据如表所示,若y与x的回归直线方程为=3x﹣,则m的值()A.4B.C.5D.611.(5分)若不等式组表示的平面区域是一个三角形,则a的取值范围是()A.a<5B.a≥7C.5≤a<7D.a<5或a≥712.(5分)公比不为1的等比数列{a n}的前n项和为S n,且﹣2a1,﹣成等差数列,若a1=1,则S4=()A.﹣5B.0C.5D.7二、填空题(本大题共4小题,每小题5分,满分20分,请将答案填写在题中的横线上.)13.(5分)二次函数y=ax2+bx+c(x∈R)的部分对应值如表,则不等式ax2+bx+c<0的解集是.14.(5分)如图是一个边长为4的正方形二维码,为了测算图中黑色部分的面积,在正方形区域内随机投掷400个点,其中落入黑色部分的有225个点,据此可估计黑色部分的面积为.15.(5分)若数列{a n}的前n项和为S n=2n2,则a3+a4的值为.16.(5分)已知x>2,求f(x)=2x+的最小值.三、解答题(共6小题,满分70分,解答写出文字说明、证明过程或演算过程.)17.(10分)渔政船在东海某海域巡航,已知该船正以15海里/时的速度向正北方向航行,该船在A点处时发现在北偏东30°方向的海面上有一个小岛,继续航行20分钟到达B 点,此时发现该小岛在北偏东60°方向上,若该船向正北方向继续航行,船与小岛的最小距离为多少海里?18.(12分)在“六一”联欢会上设有一个抽奖游戏.抽奖箱中共有12张纸条,分一等奖、二等奖、三等奖、无奖四种.从中任取一张,不中奖的概率为,中二等奖或三等奖的概率.(Ⅰ)求任取一张,中一等奖的概率;(Ⅱ)若中一等奖或二等奖的概率是,求任取一张,中三等奖的概率.19.(12分)已知等差数列{a n}的前n项和为S n,且a3=7,a5+a7=26.(Ⅰ)求a n及S n;(Ⅱ)令b n=(n∈N+),求证:数列{b n}为等差数列.20.(12分)某中学从高三男生中随机抽取n名学生的身高,将数据整理,得到的频率分布表如下所示:(Ⅰ)求出频率分布表中①和②位置上相应的数据,并完成下列频率分布直方图;(Ⅱ)为了能对学生的体能做进一步了解,该校决定在第3,4,5组中用分层抽样抽取6名学生进行不同项目的体能测试,若在这6名学生中随机抽取2名学生进行引体向上测试,则第4组中至少有一名学生被抽中的概率.21.(12分)在锐角△ABC中,角A,B,C的对边分别为a,b,c,且a=2c sin A.(Ⅰ)确定角C的大小;(Ⅱ)若c=,且△ABC的面积为,求a+b的值.22.(12分)设函数f(x)=x2﹣3x.(Ⅰ)若不等式f(x)≥m对任意x∈[0,1]恒成立,求实数m的取值范围;(Ⅱ)在(I)的条件下,当m取最大值时,设x>0,y>0且2x+4y+m=0,求+的最小值.2017-2018学年青海省西宁市高一(下)期末数学试卷参考答案与试题解析一、选择题:共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)设a,b,c∈R,且a>b,则下列选项中一定成立的是()A.ac>bc B.C.a2>b2D.a3>b3【解答】解:当c=0时,显然ac=bc,故A错误;当a>0>b时,,故B错误;当0>a>b时,a2<b2,故C错误;∵y=x3是增函数,且a>b,∴a3>b3,故D正确.故选:D.2.(5分)如图为一串白黑相间排列的珠子,按这种规律往下排起来,那么第36颗珠子的颜色是()A.白色B.黑色C.白色可能性大D.黑色可能性大【解答】解:由题图知三白二黑周而复始相继排列,根据36÷5=7余1,可得第36颗应与第1颗珠子的颜色相同,即白色.故选:A.3.(5分)奥林匹克会旗中央有5个互相套连的圆环,颜色自左至右,上方依次为蓝、黑、红,下方依次为黄、绿,象征着五大洲.在手工课上,老师将这5个环分发给甲、乙、丙、丁、戊五位同学制作,每人分得1个,则事件“甲分得红色”与“乙分得红色”是()A.对立事件B.不可能事件C.互斥但不对立事件D.不是互斥事件【解答】解:甲、乙不能同时得到红色,因而这两个事件是互斥事件;又甲、乙可能都得不到红色,即“甲或乙分得红色”的事件不是必然事件,故这两个事件不是对立事件.∴事件“甲分得红色”与“乙分得红色”是互斥但不对立事件.故选:C.4.(5分)在△ABC中,∠A=60°,,,则△ABC解的情况()A.无解B.有唯一解C.有两解D.不能确定【解答】解:∵△ABC中,∠A=60°,a=,b=,∴根据正弦定理,得sin B===,∵∠A=60°,得∠B+∠C=120°∴由sin B=,得∠B=30°,从而得到∠C=90°因此,满足条件的△ABC有且只有一个.故选:B.5.(5分)一组数据的茎叶图如图所示,则数据落在区间[22,30]内的概率为()A.0.2B.0.4C.0.5D.0.6【解答】解:茎叶图中的数据为18,19,21,22,22,27,29,30,30,33;则落在区间[22,30]内的数据为22,22,27,29,30,30共6个,∴所求的概率值为P==0.6.故选:D.6.(5分)设M=(a+1)(a﹣3),N=2a(a﹣2),则()A.M>A B.M≥N C.M<N D.M≤N【解答】解:N﹣M=2a(a﹣2)﹣(a+1)(a﹣3)=2a2﹣4a﹣(a2﹣2a﹣2)=a2﹣2a+2=(a﹣1)2+1>0,即M<N,故选:C.7.(5分)若x,2x+2,3x+3是某个等比数列的连续三项,则x=()A.﹣4B.﹣1C.1或4D.﹣1或﹣4【解答】解:由题意可得(2x+2)2=x(3x+3),化简可得(x+1)(x+4)=0解之可得x=﹣1,或x=﹣4当x=﹣1时,2x+2=0不合题意,应舍去,故选:A.8.(5分)某班有49位同学玩“数字接龙”游戏,具体规则按如图所示的程序框图执行(其中a为座位号),并以输出的值作为下一个输入的值,若第一次输入的值为8,则第三次输出的值为()A.8B.15C.29D.36【解答】解:输入a=8后,满足进条件,则输出a=15,输入a=15后,满足条件,则输出a=29,输入a=29后,不满足条件,则输出a=8,故第三次输出的值为8,故选:A.9.(5分)用系统抽样法从160名学生中抽取容量为20的样本,将160名学生从1~160编号.按编号顺序平均分成20组(1~8号,9~16号,153~160号),若第15组中抽出的号码为118,则第一组中按此抽签方法确定的号码是()A.8B.6C.4D.2【解答】解:由题意,可知系统抽样的组数为20,间隔为8,设第一组抽出的号码为x,则由系统抽样的法则,可知第n组抽出个数的号码应为x+8(n﹣1),所以第15组应抽出的号码为x+8(15﹣1)=118,解得x=6.故选:B.10.(5分)具有线性相关关系得变量x,y,满足一组数据如表所示,若y与x的回归直线方程为=3x﹣,则m的值()A.4B.C.5D.6【解答】解:由表中数据得:=,=,由于由最小二乘法求得回归方程=3x﹣,将=,=代入回归直线方程,得m=4.故选:A.11.(5分)若不等式组表示的平面区域是一个三角形,则a的取值范围是()A.a<5B.a≥7C.5≤a<7D.a<5或a≥7【解答】解:由图可知5≤a<7,故选:C.12.(5分)公比不为1的等比数列{a n}的前n项和为S n,且﹣2a1,﹣成等差数列,若a1=1,则S4=()A.﹣5B.0C.5D.7【解答】解:设公比q不为1的等比数列{a n},﹣2a1,﹣成等差数列,可得﹣a2=﹣2a1+a3,若a1=1,可得﹣q=﹣2+q2,解得q=﹣2(1舍去),则S4===﹣5.故选:A.二、填空题(本大题共4小题,每小题5分,满分20分,请将答案填写在题中的横线上.)13.(5分)二次函数y=ax2+bx+c(x∈R)的部分对应值如表,则不等式ax2+bx+c<0的解集是(﹣2,3).【解答】解:由二次函数y=ax2+bx+c(x∈R)的部分对应值知,x=﹣2时,y=0;x=3时,y=0;且函数y的图象开口向上,∴不等式ax2+bx+c<0的解集是(﹣2,3).故答案为:(﹣2,3).14.(5分)如图是一个边长为4的正方形二维码,为了测算图中黑色部分的面积,在正方形区域内随机投掷400个点,其中落入黑色部分的有225个点,据此可估计黑色部分的面积为9.【解答】解:设黑色部分的面积为S,∵如图是一个边长为4的正方形二维码,为了测算图中黑色部分的面积,在正方形区域内随机投掷400个点,其中落入黑色部分的有225个点,∴=,解得S=9.据此可估计黑色部分的面积为9.故答案为:9.15.(5分)若数列{a n}的前n项和为S n=2n2,则a3+a4的值为24.【解答】解:由题意数列{a n}的前n项和为S n=2n2,∴S1=a1=2;∴a n=S n﹣S n﹣1=2n2﹣2(n﹣1)2=4n﹣2,(n≥1,n∈N*)则a3+a4=10+14=24.故答案为:24.16.(5分)已知x>2,求f(x)=2x+的最小值4+2.【解答】解:由x>2,则x﹣2>0那么:f(x)=2x+=2(x﹣2)+=2.(当且仅当x=时,等号成立),故答案为:.三、解答题(共6小题,满分70分,解答写出文字说明、证明过程或演算过程.)17.(10分)渔政船在东海某海域巡航,已知该船正以15海里/时的速度向正北方向航行,该船在A点处时发现在北偏东30°方向的海面上有一个小岛,继续航行20分钟到达B 点,此时发现该小岛在北偏东60°方向上,若该船向正北方向继续航行,船与小岛的最小距离为多少海里?【解答】解:如图所示,过点C作CD⊥AB,垂足为D.由题意可得:AB=15×=5.∵∠A=30°,∠DBC=60°.∴∠ACB=180°﹣120°﹣30°=30°,∴BC=AB=5.∴在Rt△BCD中,DC=BC•sin60°=×=7.5海里.该船向正北方向继续航行,船与小岛的最小距离为7.5海里.18.(12分)在“六一”联欢会上设有一个抽奖游戏.抽奖箱中共有12张纸条,分一等奖、二等奖、三等奖、无奖四种.从中任取一张,不中奖的概率为,中二等奖或三等奖的概率.(Ⅰ)求任取一张,中一等奖的概率;(Ⅱ)若中一等奖或二等奖的概率是,求任取一张,中三等奖的概率.【解答】解:(Ⅰ)设任取一张,抽得一等奖、二等奖、三等奖、不中奖的事件分别为A,B,C,D,它们是互斥事件,由题意得:P(D)=,P(B+C)=P(B)+P(C)=,由对立事件的概率公式得:P(A)=1﹣P(B+C+D)=1﹣P(B+C)﹣P(D)=1﹣=,∴任取一张,中一等奖的概率为.(Ⅱ)∵P(A+B)=,又P(A+B)=P(A)+P(B),∴P(B)==,又P(B+C)=P(B)+P(C)=,∴P(C)=,∴任取一张,中三等奖的概率为.19.(12分)已知等差数列{a n}的前n项和为S n,且a3=7,a5+a7=26.(Ⅰ)求a n及S n;(Ⅱ)令b n=(n∈N+),求证:数列{b n}为等差数列.【解答】解:(Ⅰ)设等差数列的首项为a1,公差为d,∵a3=7,a3+a2=26.∴由题意得,解得a1=3,d=2,∴a n=a1+(n﹣1)d=3+2(n﹣1)=2n+1.==n(n+2).证明:(Ⅱ)∵=,b n+1﹣b n=n+3﹣(n+2)=1,∴数列{b n}为等差数列.20.(12分)某中学从高三男生中随机抽取n名学生的身高,将数据整理,得到的频率分布表如下所示:(Ⅰ)求出频率分布表中①和②位置上相应的数据,并完成下列频率分布直方图;(Ⅱ)为了能对学生的体能做进一步了解,该校决定在第3,4,5组中用分层抽样抽取6名学生进行不同项目的体能测试,若在这6名学生中随机抽取2名学生进行引体向上测试,则第4组中至少有一名学生被抽中的概率.【解答】解:(Ⅰ)由题意知,第1组:0.050=,解得n=100,第2组的频数为:0.350×100=35人,第3组的频率为:=0.300,∴①处的数字为35,②处的数据为0.300.完成频率分布直方图如下:(Ⅱ)∵第3,4,5组共有60名学生,∴利用分层抽样,有60名学生中抽取6名学生,每组分别为:第3组:人,第4组:人,第5组:人,∴第3,4,5组分别抽取3人,2 人,1人,设第3组的3位同学分别为A1,A2,A3,第4组的2位同学分别为:B1,B2,第5组的1位同学为C,则从6位同学中抽两位同学的可能有:A 1A2,A1A3,,A1B2,A1C,A2A3,A2B1,A2B2,A2C,A3B1,A3B2,A3C,B1B2,B1C,B2C,共15种,其中第4组的两位同学至少有一位同学被选中的有:,A1B2,A2B1,A2B2,A3B1,A3B2,B1B2,B1C,B2C,共9种可能,∴第4组中至少有一名学生被抽中的概率P=.21.(12分)在锐角△ABC中,角A,B,C的对边分别为a,b,c,且a=2c sin A.(Ⅰ)确定角C的大小;(Ⅱ)若c=,且△ABC的面积为,求a+b的值.【解答】解:(1)由及正弦定理得:,∵sin A≠0,∴在锐角△ABC中,.(2)∵,,由面积公式得,即ab=6①由余弦定理得,即a2+b2﹣ab=7②由②变形得(a+b)2=25,故a+b=5.22.(12分)设函数f(x)=x2﹣3x.(Ⅰ)若不等式f(x)≥m对任意x∈[0,1]恒成立,求实数m的取值范围;(Ⅱ)在(I)的条件下,当m取最大值时,设x>0,y>0且2x+4y+m=0,求+的最小值.【解答】解:(Ⅰ)函数f(x)=x2﹣3x的图象是开口朝上,且以直线x=为对称轴的抛物线,故函数f(x)=x2﹣3x在[0,1]上单调递减,当x=1时,函数取最小值﹣2,若不等式f(x)≥m对任意x∈[0,1]恒成立,则m≤﹣2;(Ⅱ)由(I)得:m=﹣2,即2x+4y=2,即x+2y=1由x>0,y>0故+=(+)(x+2y)=3++≥3+2=3+2即+的最小值为3+2.。
优质:青海省西宁市2016-2017学年高一下学期期末考试数学试题(解析版)
![优质:青海省西宁市2016-2017学年高一下学期期末考试数学试题(解析版)](https://img.taocdn.com/s3/m/ce7308dcaa00b52acfc7cadd.png)
1.D【解析】∵a>b,故当c=0时,ac=bc=0,故A不成立.当b=0时,显然B.C不成立.对于a>b,由于c2⩾0,故有,故D成立.故选D.3.A【解析】取坐标原点,可知原点在直线x+y−1=0的左下方∵(0,0)代入,使得x+y−1<0∴不等式x+y−1>0表示的平面区域在直线x+y−1=0的右上方.故选A .4.B【解析】设公比为q,由等比数列的通项公式可得a5=a1q4,即9=1⋅q4,解得q2=3,∴a3=a1q2=3,故选B.5.D【解析】根据概率的定义可得若事件A发生的概率为P(A),则0⩽P(A)⩽1,故A正确.根据互斥事件和对立事件的定义可得,互斥事件不一定是对立事件,但是对立事件一定是互斥事件,且两个对立事件的概率之和为1,故B.C正确.对于任意两个事件A和B,P(A∪B)=P(A)+P(B)−P(A∩B),只有当A.B是互斥事件时,才有P(A∪B)=P(A)+P(B),故D不正确,故选D.6.C【解析】根据题意画出图形,如图所示:易得∠ACB=90°,AC=BC=a.在△ABC中,由勾股定理,得AB2=AC2+BC2=2a2,所以AB=(km).故选C .7.A【解析】由已知中甲组数据的中位数为,故乙数据的中位数为,即,可得乙数据的平均数为,即甲数据的平均数为,故,故选.【方法点睛】本题主要考查茎叶图的应用、中位数、平均数的求法,属于难题.要解答本题首先要弄清中位数、平均数的定义,然后根据定义和公式求解,(1)中位数,如果样本容量是奇数中间的数既是中位数,如果样本容量为偶数中间两位数的平均数既是中位数;(2)众数是一组数据中出现次数最多的数据;(3)平均数既是样本数据的算数平均数.点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括顺序结构、条件结构、循环结构,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.9.B【解析】因为,由正弦定理得:,即,,∵,,∴C有两解,故选:B11.B【解析】如图所示,△OAB对应的区域为Ω1,△OBC对应的区域为Ω2,联立,解得C(1,2),∴S△OBC=×3×1=,S△OAB=×3×3=,由几何概型可知,该点落在区域Ω2的概率P==,故选B.点睛:(1)当试验的结果构成的区域为长度、面积、体积等时,应考虑使用几何概型求解.(2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域.(3)几何概型有两个特点:一是无限性,二是等可能性.基本事件可以抽象为点,尽管这些点是无限的,但它们所占据的区域都是有限的,因此可用“比例解法”求解几何概型的概率.12.C【解析】对于一切成立,则等价为a⩾对于一切x∈(0,)成立,即a⩾−x−对于一切x∈(0,)成立,设y=−x−,则函数在区间(0,〕上是增函数∴−x−<−2=,∴a⩾.故选:C.点睛:导数问题经常会遇见恒成立的问题:(1)根据参变分离,转化为不含参数的函数的最值问题;(2)若就可讨论参数不同取值下的函数的单调性和极值以及最值,最终转化为,若恒成立,转化为;(3)若恒成立,可转化为.14.【解析】用系统抽样抽出的5个学生的号码从小到大成等差数列,随机抽得的一个号码为04,则剩下的四个号码依次是16、28、40、52.故答案为:16、28、40、5215.【解析】数列{an}是公差d≠0的等差数列,∵成等比数列,∴=a2a8,∴(2+3d)2=(2+d)(2+7d),化为2d2−4d=0,解得d=2或d=0(舍).∴a n=2+2(n−1)=2n.故答案为:an=2n.16.【解析】a>0,b>0,a与b的等差中项是5,可得a+b=10,由ab≤()2=25,当且仅当a=b=5取得最大值25,故答案为:25.点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误17.【解析】试题分析:(Ⅰ)利用分层抽样的特点(等比例抽样)进行求解;(Ⅱ)利用列举法得到所有和符合题意的基本事件和基本事件个数,再利用古典概型的概率公式进行求解.18.【解析】试题分析:分别以A、B、C、D表示事件:从袋中任取一球“摸到红球”、“摸到黑球”、“摸到黄球”、“摸到绿球”,则由题意得到三个和事件的概率,求解方程组得答案.试题解析:设任取一个小球得到红球、黑球、黄球、绿球的事件分别为,则它们彼此是互斥事件.由题意得,,,又事件与事件对立,所以,而,所以,,所以,所以,所以得到黑球、得到黄球、得到绿球的概率分别是,,.19.【解析】试题分析:1)由n=1时,a1=S1;n≥2时,a n=S n﹣S n﹣1,即可得到所求通项公式;(2)设等比数列{b n}的公比为q,运用等比数列的通项公式,计算可得公比q,再由等比数列的求和公式计算即可得到所求和.(2)由(1)知,得,.设等比数列的公比为,则,得,所以.20.【解析】试题分析:(Ⅰ)根据频率=组距×高,可得分数小于70的概率为:1﹣(0.04+0.02)×10;(Ⅱ)先计算样本中分数小于40的频率,进而计算分数在区间[40,50)内的频率,可估计总体中分数在区间[40,50)内的人数;(Ⅲ)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.进而得到答案.试题解析:(1)由频率分布直方图知,分数在的频率为,分数在的频率为,则分数小于70的频率为,故从总体的400名学生中随机抽取一人,估计其分数小于70的概率为.(2)由频率分布直方图知,样本中分数在区间的人数为(人),已知样本中分数小于40的学生有5人,所以样本中分数在区间内的人数为(人),设总体中分数在区间内的人数为,则,得,所以总体中分数在区间内的人数为20人.点睛:利用频率分布直方图求众数、中位数与平均数时,易出错,应注意区分这三者.在频率分布直方图中:(1)最高的小长方形底边中点的横坐标即是众数;(2)中位数左边和右边的小长方形的面积和是相等的;(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.21.【解析】试题分析:(1)根据正弦定理即可求出答案,(2)根据同角的三角函数的关系求出cosC,再根据两角和正弦公式求出sinB,根据面积公式计算即可.试题解析:(1),,由正弦定理得,.(2),则,∴,由(1)可得,∴,∴.22.【解析】试题分析:(1)由不等式f(x)>0的解集(﹣1,3).﹣1,3是方程f(x)=0的两根,由根与系数的关系可求a,b值;(2)由f(1)=3,得到a+b=2,将所求变形为展开,整理为基本不等式的形式求最小值.试题解析:(1)由的解集是知是方程的两根.由根与系数的关系可得,解得.点睛:本题主要考查基本不等式,其难点主要在于利用三角形的一边及这条边上的高表示内接正方形的边长.在用基本不等式求最值时,应具备三个条件:一正二定三相等.①一正:关系式中,各项均为正数;②二定:关系式中,含变量的各项的和或积必须有一个为定值;③三相等:含变量的各项均相等,取得最值.。
青海省西宁市高一数学下学期期末试卷(含解析)
![青海省西宁市高一数学下学期期末试卷(含解析)](https://img.taocdn.com/s3/m/6dd1ff32767f5acfa0c7cd41.png)
2015-2016学年青海省西宁市高一(下)期末数学试卷一、选择题(本大题共12小题,每小题5分,满分60分,每小题给出四个选项中,只有一个选项符合要求,请把你认为正确的选项序号填入相应题号的表格内)1.如果a<b<0,那么下面一定成立的是()A.a﹣b>0 B.ac<bc C.D.a2>b22.某小组有3名男生和2名女生,从中任选2名同学参加演讲比赛,那么互斥不对立的两个事件是()A.恰有1名男生与恰有2名女生B.至少有1名男生与全是男生C.至少有1名男生与至少有1名女生D.至少有1名男生与全是女生3.在△ABC中,A=60°,B=45°,a=1,则最短边的边长等于()A.B.C.D.4.某校高一、高二年级各有7个班参加歌咏比赛,他们的得分的茎叶图如图所示,对这组数据分析正确的是()A.高一的中位数大,高二的平均数大B.高一的平均数大,高二的中位数大C.高一的中位数、平均数都大D.高二的中位数、平均数都大5.已知数列{a n},其通项公式a n=3n﹣18,则其前n项和S n取最小值时n的值为()A.4 B.5或6 C.6 D.56.一个总体中有60个个体,随机编号为0,1,2,…59,依编号顺序平均分成6个小组,组号依次为1,2,3,…6.现用系统抽样方法抽取一个容量为6的样本,若在第1组随机抽取的号码为3,则在第5组中抽取的号码是()A.33 B.43 C.53 D.547.已知△ABC的三内角A,B,C成等差数列,且AB=1,BC=4,则该三角形面积为()A.B.2 C.2 D.48.秦九韶是我国南宋时期的数学家,他在所著的《数学九章》中提出多项式求值的秦九韶算法,如图所示的程序框图给出了利用秦九韶算法求多项式值的一个实例,依次输入a为2,2,5,则输出的s=()A.7 B.12 C.17 D.349.现采用随机模拟的方法估计某运动员射击4次,至少击中3次的概率:先由计算器给出0到9之间取整数值的随机数,指定0、1表示没有击中目标,2、3、4、5、6、7、8、9表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了20组随机数:7527 0293 7140 9857 0347 4373 8636 6947 1417 46980371 6233 2616 8045 6011 3661 9597 7424 7610 4281根据以上数据估计该射击运动员射击4次至少击中3次的概率为()A.0.852 B.0.8192 C.0.75 D.0.810.某产品的广告费用x与销售额y的统计数据如表广告费用x (万元) 4 2 3 5销售额y (万元)49 26 a 54已知由表中4组数据求得回归直线方程=8x+14,则表中的a的值为()A.37 B.38 C.39 D.4011.边长为5,7,8的三角形的最大角与最小角的和是()A.90° B.120°C.135°D.150°12.设a>0,b>0,若是5a与5b的等比中项,则+的最小值为()A.8 B.4 C.1 D.二、填空题(本大题共4小题,每小题5分,满分20分,请把答案填写在题中的横线上)13.数列{a n}中,a1=4,a n+1=a n+5,那么这个数列的通项公式是.14.如图,一不规则区域内,有一边长为1米的正方形,向区域内随机地撒1000颗黄豆,数得落在正方形区域内(含边界)的黄豆数为360颗,以此实验数据1000为依据可以估计出该不规则图形的面积为平方米.(用分数作答)15.已知0<x<8,则(8﹣x)x的最大值是.16.某船在海面A处测得灯塔B在北偏东60°方向,与A相距6海里.船由A向正北方向航行8海里达到C处,这时灯塔B与船之间的距离为.三、解答题(本大题共6小题,满分70分,解答应写出文字说明,证明过程或演算步骤。
青海省西宁市高一数学下学期期末考试试题(扫描版)
![青海省西宁市高一数学下学期期末考试试题(扫描版)](https://img.taocdn.com/s3/m/15581f31240c844768eaee25.png)
青海省西宁市2016-2017学年高一数学下学期期末考试试题(扫描版)
尊敬的读者:
本文由我和我的同事在百忙中收集整编出来,本文稿在发布之前我们对内容进行仔细校对,但是难免会有不尽如人意之处,如有疏漏之处请指正,希望本文能为您解开疑惑,引发思考。
文中部分文字受到网友的关怀和支持,在此表示感谢!在往后的日子希望与大家共同进步,成长。
This article is collected and compiled by my colleagues and I in our busy schedule. We proofread the content carefully before the release of this article, but it is inevitable that there will be some unsatisfactory points. If there are omissions, please correct them. I hope this article can solve your doubts and arouse your thinking. Part of the text by the user's care and support, thank you here! I hope to make progress and grow with you in the future.。
青海省西宁市2015-2016学年高一下学期期末数学试卷 含解析
![青海省西宁市2015-2016学年高一下学期期末数学试卷 含解析](https://img.taocdn.com/s3/m/cf7f6ad3bcd126fff6050be4.png)
2015-2016学年青海省西宁市高一(下)期末数学试卷一、选择题(本大题共12小题,每小题5分,满分60分,每小题给出四个选项中,只有一个选项符合要求,请把你认为正确的选项序号填入相应题号的表格内)1.如果a<b<0,那么下面一定成立的是()A.a﹣b>0 B.ac<bc C.D.a2>b22.某小组有3名男生和2名女生,从中任选2名同学参加演讲比赛,那么互斥不对立的两个事件是()A.恰有1名男生与恰有2名女生B.至少有1名男生与全是男生C.至少有1名男生与至少有1名女生D.至少有1名男生与全是女生3.在△ABC中,A=60°,B=45°,a=1,则最短边的边长等于()A.B.C.D.4.某校高一、高二年级各有7个班参加歌咏比赛,他们的得分的茎叶图如图所示,对这组数据分析正确的是()A.高一的中位数大,高二的平均数大B.高一的平均数大,高二的中位数大C.高一的中位数、平均数都大D.高二的中位数、平均数都大5.已知数列{a n},其通项公式a n=3n﹣18,则其前n项和S n取最小值时n的值为()A.4 B.5或6 C.6 D.56.一个总体中有60个个体,随机编号为0,1,2,…59,依编号顺序平均分成6个小组,组号依次为1,2,3,…6.现用系统抽样方法抽取一个容量为6的样本,若在第1组随机抽取的号码为3,则在第5组中抽取的号码是()A.33 B.43 C.53 D.547.已知△ABC的三内角A,B,C成等差数列,且AB=1,BC=4,则该三角形面积为() A.B.2 C.2D.48.秦九韶是我国南宋时期的数学家,他在所著的《数学九章》中提出多项式求值的秦九韶算法,如图所示的程序框图给出了利用秦九韶算法求多项式值的一个实例,依次输入a为2,2,5,则输出的s=()A.7 B.12 C.17 D.349.现采用随机模拟的方法估计某运动员射击4次,至少击中3次的概率:先由计算器给出0到9之间取整数值的随机数,指定0、1表示没有击中目标,2、3、4、5、6、7、8、9表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了20组随机数: 7527029371409857034743738636694714174698 0371623326168045601136619597742476104281根据以上数据估计该射击运动员射击4次至少击中3次的概率为()A.0。