2018年全国卷Ⅱ文数高考试题(精校版)
(精校版)2018年全国卷Ⅱ文数高考试题(含答案)
![(精校版)2018年全国卷Ⅱ文数高考试题(含答案)](https://img.taocdn.com/s3/m/818b2bde941ea76e58fa049d.png)
绝密★启用前2018年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.作答时,将答案写在答题卡上。
写在本试卷及草稿纸上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
学@科网 1.()i 23i += A .32i -B .32i +C .32i --D .32i -+2.已知集合{}1,3,5,7A =,{}2,3,4,5B =,则AB =A .{}3B .{}5C .{}3,5D .{}1,2,3,4,5,73.函数()2e e x xf x x--=的图像大致为4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b A .4B .3C .2D .05.从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为 A .0.6B .0.5C .0.4D .0.36.双曲线22221(0,0)x y a b a b-=>>的离心率为3,则其渐近线方程为A .2y x =±B .3y x =±C .22y x =±D .32y x =±7.在ABC △中,5cos 25C =,1BC =,5AC =,则AB = A .42B .30C .29D .258.为计算11111123499100S =-+-++-,设计了如图的程序框图,则在空白框中应填入 开始0,0N T ==S N T =-S 输出1i =100i <1N N i =+11T T i =++结束是否A .1i i =+B .2i i =+C .3i i =+D .4i i =+9.在正方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为 A .22B .32C .52D .7210.若()cos sin f x x x =-在[0,]a 是减函数,则a 的最大值是A .π4B .π2C .3π4D .π11.已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为 A .312-B .23-C .312- D .31-12.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(f ff++(50)f ++=A .50-B .0C .2D .50二、填空题:本题共4小题,每小题5分,共20分。
2018年高考全国卷Ⅱ文数试题解析(精编版)
![2018年高考全国卷Ⅱ文数试题解析(精编版)](https://img.taocdn.com/s3/m/8aac25d86bec0975f565e239.png)
绝密★启用前2018年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.作答时,将答案写在答题卡上。
写在本试卷及草稿纸上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.A. B. C. D.【答案】D【解析】分析:根据公式,可直接计算得详解:,故选D.点睛:复数题是每年高考的必考内容,一般以选择或填空形式出现,属简单得分题,高考中复数主要考查的内容有:复数的分类、复数的几何意义、共轭复数,复数的模及复数的乘除运算,在解决此类问题时,注意避免忽略中的负号导致出错.2. 已知集合,,则A. B. C. D.【答案】C【解析】分析:根据集合可直接求解.详解:,,故选C点睛:集合题也是每年高考的必考内容,一般以客观题形式出现,一般解决此类问题时要先将参与运算的集合化为最简形式,如果是“离散型”集合可采用Venn图法解决,若是“连续型”集合则可借助不等式进行运算.3. 函数的图像大致为A. AB. BC. CD. D【答案】B【解析】分析:通过研究函数奇偶性以及单调性,确定函数图像.详解:为奇函数,舍去A,舍去D;,所以舍去C;因此选B.点睛:有关函数图象识别问题的常见题型及解题思路(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势;③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复.4. 已知向量,满足,,则A. 4B. 3C. 2D. 0【答案】B【解析】分析:根据向量模的性质以及向量乘法得结果.详解:因为所以选B.点睛:向量加减乘:5. 从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为A. B. C. D.【答案】D【解析】分析:分别求出事件“2名男同学和3名女同学中任选2人参加社区服务”的总可能及事件“选中的2人都是女同学”的总可能,代入概率公式可求得概率.详解:设2名男同学为,3名女同学为,从以上5名同学中任选2人总共有共10种可能,选中的2人都是女同学的情况共有共三种可能则选中的2人都是女同学的概率为,故选D.点睛:应用古典概型求某事件的步骤:第一步,判断本试验的结果是否为等可能事件,设出事件;第二步,分别求出基本事件的总数与所求事件中所包含的基本事件个数;第三步,利用公式求出事件的概率.6. 双曲线的离心率为,则其渐近线方程为A. B. C. D.【答案】A【解析】分析:根据离心率得a,c关系,进而得a,b关系,再根据双曲线方程求渐近线方程,得结果.详解:因为渐近线方程为,所以渐近线方程为,选A.点睛:已知双曲线方程求渐近线方程:.7. 在中,,,,则A. B. C. D.【答案】A【解析】分析:先根据二倍角余弦公式求cosC,再根据余弦定理求AB.详解:因为所以,选A.点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.8. 为计算,设计了右侧的程序框图,则在空白框中应填入A.B.C.D.【答案】B【解析】分析:根据程序框图可知先对奇数项累加,偶数项累加,最后再相减.因此累加量为隔项.详解:由得程序框图先对奇数项累加,偶数项累加,最后再相减.因此在空白框中应填入,选B.点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.9. 在正方体中,为棱的中点,则异面直线与所成角的正切值为A. B. C. D.【答案】C【解析】分析:利用正方体中,,将问题转化为求共面直线与所成角的正切值,在中进行计算即可.详解:在正方体中,,所以异面直线与所成角为,设正方体边长为,则由为棱的中点,可得,所以则.故选C.点睛:求异面直线所成角主要有以下两种方法:(1)几何法:①平移两直线中的一条或两条,到一个平面中;②利用边角关系,找到(或构造)所求角所在的三角形;③求出三边或三边比例关系,用余弦定理求角.(2)向量法:①求两直线的方向向量;②求两向量夹角的余弦;③因为直线夹角为锐角,所以②对应的余弦取绝对值即为直线所成角的余弦值.10. 若在是减函数,则的最大值是A. B. C. D.【答案】C【解析】分析:先确定三角函数单调减区间,再根据集合包含关系确定的最大值详解:因为,所以由得因此,从而的最大值为,选A.点睛:函数的性质:(1). (2)周期 (3)由求对称轴, (4)由求增区间;由求减区间.11. 已知,是椭圆的两个焦点,是上的一点,若,且,则的离心率为A. B. C. D.【答案】D【解析】分析:设,则根据平面几何知识可求,再结合椭圆定义可求离心率.详解:在中,设,则,又由椭圆定义可知则离心率,故选D.点睛:椭圆定义的应用主要有两个方面:一是判断平面内动点与两定点的轨迹是否为椭圆,二是利用定义求焦点三角形的周长、面积、椭圆的弦长及最值和离心率问题等;“焦点三角形”是椭圆问题中的常考知识点,在解决这类问题时经常会用到正弦定理,余弦定理以及椭圆的定义.12. 已知是定义域为的奇函数,满足.若,则A. B. 0 C. 2 D. 50【答案】C【解析】分析:先根据奇函数性质以及对称性确定函数周期,再根据周期以及对应函数值求结果.详解:因为是定义域为的奇函数,且,所以,因此,因为,所以,,从而,选C.点睛:函数的奇偶性与周期性相结合的问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.二、填空题:本题共4小题,每小题5分,共20分。
2018文数全国二卷及答案
![2018文数全国二卷及答案](https://img.taocdn.com/s3/m/ee57b74bf5335a8102d220a0.png)
高考真题汇编卷 第1页(共8页) 高考真题汇编卷 第2页(共8页)2018年普通高等学校招生全国统一考试(新课标II 卷)文 科 数 学注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.()i 23i +=( ) A .32i -B .32i +C .32i --D .32i -+2.已知集合{}1,3,5,7A =,{}2,3,4,5B =,则A B =( )A .{}3B .{}5C .{}3,5D .{}1,2,3,4,5,73.函数()2e e x xf x x --=的图象大致为( )4.已知向量a ,b 满足1=a ,1⋅=-a b ,则()2⋅-=a a b ( ) A .4B .3C .2D .05.从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为( ) A .0.6B .0.5C .0.4D .0.36.双曲线()222210,0x y a b a b-=>>的离心率为3,则其渐近线方程为( )A .2y x =±B .3y x =±C .22y x =±D .32y x =±7.在ABC △中,5cos25C =,1BC =,5AC =,则AB =( ) A .42 B .30C .29D .258.为计算11111123499100S =-+-++-,设计了右侧的程序框图,则在空白框中应填入( )A .i i 1=+B .i i 2=+C .i i 3=+D .i i 4=+9.在正方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为( ) A .22B .32C .52D .7210.若()cos sin f x x x =-在[]0,a 是减函数,则a 的最大值是( ) A .π4B .π2C .3π4D .π11.已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为( ) A .312-B .23-C .312- D .31-12.已知()f x 是定义域为(),-∞+∞的奇函数,满足()()11f x f x -=+.若()12f =, 则()()()()12350f f f f ++++=( ) A .50-B .0C .2D .50二、填空题:本题共4小题,每小题5分,共20分。
2018年全国卷Ⅱ文数高考试题(含答案)
![2018年全国卷Ⅱ文数高考试题(含答案)](https://img.taocdn.com/s3/m/abc4184c77232f60ddcca1ce.png)
绝密★启用前2018年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.作答时,将答案写在答题卡上。
写在本试卷及草稿纸上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.()i 23i += A .32i -B .32i +C .32i --D .32i -+2.已知集合{}1,3,5,7A =,{}2,3,4,5B =,则AB =A .{}3B .{}5C .{}3,5D .{}1,2,3,4,5,73.函数()2e e x xf x x --=的图像大致为4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b A .4B .3C .2D .05.从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为 A .0.6B .0.5C .0.4D .0.36.双曲线22221(0,0)x y a b a b-=>>的离心率为3,则其渐近线方程为A .2y x =±B .3y x =±C .22y x =±D .32y x =±7.在ABC △中,5cos 25C =,1BC =,5AC =,则AB = A .42B .30C .29D .258.为计算11111123499100S =-+-++-,设计了如图的程序框图,则在空白框中应填入 开始0,0N T ==S N T =-S 输出1i =100i <1N N i =+11T T i =++结束是否A .1i i =+B .2i i =+C .3i i =+D .4i i =+9.在正方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为 A .22B .32C .52D .7210.若()cos sin f x x x =-在[0,]a 是减函数,则a 的最大值是A .π4B .π2C .3π4D .π11.已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为 A .312-B .23-C .312- D .31-12.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(f ff++(50)f ++=A .50-B .0C .2D .50二、填空题:本题共4小题,每小题5分,共20分。
(精校版)2018全国卷Ⅱ文数高考试题文档版(附含答案解析)
![(精校版)2018全国卷Ⅱ文数高考试题文档版(附含答案解析)](https://img.taocdn.com/s3/m/e5bcf856011ca300a6c390c8.png)
绝密★启用前2018年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.作答时,务必将答案写在答题卡上。
写在本试卷及草稿纸上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.()i 23i += A .32i -B .32i +C .32i --D .32i -+2.已知集合{}1,3,5,7A =,{}2,3,4,5B =,则AB =A .{}3B .{}5C .{}3,5D .{}1,2,3,4,5,73.函数()2e e x xf x x --=的图像大致为4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b A .4B .3C .2D .05.从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为 A .0.6B .0.5C .0.4D .0.36.双曲线22221(0,0)x y a b a b-=>>的离心率为3,则其渐近线方程为A .2y x =±B .3y x =±C .22y x =±D .32y x =±7.在ABC △中,5cos 25C =,1BC =,5AC =,则AB = A .42B .30C .29D .258.为计算11111123499100S =-+-++-,设计了如图的程序框图,则在空白框中应填入 开始0,0N T ==S N T =-S 输出1i =100i <1N N i =+11T T i =++结束是否A .1i i =+B .2i i =+C .3i i =+D .4i i =+9.在正方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为 A .22B .32C .52D .7210.若()cos sin f x x x =-在[0,]a 是减函数,则a 的最大值是A .π4B .π2C .3π4D .π11.已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为 A .312-B .23-C .312- D .31-12.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)f f f ++(50)f ++=A .50-B .0C .2D .50二、填空题:本题共4小题,每小题5分,共20分。
(精校版)2018年陕西高考新课标Ⅱ文数高考试题文档版(含答案)
![(精校版)2018年陕西高考新课标Ⅱ文数高考试题文档版(含答案)](https://img.taocdn.com/s3/m/d64af36ef242336c1eb95e85.png)
绝密★启用前2018年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.作答时,将答案写在答题卡上。
写在本试卷及草稿纸上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
学@科网 1.()i 23i += A .32i -B .32i +C .32i --D .32i -+2.已知集合{}1,3,5,7A =,{}2,3,4,5B =,则A B = A .{}3B .{}5C .{}3,5D .{}1,2,3,4,5,73.函数()2e e x xf x x --=的图像大致为4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b A .4B .3C .2D .05.从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为 A .0.6B .0.5C .0.4D .0.36.双曲线22221(0,0)x y a b a b-=>>的离心率为3,则其渐近线方程为A .2y x =±B .3y x =±C .22y x =±D .32y x =±7.在ABC △中,5cos 25C =,1BC =,5AC =,则AB = A .42B .30C .29D .258.为计算11111123499100S =-+-++- ,设计了如图的程序框图,则在空白框中应填入开始0,0N T ==S N T =-S 输出1i =100i <1N N i =+11T T i =++结束是否A .1i i =+B .2i i =+C .3i i =+D .4i i =+9.在正方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为 A .22B .32C .52D .7210.若()cos sin f x x x =-在[0,]a 是减函数,则a 的最大值是A .π4B .π2C .3π4D .π11.已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为 A .312-B .23-C .312- D .31-12.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(f ff++(50)f ++=A .50-B .0C .2D .50二、填空题:本题共4小题,每小题5分,共20分。
2018年全国卷Ⅱ文数高考试题
![2018年全国卷Ⅱ文数高考试题](https://img.taocdn.com/s3/m/a55c69be4a7302768f99395a.png)
D. 7 2
A. π 4
B. π 2
C. 3π 4
D. π
11.已知 F1 , F2 是椭圆 C 的两个焦点, P 是 C 上的一点,若 PF1 ⊥ PF2 ,且 PF2F1 = 60 ,则 C 的离心率
为
A.1− 3 2
B. 2 − 3
C. 3 −1 2
D. 3 −1
12.已知 f (x) 是定义域为 (−, +) 的奇函数,满足 f (1− x) = f (1 + x) .若 f (1) = 2 ,则
18.(12 分) 下图是某地区 2000 年至 2016 年环境基础设施投资额 y (单位:亿元)的折线图.
为了预测该地区 2018 年的环境基础设施投资额,建立了 y 与时间变量 t 的两个线性回归模型.根据 2000 年至 2016 年的数据(时间变量 t 的值依次为1, 2, ,17 )建立模型①: yˆ = −30.4 +13.5t ;根据 2010 年 至 2016 年的数据(时间变量 t 的值依次为1, 2, , 7 )建立模型②: yˆ = 99 +17.5t . (1)分别利用这两个模型,求该地区 2018 年的环境基础设施投资额的预测值; (2)你认为用哪个模型得到的预测值更可靠?并说明理由.
B. i = i + 2
C. i = i + 3
D. i = i + 4
9.在正方体 ABCD − A1B1C1D1 中, E 为棱 CC1 的中点,则异面直线 AE 与 CD 所成角的正切值为
A. 2 2
B. 3 2
C. 5 2
10.若 f (x) = cos x − sin x 在[0, a] 是减函数,则 a 的最大值是
2018年全国卷Ⅱ文数高考试题(含答案)
![2018年全国卷Ⅱ文数高考试题(含答案)](https://img.taocdn.com/s3/m/98a52f1352ea551810a687dd.png)
则异面直线 AE
5 2
CD 所成角的
值为
C
D
7 2
10
若 f ( x) = cos x − sin x 在 [0, a ] 是
A
π 4
函数 则 a 的最大值是
C P 是C
3π 4
B
π 2
D
π
11 A 12
知 F1
1−
F2 是椭圆 C 的两个焦点
的一点 若 PF1 ⊥ PF2
C 3 −1 2
且 ∠PF2 F1 = 60°
(
)
1 若a = 3
求 f ( x) 的单调区间
2 证明
f ( x) 只有一个零点
选考题:共 10 分 请考生在第 22 23 题中任选一题作答 如果多做,则按所做的第一题计分
22 [选修 4 4 坐标系 参数方程] 10 x = 2cos θ , 在直角坐标系 xOy 中 曲线 C 的参数方程为 y = 4sin θ
2016
的环境基础设施投资额 建立了 y
时间变
t 的两个线性回 模型 根据 2000
2016
的数据 时间变
t 的值依次为 1, 2, L,17 建立模型
建立模型
ˆ = −30.4 + 13.5t 根据 2010 y
的数据 时间变
1
t 的值依次为 1, 2, L , 7
ˆ = 99 + 17.5t y
1
a =1时
求 等式 f ( x)
0 的解集
2 若 f ( x)
1
求 a 的取值范围
绝密★ 绝密★启用前
2018
普通高等学校招生全
统一考试
文科数学试题参考答案
[精校版]2018全国卷Ⅱ文数高考试题文档版[含答案解析]
![[精校版]2018全国卷Ⅱ文数高考试题文档版[含答案解析]](https://img.taocdn.com/s3/m/8437ba7fcf84b9d528ea7a66.png)
绝密★启用前2018年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.作答时,务必将答案写在答题卡上。
写在本试卷及草稿纸上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.()i 23i += A .32i -B .32i +C .32i --D .32i -+2.已知集合{}1,3,5,7A =,{}2,3,4,5B =,则AB =A .{}3B .{}5C .{}3,5D .{}1,2,3,4,5,73.函数()2e e x xf x x --=的图像大致为4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b A .4B .3C .2D .05.从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为 A .0.6B .0.5C .0.4D .0.36.双曲线22221(0,0)x y a b a b-=>>3A .2y x =B .3y x =C .2y = D .3y = 7.在ABC △中,5cos 2C =1BC =,5AC =,则AB = A .42B 30C 29D .258.为计算11111123499100S =-+-++-,设计了如图的程序框图,则在空白框中应填入A.1i i =+B .2i i =+C .3i i =+D .4i i =+9.在正方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为 A B C D 10.若()cos sin f x x x =-在[0,]a 是减函数,则a 的最大值是A.π4B .π2C .3π4D .π11.已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为 A .1B .2C D 1-12.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)f f f ++(50)f ++=A .50-B .0C .2D .50二、填空题:本题共4小题,每小题5分,共20分。
2018文科数学高考真题全国卷Ⅱ试卷及答案详解,最全word版本
![2018文科数学高考真题全国卷Ⅱ试卷及答案详解,最全word版本](https://img.taocdn.com/s3/m/189d6d0a14791711cc7917ae.png)
2018年普通高等学校招生全国统一考试文科数学一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.()i 23i += A .32i -B .32i +C .32i --D .32i -+2.已知集合{}1,3,5,7A =,{}2,3,4,5B =,则AB =A .{}3B .{}5C .{}3,5D .{}1,2,3,4,5,73.函数()2e e x xf x x --=的图像大致为4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b A .4B .3C .2D .05.从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为 A .0.6B .0.5C .0.4D .0.36.双曲线22221(0,0)x y a b a b-=>>3A .2y x =±B .3y x =±C .2y = D .3y = 7.在ABC △中,5cos 2C =1BC =,5AC =,则AB = A .42B 30C 29D .258.为计算11111123499100S =-+-++-,设计了如图的程序框图,则在空白框中应填入A .1i i =+B .2i i =+C .3i i =+D .4i i =+9.在正方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为 A B C D 10.若()cos sin f x x x =-在[0,]a 是减函数,则a 的最大值是A .π4B .π2C .3π4D .π11.已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为 A .1 B .2C D 112.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)f f f ++(50)f ++=A .50-B .0C .2D .50二、填空题:本题共4小题,每小题5分,共20分。
2018年全国卷Ⅱ文数高考真题及参考答案
![2018年全国卷Ⅱ文数高考真题及参考答案](https://img.taocdn.com/s3/m/c33fc9f3b8f67c1cfad6b8f5.png)
2018年全国卷Ⅱ文数高考真题及参考答案(WORD 版本真题试卷+名师解析答案,建议下载保存)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.作答时,务必将答案写在答题卡上。
写在本试卷及草稿纸上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.()i 23i += A .32i -B .32i +C .32i --D .32i -+2.已知集合{}1,3,5,7A =,{}2,3,4,5B =,则A B = A .{}3B .{}5C .{}3,5D .{}1,2,3,4,5,73.函数()2e e x xf x x--=的图像大致为4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b A .4B .3C .2D .05.从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为 A .0.6B .0.5C .0.4D .0.36.双曲线22221(0,0)x y a b a b-=>>的离心率为3,则其渐近线方程为A .2y x =±B .3y x =±C .22y x =±D .32y x =±7.在ABC △中,5cos 25C =,1BC =,5AC =,则AB = A .42B .30C .29D .258.为计算11111123499100S =-+-++- ,设计了如图的程序框图,则在空白框中应填入开始0,0N T ==S N T =-S 输出1i =100i <1N N i =+11T T i =++结束是否A .1i i =+B .2i i =+C .3i i =+D .4i i =+9.在正方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为 A .22B .32C .52D .7210.若()cos sin f x x x =-在[0,]a 是减函数,则a 的最大值是A .π4B .π2C .3π4D .π11.已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为 A .312-B .23-C .312- D .31-12.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)f f f ++(50)f ++=A .50-B .0C .2D .50二、填空题:本题共4小题,每小题5分,共20分。
2018年新课标Ⅱ文数高考试题(含答案)
![2018年新课标Ⅱ文数高考试题(含答案)](https://img.taocdn.com/s3/m/f4065b46bb68a98270fefa42.png)
绝密★启用前2018年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.作答时,将答案写在答题卡上。
写在本试卷及草稿纸上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
学@科网 1.()i 23i += A .32i -B .32i +C .32i --D .32i -+2.已知集合{}1,3,5,7A =,{}2,3,4,5B =,则A B =I A .{}3B .{}5C .{}3,5D .{}1,2,3,4,5,73.函数()2e e x xf x x --=的图像大致为4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b A .4B .3C .2D .05.从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为 A .0.6B .0.5C .0.4D .0.36.双曲线22221(0,0)x y a b a b-=>>3A .2y x =B .3y x =±C .2y = D .3y = 7.在ABC △中,5cos 2C =1BC =,5AC =,则AB = A .42B 30C 29D .258.为计算11111123499100S =-+-++-L ,设计了如图的程序框图,则在空白框中应填入A .1i i =+B .2i i =+C .3i i =+D .4i i =+9.在正方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为 A B C D 10.若()cos sin f x x x =-在[0,]a 是减函数,则a 的最大值是A .π4B .π2C .3π4D .π11.已知1F ,2F是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为 A .1-B .2CD 112.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)f f f ++(50)f ++=LA .50-B .0C .2D .50二、填空题:本题共4小题,每小题5分,共20分。
(经典解析版)2018年全国卷Ⅱ文数高考试题文档版(含答案)
![(经典解析版)2018年全国卷Ⅱ文数高考试题文档版(含答案)](https://img.taocdn.com/s3/m/bcc39a6b6bd97f192379e93e.png)
2018年普通高等学校招生全国统一考试全国二卷文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.作答时,将答案写在答题卡上。
写在本试卷及草稿纸上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.()i 23i += A .32i -B .32i +C .32i --D .32i -+2.已知集合{}1,3,5,7A =,{}2,3,4,5B =,则AB =A .{}3B .{}5C .{}3,5D .{}1,2,3,4,5,73.函数()2e e x xf x x --=的图像大致为4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b A .4B .3C .2D .05.从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为 A .0.6B .0.5C .0.4D .0.36.双曲线22221(0,0)x y a b a b-=>>A .y =B .y =C .y =D .y =7.在ABC △中,cos 2C =1BC =,5AC =,则AB =A .BCD .8.为计算11111123499100S =-+-++-,设计了如图的程序框图,则在空白框中应填入A .1i i =+B .2i i =+C .3i i =+D .4i i =+9.在正方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为 A B C D 10.若()cos sin f x x x =-在[0,]a 是减函数,则a 的最大值是A .π4B .π2C .3π4D .π11.已知1F ,2F是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为 A .1-B .2CD 112.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(f f f++(50)f ++= A .50-B .0C .2D .50二、填空题:本题共4小题,每小题5分,共20分。
2018新课标全国2卷(文数)
![2018新课标全国2卷(文数)](https://img.taocdn.com/s3/m/1b46c4e3cc7931b764ce1534.png)
2018年全国统一高考数学试卷(文科)(新课标Ⅱ)一、选择题:此题共12小题,每题5分,共60分。
1.(5分)(2018•新课标Ⅱ)i(2+3i)=()A.3﹣2i B.3+2i C.﹣3﹣2i D.﹣3+2i2.(5分)(2018•新课标Ⅱ)已知集合A={1,3,5,7},B={2,3,4,5},那么A∩B=()A.{3} B.{5} C.{3,5} D.{1,2,3,4,5,7}3.(5分)(2018•新课标Ⅱ)函数f(x)=的图象大致为()A.B.C.D.4.(5分)(2018•新课标Ⅱ)已知向量,知足||=1,=﹣1,那么•(2)=()A.4 B.3 C.2 D.05.(5分)(2018•新课标Ⅱ)从2名男同窗和3名女同窗中任选2人参加社区效劳,那么选中的2人都是女同窗的概率为()A. B. C. D.6.(5分)(2018•新课标Ⅱ)双曲线=1(a>0,b>0)的离心率为,那么其渐近线方程为()A.y=±x B.y=±x C.y=±xD.y=±x7.(5分)(2018•新课标Ⅱ)在△ABC中,cos=,BC=1,AC=5,那么AB=()A.4 B. C. D.28.(5分)(2018•新课标Ⅱ)为计算S=1﹣+﹣+…+﹣,设计了如图的程序框图,那么在空白框中应填入()A.i=i+1 B.i=i+2 C.i=i+3 D.i=i+49.(5分)(2018•新课标Ⅱ)在正方体ABCD﹣A1B1C1D1中,E为棱CC1的中点,那么异面直线AE与CD所成角的正切值为()A.B.C.D.10.(5分)(2018•新课标Ⅱ)假设f(x)=cosx﹣sinx在[0,a]是减函数,那么a的最大值是()A.B.C.D.π11.(5分)(2018•新课标Ⅱ)已知F1,F2是椭圆C的两个核心,P是C上的一点,假设PF1⊥PF2,且∠PF2F1=60°,那么C的离心率为()A.1﹣B.2﹣C.D.﹣112.(5分)(2018•新课标Ⅱ)已知f(x)是概念域为(﹣∞,+∞)的奇函数,知足f(1﹣x)=f(1+x),假设f(1)=2,那么f(1)+f(2)+f(3)+…+f(50)=()A.﹣50 B.0 C.2 D.50二、填空题:此题共4小题,每题5分,共20分。
2018年全国二卷文数高考真题及答案解析
![2018年全国二卷文数高考真题及答案解析](https://img.taocdn.com/s3/m/b5cb3af3ccbff121dc368340.png)
绝密★启用前 2018 年普通高等学校招生全国统一考试 文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.作答时,务必将答案写在答题卡上。
写在本试卷及草稿纸上无效。
3.考试结束后,将本试卷和答题卡一并交回。
12 小题,每小题 5分,共60 分,在每小题给出的四个选项中,只有一项是符合题目 要求的。
1. i 2 3i A . 3 2i B . 3 2i C . 3 2i D . 3 2i 2.已知集合 1,3,5,7 , B 2,3,4,5 AI A . 3 D . 1,2,3,4,5,7 3.函数 C . 3,5 fx 1 ,则 a (2a b) a , b 满足 | a| 1 , a b B . 5 xx 4.已知向量 A . 4 B . 3 C . 2 D . 0 5.从 2 名男同学和 3 名女同学中任选 2 人参加社区服务,则选中的 2 人都是女同学的概率为 A . 0.6 B . 0.5 C . 0.4 D . 0.36.双曲线 22 xy 22 ab 1(a 0,b 0) 的离心率为 3,则其渐近线方程为A . y 2xB . 3xC . 2 yx 2D . 7.在 △ ABC 中, C cos 2BC 1 , AC 5 ,则 AB A . 4 2 B . 30 C . 29 D . 2 5f(1) f(2) f(3) L f (50) 8.为计算 S 1 9.在正方体 A . i i 1 C . i i ABCD A . 22 10.若 f (x) cos xA . π4 D . i i4 1 99A 1B 1C 1D 1中,E 为棱 CC 1的中点,则异面直线 AE 与 CD 所成角的正切值为 B . 32 C .D .sinx 在 [0, a] 是减函数,则 a 的最大值是B . π2C . 3π4D .11.已知 F 1, F 2是椭圆 C 的两个焦点,P是 C 上的一点,若 PF 1PF 2,且PF 2 F 1 60 ,则 C 的离心率 A . 1 32B . 2 3C . 3 12D .3112.已知 f (x) 是定义域为 ( ) 的奇函数,满足 f (1 x) f (1 x) .若 f (1) 2,则A . 50B . 0C . 2D . 50二、填空题:本题共 4 小题,每小题 5 分,共 20 分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝密★启用前2018年普通高等学校招生全国统一考试(全国卷Ⅱ)文科 数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.作答时,务必将答案写在答题卡上。
写在本试卷及草稿纸上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1. A .B .C .D .2.已知集合,,则A .B .C .D .3.函数的图像大致为4.已知向量,满足,,则 A .4B .3C .2D .05.从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为 A .B .C .D .6.双曲线,则其渐近线方程为A .B .C .D .7.在中,,,则 A .BCD .8.为计算,设计了如图的程序框图,则在空白框中应填入 ()i 23i +=32i -32i +32i --32i -+{}1,3,5,7A ={}2,3,4,5B =AB ={}3{}5{}3,5{}1,2,3,4,5,7()2e e x xf x x --=a b ||1=a 1⋅=-a b (2)⋅-=a a b 0.60.50.40.322221(0,0)x y a b a b-=>>y =y =2y x =y =ABC △cos 2C 1BC =5AC =AB =11111123499100S =-+-++-A .B .C .D .9.在正方体中,为棱的中点,则异面直线与所成角的正切值为 ABC D10.若在是减函数,则的最大值是A .B .C .D .11.已知,是椭圆的两个焦点,是上的一点,若,且,则的离心率为 A . B .CD12.已知是定义域为的奇函数,满足.若,则A .B .0C .2D .50二、填空题:本题共4小题,每小题5分,共20分。
、 13.曲线在点处的切线方程为__________.14.若满足约束条件 则的最大值为__________.15.已知,则__________. 16.已知圆锥的顶点为,母线,互相垂直,与圆锥底面所成角为,若的面积为,则该圆锥的体积为__________.三、解答题:共70分。
解答应写出文字说明、证明过程或演算步骤。
第17~21题为必考题,每个试题考生都必须作答。
第22、23为选考题。
考生根据要求作答。
(一)必考题:共60分。
1i i =+2i i =+3i i =+4i i =+1111ABCD A B C D -E 1CC AE CD ()cos sin f x x x =-[0,]a a π4π23π4π1F 2F C P C 12PF PF ⊥2160PF F ∠=︒C 1-21()f x (,)-∞+∞(1)(1)f x f x -=+(1)2f =(1)(2)(3)f f f ++(50)f ++=50-2ln y x =(1,0),x y 250,230,50,x y x y x +-⎧⎪-+⎨⎪-⎩≥≥≤z x y =+5π1tan()45α-=tan α=S SA SB SA 30︒SAB △8记为等差数列的前项和,已知,. (1)求的通项公式;(2)求,并求的最小值.18.(12分)下图是某地区2000年至2016年环境基础设施投资额(单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了与时间变量的两个线性回归模型.根据2000年至2016年的数据(时间变量的值依次为)建立模型①:;根据2010年至2016年的数据(时间变量的值依次为)建立模型②:. (1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;(2)你认为用哪个模型得到的预测值更可靠?并说明理由.19.(12分)如图,在三棱锥中,,,为的中点.(1)证明:平面;(2)若点在棱上,且,求点到平面的距离.20.(12分) 设抛物线的焦点为,过且斜率为的直线与交于,两点,. (1)求的方程;(2)求过点,且与的准线相切的圆的方程.n S {}n a n 17a =-315S =-{}n a n S n Sy y t t 1,2,,17ˆ30.413.5yt =-+t 1,2,,7ˆ9917.5yt =+P ABC-AB BC ==4PA PB PC AC ====OAC PO ⊥ABC M BC 2MC MB =C POM 24C y x =:F F (0)k k >l C A B ||8AB =l A B C已知函数.(1)若,求的单调区间;(2)证明:只有一个零点.(二)选考题:共10分。
请考生在第22、23题中任选一题作答。
如果多做,则按所做的第一题计分。
22.[选修4-4:坐标系与参数方程](10分)在直角坐标系中,曲线的参数方程为(为参数),直线的参数方程为(为参数). (1)求和的直角坐标方程;(2)若曲线截直线所得线段的中点坐标为,求的斜率.23.[选修4-5:不等式选讲](10分) 设函数.(1)当时,求不等式的解集; (2)若,求的取值范围.()()32113f x x a x x =-++3a =()f x ()f x xOy C 2cos ,4sin x θy θ=⎧⎨=⎩θl 1cos ,2sin x t αy t α=+⎧⎨=+⎩t C l C l (1,2)l ()5|||2|f x x a x =-+--1a =()0f x ≥()1f x ≤a绝密★启用前2018年普通高等学校招生全国统一考试(全国卷Ⅱ)文科 数学 参考答案一、选择题 1.D 2.C 3.B 4.B 5.D 6.A 7.A8.B9.C10.C11.D12.C二、填空题 13.y =2x –2 14.9 15.16.8π三、解答题 17.解:(1)设{a n }的公差为d ,由题意得3a 1+3d =–15. 由a 1=–7得d =2.所以{a n }的通项公式为a n =2n –9. (2)由(1)得S n =n 2–8n =(n –4)2–16. 所以当n =4时,S n 取得最小值,最小值为–16. 18.解:(1)利用模型①,该地区2018年的环境基础设施投资额的预测值为 =–30.4+13.5×19=226.1(亿元).利用模型②,该地区2018年的环境基础设施投资额的预测值为 =99+17.5×9=256.5(亿元).(2)利用模型②得到的预测值更可靠. 理由如下:(i )从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线y =–30.4+13.5t 上下,这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010年至2016年的数据建立的线性模型=99+17.5t 可以较好地描述2010年以后的环境基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠.(ii )从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型①得到的预测值226.1亿32y $y $y $元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理,说明利用模型②得到的预测值更可靠.以上给出了2种理由,考生答出其中任意一种或其他合理理由均可得分. 19.解:(1)因为AP =CP =AC =4,O 为AC 的中点,所以OP ⊥AC ,且OP =连结OB .因为AB =BC ,所以△ABC 为等腰直角三角形,且OB ⊥AC ,OB ==2.由知,OP ⊥OB . 由OP ⊥OB ,OP ⊥AC 知PO ⊥平面ABC .(2)作CH⊥OM ,垂足为H .又由(1)可得OP ⊥CH ,所以CH ⊥平面POM . 故CH 的长为点C 到平面POM 的距离. 由题设可知OC==2,CM =ACB =45°. 所以OM ,CH =.所以点C 到平面POM . 20.解:(1)由题意得F (1,0),l 的方程为y =k (x –1)(k >0). 设A (x 1,y 1),B (x 2,y 2).由得. ,故. 所以. 由题设知,解得k =–1(舍去),k =1. AC 12AC 222OP OB PB +=12AC 23BC sin OC MC ACB OM ⋅⋅∠2(1)4y k x y x=-⎧⎨=⎩2222(24)0k x k x k -++=216160k ∆=+=212224k x x k ++=212244(1)(1)k AB AF BF x x k +=+=+++=22448k k +=因此l的方程为y=x–1.(2)由(1)得AB的中点坐标为(3,2),所以AB的垂直平分线方程为,即.设所求圆的圆心坐标为(x0,y0),则解得或因此所求圆的方程为或.21.解:(1)当a=3时,f(x)=,f ′(x)=.令f ′(x)=0解得x=x=当x∈(–∞,+∞)时,f ′(x)>0;当x∈(f ′(x)<0.故f(x)在(–∞,+∞)单调递增,在((2)由于,所以等价于.设=,则g ′(x)=≥0,仅当x=0时g ′(x)=0,所以g(x)在(–∞,+∞)单调递增.故g(x)至多有一个零点,从而f(x)至多有一个零点.又f(3a–1)=,f(3a+1)=,故f(x)有一个零点.综上,f(x)只有一个零点.22.解:(1)曲线的直角坐标方程为.当时,的直角坐标方程为,当时,的直角坐标方程为.(2)将的参数方程代入的直角坐标方程,整理得关于的方程.①因为曲线截直线所得线段的中点在内,所以①有两个解,设为,,则.2(3)y x-=--5y x=-+0022005(1)(1)16.2y xy xx=-+⎧⎪⎨-++=+⎪⎩,32xy=⎧⎨=⎩,116.xy=⎧⎨=-⎩,22(3)(2)16x y-+-=22(11)(6)144x y-++=3213333x x x---263x x--3-3+3-3+3-3+3-3+3-3+210x x++>()0f x=32301xax x-=++()g x3231xax x-++2222(23)(1)x x xx x++++22111626()0366a a a-+-=---<13>C221416x y+=cos0α≠l tan2tany xαα=⋅+-cos0α=l1x=l C t22(13cos)4(2cos sin)80t tααα+++-=C l(1,2)C1t2t12t t+=又由①得,故,于是直线的斜率.23.解:(1)当时,可得的解集为. (2)等价于.而,且当时等号成立.故等价于. 由可得或,所以的取值范围是.1224(2cos sin )13cos t t ααα++=-+2cos sin 0αα+=l tan 2k α==-1a =24,1,()2,12,26, 2.x x f x x x x +≤-⎧⎪=-<≤⎨⎪-+>⎩()0f x ≥{|23}x x -≤≤()1f x ≤|||2|4x a x ++-≥|||2||2|x a x a ++-≥+2x =()1f x ≤|2|4a +≥|2|4a +≥6a ≤-2a ≥a (,6][2,)-∞-+∞。