2013年长沙某名校理科实验班入学考试数学密卷及答案

合集下载

湖南省长沙市长郡中学理实班自主招生考试数学试卷

湖南省长沙市长郡中学理实班自主招生考试数学试卷

2013 年湖南省长沙市长郡中学理实班自主招生考试数学试卷(一)一、选择题(每题6 分,共36 分)1.( 6 分)( 2003?福州)不等式组:的解集是()A . x >﹣ 3B . x ≥2C .﹣ 3< x ≤ 2D .x <﹣ 32.( 6 分)( 2013?天心区校级自主招生) 如图,AC = CD = DA = BC =DE ,则∠ BAE 是∠ B 的(倍.)A . 6B . 4C . 3D .23.( 6 分)( 2013? 天心区校级自主招生)如果 x 取任何实数时,函数 y = ax 2+bx +c 都不能取 正值,则必有( )A . >0 且△≥ 0B . <0 且△≤ 0C . <0 且△≥ 0D . >0 且△≤ 0 a aaa4.( 6 分)( 2013? 天心区校级自主招生)如图,将矩形沿折叠,使点B 落在直角ABCD AE梯形 AECD 中位线 FG 上,且 AB =,则 AE 的长为()A .2B .3C .2D .5.( 6 分)( 2013? 天心区校级自主招生)在平面上具有整数坐标的点称为整点,若有一线段的端点分别为(2, 11),( 11, 14),则在此线段上(包括端点)的整点共有()A .4个B .5个C .6 个D .8 个6.(6 分)( 2013?天心区校级自主招生)设a ,b ,c 是不全相等的任意实数,若x = a 2﹣ bc ,y = b 2﹣ ca ,z = c 2﹣ ab ,则x , y , z 中()A .都不小于B .都不大于C .至少有一个小于D .至少有一个大于二、填空题(每题 5 分,共 30 分)7.( 5 分)( 2013? 天心区校级自主招生)等腰三角形 ABC 的底边 BC = 10cm ,∠ A = 120°,则△的外接圆半径为.ABC cm8.( 5 分)(2006? 安徽)如图,AB 是半圆 O 的直径,∠ = 30°,BC 为半圆的切线,且BACBC = ,则圆心 O 到 AC 的距离是.9.( 5分)( 2006?防城港)如图,有反比例函数y =,y =﹣的图象和一个以原点为圆心, 2 为半径的圆,则S 阴影=.10.( 5 分)(2013? 天心区校级自主招生)如图,△中,∠ A 的平分线交于 , =ABCBCD AB+ ,∠ = 80°,那么∠B 的度数是.ACCD C11.( 5分)(2013?天心区校级自主招生)如图,已知梯形ABCD 的面积为S , AD ∥ BC , BC= b ,AD = a ( a < b ),对角线AC 与 BD 交于点O .若△ COD 的面积为S ,则=.12.( 5 分)( 2013? 天心区校级自主招生)一堆有红,白两种颜色的球各若干个,已知白球的个数比红球少,但白球个数的2 倍比红球多,若把每个白球都记作“2”,每一个红球都记作“ 3”,则总数为 60,那么,白球有个,红球有个.三、解答题(本大题共 3 题,13、14 题 11 分,15 题 12 分,共 34 分)13.( 11 分)( 2013? 天心区校级自主招生)在正实数范围内,只存在一个数是关于x 的方程的解,求实数k 的取值范围.14.( 11 分)( 2013? 天心区校级自主招生)预计用1500 元购买甲商品x 个,乙商品y 个,不料甲商品每个涨价元,乙商品每个涨价 1 元,尽管购买甲商品的个数比预定数减少10 个,总金额仍多用29 元.又若甲商品每个只涨价 1 元,并且购买甲商品的数量只比预定数少 5 个,那么甲、乙两商品支付的总金额是元.( 1)求x、y的关系式;( 2)若预计购买甲商品的个数的 2 倍与预计购买乙商品的个数的和大于205,但小于210,求 x、y 的值.15.( 12 分)( 2008? 十堰)已知抛物线y=﹣ ax2+2ax+b 与x 轴的一个交点为A(﹣1,0),与 y 轴的正半轴交于点C.( 1)直接写出抛物线的对称轴,及抛物线与x 轴的另一个交点B的坐标;(2)当点C在以AB为直径的⊙P上时,求抛物线的解析式;(3)坐标平面内是否存在点M,使得以点M和( 2)中抛物线上的三点A、B、C为顶点的四边形是平行四边形?若存在,请求出点M的坐标;若不存在,请说明理由.2013 年湖南省长沙市长郡中学理实班自主招生考试数学试卷(一)参考答案与试题解析一、选择题(每题6 分,共36 分)1.( 6 分)( 2003?福州)不等式组:的解集是()A . x >﹣ 3B . x ≥2C .﹣ 3< x ≤ 2D .x <﹣ 3【考点】 CB :解一元一次不等式组.【分析】 先求出两个不等式的解集,再求其公共解.【解答】 解:由①得: x ≥2.由②得: x >﹣ 3.∴不等式组的解集为: x ≥ 2.故选 B .【点评】 求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找 不到.2.( 6 分)( 2013?天心区校级自主招生) 如图, = ===,则∠是∠ B 的()AC CD DA BC DEBAE倍.A . 6B . 4C .3D .2【考点】 KH :等腰三角形的性质.【分析】 由 AC = CD = DA = BC = DE ,可得△ ACD 是等边三角形,即∠ ACD =∠ ADC =∠ CAD =60°,∠ B =∠ BAC ,∠ E =∠ DAE ,又由三角形外角的性质,∠ 得答案.【解答】 解:∵ AC = CD =DA = BC =DE ,B 与∠ BAE 的度数,继而求∴△ ACD 是等边三角形,∴∠ ACD =∠ ADC =∠ CAD =60°,∠ B =∠ BAC ,∠ E =∠ DAE ,∵∠ ACD =∠ B +∠ BAC ,∠ ADC =∠ E +∠ DAE ,∴∠ B =∠ BAC =∠ DAE =∠ E = 30°,∴∠ BAE =∠ BAC +∠ CAD +∠DAE = 120°,∴∠ BAE = 4∠ B .故选: B .【点评】 此题考查了等腰三角形的性质、等边三角形的性质以及三角形外角的性质.此题难度不大,注意掌握数形结合思想的应用.3.( 6 分)( 2013? 天心区校级自主招生)如果x 取任何实数时,函数 y =2+ + 都不能取ax bx c正值,则必有( )A . a >0 且△≥ 0B . a <0 且△≤ 0C . a < 0 且△≥ 0D .a > 0 且△≤ 0【考点】 HA :抛物线与 x 轴的交点.【分析】 根据二次函数的性质可知,只要抛物线开口向下,且与 x 轴无交点即可.【解答】 解:欲保证 x 取一切实数时,函数值 y 恒为非负数,则必须保证抛物线开口向下,且与 x 轴只有一个交点,或者无交点; 则 a <0 且 b 2﹣ 4ac ≤0, 故选: .B【点评】 本题考查了抛物线与 x 轴的交点.①当 x 取一切实数时,函数值 y 恒为正的条件:抛物线开口向上,且与 x 轴无交点;②当 x 取一切实数时,函数值y 恒为负的条件:抛物线开口向下,且与 x 轴无交点.4.( 6 分)( 2013? 天心区校级自主招生)如图,将矩形 ABCD 沿 AE 折叠,使点 B 落在直角梯形中位线 上,且 = ,则的长为()AECD FGABAEA . 2B . 3C . 2D .【考点】LB :矩形的性质;LI :直角梯形;LL :梯形中位线定理;PB :翻折变换(折叠问题).【分析】 由题意可知∠ BEF =∠ FEB ′=∠ EFB ′,推出 EB ′= EF = AF = FB ′,即∠ AEB ′= 60°,通过解直角三角形,即可推出AE 的长度.【解答】 解:∵ FG 是直角梯形 AECD 的中位线,∠ B =∠ AB ′ E =90°,∴ FG ∥BC ∥ AD ,∴∠ BEF =∠ FEB ′=∠ EFB ′,∴EB′= EF= AF= FB′,∴∠ AEB′=60°,∵ AB=AB′=,∴AE==.故选: D.【点评】本题主要考查翻折变换的性质、解直角三角形、等边三角形的性质,解题的关键在于证出等边三角形,再解直角三角形即可.5.( 6 分)( 2013? 天心区校级自主招生)在平面上具有整数坐标的点称为整点,若有一线段的端点分别为(2, 11),( 11, 14),则在此线段上(包括端点)的整点共有()A.4个B.5个C.6 个D.8 个【考点】 D5:坐标与图形性质.【分析】根据题意,设经过点(2,11)、(11,14)的直线方程y= ax+b( a≠0),利用待定系数法求得该直线方程,然后在此线段上(包括端点)寻找整点.【解答】解:设经过点(2, 11)、( 11, 14)的直线方程y= ax+b( a≠0),则,解得,,∴所求的线段所在的直线方程为y=x+;①当 y=12时, x=5,即整点(5,12)在该线段上;②当 y=13时, x=8,即整点(8,13)在该线段上;又∵端点( 2, 11)、( 11,14)也是整点,∴在此线段上(包括端点)的整点共有 4 个,故选: A.【点评】本题考查了坐标与图形性质.解得该题的关键是求得此线段所在的直线的方程,根据该直线方程取y 的整数值.6.(6 分)( 2013? 天心区校级自主招生)设a,b,c 是不全相等的任意实数,若x= a2﹣ bc,y= b2﹣ ca,z= c2﹣ ab,则x, y, z 中()A.都不小于0 B.都不大于0C.至少有一个小于0 D.至少有一个大于0【考点】1F:非负数的性质:偶次方.【分析】由题意 x= a2﹣ bc,y= b2﹣ ca, z=c2﹣ab,将 x, y, z 相加,然后根据完全平方式的性质,进行求解;【解答】解:∵ x= a2﹣ bc, y= b2﹣ ca, z= c2﹣ ab,∴2(x+y+z)= 2a2﹣ 2bc+2b2﹣ 2ca+2c2﹣ 2ab=(a2﹣ 2ab+b2)+(b2﹣ 2bc+c2)+(a2﹣ 2ca+c2)=( a﹣ b)2+( b﹣ c)2+(c﹣ a)2>0,∴x+y+z>0,故 x, y, z 至少有一个大于0,故选: D.【点评】此题主要考查非负数的性质,即非负数大于等于0,比较简单.二、填空题(每题 5 分,共30 分)7.( 5 分)( 2013? 天心区校级自主招生)等腰三角形ABC的底边BC=10cm,∠ A=120°,则△ ABC的外接圆半径为cm.【考点】KH:等腰三角形的性质;KO:含30 度角的直角三角形;KQ:勾股定理;M2:垂径定理.【分析】连接OA交BC于D,根据三线合一定理得出BD= DC,∠ OAC=∠ BAC,得出等边三角形 OAC,推出∠ AOC=60°,在△ ODC中根据勾股定理求出即可.【解答】解:连接 OA交 BC于 D,∵O是等腰三角形 ABC的外心, AB=AC,∴∠ AOC=∠ BOA,∵OB=OC,∴BD=DC, OA⊥BC,∴由垂径定理得: BD= DC=5cm,∠ OAC=∠ BAC=×120°=60°,∵OA=OC,∴△ AOC是等边三角形,∴∠ DCO=90°﹣60°=30°∴OC=2OD,设 OD=a, OC=2a,由勾股定理得:a2+52=(2a)2,a=,OC=2a=(cm).故答案是:.【点评】本题考查了等腰三角形的性质,三角形的外接圆和外心,勾股定理,等边三角形的性质和判定等知识点,此题有一定的难度,注意:此等腰三角形的外心在三角形外部.8.( 5 分)(2006? 安徽)如图,AB是半圆O的直径,∠BAC= 30°,BC为半圆的切线,且BC=,则圆心O到 AC的距离是3.【考点】 KO:含 30 度角的直角三角形;KQ:勾股定理; M2:垂径定理; MC:切线的性质.【分析】首先过 O作 AC的垂线段,再利用三角形相似就可以求出O到 AC的距离.【解答】解:∵ BC是⊙ O的切线,∴∠ ABC=90°,∵OD⊥AC,∴∠ ADO=90°,∠ A公共,∴△ ABC∽△ ADO,∴,即 OD=;在△ ABC中,∴ AC =2BC = 8 ,AB == 12,∴ OA =6= BO ,∴OD =.【点评】 主要利用了相似三角形的对应线段成比例.9.( 5分)( 2006?防城港)如图,有反比例函数y =,y =﹣的图象和一个以原点为圆心, 2 为半径的圆,则S 阴影=2π.【考点】 G3:反比例函数图象的对称性. 【专题】 11:计算题; 16:压轴题.【分析】 由反比例函数的对称性可得,图中的阴影部分正好为两个四分之一圆,即为一 个半圆的面积.【解答】 解:由反比例函数的对称性知 S 阴影 = π× 22= 2π.故答案为: 2π.【点评】 解决本题的关键是利用反比例函数的对称性得到阴影部分与圆之间的关系.10.( 5 分)(2013? 天心区校级自主招生)如图,△中,∠ A 的平分线交于 , =ABCBC D AB+ ,∠ = 80°,那么∠B 的度数是40° .ACCD C【考点】 KD :全等三角形的判定与性质.【专题】 11:计算题.【分析】 在 AB 上截取 AE = AC ,先根据角平分线的定义得∠ BAD =∠ CAD ,再根据“ SAS ”可判断△ AED≌△ ACD,则 ED= CD,∠ AED=∠ C=80°,由于 AB=AC+CD得到 EB= CD=ED,即△ EBD为等腰三角形,所以∠AED=∠ B+∠ EDB,于是∠ B=∠ AED=40°.【解答】解:在 AB上截取 AE= AC,如图,∵AD平分∠BAC,∴∠ BAD=∠ CAD,∵在△ AED和△ ACD中,∴△ AED≌△ ACD( SAS),∴ED=CD,∠ AED=∠ C=80°,∵ AB=AC+CD,∴EB=CD= ED,∴∠ B=∠ EDB,∵∠ AED=∠ B+∠ EDB,∴∠ B=∠ AED=40°.故答案为40°.【点评】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“ SSS”、“SAS”、“ ASA”、“ AAS”;全等三角形的对应边相等,对应角相等.也考查了等腰三角形的性质.11.( 5 分)(2013? 天心区校级自主招生)如图,已知梯形ABCD的面积为S, AD∥ BC, BC= b, AD= a( a< b),对角线AC与 BD交于点O.若△ COD的面积为S,则=.【考点】 LH:梯形; S9:相似三角形的判定与性质.【分析】依据题意可先作出简单的图形,可设S△AOD的面积为 S1,S△COB的面积为 S2,由题中条件建立关于S1? S2的方程,解方程得出S1? S2之间的关系,进而可求解a、 b 之间的关系.【解答】解:如图,设 S△AOD的面积为 S1, S△COB的面积为 S2,由 S 四边形ABCD= S,∵ AB∥CD,∴ S△ABC= S△DBC,∴S△ABC﹣ S△BOC= S△BCD﹣S△COB,∴S△AOB= S△DOC= S,得 S1+S2=S﹣2× S= S,①∵==,2∴ S1? S2= S△DOC? S△AOB=S ,②联立①、②,∵△ AOD∽△ COB,∴=,③∵ a< b,∴ S1< S2,解方程组得S1=S, S2=S,代入③得=.故答案为.【点评】本题主要考查了梯形的性质以及相似三角形的判定及性质以及面积的问题,能够通过方程的思想建立等式,进而求解结论.12.( 5 分)( 2013? 天心区校级自主招生)一堆有红,白两种颜色的球各若干个,已知白球的个数比红球少,但白球个数的 2 倍比红球多,若把每个白球都记作“2”,每一个红球都记作“ 3”,则总数为 60,那么,白球有9 个,红球有14 个.【考点】 CE:一元一次不等式组的应用.【分析】设有白球x 个,有红球y个,根据条件就有x<, 2x>, 2x+3 = 60,从而构y y y成一个不等式组,求出其解即可.【解答】解:设有白球x 个,有红球y 个,由题意,得,由③,得x=④,把④代入①,得y>12.把④代入②,得y<15.∵ x、y 为整数,y=13,14,当 y=13时, x=舍去,当 y=14时, x=9,∴白球 9 个,红球 14 个故答案为: 9, 14.【点评】本题考查了列一元一次不等式组解实际问题的运用,一元一次不等式组的解法的运用,解答本题时根据条件建立不等式是解答本题的关键.三、解答题(本大题共 3 题,13、14 题 11 分,15 题 12 分,共 34 分)13.( 11 分)( 2013? 天心区校级自主招生)在正实数范围内,只存在一个数是关于x 的方程的解,求实数k 的取值范围.【考点】 AA:根的判别式;AB:根与系数的关系;B3:解分式方程.【专题】 32:分类讨论.【分析】 先把原方程化为 2x 2﹣3x ﹣( k +3)= 0,一定是一个一元二次方程,在正实数范围内,只存在一个数是关于x 的方程的解,因而可能方程有两个相同的实根,求得即可进行判断;或解方程得到的两个根中有一个是方程的增根,即 x = 1是方程 2 2﹣ 3 ﹣(+3)x x k= 0 的解,即可求得方程的另一解, 然后进行判断; 或方程有两个异号得实数根; 或其中一根是 0,即可求得方程的另一根,进行判断.因而这个方程中再分四种情况讨论:( 1)当△= 0 时;( 2)若 x = 1 是方程①的根;( 3)当方程①有异号实根时;( 4)当方程①有一个根为 0 时,最后结合题意总结结果即可.【解答】 解:原方程可化为 2x 2﹣ 3x ﹣( k +3)= 0,① ( 1)当△= 0 时,,满足条件;2﹣ 3× 1﹣( k +3)= 0, k =﹣ 4;( 2)若 x = 1 是方程①的根,得 2×1此时方程①的另一个根为,故原方程也只有一根;( 3)当方程①有异号实根时,且 ≠1即k ≠﹣ 4,得 k >﹣ 3,此时原x方程也只有一个正实数根;( 4)当方程①有一个根为 0 时, k =﹣ 3,另一个根为 ,此时原方程也只有一个正实根.综上所述,满足条件的k 的取值范围是 或 k =﹣ 4 或 k ≥﹣ 3.【点评】 主要考查了方程解的定义和分式的运算,此类题型的特点要分情况讨论.14.( 11 分)( 2013? 天心区校级自主招生)预计用 1500 元购买甲商品 x 个,乙商品 y 个,不料甲商品每个涨价元,乙商品每个涨价1 元,尽管购买甲商品的个数比预定数减少10个,总金额仍多用 29 元.又若甲商品每个只涨价1 元,并且购买甲商品的数量只比预定数少 5 个,那么甲、乙两商品支付的总金额是元.( 1)求 x 、 y 的关系式;( 2)若预计购买甲商品的个数的 2 倍与预计购买乙商品的个数的和大于 205,但小于 210,求x 、y 的值.【考点】 CE :一元一次不等式组的应用.【分析】( 1)设出必需的未知量,找出等量关系为:甲原单价×甲原数量+乙原单价×乙原数量= 1500,(甲原单价 +)×(甲原数量﹣ 10) +(乙原单价 +1)×乙原数量= 1529;(甲原单价 +1)×(甲原数量﹣ 5) +(乙原单价 +1)×乙原数量=.( 2)结合(1)得到的式子,还有205< 2 倍甲总价+乙总价<210,求出整数解.【解答】 解:( 1)设预计购买甲、乙商品的单价分别为a元和b 元,则原计划是ax +by= 1500,①由甲商品单价上涨元、乙商品单价上涨1 元,并且甲商品减少10 个的情形,得(a +)( x﹣ 10)+( b +1)y = 1529 .②再由甲商品单价上涨1 元,而数量比预计数少5 个,乙商品单价上涨仍是 1 元的情形,得( a +1)( x ﹣ 5)+( b +1) y =,③由①、②、③得④⑤④﹣⑤× 2 并化简,得 x +2y = 186.( 2)依题意,有 205< 2x +y < 210 及 x +2y =186, 54< y <由 y 是整数,得 y = 55,从而得 x = 76.答:( 1) x 、 y 的关系 x +2y = 186;( 2)x 值为 76, y 值为 55.【点评】 解决本题的关键是读懂题意,找到合适的关系式.当必需的量没有时,应设出未知数,在做题过程中消去无关的量.15.( 12 分)( 2008? 十堰)已知抛物线 y =﹣2+2 + 与 x 轴的一个交点为(﹣ 1, 0),ax ax b A与 y 轴的正半轴交于点C .( 1)直接写出抛物线的对称轴,及抛物线与x 轴的另一个交点 B 的坐标;( 2)当点 C 在以 AB 为直径的⊙ P 上时,求抛物线的解析式;( 3)坐标平面内是否存在点 M ,使得以点 M 和( 2)中抛物线上的三点 A 、B 、C 为顶点的四边形是平行四边形?若存在,请求出点M 的坐标;若不存在,请说明理由.【考点】 HF :二次函数综合题. 【专题】 16:压轴题.【分析】( 1)抛物线 y =﹣ ax 2 +2ax +b 的对称轴,可以根据公式直接求出,抛物线与 x 轴的另一交点与 A 关于对称轴对称,因而交点就可以求出.( 2) AB 的长度可以求出,连接 PC ,在直角三角形 OCP 中,根据勾股定理就可以求出 C点的坐标,把这点的坐标代入抛物线的解析式,就可以求出解析式.( 3)本题应分或 为对角线和以AB 为对角线三种情况进行讨论,当以 或 为ACBCAC BC 对角线时,点在x 轴上方,此时∥ ,且 = .就可以求出点的坐标.当以ABMCM AB CM AB M 为对角线时,点 M 在 x 轴下方易证△ AOC ≌△ BNM ,可以求出点 M 的坐标.【解答】 解:( 1)对称轴是直线: x = 1,点 B 的坐标是( 3, 0).( 2 分)说明:每写对 1 个给( 1 分),“直线”两字没写不扣分.( 2)如图,连接 PC ,∵点 A 、 B 的坐标分别是 A (﹣ 1,0)、 B ( 3, 0),∴ AB =4.∴ PC = AB = × 4= 2在 Rt △POC 中,∵ OP =PA ﹣ OA =2﹣ 1= 1,∴ OC = ,∴ b =(3 分)当 x =﹣ 1, y = 0 时,﹣ a ﹣ 2a + = 0∴ a =( 4 分)∴ y=﹣x2+x+.(5分)( 3)存在.( 6 分)理由:如图,连接AC、 BC.设点 M的坐标为 M( x, y).①当以 AC或 BC为对角线时,点M在x 轴上方,此时CM∥ AB,且CM= AB.由( 2)知,AB=4,∴ | x|=4, y= OC=.∴ x=±4.∴点M的坐标为M(4,)或(﹣4,).( 9 分)说明:少求一个点的坐标扣( 1 分).②当以AB为对角线时,点M在x 轴下方.过 M作 MN⊥ AB于 N,则∠ MNB=∠ AOC=90度.∵四边形 AMBC是平行四边形,∴ AC=MB,且 AC∥ MB.∴∠ CAO=∠ MBN.∴△ AOC≌△ BNM.∴BN=AO=1, MN= CO=.∵ OB=3,∴0N=3﹣ 1= 2.∴点 M的坐标为 M(2,﹣).(12 分)综上所述,坐标平面内存在点M,使得以点A、 B、 C、M为顶点的四边形是平行四边形.其坐标为 M1(4,),M2(﹣4,),M3(2,﹣).说明:①综上所述不写不扣分;②如果开头“存在”二字没写,但最后解答全部正确,不扣分【点评】本题主要考查了抛物线的轴对称性,是与勾股定理相结合的题目.难度较大.考点卡片1.非负数的性质:偶次方偶次方具有非负性.任意一个数的偶次方都是非负数,当几个数或式的偶次方相加和为0 时,则其中的每一项都必须等于0.2.根的判别式利用一元二次方程根的判别式(△=b2﹣4ac)判断方程的根的情况.一元二次方程2 2ax +bx+c=0( a≠0)的根与△= b ﹣4ac 有如下关系:①当△> 0 时,方程有两个不相等的两个实数根;②当△= 0 时,方程有两个相等的两个实数根;③当△< 0 时,方程无实数根.上面的结论反过来也成立.3.根与系数的关系(1)若二次项系数为1,常用以下关系:2的两根时, x1+x2=﹣ p,x1, x2是方程 x +px+q=0x1x2= q,反过来可得p=﹣( x1+x2),q= x1x2,前者是已知系数确定根的相关问题,后者是已知两根确定方程中未知系数.(2)若二次项系数不为1,则常用以下关系:x1, x2是一元二次方程ax2 +bx+c= 0(a≠ 0)的两根时,x1+x2=, x1 x2=,反过来也成立,即=﹣( x1+x2),= x1x2.(3)常用根与系数的关系解决以下问题:①不解方程,判断两个数是不是一元二次方程的两个根.②已知方程及方程的一个根,求另一个根及未知数.③不解方程求关于根的式子的值,2 2如求,x1+x2等等.④判断两根的符号.⑤求作新方程.⑥由给出的两根满足的条件,确定字母的取值.这类问题比较综合,解题时除了利用根与系数的关系,同时还要考虑a≠0,△≥0 这两个前提条件.4.解分式方程(1)解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.(2)解分式方程时,去分母后所得整式方程的解有可能使原方程中的分母为0,所以应如下检验:①将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解.②将整式方程的解代入最简公分母,如果最简公分母的值为0,则整式方程的解不是原分式方程的解.所以解分式方程时,一定要检验.5.解一元一次不等式组(1)一元一次不等式组的解集:几个一元一次不等式的解集的公共部分,叫做由它们所组成的不等式组的解集.(2)解不等式组:求不等式组的解集的过程叫解不等式组.(3)一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.方法与步骤:①求不等式组中每个不等式的解集;②利用数轴求公共部分.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.6.一元一次不等式组的应用对具有多种不等关系的问题,考虑列一元一次不等式组,并求解.一元一次不等式组的应用主要是列一元一次不等式组解应用题,其一般步骤:(1)分析题意,找出不等关系;(2)设未知数,列出不等式组;(3)解不等式组;(4)从不等式组解集中找出符合题意的答案;(5)作答.7.坐标与图形性质1、点到坐标轴的距离与这个点的坐标是有区别的,表现在两个方面:①到x 轴的距离与纵坐标有关,到 y 轴的距离与横坐标有关;②距离都是非负数,而坐标可以是负数,在由距离求坐标时,需要加上恰当的符号.2、有图形中一些点的坐标求面积时,过已知点向坐标轴作垂线,然后求出相关的线段长,是解决这类问题的基本方法和规律.3、若坐标系内的四边形是非规则四边形,通常用平行于坐标轴的辅助线用“割、补”法去解决问题.8.反比例函数图象的对称性反比例函数图象的对称性:反比例函数图象既是轴对称图形又是中心对称图形, 对称轴分别是: ①二、 四象限的角平分线 =﹣ ;②一、三象限的角平分线= ;对称中心是:坐标原点.YXY X9.抛物线与 x 轴的交点求二次函数 y =2+ +(,, 是常数, ≠ 0)与x轴的交点坐标, 令 = 0,即2+ +ax bx c a b ca yax bx c=0,解关于 x 的一元二次方程即可求得交点横坐标.(1)二次函数 22y = ax +bx +c ( a , b ,c 是常数, a ≠ 0)的交点与一元二次方程 ax +bx +c = 0 根之间的关系.△= b 2﹣ 4ac 决定抛物线与 x 轴的交点个数. △= b 2﹣ 4ac > 0 时,抛物线与 x 轴有 2 个交点; △= b 2﹣ 4ac = 0 时,抛物线与 x 轴有 1 个交点; △= b 2﹣ 4ac < 0 时,抛物线与 x 轴没有交点.(2)二次函数的交点式:y =a ( x ﹣ x 1)( x ﹣ x 2)( a , b , c 是常数, a ≠ 0),可直接得到抛物线与 x 轴的交点坐标( x 1, 0),(x 2 ,0).10.二次函数综合题(1)二次函数图象与其他函数图象相结合问题解决此类问题时, 先根据给定的函数或函数图象判断出系数的符号,然后判断新的函数关系式中系数的符号, 再根据系数与图象的位置关系判断出图象特征, 则符合所有特征的图象即为正确选项.(2)二次函数与方程、几何知识的综合应用将函数知识与方程、 几何知识有机地结合在一起.这类试题一般难度较大. 解这类问题关键是善于将函数问题转化为方程问题, 善于利用几何图形的有关性质、定理和二次函数的知识,并注意挖掘题目中的一些隐含条件.(3)二次函数在实际生活中的应用题从实际问题中分析变量之间的关系,建立二次函数模型.关键在于观察、分析、创建,建立直角坐标系下的二次函数图象, 然后数形结合解决问题, 需要我们注意的是自变量及函数的取值范围要使实际问题有意义.11.全等三角形的判定与性质( 1)全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.( 2)在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.12.等腰三角形的性质(1)等腰三角形的概念有两条边相等的三角形叫做等腰三角形.(2)等腰三角形的性质①等腰三角形的两腰相等②等腰三角形的两个底角相等.【简称:等边对等角】③等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.【三线合一】(3)在①等腰;②底边上的高;③底边上的中线;④顶角平分线.以上四个元素中,从中任意取出两个元素当成条件,就可以得到另外两个元素为结论.13.含 30 度角的直角三角形(1)含 30 度角的直角三角形的性质:在直角三角形中, 30°角所对的直角边等于斜边的一半.(2)此结论是由等边三角形的性质推出,体现了直角三角形的性质,它在解直角三角形的相关问题中常用来求边的长度和角的度数.(3)注意:①该性质是直角三角形中含有特殊度数的角(30°)的特殊定理,非直角三角形或一般直角三角形不能应用;②应用时,要注意找准30°的角所对的直角边,点明斜边.14.勾股定理(1)勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.如果直角三角形的两条直角边长分别是a, b,斜边长为c,那么 a2+b2= c2.(2)勾股定理应用的前提条件是在直角三角形中.(3)勾股定理公式a2+b2= c2的变形有: a=,b=及c=.(4)由于a2 +b2=c2>a2,所以c>a,同理c>b,即直角三角形的斜边大于该直角三角形中的每一条直角边.15.矩形的性质(1)矩形的定义:有一个角是直角的平行四边形是矩形.(2)矩形的性质①平行四边形的性质矩形都具有;②角:矩形的四个角都是直角;③边:邻边垂直;④对角线:矩形的对角线相等;⑤矩形是轴对称图形,又是中心对称图形.它有2条对称轴,分别是每组对边中点连线所在的直线;对称中心是两条对角线的交点.(3)由矩形的性质,可以得到直角三角形的一个重要性质,直角三角形斜边上的中线等于斜边的一半.16.梯形(1)梯形的定义:一组对边平行,另一组对边不平行的四边形叫做梯形.梯形中平行的两边叫梯形的底,其中较短的底叫上底,不平行的两边叫梯形的腰,两底的距离叫梯形的高.(2)等腰梯形:两腰相等的梯形叫做等腰梯形.(3)直角梯形:有一个角是直角的梯形叫做直角梯形.17.直角梯形直角梯形:有一个角是直角的梯形叫做直角梯形.边:有一条腰与底边垂直,另一条腰不垂直.角:有两个内角是直角.过不是直角的一个顶点作梯形的高,则把直角梯形分割成一个矩形和直角三角形.这是常用的一种作辅助线的方法.18.梯形中位线定理(1)中位线定义:连接梯形两腰中点的线段叫做梯形的中位线.(2)梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半.(3)梯形面积与中位线的关系:梯形中位线的 2 倍乘高再除以 2 就等于梯形的面积,即梯形的面积=×2×中位线的长×高=中位线的长×高(4)中位线在关于梯形的各种题型中都是一条得天独厚的辅助线.19.垂径定理(1)垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.(2)垂径定理的推论推论 1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.推论 2:弦的垂直平分线经过圆心,并且平分弦所对的两条弧.推论 3:平分弦所对一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.20.切线的性质(1)切线的性质①圆的切线垂直于经过切点的半径.②经过圆心且垂直于切线的直线必经过切点.③经过切点且垂直于切线的直线必经过圆心.(2)切线的性质可总结如下:如果一条直线符合下列三个条件中的任意两个,那么它一定满足第三个条件,这三个条件是:①直线过圆心;②直线过切点;③直线与圆的切线垂直.(3)切线性质的运用由定理可知,若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.简记作:见切点,连半径,见垂直.21.翻折变换(折叠问题)1、翻折变换(折叠问题)实质上就是轴对称变换.2、折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.3、在解决实际问题时,对于折叠较为复杂的问题可以实际操作图形的折叠,这样便于找到图形间的关系.。

2013年湖南高考理科数学试题及答案(word版)

2013年湖南高考理科数学试题及答案(word版)

绝密★启用前2013年普通高等学校招生全国统一考试(湖南卷)数学(理工农医类)本试卷包括选择题、填空题和解答题三部分,共5页,时量120分钟,满分150分 一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 复数)i 1(i z +⋅=(i 为虚数单位)在复平面上对应的点位于 【 B 】 A .第一象限 B .第二象限 C .第三象限 D .第四象限2. 某学校有男、女学生各500名.为了解男女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是 【 D 】 A .抽签法 B .随机数法 C .系统抽样法 D .分层抽样法3. 在锐角中ABC ∆,角A, B 所对的边长分别为,a b . 若b 3B sin a 2=,则角A 等于 A .12π B .6π C .4π D .3π【 D 】 4. 若变量,x y 满足约束条件211y xx y y ≤⎧⎪+≤⎨⎪≥-⎩,则y 2x +的最大值是 【 C 】A .5-2B .0C .53D .525. 函数()2ln f x x =的图像与函数()245g x x x =-+的图像的交点个数为 【 B 】 A .3 B .2 C .1 D .06. 已知b ,a 是单位向量,0b a =⋅. 若向量c 满足1|b a c |=--,则|c |的取值范围是 A .]12,12[+- B .]22,12[+-C .]12,1[+ D . ]22,1[+ 【 A 】7.已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能...等于 A .1 BC.2 D.2【 C 】 8. 在等腰直角三角形ABC 中,=4AB AC =,点P 是边AB 上异于,A B 的一点,光线从点P 出发,经,BC CA 发射后又回到原点P (如图1).若光线QR 经过ABC ∆的重心,则AP 等于A .2B .1C .83D .43【 D 】二、填空题:本大题共8小题,考生作答7小题,每小题5分,共35分.(一)选做题(请考生在第9、10、11三题中任选两题作答,如果全做,则按前两题计分) 9. 在平面直角坐标系xoy 中,若直线⎩⎨⎧-==a t y ,t x :l (t 为参数) 过椭圆⎩⎨⎧ϕ=ϕ=sin 2y cos 3x :C (ϕ为参数) 的右顶点,则常数a 的值为 . 答案: 310. 已知R c ,b ,a ∈,6c 3b 2a =++,则222c 9b 4a ++的最小值为 . 答案: 1211. 如图2O 中, 弦AB, CD 相交于点 P ,2PB PA ==,1PD =,则圆心O 到弦CD 的距 离为 . 答案: 23(二) 必做题(12-16题) 12. 若9dx x T2=⎰,则常数T 的值为 . 答案: 313. 执行如图3所示的程序框图,如果输入2b ,1a ==,则输出的a 的值为 .答案: 914.设12,F F 是双曲线2222:1(0,0)x y C a b a b-=>>的两个焦点,P 是C 上一点,若a 6|PF ||PF |21=+,且12PF F ∆的最小内角为30,则C 的离心率为 .答案:315.设n S 为数列{}n a 的前n 项和,1(1),,2nn n n S a n N *=--∈则 (1)3a =_____;(2)12100S S S ++⋅⋅⋅+=___________. 答案: (1) 161-; (2) )121(31100-16.设函数(),0,0.x x x f x a b c c a c b =+->>>>其中(1)记集合c ,b ,a |)c ,b ,a {(M =不能构成三角形的三条边长,且}b a =,则(,,)abcM ∈所对应的()f x 的零点的取值集合为______________.(2)若c ,b ,a 是ABC ∆的三条边长,则下列结论正确的是 .(写出所有正确结论的序号)① ()(),1,0;x f x ∀∈-∞>② R x ∈∃,使x x x c ,b ,a 不能构成一个三角形的三条边长; ③ 若ABC ∆为钝角三角形,则)2,1(x ∈∃使0)x (f =. 答案:(1) }1x 0|x {≤< (2)① ② ③三、解答题:本大题共6小题,共75分。

2013学年湖南高考理科数学年卷答案

2013学年湖南高考理科数学年卷答案
x 1 【提示】根据分式有意义的条件是分母不等于零,可得出 x 的取值范围. 【考点】分式有意义的条件. 4.【答案】D 【解析】解:∵ B C ,∴ AB AC 5 ,故选 D. 【提示】根据等腰三角形的性质可得 AB AC ,继而得出 AC 的长. 【考点】等腰三角形的性质. 5.【答案】B 【解析】解:A. 1 (3) 1 ,运算错误,故本选项错误;
3x

6
,解得:
x

2
,将
x

2
代入①可得:
y

1

故方程组的解为
x

y

2 1

【提示】(1)分别进行平方,绝对值,二次根式的化简,然后代入特殊角的三角函数值,继而合并可得出答 案. (2)①+②可得出 x 的值,将 x 的值代入①可得 y 的值,继而得出方程组的解. 【考点】解二元一次方程组,实数的运算,特殊角的三角函数值.
6 / 16
11 个,7 个偶数,4 个奇数,所以, P (抽到偶数) 7 . 11
【提示】先确定出所有大于 0 且小于 100 的“本位数”,再根据概率公式计算即可得解.
【考点】概率公式.
23.【答案】1 或 0
【解析】解:不等式组的解为: a t 3 ,∵不等式组恰有 3 个整数解,∴ 2 a 1. 2
(2)(ⅰ)过点 Q 作 QF BC 于 F ,根据 △BFQ∽△BCE 可得 BF QF ,然后求3
△ADP∽△FPQ
可得
AD PF

AP QF
,然后整理得到
5

3 AP
BF

AP QF
,从而求出

2013年高考真题——理科数学(湖南卷)解析版 Word版含答案

2013年高考真题——理科数学(湖南卷)解析版 Word版含答案

2013年普通高等学校招生全国统一考试(湖南卷)数学(理工农医类)本试卷包括选择题、填空题和解答题三部分,共5页,时量120分钟,满分150分。

一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数()()1z i i i =+为虚数单位在复平面上对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限【答案】 B【解析】 z = i ·(1+i) = i – 1,所以对应点(-1,1).选B 选B2.某学校有男、女学生各500名.为了解男女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是A .抽签法B .随机数法C .系统抽样法D .分层抽样法【答案】 D 【解析】 因为抽样的目的与男女性别有关,所以采用分层抽样法能够反映男女人数的比例。

选D3.在锐角中ABC ∆,角,A B 所对的边长分别为,a b .若2sin 3,a B b A =则角等于 A .12πB .6πC .4πD .3π【答案】 D【解析】 3=A 223=sinA sinB 3 = sinB 2sinA :得b 3=2asinB 由ππ⇒<⇒⋅⋅A , 选D4.若变量,x y 满足约束条件211y xx y y ≤⎧⎪+≤⎨⎪≥-⎩,2x y +则的最大值是A .5-2B .0C .53D .52【答案】 C【解析】 区域为三角形,直线u = x + 2y 经过三角形顶点最大时,35)32,31(=u 选C5.函数()2ln f x x =的图像与函数()245g x x x =-+的图像的交点个数为 A .3 B .2 C .1 D .0【答案】 B【解析】 二次函数()245g x x x =-+的图像开口向上,在x 轴上方,对称轴为x=2,g(2) = 1; f(2) =2ln2=ln4>1.所以g(2) < f(2), 从图像上可知交点个数为2选B6. 已知,a b 是单位向量,0a b =.若向量c 满足1,c a b c --=则的取值范围是A .2-12+1⎤⎦,B .2-12+2⎤⎦,C .12+1⎡⎤⎣⎦,D .12+2⎡⎤⎣⎦, 【答案】 A【解析】向量之差的向量与即一个模为单位c 2.1|c -)b a (||b a -c |,2|b a |向量,是b ,a =+=-=+∴ 的模为1,可以在单位圆中解得12||1-2+≤≤c 。

2013年普通高等学校招生全国统一考试(湖南卷)数学试题 (理科) word解析版

2013年普通高等学校招生全国统一考试(湖南卷)数学试题 (理科) word解析版

⎨ ⎩绝 密 ★ 启 用 前 2013年普通高等学校招生全国统一考试(湖南卷)数学(理工农医类)本试卷包括选择题、填空题和解答题三部分,共 5 页,时量 120 分钟,满分 150 分。

一、选择题:本大题共 8 小题,每小题 5 分,共 40 分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数 z = i (1+ i )(i 为虚数单位)在复平面上对应的点位于 A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】 B【解析】 z = i·(1+i) = i – 1,所以对应点(-1,1).选 B2.某学校有男、女学生各 500 名.为了解男女学生在学习兴趣与业余爱好方面是否存在显 著差异,拟从全体学生中抽取 100 名学生进行调查,则宜采用的抽样方法是 A .抽签法 B .随机数法 C .系统抽样法 D .分层抽样法【答案】 D【解析】 因为抽样的目的与男女性别有关,所以采用分层抽样法能够反映男女人数的比例。

选 D3.在锐角中∆ABC ,角 A , B 所对的边长分别为a , b .若2a sin B = 3b ,则角A 等于A . πB . πC . πD . π12 6 4 3【答案】 Dπ π 【解析】 由2asinB = 3b 得 : 2sinA ⋅ sinB = ⋅ sinB ⇒ sinA =,A < 2 ⇒ A = 2 。

选 D 3⎧ y ≤ 2x4.若变量 x , y 满足约束条件⎪x + y ≤ 1, 则x + 2 y 的最大值是⎪ y ≥ -1 A . - 5 2 【答案】 C B . 0 C . 5 3 D . 521 2 5【解析】 区域为三角形,直线 u = x + 2y 经过三角形顶点( , 3 )时,u = 3 最大。

选 C35.函数 f (x ) = 2 ln x 的图像与函数 g (x ) = x 2 - 4x + 5的图像的交点个数为 A .3B .2C .1D .0【答案】 B【解析】 二次函数 g (x ) = x 2- 4x + 5的图像开口向上,在 x 轴上方,对称轴为 x=2,g(2) = 1;f(2) =2ln2=ln4>1.所以 g(2) < f(2), 从图像上可知交点个数为 2 。

2013年湖南省高考真题数学试卷及答案(理科)word版

2013年湖南省高考真题数学试卷及答案(理科)word版

2013年普通高等学校招生全国统一考试(湖南卷)数学(理工农医类)本试卷包括选择题、填空题和解答题三部分,共5页,时量120分钟,满分150分。

一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数1z i i i 为虚数单位在复平面上对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限2.某学校有男、女学生各500名.为了解男女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是A .抽签法 B.随机数法 C .系统抽样法 D .分层抽样法3.在锐角中ABC ,角,A B 所对的边长分别为,a b .若2sin 3,a B b A 则角等于A .12 B .6 C .4 D .34.若变量,x y 满足约束条件211yx x yy ,2x y 则的最大值是A .5-2 B .0 C .53 D .525.函数2ln f x x 的图像与函数245g xx x 的图像的交点个数为A .3 B .2 C .1 D.0 6. 已知,a b 是单位向量,0a b .若向量c 满足1,c a b c 则的取值范围是A .2-1,2+1, B .2-1,2+2, C .1,2+1, D.1,2+2,7.已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能...等于A .1B .2C .2-12 D .2+128.在等腰三角形ABC 中,=4AB AC ,点P 是边AB 上异于,A B 的一点,光线从点P 出发,经,BC CA 发射后又回到原点P (如图1).若光线QR 经过ABC 的中心,则AP 等。

2013年湖南省长沙市长郡中学理科班入学数学试卷(四)

2013年湖南省长沙市长郡中学理科班入学数学试卷(四)

2013年湖南省长沙市长郡中学理科班入学数学试卷(四)一、选择题:(每个题目只有一个正确答案,每题6分,共36分)1.(6分)不等式组:的解集是()A.x>﹣3 B.x≥2 C.﹣3<x≤2 D.x<﹣3,则∠BAE是∠B的()倍.2.(6分)如图,AC=CD=DA=BC=DEA.6 B.4 C.3 D.23.(6分)如果x取任何实数时,函数y=ax2+bx+c都不能取正值,则必有()A.a>0且△≥0 B.a<0且△≤0 C.a<0且△≥0 D.a>0且△≤0 4.(6分)如图将矩形纸片ABCD沿AE折叠,使点B落在直角梯形AECD的中位线FG上,若AB=,则AE的长为()A.2 B.3 C.2 D.5.(6分)在平面上具有整数坐标的点称为整点.若一线段的端点分别为(2,11),(11,14),则在此线段上(包括端点)的整点共有()A.3个 B.4个 C.6个 D.8个6.(6分)设a,b,c是不全相等的任意实数,若x=a2﹣bc,y=b2﹣ca,z=c2﹣ab,则x,y,z中()A.都不小于0 B.都不大于0C.至少有一个小于0 D.至少有一个大于0二、填空题:(每小题5分,共30分)7.(5分)等腰三角形ABC的底边BC=10cm,∠A=120°,则△ABC的外接圆半径为cm.8.(5分)如图,AB是半圆O的直径,∠BAC=30°,BC为半圆的切线,且BC=,则圆心O到AC的距离是.9.(5分)如图,有反比例函数y=,y=﹣的图象和一个以原点为圆心,2为半径的圆,则S阴影=.10.(5分)如图,△ABC中,∠A的平分线交BC于D,AB=AC+CD,∠C=80°,那么∠B的度数是.11.(5分)已知梯形ABCD的面积为S,AB∥CD,AB=b,CD=a(a<b),对角线AC与BD交于点O,若△BOC的面积为,则=.12.(5分)一堆有红,白两种颜色的球各若干个,已知白球的个数比红球少,,每一个红球都记作“3”,但白球个数的2倍比红球多,若把每个白球都记作“2”则总数为60,那么,白球有个,红球有个.三、解答题(本大题共3小题,13、14题11分,15题12分)13.(11分)在正实数范围内,只存在一个数是关于x的方程的解,求实数k的取值范围.14.(11分)预计用1500元购买甲商品x个,乙商品y个,不料甲商品每个涨价1.5元,乙商品每个涨价1元,尽管购买甲商品的个数比预定数减少10个,总金额仍多用29元.又若甲商品每个只涨价1元,并且购买甲商品的数量只比预定数少5个,那么甲、乙两商品支付的总金额是1563.5元.(1)求x、y的关系式;(2)若预计购买甲商品的个数的2倍与预计购买乙商品的个数的和大于205,但小于210,求x、y的值.15.(12分)已知抛物线y=﹣ax2+2ax+b与x轴的一个交点为A(﹣1,0),与y 轴的正半轴交于点C.(1)直接写出抛物线的对称轴,及抛物线与x轴的另一个交点B的坐标;(2)当点C在以AB为直径的⊙P上时,求抛物线的解析式;(3)坐标平面内是否存在点M,使得以点M和(2)中抛物线上的三点A、B、C为顶点的四边形是平行四边形?若存在,请求出点M的坐标;若不存在,请说明理由.2013年湖南省长沙市长郡中学理科班入学数学试卷(四)参考答案与试题解析一、选择题:(每个题目只有一个正确答案,每题6分,共36分)1.(6分)不等式组:的解集是()A.x>﹣3 B.x≥2 C.﹣3<x≤2 D.x<﹣3【分析】先求出两个不等式的解集,再求其公共解.【解答】解:由①得:x≥2.由②得:x>﹣3.∴不等式组的解集为:x≥2.故选B.【点评】求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到.,则∠BAE是∠B的()倍.2.(6分)如图,AC=CD=DA=BC=DEA.6 B.4 C.3 D.2,可得△ACD是等边三角形,即∠ACD=∠ADC=∠【分析】由AC=CD=DA=BC=DECAD=60°,∠B=∠BAC,∠E=∠DAE,又由三角形外角的性质,∠B与∠BAE的度数,继而求得答案.,【解答】解:∵AC=CD=DA=BC=DE∴△ACD是等边三角形,∴∠ACD=∠ADC=∠CAD=60°,∠B=∠BAC,∠E=∠DAE,∵∠ACD=∠B+∠BAC,∠ADC=∠E+∠DAE,∴∠B=∠BAC=∠DAE=∠E=30°,∴∠BAE=∠BAC+∠CAD+∠DAE=120°,∴∠BAE=4∠B.故选:B.【点评】此题考查了等腰三角形的性质、等边三角形的性质以及三角形外角的性质.此题难度不大,注意掌握数形结合思想的应用.3.(6分)如果x取任何实数时,函数y=ax2+bx+c都不能取正值,则必有()A.a>0且△≥0 B.a<0且△≤0 C.a<0且△≥0 D.a>0且△≤0【分析】根据二次函数的性质可知,只要抛物线开口向下,且与x轴无交点即可.【解答】解:欲保证x取一切实数时,函数值y恒为非负数,则必须保证抛物线开口向下,且与x轴只有一个交点,或者无交点;则a<0且b2﹣4ac≤0,故选:B.【点评】本题考查了抛物线与x轴的交点.①当x取一切实数时,函数值y恒为正的条件:抛物线开口向上,且与x轴无交点;②当x取一切实数时,函数值y恒为负的条件:抛物线开口向下,且与x轴无交点.4.(6分)如图将矩形纸片ABCD沿AE折叠,使点B落在直角梯形AECD的中位线FG上,若AB=,则AE的长为()A.2 B.3 C.2 D.【分析】利用折叠易证△AEB是含30°的直角三角形,利用相应的三角函数即可求得AE的长.【解答】解:延长EB交AD于点M,根据折叠的性质易证明△AME是一个等边三角形,则∠EAB=30°,在直角三角形ABE中,根据30°所对的直角边是斜边的一半以及勾股定理求得AE=2.故选:C.【点评】此题中的折叠方法也是折叠等边三角形的一种常用方法,那么△AEB是含30°的直角三角形.5.(6分)在平面上具有整数坐标的点称为整点.若一线段的端点分别为(2,11),(11,14),则在此线段上(包括端点)的整点共有()A.3个 B.4个 C.6个 D.8个【分析】根据题意,设经过点(2,11)、(11,14)的直线方程y=ax+b(a≠0),利用待定系数法求得该直线方程,然后在此线段上(包括端点)寻找整点.【解答】解:设经过点(2,11)、(11,14)的直线方程y=ax+b(a≠0),则,解得,,∴所求的线段所在的直线方程为y=x+;①当y=12时,x=5,即整点(5,12)在该线段上;②当y=13时,x=8,即整点(8,13)在该线段上;又∵端点(2,11)、(11,14)也是整点,∴在此线段上(包括端点)的整点共有4个;故选:B.【点评】本题考查了坐标与图形性质.解得该题的关键是求得此线段所在的直线的方程,根据该直线方程取y的整数值.6.(6分)设a,b,c是不全相等的任意实数,若x=a2﹣bc,y=b2﹣ca,z=c2﹣ab,则x,y,z中()A.都不小于0 B.都不大于0C.至少有一个小于0 D.至少有一个大于0【分析】由题意x=a2﹣bc,y=b2﹣ca,z=c2﹣ab,将x,y,z相加,然后根据完全平方式的性质,进行求解;【解答】解:∵x=a2﹣bc,y=b2﹣ca,z=c2﹣ab,∴2(x+y+z)=2a2﹣2bc+2b2﹣2ca+2c2﹣2ab=(a2﹣2ab+b2)+(b2﹣2bc+c2)+(a2﹣2ca+c2)=(a﹣b)2+(b﹣c)2+(c﹣a)2>0,∴x+y+z>0,故x,y,z至少有一个大于0,故选:D.【点评】此题主要考查非负数的性质,即非负数大于等于0,比较简单.二、填空题:(每小题5分,共30分)7.(5分)等腰三角形ABC的底边BC=10cm,∠A=120°,则△ABC的外接圆半径为cm.【分析】连接OA交BC于D,根据三线合一定理得出BD=DC,∠OAC=∠BAC,得出等边三角形OAC,推出∠AOC=60°,在△ODC中根据勾股定理求出即可.【解答】解:连接OA交BC于D,∵O是等腰三角形ABC的外心,AB=AC,∴∠AOC=∠BOA,∵OB=OC,∴BD=DC,OA⊥BC,∴由垂径定理得:BD=DC=5cm,∠OAC=∠BAC=×120°=60°,∵OA=OC,∴△AOC是等边三角形,∴∠AOC=60°,∴∠DCO=90°﹣60°=30°∴OC=2OD,设OD=a,OC=2a,由勾股定理得:a2+52=(2a)2,a=,OC=2a=(cm).故答案是:.【点评】本题考查了等腰三角形的性质,三角形的外接圆和外心,勾股定理,等边三角形的性质和判定等知识点,此题有一定的难度,注意:此等腰三角形的外心在三角形外部.8.(5分)如图,AB是半圆O的直径,∠BAC=30°,BC为半圆的切线,且BC=,则圆心O到AC的距离是3.【分析】首先过O作AC的垂线段,再利用三角形相似就可以求出O到AC的距离.【解答】解:∵BC是⊙O的切线,∴∠ABC=90°,∵OD⊥AC,∴∠ADO=90°,∠A公共,∴△ABC∽△ADO,∴,即OD=;在△ABC中,∠BAC=30°,∴AC=2BC=8,AB==12,∴OA=6=BO,∴OD=.【点评】主要利用了相似三角形的对应线段成比例.9.(5分)如图,有反比例函数y=,y=﹣的图象和一个以原点为圆心,2为半径的圆,则S阴影=2π.【分析】由反比例函数的对称性可得,图中的阴影部分正好为两个四分之一圆,即为一个半圆的面积.【解答】解:由反比例函数的对称性知S阴影=π×22=2π.故答案为:2π.【点评】解决本题的关键是利用反比例函数的对称性得到阴影部分与圆之间的关系.10.(5分)如图,△ABC中,∠A的平分线交BC于D,AB=AC+CD,∠C=80°,那么∠B的度数是40°.【分析】在AB上截取AE=AC,先根据角平分线的定义得∠BAD=∠CAD,再根据“SAS”可判断△AED≌△ACD,则ED=CD,∠AED=∠C=80°,由于AB=AC+CD得到EB=CD=ED,即△EBD为等腰三角形,所以∠AED=∠B+∠EDB,于是∠B=∠AED=40°.【解答】解:在AB上截取AE=AC,如图,∵AD平分∠BAC,∴∠BAD=∠CAD,∵在△AED和△ACD中,∴△AED≌△ACD(SAS),∴ED=CD,∠AED=∠C=80°,∵AB=AC+CD,∴EB=CD=ED,∴∠B=∠EDB,∵∠AED=∠B+∠EDB,∴∠B=∠AED=40°.故答案为40°.、【点评】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”;全等三角形的对应边相等,对应角相等.也考查了等腰三、“AAS”、“ASA”“SAS”角形的性质.11.(5分)已知梯形ABCD的面积为S,AB∥CD,AB=b,CD=a(a<b),对角线AC与BD交于点O,若△BOC的面积为,则=.【分析】依据题意可先作出简单的图形,可设S△COD的面积为S1,S△AOB的面积为S2,由题中条件建立关于S1?S2的方程,解方程得出S1?S2之间的关系,进而可求解a、b之间的关系.【解答】解:如图,设S△COD的面积为S1,S△AOB的面积为S2,由S ABCD=S,∵AB∥CD,∴S△ABD=S△ABC,∴S△AOD﹣S△AOB=S△BOC﹣S△AOB,∴S△AOD=S△BOC=S,得S1+S2=S﹣2×S=S,①∵==,∴S1?S2=S△BOC?S△AOD=S2,②联立①、②∵△COD∽△AOB,∴=,③∵a<b,∴S1<S2,解方程组得S1=S,S2=S,代入③得=.故答案为.【点评】本题主要考查了梯形的性质以及相似三角形的判定及性质以及面积的问题,能够通过方程的思想建立等式,进而求解结论.12.(5分)一堆有红,白两种颜色的球各若干个,已知白球的个数比红球少,,每一个红球都记作“3”,但白球个数的2倍比红球多,若把每个白球都记作“2”则总数为60,那么,白球有9个,红球有14个.【分析】设有白球x个,有红球y个,根据条件就有x<y,2x>y,2x+3y=60,从而构成一个不等式组,求出其解即可.【解答】解:设有白球x个,有红球y个,由题意,得,由③,得x=④,把④代入①,得y>12.把④代入②,得y<15.∵x、y为整数,y=13,14,当y=13时,x=舍去,当y=14时,x=9,∴白球9个,红球14个故答案为:9,14.【点评】本题考查了列一元一次不等式组解实际问题的运用,一元一次不等式组的解法的运用,解答本题时根据条件建立不等式是解答本题的关键.三、解答题(本大题共3小题,13、14题11分,15题12分)13.(11分)在正实数范围内,只存在一个数是关于x的方程的解,求实数k的取值范围.【分析】先把原方程化为2x2﹣3x﹣(k+3)=0,一定是一个一元二次方程,在正实数范围内,只存在一个数是关于x的方程的解,因而可能方程有两个相同的实根,求得即可进行判断;或解方程得到的两个根中有一个是方程的增根,即x=1是方程2x2﹣3x﹣(k+3)=0的解,即可求得方程的另一解,然后进行判断;或方程有两个异号得实数根;或其中一根是0,即可求得方程的另一根,进行判断.因而这个方程中再分四种情况讨论:(1)当△=0时;(2)若x=1是方程①的根;(3)当方程①有异号实根时;(4)当方程①有一个根为0时,最后结合题意总结结果即可.【解答】解:原方程可化为2x2﹣3x﹣(k+3)=0,①(1)当△=0时,,满足条件;(2)若x=1是方程①的根,得2×12﹣3×1﹣(k+3)=0,k=﹣4;此时方程①的另一个根为,故原方程也只有一根;(3)当方程①有异号实根时,且x≠1即k≠﹣4,得k>﹣3,此时原方程也只有一个正实数根;(4)当方程①有一个根为0时,k=﹣3,另一个根为,此时原方程也只有一个正实根.综上所述,满足条件的k的取值范围是或k=﹣4或k≥﹣3.【点评】主要考查了方程解的定义和分式的运算,此类题型的特点要分情况讨论.14.(11分)预计用1500元购买甲商品x个,乙商品y个,不料甲商品每个涨价1.5元,乙商品每个涨价1元,尽管购买甲商品的个数比预定数减少10个,总金额仍多用29元.又若甲商品每个只涨价1元,并且购买甲商品的数量只比预定数少5个,那么甲、乙两商品支付的总金额是1563.5元.(1)求x、y的关系式;(2)若预计购买甲商品的个数的2倍与预计购买乙商品的个数的和大于205,但小于210,求x、y的值.【分析】(1)设出必需的未知量,找出等量关系为:甲原单价×甲原数量+乙原单价×乙原数量=1500,(甲原单价+1.5)×(甲原数量﹣10)+(乙原单价+1)×乙原数量=1529;(甲原单价+1)×(甲原数量﹣5)+(乙原单价+1)×乙原数量=1563.5.(2)结合(1)得到的式子,还有205<2倍甲总价+乙总价<210,求出整数解.【解答】解:(1)设预计购买甲、乙商品的单价分别为a元和b元,则原计划是ax+by=1500,①由甲商品单价上涨 1.5元、乙商品单价上涨1元,并且甲商品减少10个的情形,得(a+1.5)(x﹣10)+(b+1)y=1529.②再由甲商品单价上涨1元,而数量比预计数少5个,乙商品单价上涨仍是1元的情形,得(a+1)(x﹣5)+(b+1)y=1563.5,③由①、②、③得④⑤④﹣⑤×2并化简,得x+2y=186.(2)依题意,有205<2x+y<210及x+2y=186,54<y<由y是整数,得y=55,从而得x=76.答:(1)x、y的关系x+2y=186;(2)x值为76,y值为55.【点评】解决本题的关键是读懂题意,找到合适的关系式.当必需的量没有时,应设出未知数,在做题过程中消去无关的量.15.(12分)已知抛物线y=﹣ax2+2ax+b与x轴的一个交点为A(﹣1,0),与y 轴的正半轴交于点C.(1)直接写出抛物线的对称轴,及抛物线与x轴的另一个交点B的坐标;(2)当点C在以AB为直径的⊙P上时,求抛物线的解析式;(3)坐标平面内是否存在点M,使得以点M和(2)中抛物线上的三点A、B、C为顶点的四边形是平行四边形?若存在,请求出点M的坐标;若不存在,请说明理由.【分析】(1)抛物线y=﹣ax2+2ax+b的对称轴,可以根据公式直接求出,抛物线与x轴的另一交点与A关于对称轴对称,因而交点就可以求出.(2)AB的长度可以求出,连接PC,在直角三角形OCP中,根据勾股定理就可以求出C点的坐标,把这点的坐标代入抛物线的解析式,就可以求出解析式.(3)本题应分AC或BC为对角线和以AB为对角线三种情况进行讨论,当以AC 或BC为对角线时,点M在x轴上方,此时CM∥AB,且CM=AB.就可以求出点M的坐标.当以AB为对角线时,点M在x轴下方易证△AOC≌△BNM,可以求出点M的坐标.【解答】解:(1)对称轴是直线:x=1,点B的坐标是(3,0).(2分)说明:每写对1个给(1分),“直线”两字没写不扣分.(2)如图,连接PC,∵点A、B的坐标分别是A(﹣1,0)、B(3,0),∴AB=4.∴PC=AB=×4=2在Rt△POC中,∵OP=PA﹣OA=2﹣1=1,∴OC=,∴b=(3分)当x=﹣1,y=0时,﹣a﹣2a+=0∴a=(4分)∴y=﹣x2+x+.(5分)(3)存在.(6分)理由:如图,连接AC、BC.设点M的坐标为M(x,y).①当以AC或BC为对角线时,点M在x轴上方,此时CM∥AB,且CM=AB.由(2)知,AB=4,∴|x|=4,y=OC=.∴x=±4.∴点M的坐标为M(4,)或(﹣4,).(9分)说明:少求一个点的坐标扣(1分).②当以AB为对角线时,点M在x轴下方.过M作MN⊥AB于N,则∠MNB=∠AOC=90度.∵四边形AMBC是平行四边形,∴AC=MB,且AC∥MB.∴∠CAO=∠MBN.∴△AOC≌△BNM.∴BN=AO=1,MN=CO=.∵OB=3,∴0N=3﹣1=2.∴点M的坐标为M(2,﹣).(12分)综上所述,坐标平面内存在点M,使得以点A、B、C、M为顶点的四边形是平行四边形.其坐标为M1(4,),M2(﹣4,),M3(2,﹣).说明:①综上所述不写不扣分;②如果开头“存在”二字没写,但最后解答全部正确,不扣分【点评】本题主要考查了抛物线的轴对称性,是与勾股定理相结合的题目.难度较大.。

2013年湖南高考理科数学试卷(带详解)

2013年湖南高考理科数学试卷(带详解)

2013年普通高等学校招生全国统一考试(湖南卷)数学(理工农医类)本试卷包括选择题、填空题和解答题三部分,共5页,时量120分钟,满分150分. 一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数()i 1i z =+(i 为虚数单位)在复平面上对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 【测量目标】复数乘法的运算法则,复数集与复平面上的点对应关系. 【考查方式】利用复数乘法的运算法则及复数的几何意义求解. 【难易程度】容易 【参考答案】B 【试题解析】i (1i)1i z =+=-+∴复数z 对应复平面上的点是(1,1),-该点位于第二象限.2.某学校有男、女学生各500名.为了解男、女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是 ( ) A .抽签法 B .随机数法 C .系统抽样法 D .分层抽样法 【测量目标】分层抽样.【考查方式】给出实际案例,判断其解决问题的方法属于四种抽样方法的哪一种. 【难易程度】容易 【参考答案】D【试题解析】由于是调查男、女学生在学习兴趣与业余爱好方面是否存在差异,因此用分层抽样方法. 3.在锐角中ABC △,角,A B 所对的边长分别为,a b .若2sin 3,a B b =则角A 等于( )A .π12 B .π6 C .π4 D .π3【测量目标】正弦定理.【考查方式】给出三角形中的边角关系,运用正弦定理求解未知角. 【难易程度】容易 【参考答案】D【试题解析】在ABC △中,2sin ,2sin a R A b R B ==(R 为ABC △的外接圆半径).(步骤1)2sin 3,2sin sin 3.a B b A B B =∴=3sin A ∴=(步骤2)又ABC △为锐角三角形,π3A ∴=.(步骤3)4.若变量,x y 满足约束条件211y xx y y ⎧⎪+⎨⎪-⎩,则2x y +的最大值是( )A .52-B .0C .53D .52【测量目标】二元线性规划求目标函数的最值.【考查方式】利用线性规划知识求目标函数的最值问题. 【难易程度】容易 【参考答案】C【试题解析】根据不等式组作出其平面区域,令2,z x y =+结合2z x y =+的特征求解.不等式组表示的平面区域为图中阴影部分,(步骤1)平行移动11,22y x z =-+可知该直线经过2y x =与1x y +=的交点12(,)33A 时,z 有最大值为145=333+.(步骤2)第4题图5.函数()2ln f x x =的图象与函数()245g x x x =-+的图象的交点个数为( )A .3B .2C .1D .0 【测量目标】函数图象的应用.【考查方式】先作出常见函数图象再确定其图象交点个数. 【难易程度】中等 【参考答案】B 【试题解析】22()45(2)1,g x x x x =-+=-+又当2x =时,()2ln 2ln 41,f x ==>(步骤1)在同一直角坐标系内画出函数()2ln f x x =与2()45g x x x =-+的图象,如图所示,可知()f x 与()g x 有2个不同的交点.(步骤2)第5题图6. 已知,a b 是单位向量,0=a b .若向量c 满足1,--=c a b 则c 的取值范围是( )A .22+1⎡⎤⎣⎦B .22+2⎡⎤⎣⎦C .2+1⎡⎤⎣⎦D .2+2⎡⎤⎣⎦【测量目标】向量数量积的运算及定义、向量加法的几何意义.【考查方式】将所给向量式两边平方后利用向量数量积的运算律以及向量数量积定义的求解. 【难易程度】较难 【参考答案】A3 / 13【试题解析】由题意,不妨令(0,1),(1,0),(,)x y ===a b c ,由1--=c a b 得22(1)(1)1x y -+-=,(步骤1)22x y =+c 可看做(,)x y 到原点的距离,而点(,)x y 在以(1,1)为圆心,以1为半径的圆上.(步骤2)如图所示,当点(,)x y 在位置P 时到原点的距离最近,在位置P '时最远,而21PO =-,21P O '=+,故选A .(步骤3)第6题图 7.已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能...等于( ) A .1 B .2 C .212- D .2+12【测量目标】空间几何体三视图.【考查方式】根据正方体的正视图的形状来求解其面积值. 【难易程度】中等 【参考答案】C【试题解析】根据三视图中正视图与俯视图等长,故正视图中的长为2cos θ,如图所示.故正视图的面积为π2cos (0)4S θθ=,∴12S ,而21<12-,故面积不可能等于212-.第7题图8.在等腰三角形ABC 中,=4AB AC =,点P 是边AB 上异于,A B 的一点,光线从点P 出发,经,BC CA 发射后又回到点P (如图).若光线QR 经过ABC △的重心,则AP 等于( )第8题图A .2B .1C .83D .43【测量目标】直线的斜率,直线的方程.【考查方式】已知一个三角形的边长关系,建立平面直角坐标系求解未知边的值. 【难易程度】中等 【参考答案】D 【试题解析】以A 为原点,AB 为x 轴,AC 为y 轴建立直角坐标系如图所示.则A (0,0),B (4,0),C (0,4).(步骤1)设△ABC 的重心为D ,则D 点坐标为44,33⎛⎫⎪⎝⎭.设P 点坐标为(m,0),则P 点关于y 轴的对称点P 1为(-m,0),(步骤2)因为直线BC 方程为x +y -4=0,所以P 点关于BC 的对称点P 2为(4,4-m ),根据光线反射原理,P 1,P 2均在QR 所在直线上,∴12P D P D k k =,即4443344433mm -+=+-,(步骤3)解得,m =43或m =0.当m =0时,P 点与A 点重合,故舍去.∴43m =.(步骤4)第8题图二、填空题:本大题共8小题,考生作答7小题,每小题5分,共35分.(一)选做题(请考生在第9、10、11三题中任选两题作答,如果全做,则按前两题计分)9.在平面直角坐标系xOy 中,若:x t l y t a =⎧⎨=-⎩(t 为参数),过椭圆C 3cos :2sin x y ϕϕ=⎧⎨=⎩(ϕ为参数)的右顶点,则常数a 的值为 .【测量目标】参数方程的转化,椭圆的简单几何性质.【考查方式】先将参数方程化为普通方程后求解,再运用椭圆的简单几何性质求出未知参数. 【难易程度】容易 【参考答案】3【试题解析】由题意知在直角坐标系下,直线l 的方程为y =x -a ,椭圆的方程为22194x y +=,(步骤1)所以其右顶点为(3,0).由题意知0=3-a ,解得a =3. (步骤2) 10.已知,,,236,a b c a b c ∈++=R 则22249a b c ++的最小值为 . 【测量目标】柯西不等式,最值问题.【考查方式】使用柯西不等式化简式子求其最值. 【难易程度】中等 【参考答案】12【试题解析】由柯西不等式得2222222(111)(49)(23)a b c a b c ++++++,即22241912a b c++,(步骤1)当232a b c ===时等号成立,所以222419a b c ++的最小值为12. (步骤2) 11.7的O 中,弦,AB CD 相交于点,2P PA PB ==,1PD =,则圆心O 到弦CD 的距离为 .5 /13第11题图【测量目标】圆的相交弦定理及圆的弦的性质,解三角形.【考查方式】由相交弦定理求出圆内线段的长再根据弦的性质求解三角形中未知数. 【难易程度】中等【参考答案】32【试题解析】如图所示,取CD 中点E ,连结OE ,OC .由圆内相交弦定理知PD PC PA PB =,(步骤1)所以PC =4,CD =5,则CE =52,OC =7.(步骤2)所以O 到CD 距离为2253722OE ⎛⎫=()-= ⎪⎝⎭.(步骤3)第11题图必做题(12-16题)12.若20d 9,Tx x =⎰则常数T 的值为 .【测量目标】微积分基本定理.【考查方式】利用微积分基本定理建立方程求解. 【难易程度】中等 【参考答案】3 【试题解析】∵321=3x 'x ⎛⎫⎪⎝⎭,∴2330011d 0933T T x x x T ==-=⎰,∴3T =. 13.执行如图所示的程序框图,如果输入1,2,a b a ==则输出的的值为 .第13题图【测量目标】循环结构的程序框图.【考查方式】阅读程序框图,运行程序得出结果. 【难易程度】中等 【参考答案】9【试题解析】输入1,2,a b ==不满足8,a >故a =3;a =3不满足a >8,故a =5;a =5不满足a >8,故a =7;a =7不满足a >8,故a =9,满足a >8,终止循环.输出a =9.14.设12,F F 是双曲线2222:1(0,0)x y C a b a b -=>>的两个焦点,P 是C 上一点,若126,PF PF a +=且12PF F △的最小内角为30,则C 的离心率为___.【测量目标】双曲线的定义,余弦定理.【考查方式】根据双曲线的定义及已知条件,利用余弦定理建立关于,a c 的方程求解. 【难易程度】较难 【参考答案】3【试题解析】不妨设|PF 1|>|PF 2|,由1212||||6,||||2PF PF a PF PF a +=⎧⎨-=⎩可得12||4,||2.PF a PF a =⎧⎨=⎩(步骤1)∵2a <2c ,∴∠PF 1F 2=30°,∴222242cos30224c a a c a︒()+()-()=⨯⨯,(步骤2)整理得,223230c a ac +-=,即22330,3e e e -+=∴=.(步骤3)15.设n S 为数列{}n a 的前n 项和,1(1),,2n n n n S a n *=--∈N 则(1)3a =_____; (2)12100S S S ++⋅⋅⋅+=___________.【测量目标】已知递推关系求通项,数列的前n 项和. 【考查方式】根据1(2)n n n a S S n -=-建立关于n a 的关系式,根据n a 的关系式归纳寻找其规律后求解.【难易程度】中等 【参考答案】116- 10011(1)32- 【试题解析】111111(1)(1),22n n n n n n n n n a S S a a ----=-=----+111(1)(1)2n n n n n na a a --∴=---+(步骤1)当n 为偶数时,11,2n n a -=-当n 为奇数时,1122n n n a a -+=,(步骤2)∴当4n =时3411216a =-=-.(步骤3)根据以上{}n a 的关系式及递推式可求:135724681111,,,,2222a a a a =-=-=-=-246824681111,,,.2222a a a a ====(步骤4)21436535111,,,,222a a a a a a ∴-=-=-= (12100214310099231001111)()()()()2222S S S a a a a a a ∴+++=-+-++--++++ (399210010011111111)()()(1)22222232=+++-+++=-……(步骤6) 16.设函数(),0,0.xxxf x a b c c a c b =+->>>>其中(1)记集合M ={(,,),,a b c a b c 不能构成一个三角形的三条边长,且a b =},则(,,)a b c M ∈所对应7 / 13的()f x 的零点的取值集合为____.(2)若,,a b c 是ABC △的三条边长,则下列结论正确的是 .(写出所有正确结论的序号)①()(),1,0;x f x ∀∈-∞>②,x ∃∈R 使,,xxxa b c 不能构成一个三角形的三条边长; ③若ABC △为钝角三角形,则()1,2,x ∃∈,使()0.f x =【测量目标】对数的运算,对数、指数函数的性质,余弦定理,函数零点存在性定理.【考查方式】由三角形的构成条件与函数的零点存在性求解未知参数的范围,以及举反例验证. 【难易程度】较难 【参考答案】{}01x x < ①②③【试题解析】(1)0,0,c a c b a b >>>>=且,,a b c 不能构成三角形三边,02, 2.c ac a∴<∴(步骤1)令()0f x =得2xxa c =,即2xc a ⎛⎫= ⎪⎝⎭.(步骤2)21log 2log 1c ac x x a ∴=∴=01x∴<(步骤3)(2)①,,a b c 是三角形的三条边长,0,0,01,01a ba b c c a c b c c∴+>>>>>∴<<<<∴当(,1)x ∈-∞时, ()()()1(1)0x x x x x x x xa b a b a b c f x a b c c c c c c c c c +-⎡⎤=+-=+->+-=>⎢⎥⎣⎦(步骤4)(,1),()0x f x ∴∀∈-∞>故①正确(步骤5);②令2,3,4,a b c ===,则,,a b c 可以构成三角形.但2224,9,16a b c ===却不能构成三角形,故②正确;(步骤6)③,c a c b >>且ABC △为钝角三角形,2220a b c ∴+-<又222(1)0,(2)0f a b c f a b c =+->=+-<∴(步骤7)函数()f x 在()1,2上存在零点,故③正确. (步骤8)三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知函数2ππ()sin()cos(),()2sin632x f x x x g x =-+-=. (I )若α是第一象限角,且33()f α=.求()g α的值; (II )求使()()f x g x 成立的x 的取值集合.【测量目标】两角和与差的正、余弦公式,二倍角的余弦公式以及三角函数不等式的解法. 【考查方式】运用三角恒等变换公式化简函数求解. 【难易程度】容易 【试题解析】(I )533sin 3)(sin 3sin 23cos 21cos 21sin 23)(==⇒=++-=ααf x x x x x x f .(步骤1)23π41sin ,(0,)cos ,()2sin 1cos 52525g αααααα⇒=∈⇒===-=且(步骤2) (II )31π1()()3sin 1cos sin cos sin()2262f xg x x x x x x ⇒-⇒+=+(步骤3) ππ5π2π[2π,2π][2π,2π],6663x k k x k k k ⇒+∈++⇒∈+∈Z (步骤4)18.(本小题满分12分)某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形的顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收获量Y (单位:kg )与它的“相近”作物株数X 之间的关系如下表所示:X 1 2 3 4 Y51484542这里,两株作物“相近”是指它们之间的直线距离不超过1米.(I )从三角形地块的内部和边界上分别随机选取一株作物,求它们恰好“相近”的概率; (II )从所种作物中随机选取一株,求它的年收获量的分布列与数学期望.第18题图【测量目标】古典概型,分布列数学期望.【考查方式】利用古典概型求概率,根据所求概率列出分布列,结合期望公式求解. 【难易程度】中等【试题解析】(Ⅰ) 由图知,三角形边界共有12个格点,内部共有3个格点.从三角形上顶点按逆时针方向开始,分别有(0,0),(1,0),(2,0),(2,1),(1,1),(0,1),(0,2),(1,2),8对格点恰好“相近”.所以,从三角形地块的内部和边界上分别随机选取一株作物,它们恰好“相近”的概率821239P ==⨯.(步骤1) (Ⅱ)三角形共有15个格点.与周围格点的距离不超过1米的格点数都是1个的格点有2个,坐标分别为(4,0),(0,4).所以2(51)15P Y ==(步骤2),与周围格点的距离不超过1米的格点数都是2个的格点有4个,坐标分别为(0,0), (1,3), (2,2),(3,1).所以4(48)15P Y ==(步骤3),与周围格点的距离不超过1米的格点数都是3个的格点有6个,坐标分别为(1,0), (2,0), (3,0),(0,1) ,(0,2),(0,3).所以6(45)15P Y ==(步骤4)与周围格点的距离不超过1米的格点数都是4个的格点有3个,坐标分别为(1,1), (1,2), (2,1).所以3(42)15P Y ==(步骤5)如下表所示:X 1 2 3 4 Y 51 48 45 42 频数 2463概率P152 154 156 1539 / 132463102192270126690()5148454246151515151515E Y +++=⨯+⨯+⨯+⨯===46)(=∴Y E . (步骤6)19.(本小题满分12分)如图,在直棱柱1111//ABCD A B C D AD BC -中,,90,,1BAD AC BD BC ∠=⊥=,13AD AA ==.(I )证明:1AC B D ⊥; (II )求直线11B C 与平面1ACD 所成角的正弦值.第19题图【测量目标】线面垂直的判定与性质,线面角.【考查方式】利用空间线面垂直的性质证明线线垂直,建立空间直角坐标系用向量法证明,再求直线与平面所成角的正弦值 【难易程度】中等 【试题解析】(Ⅰ)1111ABCD A B C D -是直棱柱1AC ∴⊥面ABCD ,且面BD ⊂面1ABCD BB AC⇒⊥(步骤1)又AC BD ⊥,且1BDBB B =,AC ∴⊥面1BDB ,1B D ⊂面1BDB ,1AC B D ∴⊥.(步骤2) (Ⅱ)11////,B C BC AD ∴直线11B C 与平面1ACD 的夹角即直线AD 与平面1ACD 的夹角θ.(步骤3)建立直角坐标系,用向量解题.设原点在A 点,AB 为y 轴正半轴,AD 为x 轴正半轴,1AA 为z 的正半轴. 设()10,00,(3,0,0),(3,0,3),(0,,0),(1,,0)A D D B y C y ,,11(0,,3),(1,,3)B y C y 则(1,,0),(3,,0),AC y BD y AC BD ==-⊥210300,0 3.(1,3,0),(3,0,3).AC BD y y y AC AD =⇒-+=>⇒=∴==(步骤4)设平面1ACD 的法向量为(,,)x y z n ,则10AC AD ⎧=⎪⇒⎨=⎪⎩n n 平面1ACD 的一个法向量11313,100BC ==(-,,)(,,)n (步骤5) 所以平面1ACD 的一个法向量1111321313,100sin |cos ,|77B C B C θ==⇒=<>==(-,,)(,,)n n所以11B C 与平面1ACD 夹角的正弦值为217.(步骤6)第19题(Ⅱ)图20.(本小题满分13分)在平面直角坐标系xOy 中,将从点M 出发沿纵、横方向到达点N 的任一路径成为M 到N 的一条“L 路径”.如图所示的路径123MM M M N 与路径1MN N 都是M 到N 的“L 路径”.某地有三个新建的居民区,分别位于平面xOy 内三点(3,20),(10,0),(14,0)A B C -处.现计划在x 轴上方区域(包含x 轴)内的某一点P 处修建一个文化中心.(I )写出点P 到居民区A 的“L 路径”长度最小值的表达式(不要求证明);(II )若以原点O 为圆心,半径为1的圆的内部是保护区,“L 路径”不能进入保护区,请确定点P 的位置,使其到三个居民区的“L 路径”长度之和最小.第20题图【测量目标】绝对值函数最值.【考查方式】将实际案例中的关系先列出式子再将其转化为含绝对值的和的形式,进行分类讨论求解. 【难易程度】较难【试题解析】(I )设点(,)P x y ,且0.y点P 到点A (3,20)的“L 路径”的最短距离d 等于水平距离加上垂直距离,即320d x y =-+-,其中0,.yx ∈R (步骤1)(Ⅱ)点P 到A,B,C 三点的“L 路径”长度之和的最小值d = 水平距离之和的最小值h + 垂直距离之和的最小值v (且h 和v 互不影响).显然当y =1时,v = 20+1=21;显然当[10,14]x ∈-时,水平距离之和(10)14324h x x x =--+-+-,且当x =3时,h =24.因此,当P (3,1)时,d =21+24=45. (步骤2)所以,当点(,)P x y 满足P (3,1)时,点P 到A,B,C 三点的“L 路径”长度之和d 的最小值为45. (步骤3) 21.(本小题满分13分)过抛物线2:2(0)E x py p =>的焦点F 作斜率分别为12,k k 的两条不同的直线12,l l ,且122k k +=,1l E 与相交于点A ,B ,2l 与E 相交于点C ,D ,以AB ,CD 为直径的圆M ,圆N (M ,N 为圆心)的公共弦所在的直线记为l .11 / 13(I )若120,0k k >>,证明;22FM FN p <;(II )若点M 到直线l的距离的最小值为,求抛物线E 的方程. 【测量目标】抛物线的定义,向量数量积的定义,圆的方程,直线与抛物线的位置关系.【考查方式】先将直线方程带入抛物线的方程,利用向量数量积的坐标运算求解,再求出圆的相交弦方程利用点到直线的距离公式及函数思想求解. 【难易程度】较难【试题解析】(Ⅰ)已知抛物线的焦点为(0,).2p F 设112233(,),(,),(,),A x y B x y C x y 4412123434(,),(,),(,)D x y M x y N x y ,(步骤1)直线1l 方程:1,2p y k x =+与抛物线E 方程联立,化简整理得22120x pk x p -++=:(步骤2) 2221212112121121112,,(,)22x x px x k p x x p x k p y k p FM k p k p +⇒+==-⇒===+⇒=(步骤3)同理221234234222,(,)22x x px k p y k p FN k p k p +⇒===+⇒=.(步骤4)2222212121212(1)FM FN k k p k k p p k k k k ⇒=+=+(步骤5)222121212*********,0,,221,(1)1(11)2k k k k k k k k k k FM FN p k k k k p p >>≠=+>⇒<∴=+<⨯⨯+=所以,22FM FN p <成立. (步骤6) (Ⅱ)设圆M N 、的半径分别为22121121111,[()()][2()],22222p p pr r r y y p k p k p p ⇒=+++=++=+ 211,r k p p ⇒=+(步骤7)同理2222,r k p p =+则M N 、的方程分别为22212121()()x x y y r -+-=, 22234342()()x x y y r -+-=,(步骤7)直线l 的方程为:2222223412341212341234122()2()0x x x y y y x x y y r r -+-+-+--+=.222121123412341234123421212()2()()()()()()()0p k k x p k k y x x x x y y y y r r r r ⇒-+-++-++-+-+= 222222222222222212112121221122()2()()()()()(2)0p k k x p k k y p k k p k k k k p k k k k ⇒-+-+-+-++-++=0202)(1)(222212221=+⇒=+++++--+⇒yx k k p k k p p y x (步骤8)点1212(,)M x y 到直线l 的距离为:2211112()()144||||55d p p -+-+====8p ⇒=⇒抛物线的方程为216x y =(步骤9)22.(本小题满分13分)已知0a >,函数()2x af x x a-=+.(I )记()f x 在区间[]0,4上的最大值为g a (),求g a ()的表达式;(II )是否存在a ,使函数()y f x =在区间()0,4内的图象上存在两点,在该两点处的切线相互垂直?若存在,求a 的取值范围;若不存在,请说明理由.【测量目标】利用导数求分段函数的最值,导数的几何意义.【考查方式】根据已知条件转化函数为分段函数再求导,判断极值点所在区间进行分类讨论,依题意将问题转化为函数单调性不一致区间上的两个点处的导数之积等于1-建立方程求解. 【难易程度】较难【试题解析】(Ⅰ)当0,a >○13()1,22x a af x x a x a-==-++ 当2x a <-或x a 时,是单调递增的;(步骤1)○23()122x a af x x a x a-+==-+++,当2a x a -<<时,是单调递减的.由上知,(步骤2)当4a >时()f x 在[0,4]x ∈上单调递减,其最大值为31(0)122a f a =-+=,(步骤3)当4a 时,()f x 在[0,]a 上单调递减,在[,4]a 上单调递增. (步骤4)令31(4)1(0)422a f f a =-<=+,解得:(1,4]a ∈,即当(1,4]a ∈时,()g a 的最大值为(0)f ,(步骤5)当(0,1]a ∈时,()g a 的最大值为(4)f ,综上,(]()31,0,142()=1,1,2a a ag a a ⎧-∈⎪⎪+⎨⎪∈+∞⎪⎩.(步骤6)(II )由前知,()y f x =的图象是由两段反比例函数的图象组成的.因此,若在图象上存在两点),(),,(2211y x Q y x P 满足题目要求,则P ,Q 分别在两个图象上,且12()()1f x f x ''=-.(步骤7)223,2,(2)()3,2;(2)ax a x ax a f x a a x a x a ⎧<-⎪+⎪'=⎨-⎪-<<⎪+⎩或(04a <<)(步骤8)不妨设12122212331,(0,),(,4]3(2)(2)(2)(2)a ax a x a a x a x a x a x a -=-∈∈⇒=++++2222212121222324032402()43224a ax a a a ax a x x a x x a a x x a x a a x ⎧--<<--⎪⇒=+++-⇒=⇒+⎨+⎪<<⎩22222203242342434111224223404(0,)222484228x a x a a ax a a x a a a a a a a x a x <--<--<-⎧⎧⎧⎪⎪⎪⇒<+⇒-<⇒<-⇒<<<⇒∈⎨⎨⎨⎪⎪⎪-<<<<<⎩⎩⎩,且(步骤9)13 / 13所以,当)21,0(∈a 时,函数()y f x =在区间()0,4内的图象上存在两点,在该两点处的切线相互垂直. (步骤10)。

2013年湖南省长沙市长郡中学理实班自主招生考试数学试卷(三)

2013年湖南省长沙市长郡中学理实班自主招生考试数学试卷(三)

2013年湖南省长沙市长郡中学理实班自主招生考试数学试卷(三)一、选择题(每题4分,共32分)1.(4分)现有五张分别写有“长”“郡”“欢”“迎”“您”的卡片,从这五张卡片中任取一张,取出印有“您”的卡片的概率是()A.B.C.D.12.(4分)化简(﹣)•(x﹣3)的结果是()A.2 B. C. D.3.(4分)在△ABC中,∠C=90°,sinA=,则tanB等于()A.B.C.D.4.(4分)下列命题中是真命题的是()A.对角线互相垂直且相等的四边形是正方形B.有两边和一角对应相等的两个三角形全等C.两条对角线相等的平行四边形是矩形D.两边相等的平行四边形是菱形5.(4分)如图,已知函数y=﹣与y=ax2+bx(a>0,b>0)的图象交于点P,点P的纵坐标为1,则关于x的方程ax2+bx+=0的解为()A.x=3 B.x=1 C.x=﹣3 D.无解6.(4分)如图,在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是()A.2 B.2+C.2 D.2+7.(4分)一个平面封闭图形内(含边界)任意两点距离的最大值称为该图形的“直径”,封闭图形的周长与直径之比称为图形的“周率”,下面四个平面图形(依次为正三角形、正方形、正六边形、圆)的周率从左到右依次记为a1,a2,a3,a4,则下列关系中正确的是()A.a4>a2>a1B.a4>a3>a2C.a1>a2>a3D.a2>a3>a48.(4分)如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣1,2),且与x 轴交点的横坐标分别为x1、x2,其中﹣2<x1<﹣1,0<x2<1,下列结论:①4a﹣2b+c<0;②2a﹣b<0;③a<﹣1;④b2+8a>4ac.其中正确的有()A.1个 B.2个 C.3个 D.4个二、填空题(每题4分,共32分)9.(4分)计算:tan30°﹣(π﹣2011)0+﹣|1﹣|=.10.(4分)⊙O的半径为5cm,弦AB=6cm,CD=8cm,且AB∥CD,弦AB、CD 之间的距离为.11.(4分)关于x的方程mx﹣1=2x的解为正实数,则m的取值范围是为.12.(4分)如图,△ABC中,点D在边AB上,满足∠ACD=∠ABC,若AC=2,AD=1,则DB=.13.(4分)若,则=.14.(4分)把一张矩形纸片(矩形ABCD)按如图方式折叠,使顶点B和点D重合,折痕为EF.若AB=3cm,BC=5cm,则重叠部分△DEF的面积是cm2.15.(4分)已知,在△ABC中,∠C=90°,斜边的长为7.5,两条直角边的长分别是关于x的方程x2﹣3(m+)x+9m=0的两个根,则△ABC的内切圆面积是.16.(4分)对于自然数n,将其各位数字之和记为a n,如a2009=2+0+0+9=11,a2010=2+0+1+0=3,则a1+a2+a3+…+a2009+a2010=.三、解答题(每题18分,共36分)17.(18分)2011年上半年,某种农产品受不良炒作的影响,价格一路上扬,8月初国家实施调控措施后,该农产品的价格开始回落.其中:1月份至7月份,该农产品的月平均价格y元/千克与月份x呈一次函数关系;7月份至12月份,月平均价格y元/千克与月份x呈二次函数关系.已知1月、7月、9月和12月这四个月的月平均价格分别为8元/千克、26元/千克、14元/千克、11元/千克.(1)分别求出当1≤x≤7和7≤x≤12时,y关于x的函数关系式;(2)2011年的12个月中,这种农产品的月平均价格哪个月最低?最低为多少?(3)若以12个月份的月平均价格的平均数为年平均价格,月平均价格高于年平均价格的月份有哪些?18.(18分)如图,在平面直角坐标系中,顶点为(4,﹣1)的抛物线交y轴于A点,交x轴于B,C两点(点B在点C的左侧),已知A点坐标为(0,3).(1)求此抛物线的解析式;(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴l与⊙C有怎样的位置关系,并给出证明;(3)已知点P是抛物线上的一个动点,且位于A,C两点之间,问:当点P运动到什么位置时,△PAC的面积最大?并求出此时P点的坐标和△PAC的最大面积.2013年湖南省长沙市长郡中学理实班自主招生考试数学试卷(三)参考答案与试题解析一、选择题(每题4分,共32分)1.(4分)现有五张分别写有“长”“郡”“欢”“迎”“您”的卡片,从这五张卡片中任取一张,取出印有“您”的卡片的概率是()A.B.C.D.1【分析】直接根据概率公式即可得出结论.【解答】解:∵总共有5个字,符合情况的有1个,∴取出印有“您”的卡片的概率=.故选:A.【点评】本题考查的是概率公式,用到的知识点为:概率=.2.(4分)化简(﹣)•(x﹣3)的结果是()A.2 B. C. D.【分析】利用分式的性质即可求出答案.【解答】解:原式=×(x﹣3)﹣=1﹣=故选:D.【点评】本题考查分式的混合运算,涉及因式分解,属于基础题型.3.(4分)在△ABC中,∠C=90°,sinA=,则tanB等于()A.B.C.D.【分析】设BC=4x,AB=5x,由勾股定理求出AC=3x,代入tanB=求出即可.【解答】解:∵sinA==,∴设BC=4x,AB=5x,由勾股定理得:AC==3x,∴tanB===,故选:A.【点评】本题考查了解直角三角形,勾股定理的应用,关键是掌握正弦和正切的定义.4.(4分)下列命题中是真命题的是()A.对角线互相垂直且相等的四边形是正方形B.有两边和一角对应相等的两个三角形全等C.两条对角线相等的平行四边形是矩形D.两边相等的平行四边形是菱形【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:A、错误,例如对角线互相垂直的等腰梯形;B、错误,不能确定;C、正确,符合矩形的判定定理;D、错误,两边相等的平行四边形是平行四边形.故选:C.【点评】主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.5.(4分)如图,已知函数y=﹣与y=ax2+bx(a>0,b>0)的图象交于点P,点P的纵坐标为1,则关于x的方程ax2+bx+=0的解为()A.x=3 B.x=1 C.x=﹣3 D.无解【分析】先求出P点坐标,再把方程的解转化为求两函数的交点问题,进而可得出结论.【解答】解:∵函数y=﹣经过点P,点P的纵坐标为1,∴1=﹣,解得x=﹣3.∵ax2+bx+=0可化为方程ax2+bx=﹣,∴此方程的解即为两函数的交点,∴x=﹣3.故选:C.【点评】本题考查的是反比例函数图象上点的坐标特点,解答此题的关键是把求方程的解转化为求函数交点的问题是解答此题的关键.6.(4分)如图,在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是()A.2 B.2+C.2 D.2+【分析】过P点作PE⊥AB于E,过P点作PC⊥x轴于C,交AB于D,连接PA.分别求出PD、DC,相加即可.【解答】解:过P点作PE⊥AB于E,过P点作PC⊥x轴于C,交AB于D,连接PA.∵PE⊥AB,AB=2,半径为2,∴AE=AB=,PA=2,根据勾股定理得:PE==1,∵点A在直线y=x上,∴∠AOC=45°,∵∠DCO=90°,∴∠ODC=45°,∴△OCD是等腰直角三角形,∴OC=CD=2,∴∠PDE=∠ODC=45°,∴∠DPE=∠PDE=45°,∴DE=PE=1,∴PD=.∵⊙P的圆心是(2,a),∴a=PD+DC=2+.故选:B.【点评】本题综合考查了一次函数与几何知识的应用,题中运用圆与直线的关系以及直角三角形等知识求出线段的长是解题的关键.注意函数y=x与x轴的夹角是45°.7.(4分)一个平面封闭图形内(含边界)任意两点距离的最大值称为该图形的“直径”,封闭图形的周长与直径之比称为图形的“周率”,下面四个平面图形(依次为正三角形、正方形、正六边形、圆)的周率从左到右依次记为a1,a2,a3,a4,则下列关系中正确的是()A.a4>a2>a1B.a4>a3>a2C.a1>a2>a3D.a2>a3>a4【分析】设等边三角形的边长是a,求出等边三角形的周长,即可求出等边三角形的周率a1;设正方形的边长是x,根据勾股定理求出对角线的长,即可求出周率;设正六边形的边长是b,过F作FQ∥AB交BE于Q,根据等边三角形的性质和平行四边形的性质求出直径,即可求出正六边形的周率a3;求出圆的周长和直径即可求出圆的周率,比较即可得到答案.【解答】解:设等边三角形的边长是a,则等边三角形的周率a1==3设正方形的边长是x,由勾股定理得:对角线是x,则正方形的周率是a2==2≈2.828,设正六边形的边长是b,过F作FQ∥AB交BE于Q,得到平行四边形ABQF和等边三角形EFQ,直径是b+b=2b,∴正六边形的周率是a3==3,圆的周率是a4==π,∴a4>a3>a2.故选:B.【点评】本题主要考查对正多边形与圆,多边形的内角和定理,平行四边形的性质和判定,等边三角形的性质和判定等知识点的理解和掌握,理解题意并能根据性质进行计算是解此题的关键.8.(4分)如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣1,2),且与x 轴交点的横坐标分别为x1、x2,其中﹣2<x1<﹣1,0<x2<1,下列结论:①4a﹣2b+c<0;②2a﹣b<0;③a<﹣1;④b2+8a>4ac.其中正确的有()A.1个 B.2个 C.3个 D.4个【分析】首先根据抛物线的开口方向得到a<0,抛物线交y轴于正半轴,则c >0,而抛物线与x轴的交点中,﹣2<x1<﹣1,0<x2<1,说明抛物线的对称轴在﹣1~0之间,即x=﹣>﹣1,根据这些条件以及函数图象上一些特殊点的坐标来进行判断.【解答】解:由图知:抛物线的开口向下,则a<0;抛物线的对称轴x=﹣>﹣1,且c>0.①由图可得:当x=﹣2时,y<0,即4a﹣2b+c<0,故①正确;②已知x=﹣>﹣1,且a<0,所以2a﹣b<0,故②正确;③已知抛物线经过(﹣1,2),即a﹣b+c=2(1),由图知:当x=1时,y<0,即a+b+c<0(2),由①知:4a﹣2b+c<0(3);联立(1)(2),得:a+c<1;联立(1)(3)得:2a﹣c<﹣4;故3a<﹣3,即a<﹣1;所以③正确;④由于抛物线的对称轴大于﹣1,所以抛物线的顶点纵坐标应该大于2,即:>2,由于a<0,所以4ac﹣b2<8a,即b2+8a>4ac,故④正确;因此正确的结论是①②③④.故选:D.【点评】本题主要考查对二次函数图象与系数的关系,抛物线与x轴的交点,二次函数图象上点的坐标特征等知识点的理解和掌握,能根据图象确定与系数有关的式子的正负是解此题的关键.二、填空题(每题4分,共32分)9.(4分)计算:tan30°﹣(π﹣2011)0+﹣|1﹣|=1+.【分析】原式利用特殊角的三角函数值,零指数幂法则,绝对值的代数意义,以及二次根式性质计算即可得到结果.【解答】解:原式=×﹣1+2﹣+1=1+.故答案为:1+【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.10.(4分)⊙O的半径为5cm,弦AB=6cm,CD=8cm,且AB∥CD,弦AB、CD 之间的距离为1cm或7cm.【分析】作OE⊥AB,交CD于F,连结OA、OC,OA=OC=5cm,根据平行线的性质得OF⊥CD,再根据垂径定理得AE=AB=3cm,CF=CD=4cm,于是可根据勾股定理分别计算出OE、OF,然后分类讨论求EF即可.【解答】解:如图,作OE⊥AB,交CD于F,连结OA、OC,OA=OC=5cm,∵AB∥CD,∴OF⊥CD,∴AE=AB=3cm,CF=CD=4cm,在Rt△AOE中,OE==4cm,在Rt△COF中,OF==3cm,当圆心O在平行弦AB与CD之间,EF=OE+OF=4cm+3cm=7cm;当圆心O在平行弦AB与CD之外,EF=OE﹣OF=4cm﹣3cm=1cm;∴弦AB、CD之间的距离为1cm或7cm.故答案为1cm或7cm.【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.11.(4分)关于x的方程mx﹣1=2x的解为正实数,则m的取值范围是为m>2.【分析】先把m当作已知条件表示出x的值,再根据x为正实数列出关于m的不等式,求出m的取值范围即可.【解答】解:∵mx﹣1=2x,∴x=,∵x为正实数,∴>0,解得m>2.故答案为:m>2.【点评】本题考查的是解一元一次不等式,先根据题意得出关于m的不等式是解答此题的关键.12.(4分)如图,△ABC中,点D在边AB上,满足∠ACD=∠ABC,若AC=2,AD=1,则DB=3.【分析】由题意,在△ABC中,点D在边AB上,满足∠ACD=∠ABC,可证△ABC ∽△ACD,再根据相似三角形对应边成比例来解答.【解答】解:∵∠ACD=∠ABC,∠A=∠A,∴△ABC∽△ACD,∴,∵AC=2,AD=1,∴,解得DB=3.故答案为:3.【点评】本题主要考查相似三角形的性质及对应边长成比例,难点在于找对应边.13.(4分)若,则=6.【分析】根据非负数的性质先求出a2+、b的值,再代入计算即可.【解答】解:∵,∴+(b+1)2=0,∴a2﹣3a+1=0,b+1=0,∴a+=3,∴(a+)2=32,∴a2+=7;b=﹣1.∴=7﹣1=6.故答案为:6.【点评】本题考查了非负数的性质,完全平方公式,整体思想,解题的关键是整体求出a2+的值.14.(4分)把一张矩形纸片(矩形ABCD)按如图方式折叠,使顶点B和点D重合,折痕为EF.若AB=3cm,BC=5cm,则重叠部分△DEF的面积是 5.1cm2.【分析】根据折叠的性质知:AE=A′E,AB=A′D;可设AE为x,用x表示出A′E和DE的长,进而在Rt△A′DE中求出x的值,即可得到A′E的长;进而可求出△A′ED 和梯形A′EFD的面积,两者的面积差即为所求的△DEF的面积.【解答】解:设AE=A′E=x,则DE=5﹣x;在Rt△A′ED中,A′E=x,A′D=AB=3c m,ED=AD﹣AE=5﹣x;由勾股定理得:x2+9=(5﹣x)2,解得x=1.6;=S梯形A′DFE﹣S△A′DE=(A′E+DF)•A′D﹣A′E•A′D∴①S△DEF=×(5﹣x+x)×3﹣×x×3=×5×3﹣×1.6×3=5.1(cm2);=ED•AB÷2=(5﹣1.6)×3÷2=5.1(cm2).或②S△DEF故答案为:5.1【点评】此题考查了图形的折叠变换,能够根据折叠的性质和勾股定理求出AE、A′E的长是解答此题的关键.15.(4分)已知,在△ABC中,∠C=90°,斜边的长为7.5,两条直角边的长分别是关于x的方程x2﹣3(m+)x+9m=0的两个根,则△ABC的内切圆面积是π.【分析】设两直角边为a、b,根据根与系数的关系得出a+b=3(m+),ab=9m,根据勾股定理得出a2+b2=7.52,求出m,即可直角三角形的内切圆的半径,求出面积即可.【解答】解:设两直角边为a、b,∵两条直角边的长分别是关于x的方程x2﹣3(m+)x+9m=0的两个根,∴a+b=3(m+),ab=9m,∵直角三角形的斜边为7.5,∴a2+b2=7.52,∴(a+b)2﹣2ab=,∴9(m+)2﹣18m=,解得:m=﹣2或3,经检验m=﹣2不合题意,即m只能为3,∴a+b=,∵直角三角形的内切圆的半径r=(a+b+c),∴r=,∴△ABC的内切圆的面积为π,故答案为:π.【点评】本题考查了三角形的内切圆,勾股定理,根与系数的关系的应用,能求出m的值是解此题的关键.16.(4分)对于自然数n,将其各位数字之和记为a n,如a2009=2+0+0+9=11,a2010=2+0+1+0=3,则a1+a2+a3+…+a2009+a2010=28068.【分析】分别求出自然数1到2010中1到9出现的总次数,则a1+a2+a3+...+a2009+a2010=1×数字1出现的总次数+2×数字2出现的总次数+ (9)数字9出现的总次数,从而求解.【解答】解:把1到2010之间的所有自然数均看作四位数(如果n不足四位,则在前面加0,补足四位,这样做不会改变a n的值).1在千位上出现的次数为103,1在百位上出现的次数为2×102,1在十位和个位上出现的次数均为2×102+1,因此,1出现的总次数为103+2×102×3+1=1601.2在千位上出现的次数为11,2在百位和十位上出现的次数均为2×102,2在个位上出现的次数为2×102+1,因此,2出现的总次数为11+2×102×3+1=612.类似的,可求得k(k=3,4,5,6,7,8,9)出现的总次数均为2×102×3+1=601.因此a1+a2+a3+…+a2009+a2010=1062×1+612×2+601×(3+4+5+6+7+8+9),=28068.故答案为:28068.【点评】本题考查了数字的变化规律,得出自然数1到2010中1到9出现的总次数是解题的关键,注意分类顺序的应用.三、解答题(每题18分,共36分)17.(18分)2011年上半年,某种农产品受不良炒作的影响,价格一路上扬,8月初国家实施调控措施后,该农产品的价格开始回落.其中:1月份至7月份,该农产品的月平均价格y元/千克与月份x呈一次函数关系;7月份至12月份,月平均价格y元/千克与月份x呈二次函数关系.已知1月、7月、9月和12月这四个月的月平均价格分别为8元/千克、26元/千克、14元/千克、11元/千克.(1)分别求出当1≤x≤7和7≤x≤12时,y关于x的函数关系式;(2)2011年的12个月中,这种农产品的月平均价格哪个月最低?最低为多少?(3)若以12个月份的月平均价格的平均数为年平均价格,月平均价格高于年平均价格的月份有哪些?【分析】(1)根据自变量的不同取值范围内不同的函数关系设出不同的函数的解析式,利用待定系数法求得函数的解析式即可;(2)根据一次函数的增减性和二次函数的最值确定该农产品的最低月份和最低价格即可;(3)分别计算5个月的平均价格和年平均价格,比较得到结论即可.【解答】解:(1)当1≤x≤7时,设y=kx+m将点(1,8)、(7,26)分别代入y=kx+m得:,解之得:,∴函数的解析式为:y=3x+5,当7≤x≤12时,设y=ax2+bx+c,将点(7,26)、(9,14)、(12,11)代入y=ax2+bx+c,得,解之得:,∴函数的解析式为y=x2﹣22x+131;(2)当1≤x≤7时,y=3x+5为增函数,当x=1时,y有最小值8.当7≤x≤12时,y=x2﹣22x+131=(x﹣11)2+10,当x=11时,y有最小值为10.所以,该农产品月平均价格最低的是1月,最低为8元/千克.(3)∵1至7月份的月平均价格呈一次函数,∴x=4时的月平均价格17是前7个月的平均值.将x=8,x=10和x=11代入y=x2﹣22x+131得y=19和y=11,y=10∴后5个月的月平均价格分别为19、14、11、10、11,∴年平均价格为≈15.3元/千克,当x=3时,y=14<15.3,∴4,5,6,7,8这五个月的月平均价格高于年平均价格.【点评】本题考查了二次函数的应用,解决此类问题的关键是从实际问题中整理出函数模型,利用函数的知识解决实际问题.18.(18分)如图,在平面直角坐标系中,顶点为(4,﹣1)的抛物线交y轴于A点,交x轴于B,C两点(点B在点C的左侧),已知A点坐标为(0,3).(1)求此抛物线的解析式;(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴l与⊙C有怎样的位置关系,并给出证明;(3)已知点P是抛物线上的一个动点,且位于A,C两点之间,问:当点P运动到什么位置时,△PAC的面积最大?并求出此时P点的坐标和△PAC的最大面积.【分析】(1)已知抛物线的顶点坐标,可用顶点式设抛物线的解析式,然后将A 点坐标代入其中,即可求出此二次函数的解析式;(2)根据抛物线的解析式,易求得对称轴l的解析式及B、C的坐标,分别求出直线AB、BD、CE的解析式,再求出CE的长,与到抛物线的对称轴的距离相比较即可;(3)过P作y轴的平行线,交AC于Q;易求得直线AC的解析式,可设出P点的坐标,进而可表示出P、Q的纵坐标,也就得出了PQ的长;然后根据三角形面积的计算方法,可得出关于△PAC的面积与P点横坐标的函数关系式,根据所得函数的性质即可求出△PAC的最大面积及对应的P点坐标.【解答】解:(1)设抛物线为y=a(x﹣4)2﹣1,∵抛物线经过点A(0,3),∴3=a(0﹣4)2﹣1,;∴抛物线为;(2)相交.证明:连接CE,则CE⊥BD,当时,x1=2,x2=6.A(0,3),B(2,0),C(6,0),对称轴x=4,∴OB=2,AB==,BC=4,∵AB⊥BD,∴∠OAB+∠OBA=90°,∠OBA+∠EBC=90°,∴△AOB∽△BEC,∴=,即=,解得CE=,∵>2,故抛物线的对称轴l与⊙C相交.(3)如图,过点P作平行于y轴的直线交AC于点Q;可求出AC的解析式为;设P点的坐标为(m,),则Q点的坐标为(m,);∴PQ=﹣m+3﹣(m2﹣2m+3)=﹣m2+m.=S△PAQ+S△PCQ=×(﹣m2+m)×6∵S△PAC=﹣(m﹣3)2+;∴当m=3时,△PAC的面积最大为;此时,P点的坐标为(3,).【点评】此题考查了二次函数解析式的确定、相似三角形的判定和性质、直线与圆的位置关系、图形面积的求法等知识.。

2013年湖南省长沙市雅礼中学理实班自主招生考试数学试卷(一)

2013年湖南省长沙市雅礼中学理实班自主招生考试数学试卷(一)

2013年湖南省长沙市雅礼中学理实班自主招生考试数学试卷(一)一、选择题(每小题4分,满分32分)1.(4分)函数y=﹣的图象是()A.B.C.D.2.(4分)同时抛掷两枚硬币,每次出现正面都向上的概率为()A.B.C.D.3.(4分)如图,用一块直径为a的圆桌布平铺在对角线长为a的正方形桌面上,若四周下垂的最大长度相等,则桌布下垂的最大长度x为()A.B.C.D.4.(4分)如图,王华晚上由路灯A下的B处走到C处时,测得影子CD的长为1米,继续往前走3米到达E处时,测得影子EF的长为2米,已知王华的身高是1.5米,那么路灯A的高度AB等于()A.4.5米B.6米 C.7.2米D.8米5.(4分)如图所示,某公司有三个住宅区,A、B、C各区分别住有职工30人,15人,10人,且这三点在一条大道上(A,B,C三点共线),已知AB=100米,BC=200米.为了方便职工上下班,该公司的接送车打算在此间只设一个停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在()A.点A B.点B C.A,B之间D.B,C之间6.(4分)四个电子宠物排座位,一开始,小鼠,小猴,小兔,小猫分别坐在1,2,3,4号座位上(如图所示),以后它们不停地交换位置,第一次上下两排交换位置,第二次是在第一次交换位置后再左右两列交换位置,第三次再上下两排交换,第四次再左右两列交换位置,…,这样一直下去,第2008次交换位置后,小鼠所在的座号是()A.1 B.2 C.3 D.47.(4分)若x﹣1=2(y+1)=3(z+2),则x2+y2+z2可取得的最小值为()A.6 B.C.D.8.(4分)将一个无盖的正方体纸盒展开(如图①),沿虚线剪开,用得到的5张纸片(其中4张是全等的直角三角形纸片)拼成一个正方形(如图②),则所剪得直角三角形较短的直角边与较长的直角边的比是()A.1:2 B.:3 C.1:3 D.不能确定二、填空题(每小题4分,满分32分)9.(4分)如图,在△ABC中,∠ACB=100°,AC=AE,BC=BD,则∠DCE的度数为.10.(4分)已知a,b为一元二次方程x2+2x﹣9=0的两个根,那么a2+a﹣b的值为.11.(4分)已知x=sin60°,则=.12.(4分)如图,⊙O是△ABC的外接圆,AD是⊙O的直径,连接CD,若⊙O的半径r=,AC=2,则cosB的值是.13.(4分)已知△ABC的三边长分别为20cm,50cm,60cm,现在利用长度为30cm和60cm 的细木条各一根,做一个三角形木架与△ABC相似,要求以其中一根为一边,将另一根截成两段(允许有余料)作为另外两边,那么所构成的木架的三边长度(单位:cm)分别为.14.(4分)如图,在梯形ABCD中,∠DCB=90°,AB∥CD,AB=25,BC=24,将该梯形折叠,点A恰好与点D重合,BE为折痕,那么AD的长度为.15.(4分)已知a+b+c=0,a2+b2+c2=4,那么a4+b4+c4的值等于.16.(4分)如图,圆心角都是90°的扇形OAB与扇形OCD叠放在一起,OA=3,OC=1,分别连接AC、BD,则图中阴影部分的面积为.三、解答题(每小题12分,共36分)17.(12分)一商场计划到计算器生产厂家购进一批A、B两种型号的计算器.经过商谈,A型计算器单价为50元,100只起售,超过100只的超过部分,每只优惠20%;B型计算器单价为22元,150只起售,超过150只的超过部分,每只优惠2元.如果商家计划购进计算器的总量既不少于700只,又不多于800只,且分别用于购买A、B这两种型号的计算器的金额相等,那么该商场至少需要准备多少资金?18.(6分)如图,⊙O1与⊙O2经过A,B两点,过A点的直线与⊙O1交于点C,与⊙O2交于点D,过B点的直线与⊙O1交于点E,与⊙O2交于点F.证明:CE ∥DF.19.(6分)(北师大版)某公司以每吨200元的价格购进某种矿石原料300吨,用于生产甲、乙两种产品.生产1吨甲产品或1吨乙产品所需该矿石和煤原料的吨数如下表:煤的价格为400元/吨.生产1吨甲产品除原料费用外,还需其它费用400元,甲产品每吨售价4600元;生产1吨乙产品除原料费用外,还需其它费用500元,乙产品每吨售价5500元.现将该矿石原料全部用完.设生产甲产品x吨,乙产品m吨,公司获得的总利润为y元.(1)写出m与x之间的关系式;(2)写出y与x之间的函数表达式(不要求写出自变量的范围);(3)若用煤不超过200吨,生产甲产品多少吨时,公司获得的总利润最大,最大利润是多少?20.(12分)已知二次函数的图象如图所示,抛物线与x轴、y轴分别交于点A (﹣1,0)、B(2,0)、C(0,﹣2).(1)求二次函数的解析式及抛物线顶点M的坐标;(2)若点N为线段BM上的一点,过点N作x轴的垂线,垂足为Q,当点N在线段MB上运动时(点N不与点B、点M重合),设NQ的长为t,四边形NQAC 的面积为S,求S与t之间的函数关系式及自变量t的取值范围;(3)在对称轴右侧的抛物线上是否存在点P,使△PAC为直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由;(4)将△OAC补成矩形,将△OAC的两个顶点成为矩形的一边的两个顶点,第三个顶点落在矩形这一边的对边上,试直接写出矩形的未知的顶点坐标(不需要计算过程).2013年湖南省长沙市雅礼中学理实班自主招生考试数学试卷(一)参考答案与试题解析一、选择题(每小题4分,满分32分)1.(4分)(2013•雨花区校级自主招生)函数y=﹣的图象是()A.B.C.D.【解答】解:由y=﹣可知,x可以取正数,也可以取负数,但函数值只能是负数,所以函数图象应该是在x轴的下方,并且x、y均不为零.故选:C.2.(4分)(2006•邵阳)同时抛掷两枚硬币,每次出现正面都向上的概率为()A.B.C.D.【解答】解:所有出现机会均等的情况有四种:正正,正反,反正,反反,正正只有一种,所以每次出现正面都向上的概率为.故选A.3.(4分)(2013•雨花区校级自主招生)如图,用一块直径为a的圆桌布平铺在对角线长为a的正方形桌面上,若四周下垂的最大长度相等,则桌布下垂的最大长度x为()A.B.C.D.【解答】解:根据题意画出图形,如图所示:对角线长为a的正方形桌面的边长EF=a,又∵四边形AEFD为矩形,∴AD=EF=a,又BC=a,∴AB==,则桌布下垂的最大长度为.故选C.4.(4分)(2006•深圳)如图,王华晚上由路灯A下的B处走到C处时,测得影子CD的长为1米,继续往前走3米到达E处时,测得影子EF的长为2米,已知王华的身高是1.5米,那么路灯A的高度AB等于()A.4.5米B.6米 C.7.2米D.8米【解答】解:如图,GC⊥BC,AB⊥BC,∴GC∥AB,∴△GCD∽△ABD(两个角对应相等的两个三角形相似),∴,设BC=x,则,同理,得,∴,∴x=3,∴,∴AB=6.故选:B.5.(4分)(2013•雨花区校级自主招生)如图所示,某公司有三个住宅区,A、B、C各区分别住有职工30人,15人,10人,且这三点在一条大道上(A,B,C三点共线),已知AB=100米,BC=200米.为了方便职工上下班,该公司的接送车打算在此间只设一个停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在()A.点A B.点B C.A,B之间D.B,C之间【解答】解:①以点A为停靠点,则所有人的路程的和=15×100+10×300=4500(米),②以点B为停靠点,则所有人的路程的和=30×100+10×200=5000(米),③以点C为停靠点,则所有人的路程的和=30×300+15×200=12000(米),④当在AB之间停靠时,设停靠点到A的距离是m,则(0<m<100),则所有人的路程的和是:30m+15(100﹣m)+10(300﹣m)=4500+5m>4500,⑤当在BC之间停靠时,设停靠点到B的距离为n,则(0<n<200),则总路程为30(100+n)+15n+10(200﹣n)=5000+35n>4500.∴该停靠点的位置应设在点A;故选A.6.(4分)(2013•雨花区校级自主招生)四个电子宠物排座位,一开始,小鼠,小猴,小兔,小猫分别坐在1,2,3,4号座位上(如图所示),以后它们不停地交换位置,第一次上下两排交换位置,第二次是在第一次交换位置后再左右两列交换位置,第三次再上下两排交换,第四次再左右两列交换位置,…,这样一直下去,第2008次交换位置后,小鼠所在的座号是()A.1 B.2 C.3 D.4【解答】解:因为2008÷4=502,即第2008次交换位置后,小鼠所在的号位应和第一次交换位置相同,即图2中1号位.故选:A.7.(4分)(2013•雨花区校级自主招生)若x﹣1=2(y+1)=3(z+2),则x2+y2+z2可取得的最小值为()A.6 B.C.D.【解答】解:设x﹣1=2(y+1)=3(z+2)=k,则x=k+1,y=﹣1,z=﹣2,所以,x2+y2+z2=(k+1)2+(﹣1)2+(﹣2)2,=k2﹣k+6,=(k﹣)2+,所以,当k=时,x2+y2+z2可取得的最小值为.故选D.8.(4分)(2013•雨花区校级自主招生)将一个无盖的正方体纸盒展开(如图①),沿虚线剪开,用得到的5张纸片(其中4张是全等的直角三角形纸片)拼成一个正方形(如图②),则所剪得直角三角形较短的直角边与较长的直角边的比是()A.1:2 B.:3 C.1:3 D.不能确定【解答】解:由图可得,所剪得的直角三角形较短的边是原正方体棱长的一半,而较长的直角边正好是原正方体的棱长,所以所剪得的直角三角形较短的与较长的直角边的比是1:2.故选:A.二、填空题(每小题4分,满分32分)9.(4分)(2013•雨花区校级自主招生)如图,在△ABC中,∠ACB=100°,AC=AE,BC=BD,则∠DCE的度数为40°.【解答】解:∵AC=AE,BC=BD,∴设∠AEC=∠ACE=x°,∠BDC=∠BCD=y°,∴∠A=180°﹣2x°,∠B=180°﹣2y°,∵∠ACB+∠A+∠B=180°,∴100+(180﹣2x)+(180﹣2y)=180,∴x+y=140,∴∠DCE=180﹣(∠AEC+∠BDC)=180﹣(x+y)=40°.故答案为40°.10.(4分)(2013•雨花区校级自主招生)已知a,b为一元二次方程x2+2x﹣9=0的两个根,那么a2+a﹣b的值为11.【解答】解:∵解方程:x2+2x﹣9=0得:∴ab=﹣9②,a+b=﹣2,∴b=﹣2﹣a③,把③代入②得:a2+2a﹣9=0∴a1=,a2=,∴b1=,b2=,∴当a1=,b1=时,∴a2+a﹣b=()2+()﹣()=11.当a2=,b2=,∴a2+a﹣b=(﹣)2+(﹣)﹣()=11故答案为11.11.(4分)(2003•黄冈)已知x=sin60°,则=.【解答】解:===2x,∵x=sin60°=,∴原式=.12.(4分)(2013•雨花区校级自主招生)如图,⊙O是△ABC的外接圆,AD是⊙O的直径,连接CD,若⊙O的半径r=,AC=2,则cosB的值是.【解答】解:∵AD是⊙O的直径,∴∠ACD=90°.Rt△ACD中,AD=2r=3,AC=2.根据勾股定理,得:CD===.∴cosD==.∵∠B=∠D,∴cosB=cosD=.13.(4分)(2013•雨花区校级自主招生)已知△ABC的三边长分别为20cm,50cm,60cm,现在利用长度为30cm和60cm 的细木条各一根,做一个三角形木架与△ABC相似,要求以其中一根为一边,将另一根截成两段(允许有余料)作为另外两边,那么所构成的木架的三边长度(单位:cm)分别为10cm,25cm,30cm 或12cm,30cm,36cm.【解答】解:因为所作的三角形与△ABC相似,可设所作三角形的三边长为2a,5a,6a,①当2a=30cm时,a=15cm,∴所作三角形的另外两边长为90cm和75cm,∵75>60,因此这种情况不成立;②当5a=30cm时,a=6cm,∴所作三角形的另外两边长为12cm和36cm,12+36<60,因此这种情况成立;③当6a=30cm时,a=5cm,∴所作三角形的另外两边长为10cm和25cm,10+25<60,因此这种情况成立.综合三种情况可知:所作三角形的三边长为10cm,25cm,30cm或12cm,30cm,36cm.故答案为:10cm,25cm,30cm或12cm,30cm,36cm.14.(4分)(2006•遂宁)如图,在梯形ABCD中,∠DCB=90°,AB∥CD,AB=25,BC=24,将该梯形折叠,点A恰好与点D重合,BE为折痕,那么AD的长度为30.【解答】解:过点D作DF⊥AB,垂足为F,根据题意,BF=CD==7,AF=AB﹣BF=25﹣7=18,在Rt△ADF中,由勾股定理得,AD===30.15.(4分)(2013•雨花区校级自主招生)已知a+b+c=0,a2+b2+c2=4,那么a4+b4+c4的值等于8.【解答】解:∵a+b+c=0,∴(a+b+c)2=0,即a2+b2+c2+2ab+2bc+2ca=0,∴a2+b2+c2+2(ab+bc+ca)=0,①∵a2+b2+c2=4,②把②代入①,得4+2(ab+bc+ca)=0,解得,ab+bc+ca=﹣2;∵a4+b4+c4=(a2+b2+c2)2﹣2(a2b2+b2c2+c2a2)=(a2+b2+c2)2﹣2[(ab+bc+ac)2﹣2abc(a+b+c)],ab+bc+ca=﹣2,a+b+c=0,∴a4+b4+c4=16﹣2×[(﹣2)2﹣0]=8.故答案为:8.16.(4分)(2013•雨花区校级自主招生)如图,圆心角都是90°的扇形OAB与扇形OCD叠放在一起,OA=3,OC=1,分别连接AC、BD,则图中阴影部分的面积为2π.【解答】解:阴影部分的面积=扇形OAB的面积﹣扇形OCD的面积=﹣==2π.三、解答题(每小题12分,共36分)17.(12分)(2006•无锡)一商场计划到计算器生产厂家购进一批A、B两种型号的计算器.经过商谈,A型计算器单价为50元,100只起售,超过100只的超过部分,每只优惠20%;B型计算器单价为22元,150只起售,超过150只的超过部分,每只优惠2元.如果商家计划购进计算器的总量既不少于700只,又不多于800只,且分别用于购买A、B这两种型号的计算器的金额相等,那么该商场至少需要准备多少资金?【解答】解:设购买A型计算器x只,B型计算器y只,则化简得解得设所需资金为P元,则P=2[100×50+(x﹣100)×50×(1﹣20%)]=80x+2000因为x为整数,且P随x的增大而增大,所以当x=222时,P的最小值为19760.答:该商场至少需要准备资金19760元.18.(6分)(2013•雨花区校级自主招生)如图,⊙O1与⊙O2经过A,B两点,过A点的直线与⊙O1交于点C,与⊙O2交于点D,过B点的直线与⊙O1交于点E,与⊙O2交于点F.证明:CE∥DF.【解答】解:连接AE、AB,由圆周角定理得,∠ACE=∠ABE,∵四边形ABFD是圆内接四边形,∴∠ABF+∠D=180°,∴∠ACE+∠D=180°,∴CE∥DF.19.(6分)(2006•武汉)(北师大版)某公司以每吨200元的价格购进某种矿石原料300吨,用于生产甲、乙两种产品.生产1吨甲产品或1吨乙产品所需该矿石和煤原料的吨数如下表:煤的价格为400元/吨.生产1吨甲产品除原料费用外,还需其它费用400元,甲产品每吨售价4600元;生产1吨乙产品除原料费用外,还需其它费用500元,乙产品每吨售价5500元.现将该矿石原料全部用完.设生产甲产品x吨,乙产品m吨,公司获得的总利润为y元.(1)写出m与x之间的关系式;(2)写出y与x之间的函数表达式(不要求写出自变量的范围);(3)若用煤不超过200吨,生产甲产品多少吨时,公司获得的总利润最大,最大利润是多少?【解答】解:(1)m 与x之间的关系式为:m==75﹣2.5x.(2)生产1吨甲产品获利:4600﹣(10×200+4×400+400)=600;生产1吨乙产品获利:5500﹣(4×200+8×400+500)=1000.y与x的函数表达式为:y=600x+×1000=﹣1900x+75000;(3)根据题意列出不等式解得30≥x≥25.∴y与x的函数表达式为:y═﹣1900x+75000,∴y随x的增大而减小,∴当生产甲产品25吨时,公司获得的总利润最大.y最大=﹣1900×25+75000=27500(元).20.(12分)(2013•雨花区校级自主招生)已知二次函数的图象如图所示,抛物线与x轴、y轴分别交于点A(﹣1,0)、B(2,0)、C(0,﹣2).(1)求二次函数的解析式及抛物线顶点M的坐标;(2)若点N为线段BM上的一点,过点N作x轴的垂线,垂足为Q,当点N在线段MB上运动时(点N不与点B、点M重合),设NQ的长为t,四边形NQAC 的面积为S,求S与t之间的函数关系式及自变量t的取值范围;(3)在对称轴右侧的抛物线上是否存在点P,使△PAC为直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由;(4)将△OAC补成矩形,将△OAC的两个顶点成为矩形的一边的两个顶点,第三个顶点落在矩形这一边的对边上,试直接写出矩形的未知的顶点坐标(不需要计算过程).【解答】解:(1)设二次函数的解析式为:y=a(x+1)(x﹣2),把(0,﹣2)代入得:﹣2=a(0+1)(0﹣2),a=1,∴y=(x+1)(x﹣2)=x2﹣x﹣2=(x﹣)2﹣,∴二次函数的解析式为:y=x2﹣x﹣2,顶点M的坐标为(,﹣);(2)如图1,设线段BM的解析式为:y=kx+b,把B(2,0)、M(,﹣)代入得:,解得:,∴线段BM所在的直线解析式为:y=x﹣3,设N(h,﹣t),把点N(h,﹣t)代入y=x﹣3得:h﹣3=﹣t,h=2﹣t,其中<h<2,∴S=×1×2+(2+t)(2﹣t)=﹣+t+3,则S与t之间的函数关系式为:S=﹣+t+3,∵顶点M的坐标为(,﹣),∴QN的最大值为,∴自变量t的取值范围为0<t<;(3)存在,设点P(m,n),则n=m2﹣m﹣2,PA2=(m+1)2+n2,PC2=m2+(n+2)2,AC2=5,若△PAC为直角三角形时,分以下三种情况:①当∠ACP=90°时,如图2,则PA2=AC2+PC2,得(m+1)2+n2=m2+(n+2)2+5,解得:m1=0(舍去),m2=,当m=时,n=()2﹣﹣2=﹣,∴P(,﹣),②当∠PAC=90°时,如图3,则PC2=PA2+AC2,得:m2+(n+2)2=(m+1)2+n2+5,解得:m1=,m2=﹣1(舍去),当m=时,n=()2﹣﹣2=,∴P(,),③由图象观察得,当点P在对称轴的右侧时,PA>AC,所以边AC的对角∠APC 不可能为90°,综上所述,点P的坐标为(,﹣)或(,);(4)如图4,矩形ADCO,∵A(﹣1,0),C(0,﹣2)∴D(﹣1,﹣2)如图5,矩形ACED,过D作DF⊥x轴于F,过E作EM⊥y轴于M,过O作ON⊥AC于N,sin∠OAC=,∴,∴ON=,∴AD=ON=,cos∠ADF=cos∠OAC=,∴=,∴DF=,由勾股定理得:AF===,∴OF=1﹣=,∴D(﹣,),同理得:E(,﹣),综上所述,矩形的未知的顶点坐标是(﹣1,﹣2)或(﹣,)或(,﹣).参与本试卷答题和审题的老师有:dbz1018;lanyan;137﹣hui;1987483819;Linaliu;leikun;郝老师;sjzx;星期八;gbl210;HJJ;ZHAOJJ;Liuzhx;lf2﹣9;MMCH;wdxwzk;王学峰;lanchong;开心;蓝月梦;知足长乐;zxw;399462;tcm123(排名不分先后)菁优网2017年4月5日。

2013年高考数学试题理科数学湖南卷试题及参考答案

2013年高考数学试题理科数学湖南卷试题及参考答案

2013年各地高考数学试题(湖南卷)数学(理工农医类)本试卷包括选择题、填空题和解答题三部分,共5页,时量120分钟,满分150分。

一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数()()1z i i i =+为虚数单位在复平面上对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限【答案】 B 【解析】 z = i·(1+i) = i – 1,所以对应点(-1,1).选B 选B2.某学校有男、女学生各500名.为了解男女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是A .抽签法B .随机数法C .系统抽样法D .分层抽样法【答案】 D【解析】 因为抽样的目的与男女性别有关,所以采用分层抽样法能够反映男女人数的比例。

选D3.在锐角中ABC ∆,角,A B 所对的边长分别为,a b .若2sin ,a B A =则角等于 A .12πB .6πC .4πD .3π【答案】 D【解析】 3=A 223=sinA sinB 3 = sinB 2sinA :得b 3=2asinB 由ππ⇒<⇒⋅⋅A , 选D4.若变量,x y 满足约束条件211y xx y y ≤⎧⎪+≤⎨⎪≥-⎩,2x y +则的最大值是A .5-2B .0C .53D .52【答案】 C【解析】 区域为三角形,直线u = x + 2y 经过三角形顶点最大时,35)32,31(=u 选C5.函数()2ln f x x =的图像与函数()245g x x x =-+的图像的交点个数为 A .3 B .2 C .1 D .0【答案】 B【解析】 二次函数()245g x x x =-+的图像开口向上,在x 轴上方,对称轴为x=2,g(2) = 1; f(2) =2ln2=ln4>1.所以g(2) < f(2), 从图像上可知交点个数为2选B6. 已知,a b 是单位向量,0a b =.若向量c 满足1,c a b c --=则的取值范围是A .⎤⎦B .⎤⎦C .1⎡⎤⎣⎦D .1⎡⎤⎣⎦【答案】 A【解析】向量之差的向量与即一个模为单位c 2.1|c -)b a (||b a -c |,2|b a |向量,是b ,a =+=-=+∴的模为1,可以在单位圆中解得12||1-2+≤≤。

2013年湖南省长沙市长郡中学理科班入学数学试卷(一)

2013年湖南省长沙市长郡中学理科班入学数学试卷(一)

2013年湖南省长沙市长郡中学理科班入学数学试卷(一)一、选择题(每个题目只有一个正确答案,每题6分,共36分)1.(6分)若分式的值为零,则x的值应取()A.x=2或x=﹣1 B.x=﹣1 C.x=±1 D.x=22.(6分)如图:△ABC中,∠ABC、∠ACB的平分线交于P点,∠BPC=134°,则∠BAC=()A.68°B.80°C.88°D.46°3.(6分)世界杯足球赛小组赛,每个小组4个队进行单循环比赛,每场比赛胜队得3分,败队得0分,平局时两队各得1分,小组赛完以后,总积分最高的两个队出线进入下轮比赛,如果总积分相同,还要按净胜球排序,一个队要保证出线,这个队至少要积()A.6分 B.7分 C.8分 D.9分4.(6分)若正实数a、b满足ab=a+b+3,则a2+b2的最小值为()A.﹣7 B.0 C.9 D.185.(6分)直线与x轴y轴的交点分别为A、B,如果S△AOB≤1,那么k 的取值范围是()A.k≤1 B.0<k≤1 C.﹣1≤k≤1且k≠0 D.k≤﹣1或k≥16.(6分)如图,四边形ABCD内接于半圆O,AB为直径,AB=4,AD=DC=1,则BC的长为()A.B. C.D.二、填空题(每题5分,共30分)7.(5分)如图,已知△ABC中,AB=AC,D是BC上一点,且AD=DB,DC=CA,则∠BAC=°.8.(5分)已知关于x的方程有正数解,则m的取值是.9.(5分)一元钱的硬币的直径约为24mm,则它完全覆盖住的正三角形的边长最大不能超过mm(保留根号).10.(5分)已知x+y=2,2y2﹣y﹣4=0,则y﹣的值为.11.(5分)已知,则a2+2ab+b2﹣2ac+c2﹣2bc的值=.12.(5分)如图:四边形ABCD中,AB=3,BC=4,∠B=∠C=120°,CD=5,则四边形ABCD的面积为.三、解答题(本大题共3小题,13、14题11分,15每题12分共34分)13.(11分)甲,乙,丙三人各有邮票若干枚,要求互相赠送.先由甲送给乙,丙,所给的枚数等于乙,丙原来各有的邮票数;然后依同样的游戏规则再由乙送给甲,丙现有的邮票数,最后由丙送给甲,乙现有的邮票数.互相送完后,每人恰好各有64枚.你能知道他们原来各有邮票多少枚吗?说出你的思考过程.14.(11分)已知:如图,△ABC中,∠C=90°,D为AB的中点,E、F分别在AC、BC上,且DE⊥DF.求证:AE2+BF2=EF2.15.(12分)如图,抛物线y=a(x+3)(x﹣1)与x轴相交于A、B两点(点A在点B右侧),过点A的直线交抛物线于另一点C,点C的坐标为(﹣2,6).(1)求a的值及直线AC的函数关系式;(2)P是线段AC上一动点,过点P作y轴的平行线,交抛物线于点M,交x轴于点N.①求线段PM长度的最大值;②在抛物线上是否存在这样的点M,使得△CMP与△APN相似?如果存在,请直接写出所有满足条件的点M的坐标(不必写解答过程);如果不存在,请说明理由.2013年湖南省长沙市长郡中学理科班入学数学试卷(一)参考答案与试题解析一、选择题(每个题目只有一个正确答案,每题6分,共36分)1.(6分)若分式的值为零,则x的值应取()A.x=2或x=﹣1 B.x=﹣1 C.x=±1 D.x=2【分析】要使分式的值为0,必须分式分子的值为0并且分母的值不为0.【解答】解:由分子(x+1)(x﹣2)=0,解得:x=﹣1或2.当x=﹣1时,分母|x|﹣1=1﹣1=0,分式没有意义.当x=2时,分母|x|﹣1=2﹣1=1≠0,分式的值为0.故选:D.【点评】要注意分母的值一定不能为0,分母的值是0时分式没有意义.2.(6分)如图:△ABC中,∠ABC、∠ACB的平分线交于P点,∠BPC=134°,则∠BAC=()A.68°B.80°C.88°D.46°【分析】根据三角形内角和定理及角平分线的性质解答.【解答】解:∵在△BPC中,∠BPC=134°,∴∠1+∠2=180°﹣∠BPC=180°﹣134°=46°,∵BP、CP分别是∠ABC和∠ACB的角平分线,∴∠ABC=2∠1,∠ACB=2∠2,∴∠ABC+∠ACB=2∠1+2∠2=2(∠1+∠2)=2×46°=92°,∴在△ABC中,∠A=180°﹣(∠ABC+∠ACB)=180°﹣92°=88°.故选:C.【点评】此题考查了三角形的内角和定理,平分线性质.运用整体思想求出∠ABC+∠ACB=2(∠1+∠2)是解题的关键.3.(6分)世界杯足球赛小组赛,每个小组4个队进行单循环比赛,每场比赛胜队得3分,败队得0分,平局时两队各得1分,小组赛完以后,总积分最高的两个队出线进入下轮比赛,如果总积分相同,还要按净胜球排序,一个队要保证出线,这个队至少要积()A.6分 B.7分 C.8分 D.9分【分析】易得小组赛的总场数为小组数×(小组数﹣1)÷2,可得4个队的总积分,进而分类讨论小组得6分或7分能否出线即可.【解答】解:4个队单循环比赛共比赛4×3÷2=6场,每场比赛后两队得分之和或为2分(即打平),或为3分(有胜负),所以6场后各队的得分之和不超过18分,①若一个队得7分,剩下的3个队得分之和不超过11分,不可能有两个队得分之和大于或等于7分,所以这个队必定出线,②如果一个队得6分,则有可能还有两个队均得6分,而净胜球比该队多,该队仍不能出线.应选B.【点评】本题考查了比赛问题中的推理与论证;得到比赛的总场数以及相应的总积分是解决本题的突破点;分类探讨可以出线的小组的最低分是解决本题的难点.4.(6分)若正实数a、b满足ab=a+b+3,则a2+b2的最小值为()A.﹣7 B.0 C.9 D.18【分析】设a+b=m,则ab=m+3,a2+b2变形,再整体代入,转化为关于x的二次函数求最小值,注意a、b正实数的条件的运用.【解答】解:设a+b=m,则ab=m+3,a、b可看作关于x的方程x2﹣mx+m+3=0的两根,a、b为实数,则△=(﹣m)2﹣4(m+3)≥0,解得m≤﹣2或m≥6,而a、b为正实数,∴a+b=m>0,只有m≥6,∴a2+b2=(a+b)2﹣2ab=m2﹣2(m+3)=(m﹣1)2﹣7,可知当m≥1时,a2+b2随m的增大而增大,∴当m=6时,a2+b2的值最小,为18.故选:D.【点评】本题考查了二次函数最值在确定代数式的值中的运用.本题要注意:①根据已知条件换元,转化为二次函数,②a、b为正实数条件的运用.5.(6分)直线与x轴y轴的交点分别为A、B,如果S△AOB≤1,那么k 的取值范围是()A.k≤1 B.0<k≤1 C.﹣1≤k≤1且k≠0 D.k≤﹣1或k≥1【分析】先求出直线与x轴y轴的交点分别为A、B,得到OA,OB的长,利用三角形的面积公式得到不等式,对照选项进行判断.【解答】解:令x=0,则y=k,得B(0,k);令y=0,则x=﹣2k,得A(﹣2k,0),=•|2k|•|k|=k2≤1,所以OA=|2k|,OB=|k|,S△AOB所以﹣1≤k≤1且k≠0.故选:C.【点评】会求一次函数与两坐标轴的交点坐标,掌握用坐标表示线段;记住三角形的面积公式.6.(6分)如图,四边形ABCD内接于半圆O,AB为直径,AB=4,AD=DC=1,则BC的长为()A.B. C.D.【分析】根据勾股定理即可求得BD的长,求得cos∠CAD的值,进而求AC的值,根据勾股定理即可求得BC的值,即可解题.【解答】解:如图,连AC、BD,过D作DE⊥AC于E.∴∠ADB=∠ACB=90°,∠ABD=∠CAD.∵BD==.cos∠CAD=cos∠ABD=.∴AE=AD•cos∠CAD=,∴AC=2AE=,∴BC==.故选:A.【点评】本题考查了勾股定理在直角三角形中的运用,考查了余弦函数的求值,考查了根据余弦值求对应边的值.二、填空题(每题5分,共30分)7.(5分)如图,已知△ABC中,AB=AC,D是BC上一点,且AD=DB,DC=CA,则∠BAC=108°.【分析】先设∠B=x,由AB=AC可知,∠C=x,由AD=DB可知∠B=∠DAB=x,由三角形外角的性质可知∠ADC=∠B+∠DAB=2x,根据DC=CA可知∠ADC=∠CAD=2x,再在△ABC中,由三角形内角和定理即可得出关于x的一元一次方程,求出x的值,从而求解.【解答】解:设∠B=x,∵AB=AC,∴∠C=∠B=x,∵AD=DB,∴∠B=∠DAB=x,∴∠ADC=∠B+∠DAB=2x,∵DC=CA,∴∠ADC=∠CAD=2x,在△ABC中,x+x+2x+x=180°,解得x=36°.∴∠BAC=108°.故答案为:108.【点评】本题考查的是等腰三角形的性质,解答此类题目时往往要用到三角形内角和定理、三角形外角的性质等隐含条件.8.(5分)已知关于x的方程有正数解,则m的取值是m<6且m ≠3.【分析】先解关于x的分式方程,求得x的值,然后再依据“解是正数”建立不等式求m的取值范围.【解答】解:去分母得,x﹣2x+6=m解得,x=6﹣m∵分母x﹣3≠0即x≠3∴6﹣m≠3即m≠3又∵x>0∴6﹣m>0即m<6则m的取值是m<6且m≠3.【点评】解题关键是要掌握方程的解的定义,使方程成立的未知数的值叫做方程的解.并且在解方程去分母的过程中,一定要注意分数线起到括号的作用,并且要注意没有分母的项不要漏乘.9.(5分)一元钱的硬币的直径约为24mm,则它完全覆盖住的正三角形的边长最大不能超过mm(保留根号).【分析】理解清楚题意,此题实际考查一个直径为24的圆,内接正三角形的边长.【解答】解:已知此圆半径为12,则OB=12mm.在直角△OBD中,BD=OB•sin60°=6mm.则可知边长为12mm,就是完全覆盖住的正三角形的边长最大.【点评】此题所求结果有些新颖,要注意题目问题的真正含义.10.(5分)已知x+y=2,2y2﹣y﹣4=0,则y﹣的值为.【分析】根据x+y=2,得出x=2﹣y,再根据2y2﹣y﹣4=0,得出y﹣=,然后代入要求的式子进行计算即可得出答案.【解答】解:∵x+y=2,∴x=2﹣y,∵2y2﹣y﹣4=0,∴2y﹣1﹣=0∴2y﹣=1∴y﹣=,∴y﹣=y﹣=y﹣+1=+1=.故答案为:.【点评】此题考查了分式的化简求值,关键是根据给出的式子进行变形得出y﹣=,注意要用整体代入法进行计算比较简单.11.(5分)已知,则a2+2ab+b2﹣2ac+c2﹣2bc的值=m2.【分析】根据完全平方公式先把要求的式子进行分解,再把a,b,c的值代入即可得出答案.【解答】解:∵,∴a2+2ab+b2﹣2ac+c2﹣2bc=(a+b﹣c)2=(m+1+m+2﹣m﹣3)2=m2;故答案为:m2.【点评】此题考查了因式分解的应用,解题的关键是根据完全平方公式把要求的式子进行变形,然后代入.12.(5分)如图:四边形ABCD中,AB=3,BC=4,∠B=∠C=120°,CD=5,则四边形ABCD的面积为.【分析】延长BC,CB 分别作AE⊥EF,DF⊥EF,得梯形AEFD,解△ABE得BE,AE,解△CDF得CF,DF,根据S四边形ABCD=S梯形AEFD﹣S△ABE﹣S△CDF即可求解.【解答】解:如图,延长BC、CB.作AE⊥EF,DF⊥EF,垂足分别是E、F.∵∠B=120°,∴∠EBA=60°,∵AE⊥EF,∴BE=AB=,AE=AB=同理求得CF=CD=,DF=.∴EF=EB+BC+CF=8,S△ABE =AE•BE=×=,S△CDF =C F•DF=××=,S梯形AEFD =(AE+DF)×EF=16,∴S四边形ABCD=S梯形AEFD﹣S△ABE﹣S△CDF =.故答案是:.【点评】本题考查了勾股定理,含30度角的直角三角形.解答该题的难点是辅助线的作法.三、解答题(本大题共3小题,13、14题11分,15每题12分共34分)13.(11分)甲,乙,丙三人各有邮票若干枚,要求互相赠送.先由甲送给乙,丙,所给的枚数等于乙,丙原来各有的邮票数;然后依同样的游戏规则再由乙送给甲,丙现有的邮票数,最后由丙送给甲,乙现有的邮票数.互相送完后,每人恰好各有64枚.你能知道他们原来各有邮票多少枚吗?说出你的思考过程.【分析】假设甲原有邮票x枚,乙原有邮票y枚,丙原有邮票z枚.根据题目说明列出三次赠送的过程如下表根据第三次赠送后的结果列出方程组先化简,最后代入消元法或加减消元法求出方程组的解即可.【解答】解:设甲原有邮票x 枚,乙原有邮票y 枚,丙原有邮票z 枚.根据第三次赠送后列方程组,即,③﹣②得 2z ﹣y=8 ④, ②+①得 y ﹣z=24 ⑤, ④+⑤得 z=32, 将z 代入⑤得 y=56, 将y 、z 代入①得 x=104,答:甲原有邮票104枚,乙原有邮票56枚,丙原有邮票32枚.【点评】解答此题的关键是用表格的方式列出三次赠送邮票的过程,根据第三次结果列出方程组,用代入消元法或加减消元法求出方程组的解.14.(11分)已知:如图,△ABC中,∠C=90°,D为AB的中点,E、F分别在AC、BC上,且DE⊥DF.求证:AE2+BF2=EF2.【分析】过点A作AM∥BC,交FD延长线于点M,连接EM,通过证明AM=BF,EF=EM即可得出答案.【解答】证明:过点A作AM∥BC,交FD延长线于点M,连接EM.∵AM∥BC,∴∠MAE=∠ACB=90°,∠MAD=∠B.∵AD=BD,∠ADM=∠BDF,∴△ADM≌△BDF.∴AM=BF,MD=DF.又∵DE⊥DF,∴EF=EM.∴AE2+BF2=AE2+AM2=EM2=EF2.【点评】本题考查了勾股定理与全等三角形的判定与性质,有一定难度,关键是正确作出辅助线.15.(12分)如图,抛物线y=a(x+3)(x﹣1)与x轴相交于A、B两点(点A在点B右侧),过点A的直线交抛物线于另一点C,点C的坐标为(﹣2,6).(1)求a的值及直线AC的函数关系式;(2)P是线段AC上一动点,过点P作y轴的平行线,交抛物线于点M,交x轴于点N.①求线段PM长度的最大值;②在抛物线上是否存在这样的点M,使得△CMP与△APN相似?如果存在,请直接写出所有满足条件的点M的坐标(不必写解答过程);如果不存在,请说明理由.【分析】(1)c在抛物线上,将c代入解析式,就可求出a的值;A是抛物线与x轴的坐标,根据抛物线求出A点坐标,由A、C两点坐标,利用待定系数法,可求出直线AC的函数关系式.(2)设出p点的横坐标m,p在直线上,然后用横坐标m表示出p点的坐标,M与P的横坐标相同,且M在抛物线上,同样可用m表示出M点坐标,然后求出线段PM,最后根据PM长度的关系式判断m为何值时,线段最长.【解答】解:(1)点C(﹣2,6)在抛物线y=a(x+3)(x﹣1)上得6=a(﹣2+3)(﹣2﹣1)∴a=﹣2(3分)∴抛物线的函数解析式为y=﹣2(x+3)(x﹣1)由题意得抛物线与x轴交于B(﹣3,0)、A(1,0)设直线AC为y=kx+b,则有0=k+b6=﹣2k+b解得k=﹣2,b=2∴直线AC的函数解析式为y=﹣2x+2(6分)(2)①设P的横坐标为m(﹣2≤m≤1),则M的横坐标是m.P(m,﹣2m+2),M(m,﹣2m2﹣4m+6)(7分)∴PM=﹣2m2﹣4m+6﹣(﹣2m+2)=﹣2m2﹣2m+4=∴当m=﹣时,PM的最大值为(10分)②存在,∵∠CPM=∠APN若∠CMP=∠ANP=90°如图1,则点M的纵坐标为6,6=﹣2(x+3)(x﹣1),x2+2x=0,x(x+2)=0,x1=0,x2=﹣2(舍),则点M的坐标为(0,6),如图2,若∠PCM=∠ANP=90°,过点C作与AC垂直的直线,则直线CM为:y=(x+2)+6,联立y=(x+2)+6与y=﹣2(x+3)(x﹣1),(x+2)+6=﹣2(x+3)(x﹣1),4x2+9x+2=0,(x+2)(4x+1)=0,x=﹣2(舍)或x=﹣,当x=﹣时,y=﹣2×(﹣+3)×(﹣﹣1)=,则点M的坐标为M(﹣,),故M1(0,6)、M2(,)(14分)【点评】本题综合考查了二次函数的与直线相交下,交点问题的计算,以及线段最长最短问题,三角形问题等.。

2013 年长沙市初中新生分班试卷 (数 学 )

2013 年长沙市初中新生分班试卷 (数 学 )

2013 年长沙市初中新生分班考试试卷(数学)一、计算题(本大题共4 个小题,满分34 分)1、直接写出得数(每题1 分,满分6 分)2、脱式计算(每题4 分,满分12 分)3、解方程(每题4 分,满分8 分)4 、下图中的圆弧为半圆,求这个图形的周长和面积(单位:厘米)(圆周率取3.14)(满分8 分)二、填空题(本大题共10 小题,每小题2 分,满分20 分)5、公共汽车到站后,若将上车5 人记作“+5 ”,则下车3 人应记作()。

6、有研究预测,到2030 年中国人口将达到峰值1450000000,这个数省略亿位后面的数约()亿。

7、一个长方体的长宽高分别为5 厘米4 厘米和3 厘米,这个长方体的表面积为()。

8、我国的国土范围东西间约长5000 千米,这个长度在比例尺为的地图上,应为()厘米。

9、如图,两个等腰直角三角形和一个正方形拼成了一个平行四边形。

若正方形的面积为4 平方厘米,则平行四边形的面积为()平方厘米。

10、两数的最大公因数是()。

11、盒子里有红黄两种颜色的球,其中红球5 个,黄球3 个(这些球除颜色不同外,其他性质完全相同),从盒子里任意摸出一个球,是黄球的可能性为()。

12、如图,A 由36 个小立方体积木堆成,把A 推到后变成B,再利用这一堆小立方体积木块在C 上四个四个网上堆成一幢大楼”,则这幢大楼”的层数是()。

13、如图,长方形ABCD 中,AB 长2 厘米,BC 长1 厘米。

这个长方形分别绕AB 和BC 所在直线旋转一圈,各能得到一个圆柱,两个圆柱中体积较大的圆柱体积是()立方厘米。

(圆周率取3.14)……三、选择题(把正确答案的序号填在括号内,本大题共6 小题,每小题2 分,满分12 分)15、0.945 保留两位小数的近似值是()。

A 0.94B 0.95C 1.00D 以上都不对16、要很好的表示芳芳家上个月各种支出占总支出的比例,最适合的统计图是()。

2013年湖南高考理科数学试题及答案

2013年湖南高考理科数学试题及答案

绝密★启用前2013年普通高等学校招生全国统一考试(湖南卷)数学(理工农医类)本试卷包括选择题、填空题和解答题三部分,共5页,时量120分钟,满分150分。

一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2013•湖南)复数z=i•(1+i)(i为虚数单位)在复平面上对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.(5分)(2013•湖南)某校有男、女学生各500名,为了解男、女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是()A.抽签法B.随机数法C.系统抽样法D.分层抽样法3.(5分)(2013•湖南)在锐角△ABC中,角A,B所对的边长分别为a,b.若2asinB=b,则角A等于()A.B.C.D.4.(5分)(2013•湖南)若变量x,y满足约束条件,则x+2y的最大值是()A.B.0C.D.5.(5分)(2013•湖南)函数f(x)=2lnx的图象与函数g(x)=x2﹣4x+5的图象的交点个数为()A.3B.2C.1D.06.(5分)(2013•湖南)已知,是单位向量,,若向量满足,则的取值范围为()A.B.C.D.7.(5分)(2013•湖南)已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能是()A.1B.C.D.8.(5分)(2013•湖南)在等腰直角三角形ABC中,AB=AC=4,点P是边AB边上异于AB的一点,光线从点P出发,经BC,CA反射后又回到点P(如图1),若光线QR经过△ABC的重心,则AP等于()A.2B.1C.D.二、填空题:本大题共8小题,考生作答7小题,第小题5分,共35分.(一)选做题(请考生在第9,10,11三题中任选两题作答、如果全做,则按前两题记分)(二)必做题(12~16题)9.(2013•湖南)在平面直角坐标系xOy中,若直线l:,(t为参数)过椭圆C:(θ为参数)的右顶点,则常数a的值为_________.10.(5分)(2013•湖南)已知a,b,c∈R,a+2b+3c=6,则a2+4b2+9c2的最小值为_________.11.(5分)(2013•湖南)如图,在半径为的⊙O中,弦AB,CD相交于点P,PA=PB=2,PD=1,则圆心O到弦CD的距离为_________.12.(5分)(2013•湖南)若,则常数T的值为_________.13.(5分)(2013•湖南)执行如图所示的程序框图,如果输入a=1,b=2,则输出的a的值为_________.14.(5分)(2013•湖南)设F1,F2是双曲线C:(a>0,b>0)的两个焦点,P是C 上一点,若|PF1|+|PF2|=6a,且△PF1F2=30°的最小内角为30°,则C的离心率为_________.15.(5分)(2013•湖南)设S n为数列{a n}的前n项和,,n∈N*,则(1)a3=_________;(2)S1+S2+…+S100=_________.16.(5分)(2013•湖南)设函数f(x)=a x+b x﹣c x,其中c>a>0,c>b>0.(1)记集合M={(a,b,c)|a,b,c不能构成一个三角形的三条边长,且a=b},则(a,b,c)∈M 所对应的f(x)的零点的取值集合为_________.(2)若a,b,c是△ABC的三条边长,则下列结论正确的是_________.(写出所有正确结论的序号)①∀x∈(﹣∞,1),f(x)>0;②∃x∈R,使a x,b x,c x不能构成一个三角形的三条边长;③若△ABC为钝角三角形,则∃x∈(1,2),使f(x)=0.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.17.(12分)(2013•湖南)已知函数,.(I)若α是第一象限角,且,求g(α)的值;(II)求使f(x)≥g(x)成立的x的取值集合.18.(12分)(2013•湖南)某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收获Y(单位:kg)与它的“相近”作物株数X之间的关系如下表所示:X 1 2 3 4Y 51 48 45 42这里,两株作物“相近”是指它们之间的直线距离不超过1米.(I)从三角形地块的内部和边界上分别随机选取一株作物,求它们恰好“相近”的概率;(II)在所种作物中随机选取一株,求它的年收获量的分布列与数学期望.19.(12分)(2013•湖南)如图,在直棱柱ABCD﹣A1B1C1D1中,AD∥BC,∠BAD=90°,AC⊥BD,BC=1,AD=AA1=3.(I)证明:AC⊥B1D;(II)求直线B1C1与平面ACD1所成的角的正弦值.20.(13分)(2013•湖南)在平面直角坐标系xOy中,将从点M出发沿纵、横方向到达点N的任一路径称为M到N的一条“L路径”.如图所示的路径MM1M2M3N与路径MN1N都是M到N的“L 路径”.某地有三个新建居民区,分别位于平面xOy内三点A(3,20),B(﹣10,0),C(14,0)处.现计划在x轴上方区域(包含x轴)内的某一点P处修建一个文化中心.(I)写出点P到居民区A的“L路径”长度最小值的表达式(不要求证明);(II)若以原点O为圆心,半径为1的圆的内部是保护区,“L路径”不能进入保护区,请确定点P 的位置,使其到三个居民区的“L路径”长度之和最小.21.(13分)(2013•湖南)过抛物线E:x2=2py(p>0)的焦点F作斜率率分别为k1,k2的两条不同直线l1,l2,且k1+k2=2.l1与E交于点A,B,l2与E交于C,D,以AB,CD为直径的圆M,圆N(M,N为圆心)的公共弦所在直线记为l.(I)若k1>0,k2>0,证明:;(II)若点M到直线l的距离的最小值为,求抛物线E的方程.22.(13分)(2013•湖南)已知a>0,函数.(I)记f(x)在区间[0,4]上的最大值为g(a),求g(a)的表达式;(II)是否存在a使函数y=f(x)在区间(0,4)内的图象上存在两点,在该两点处的切线互相垂直?若存在,求出a的取值范围;若不存在,请说明理由.一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数()()1z i i i =+为虚数单位在复平面上对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限【答案】 B【解析】 z = i ·(1+i) = i – 1,所以对应点(-1,1).选B 选B2.某学校有男、女学生各500名.为了解男女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是 A .抽签法 B .随机数法 C .系统抽样法 D .分层抽样法【答案】 D【解析】 因为抽样的目的与男女性别有关,所以采用分层抽样法能够反映男女人数的比例。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档