新型比例调节气动阀结构与静力分析

合集下载

气动调节阀的结构和工作原理

气动调节阀的结构和工作原理

气动调节阀的结构和工作原理一、阀体结构:阀体是气动调节阀的主要部分,常见的结构有直通型、角型和三通型等。

直通型阀体具有流体通道直接通畅、流体阻力小的特点,适用于流量调节;角型阀体具有结构紧凑、占用空间小的特点,适用于压力和温度的调节;三通型阀体具有两个入口和一个出口的特点,适用于流量的分散或合并。

二、阀芯结构:阀芯是气动调节阀的主要控制部分,常见的结构有直行式、角行式、微调式和滚筒式等。

直行式阀芯沿阀体轴线方向移动,一般用于流量和温度的调节;角行式阀芯可通过旋转来调节流量和温度;微调式阀芯是一种特殊的阀芯,其调节范围较小,适用于对流量或温度进行微小调节。

三、作用器:作用器是气动调节阀的执行部分,其主要作用是将输入的信号转化为阀芯的运动,从而实现流量、压力、温度等参数的调节。

常见的作用器有气动活塞式和气动膜片式两种。

气动活塞式作用器由气缸和活塞两部分组成,通过气源的输入和输出来控制活塞的移动,进而控制阀芯的位置。

气动膜片式作用器由膜片和导向件组成,当输入的气源压力改变时,膜片的形变引起阀芯的运动。

四、附件:附件是气动调节阀的辅助部分,用于增强阀芯的动力和稳定性。

常见的附件有位置器、阻尼器、限位器和手动装置等。

位置器通过检测阀芯位置,将信号转化为阀芯的运动,以实现准确的调节。

阻尼器用于减小阀芯的运动速度,防止因过快的动作造成流量冲击和液压冲击。

限位器用于限制阀芯的运动范围,保护阀芯和阀座不受过大的压力和扭矩。

手动装置用于在自动控制失效或维护时,通过手动操作来控制阀芯的位置。

气动调节阀的工作原理是通过控制输入的气源压力来控制阀芯的位置,从而改变介质的流量、压力、温度等参数。

当输入气源压力改变时,作用器会对阀芯施加力,使阀芯产生运动。

阀芯的位置决定了流通通道的开启程度,从而控制介质的流量或压力。

当输入气源压力恢复到初始状态时,作用器上部的弹簧会将阀芯恢复到初始位置,介质的流量或压力也随之恢复到初始状态。

气动调节阀的结构和原理

气动调节阀的结构和原理

气动调节阀的结构和原理
气动调节阀是一种可以通过气动信号控制流体介质的流量、压力、温度等参数的调节阀。

它由执行机构、阀体、阀芯、阀座、导向机构等部分组成。

气动调节阀的结构主要包括:
1. 执行机构:执行机构将气动信号转化为机械动作,带动阀芯和阀座的开启和关闭。

2. 阀体:阀体是调节阀的主要部分,其内部有流体通道。

阀座和阀芯通常位于阀体内部,通过控制阀芯的位置来调节流体介质的通路。

3. 阀芯:阀芯是阀体内活动的零件,通常由柱状或圆柱状的构件组成。

阀芯与阀座紧密配合,可依靠阀芯的上下运动控制介质的流量。

4. 阀座:阀座是阀体内固定的部分,通常由金属或弹性材料制成。

它的形状与阀芯相呼应,通过与阀芯接触产生密封,控制流体的通道。

5. 导向机构:导向机构用于引导阀芯的运动轨迹,确保阀芯与阀座的良好配合。

气动调节阀的工作原理:
1. 当气动信号输入执行机构时,执行机构将气动信号转化为机械动作,推动阀芯与阀座分离或接触。

2. 当阀芯与阀座接触时,阀体内的流体介质通过阀芯与阀座之间的通道流过。

根据阀芯的位置,调节阀的开度大小,从而控制介质的流量或压力等参数。

3. 当气动信号停止或调节信号作用于执行机构方向变化时,阀
芯位置发生相应的变化,从而改变阀体内的通道大小,调整介质通路,实现对流体参数的调节。

通过控制气动信号的大小和方向,气动调节阀可以精确地控制流体介质的流量、压力、温度等参数,保证工业过程的正常运行和控制。

气动调节阀的性能调试及主要性能分析

气动调节阀的性能调试及主要性能分析

科技与创新┃Science and Technology & Innovation ·124·文章编号:2095-6835(2015)04-0124-02气动调节阀的性能调试及主要性能分析王志明,徐教珅(中广核工程有限公司,广东深圳 518124)摘 要:气动调节阀是自动化系统中重要的控制和执行单元,在化工和电力等领域应用广泛。

分析了其应用中所需要进行的性能调试及主要性能,以指导实际的调整和测试,提高气动阀的使用效果。

关键词:气动阀;功能分析;性能调试;性能分析中图分类号:TH138.5 文献标识码:A DOI:10.15913/ki.kjycx.2015.04.124气动调节阀是一种利用压缩空气为动力源的自动执行装置,通常分为直行程和角行程两种。

气动调节阀的典型结构为阀体、内部零件、驱动、执行机构等,应用在不同工况的阀门还需要增加附件辅助实现功能。

气动调节阀包括了定位器、EP 转换器、手动操作装置、阻尼器等。

气动调节阀的基本性能决定了其工作的准确度,所以在使用该类阀门时,应进行测试和性能分析,保证应用效果。

1 气动调节阀的功能特征分析气动调节阀在实际应用中突出的功能包括节流、调节、切断、控制压力、防堵、耐腐蚀等,其重要的功能就是调节功能。

从这个角度看,其性能特征如下:①流量特征。

反应调节阀的开度和流量控制能适应不同的工况要求,例如对流量的调节、对速度的调节等。

②可调范围。

反应调节阀对流量的控制范围越大,则其性能越高。

③小开度性能。

小开度性能是受到结构限制而出现的,如果性能差,则容易在小开度时出现震荡、起跳等。

高性能的调节阀可以进行小开度微调。

④流量系数。

代表阀体通过性,即介质通过性能,角行程的通过性相对较高。

⑤响应效率。

为达到调节目标参数所用的时间,即工作阀体的工作速度。

2 气动调节阀性能调试和性能分析按照上述的功能特征分析,调节阀在实际的应用中会体现出阀门行程、基本误差、回差、死区、泄漏量、流量特征等性能特征。

气动调节阀的结构和原理

气动调节阀的结构和原理

气动调节阀的结构和原理气动调节阀是一种广泛应用于工业控制系统中的自动调节装置,它通过控制介质流量来实现对系统压力、流量、温度等参数的调节。

其结构和原理的了解对于工程师和技术人员来说至关重要。

一、气动调节阀的结构。

气动调节阀主要由阀体、阀盖、阀芯、阀座、执行机构等部分组成。

阀体是阀门的主体部分,通常由铸铁、碳钢、不锈钢等材料制成,具有良好的耐腐蚀性和耐磨损性。

阀盖用于连接执行机构和阀体,起到密封和固定的作用。

阀芯是调节介质流量的关键部件,其结构和形状会直接影响阀门的调节性能。

阀座则是阀芯的配套部件,用于保证阀门的密封性能。

执行机构是气动调节阀的动力来源,通常由气缸和气源接口组成,通过气源的压力来控制阀门的开合。

此外,还有配套的阀杆、密封圈、传感器等辅助部件。

二、气动调节阀的原理。

气动调节阀的原理是通过执行机构对阀芯的位置进行调节,从而改变介质的流通面积,实现对介质流量的调节。

当气源加压到执行机构时,气缸内的气压会推动阀芯向开启或关闭的方向移动,从而改变阀门的通径,使介质流量发生变化。

通过对执行机构的气压调节,可以实现对阀门开度的精确控制,从而实现对介质流量的精确调节。

三、气动调节阀的特点。

1. 灵活可靠,气动调节阀的执行机构响应速度快,控制精度高,适用于对介质流量进行精确调节的场合。

2. 耐高温高压,气动调节阀的阀体和阀芯通常采用耐高温高压的材料制成,能够适应高温高压的工作环境。

3. 适用范围广,气动调节阀适用于液体、气体等各种介质的调节,广泛应用于化工、石油、电力、冶金等行业。

四、气动调节阀的应用。

气动调节阀广泛应用于工业生产中的流体控制系统,如化工生产中的反应釜控制、石油化工中的裂解炉控制、电力行业中的锅炉控制等。

其精确的流量调节能力和稳定的性能,使其在工业自动化控制系统中扮演着重要角色。

总结,气动调节阀作为一种重要的工业控制装置,其结构和原理的了解对于工程师和技术人员来说至关重要。

通过对气动调节阀的结构和原理进行深入了解,可以更好地应用于实际工程中,提高工业生产的自动化水平和控制精度。

气动调节阀的结构与原理解读

气动调节阀的结构与原理解读

定位器
具有零位和行程范围自动调整的功能
设定值和控制变量极限值可进行选择
手动操作时无需另外的设备 具有可选的或可编程的输出特性
可编程设置阀门“紧密关闭”功能 具有自诊断功能 耗气量小

定位器
功能图
快速泄压阀
工作原理: 当信号气压正常供气的时候,泄压側被膜片紧紧盖 住,气压能源源不断地通向气动头;当信号气压为零时, 气动头内的气压反向顶开隔膜由多孔出口快速泄掉。 使阀门在失气后快速回到安全位置( 见下图)。
?阀笼?阀瓣阀瓣?阀座密封环?阀杆?阀笼压环附件??主要附件主要附件电磁阀根据系统逻辑保护关系控制阀门动作根据系统逻辑保护关系控制阀门动作减压阀保证供气气压保证供气气压过滤器净化来自空气压缩机的气源净化来自空气压缩机的气源电流气压转换器气压转换器ipip??电流电流气压转换器气压转换器ipip执行机构执行机构定位器改善调节阀的静态和动态特性改善调节阀的静态和动态特性流量放大器增大进入阀门隔膜气腔的气流量增大进入阀门隔膜气腔的气流量??电磁阀??减压阀??过滤器??电流使控制点的电信号适用于气动使控制点的电信号适用于气动使控制点的电信号适用于气动使控制点的电信号适用于气动??定位器??流量放大器附件??气动保位阀气动保位阀保证重要阀门在气源突然中断时能够实现对保证重要阀门在气源突然中断时能够实现对调节阀行程的自锁调节阀行程的自锁快速泄压阀使阀门在失气后快速回到安全位置使阀门在失气后快速回到安全位置限位开关显示阀门到达全开全关状态显示阀门到达全开全关状态??快速泄压阀??限位开关定位器阀门定位器阀门定位器是气动
气动调节阀的结构与原理
何少君
内容简介
1 概述
2
调节阀结构和组成
3
调试
4

气动调节阀的结构和原理

气动调节阀的结构和原理

气动调节阀的结构和原理一、气动调节阀的结构1.阀体:阀体是气动调节阀的主要组成部分,通常由铸铁、碳钢、不锈钢等材料制成。

它的内部有通道,用于流体的流动。

2.阀芯:阀芯是气动调节阀的流体控制部分,它可以根据控制信号的变化来调整阀的开度。

常见的阀芯形状有直线型、角型和等百分比型。

3.气动执行机构:气动执行机构是气动调节阀的关键部件,它接收控制信号,通过将蓄气室内的气压转换为力推动阀芯的移动,从而改变阀的开度。

4.配套附件:配套附件包括定位器、传感器、调节装置等,用于配合气动调节阀的工作,提高控制精度和稳定性。

二、气动调节阀的工作原理当气动调节阀接收到控制信号后,气动执行机构会收到压力信号,将之转换为力,推动阀芯的移动。

当阀芯向上移动时,流道的通口面积变大,流体介质的流量增大;反之,阀芯向下移动时,流道的通口面积变小,流体介质的流量减小。

实际上,通过调节气动执行机构的输入气压、调整阀芯的行程,可以精确地控制阀的开度,从而实现对流体介质流量、压力等参数的调节。

三、气动调节阀的应用1.流量控制:气动调节阀可用于控制不同介质的流量,如气体、液体等。

2.压力控制:通过调节气动调节阀的开度,可以实现对流体介质的压力控制。

3.温度控制:气动调节阀可用于调节热媒、冷媒等介质的进出口温度,实现温度控制。

4.液位控制:气动调节阀可用于调节容器内流体的液位,实现液位控制。

5.流体分配:气动调节阀可用于将流体分配到不同的管道或系统中,实现流体的分配控制。

综上所述,气动调节阀具有结构简单、控制精度高、响应速度快等特点,在工业自动控制中起着重要的作用。

气动调节阀教学课件PPT

气动调节阀教学课件PPT

案例二
某电厂锅炉给水系统,选用具有大流量、 高可调比和低泄漏率的气动调节阀,满足 了系统对流量和压力的精确控制要求。
06 发展趋势与智能化技术应 用
当前行业发展趋势分析
节能环保需求推动
随着全球环保意识的提高,气动调节阀行业正朝着更加节 能环保的方向发展,高效、低能耗的产品受到市场青睐。
智能化、自动化趋势明显
考虑附件配置
根据需要选择定位器、手轮、电磁阀等附件, 提高阀门的使用性能和可靠性。
案例分析:成功选型经验分享
案例一
案例三
某化工厂反应釜温度控制系统,选用具 有良好密封性能和耐高温性能的气动调 节阀,成功实现了温度的精确控制。
某制药厂药液流量控制系统,选用具有 防腐蚀材质和卫生级标准的气动调节阀 ,确保了药品生产的质量和安全。
弹簧复位型在频繁动作时可能导致弹簧疲劳 失效;非弹簧复位型在失去气源时无法自动 复位,需要手动操作。
03 阀门定位器与附件选择
阀门定位器作用及原理
作用
阀门定位器是气动调节阀的重要附件,主要用于改善阀门的位置控制精度,提高阀门对信号变化的响应速度,以 及克服阀杆摩擦力等非线性因素对控制性能的影响。
自动化控制算法
采用先进的控制算法,实现气动调节阀的精确控 制和自动调节,提高生产效率和产品质量。
3
远程监控与故障诊断
借助物联网技术,实现远程监控和故障诊断,及 时发现并解决问题,降低运维成本。
未来发展方向预测
智能化水平进一步提高
01
随着人工智能、机器学习等技术的不断发展,气动调节阀的智
能化水平将进一步提高,实现更加精准、高效的控制。
原理
阀门定位器通过接收来自控制器的控制信号,与阀门的实际位置进行比较,然后输出相应的气压信号去驱动执行 机构,使阀门移动到正确的位置。同时,阀门定位器还具有反馈功能,可以将阀门的实际位置反馈给控制器,以 便进行更精确的控制。

气动调节阀教学课件PPT

气动调节阀教学课件PPT

分段调节
根据工艺流程的需求,气 动调节阀可以实现多段控 制,以适应不同的流量需 求。
参数与规格
最大工作压力
气动调节阀能够承受的 最大工作压力范围。
最大工作温度
气动调节阀能够承受的 最大工作温度范围。
介质流量
气动调节阀允许通过的 最大介质流量。
连接方式与尺寸
气动调节阀的连接方式 (如法兰、螺纹等)和
Байду номын сангаас
等百分比流量特性
气动调节阀的开度与流量 的变化成等百分比关系, 即随着阀门的开大,流量 增加的百分比保持恒定。
对数流量特性
气动调节阀的开度与流量 的对数成正比,即随着阀 门的开大,流量以对数方 式增加。
调节特性
连续调节
气动调节阀能够连续改变 管道中介质的流量,以满 足工艺流程的需求。
开关调节
通过气动执行器控制阀门 的开启和关闭,实现流量 的快速开启和关闭。
THANKS
感谢观看
应用领域的拓展
新能源领域
气动调节阀将在新兴的能源领域 如太阳能、风能等领域得到广泛
应用,实现能源的高效利用。
智能制造
随着智能制造的推广,气动调节 阀将在自动化生产线、机器人等 领域发挥重要作用,提高生产效
率和产品质量。
环保工程
在环保工程中,气动调节阀可用 于控制气体流量、压力等参数, 实现环保设备的稳定运行和节能
尺寸大小。
04
气动调节阀的选型与使用
选型原则
根据工艺要求选择
根据控制精度要求选择
根据管道中介质的性质、压力、温度 等工艺参数,选择适合的气动调节阀 类型和材质。
根据控制精度要求,选择适合的气动 调节阀流量调节范围和阀权度。

气动调节阀解析

气动调节阀解析
向动作的调节阀叫做气开式调节阀。 2、气关式调节阀
当膜头上压缩空气压力增加时,阀门推杆向减小开度的方 向动作的调节阀叫做气关式调节阀。
调节阀的分类及特点
按照调节阀作用形式分类
调节阀的分类及特点
按照调节阀动作形式分类
1、直行程调节阀 经执行器驱动,阀杆带动阀芯做垂直于阀座的上升或下降
动作,按照阀芯形式可分为直通单座阀,双座阀,笼式阀,角 阀等。 2、角行程调节阀
利用套积,形成了各种流量特性,并实现 流量的调节。不平衡力小、稳定性好、不易振荡,允许 压差范围大,噪音低。
调节阀的分类及特点
三通阀
角阀
·有分流型、合流型
·特殊场合使用
·适用于高静压与高 压差的场合
调节阀的分类及特点
偏心旋转(球阀 )
偏心旋转阀(蝶阀)
·结构简单,密封性好 ·体积小、重量轻
·结构简单,体积小,重量轻 ·适用于大口径,低压差场所
调节阀的分类及特点
上阀盖的结构形式
适用于常温 场合,工作 温度为
20~200°C
适用于高温 或低温,工 作温度为60~450 °C
调节阀的分类及特点
适用于深度 冷冻的场合, 工作温度为
-250~-60 °C
阀芯与执行机构通过齿轮或连杆机构相连,将执行器输出 的直线动作转变为阀芯的角度变化。常见形式有偏心旋转球阀 和蝶阀。
调节阀的分类及特点
直通单座阀
直通双座阀
泄漏量小,易于保证密封
不平衡力大,仅适用于低 压场合
易被流体冲蚀或产生汽蚀
·不平衡力小,允许压差大 ·加工精度高,泄露量大
调节阀的分类及特点
套筒式(笼式)调节阀
阀是由阀体、上阀盖组件、下阀盖和阀内件组成的。

气动调节阀的结构和工作原理

气动调节阀的结构和工作原理

气动调节阀常见于钢铁行业,尤其广泛应用于加热炉、卷取炉等燃烧控制系统。

本文根据气动调节阀的结构和工作原理对在气动调节阀在日常使用的常规维护和常见故障进行了分析研究,为设备维护和故障维修提供了参考。

本文以美国博雷(BARY)厂家生产的S92/93系列的气动执行机构为例,结合现场实际使用情况,进行了分析和总结。

阀门公称直径DN250,介质为混合煤气,气源为仪表压空,压力为3-5Bar,电磁阀为24V。

1、气动调节阀的结构和工作原理1.1、气动调节阀的结构气动调节阀由执行机构和阀体两部分组成。

1.2、气动调节阀的工作原理气动调节阀的工作原理:气动调节阀由执行机构和调节机构组成。

执行机构是调节阀的推力部件,当调节器或定位器得到4-20mA信号时,控制电磁阀24V信号到,打开,使得仪表压空进入执行机构汽缸,转动阀杆使阀体动作,当到达需要指定开度时,位置反馈使得定位器停止信号输出,维持当前位置。

当需要关闭阀门时,定位器得到关闭信号,使电磁阀停止供气,汽缸靠内部弹簧反作用力,使阀门关闭。

当需要从满度减少开度时,定位器输出气源压力会减弱,弹簧自身反作用力致使阀门向关闭方向动作,直至信号压力与弹簧压力平衡,到达指定开度,以此来控制该介质流量。

2、气动调节阀的日常维护在对气动调节阀日常点巡检中,要注意以下几点:一是检查仪表气源是否正常,检查过滤器、减压阀是否正常,观察压力是否在3-5Bar;二是观察汽缸有无漏气现象,尤其是阀杆连接处和两端盖处;三是检查电磁阀是否工作正常,有无漏气现象;四是检查定位器工作是否正常,有无漏气现象;五是检查所有连接部件固定螺丝是否紧牢;六是尽量避免过多浮灰覆盖到执行机构上,要市场保持工作环境清洁。

3、气动调节阀常见故障原因分析3.1、气动调节阀无反馈信号气动调节阀的信号线由一对控制信号线和一对反馈信号线组成。

当PLC给阀门一个信号时,信号在调节阀的定位器中进行信号转换,通过气源压力来控制阀杆动作。

气动阀的结构形式及工作原理,气动阀的相关标准

气动阀的结构形式及工作原理,气动阀的相关标准

气动阀的结构形式及工作原理,气动阀的相关标准气动阀:借助压缩空气驱动的阀门。

气动阀采购时只明确规格、类别、工压就满足采购要求的作法,在当前市场经济环境里是不完善的。

因为气动阀制造厂家为了产品的竞争,各自均在气动阀统一设计的构思下,进行不同的创新,形成了各自的企业标准及产品个性。

因此在气动阀采购时较详尽的提出技术要求,与厂家协调取得共识,作为气动阀采购合同的附件是十分必要的。

1.通用要求1.1气动阀规格及类别,应符合管道设计文件的要求。

1.2气动阀的型号应注明依据的国标编号要求。

若是企业标准,应注明型号的相关说明。

1.3气动阀工作压力,要求≥管道的工作压力,在不影响价格的前提下,阀门可承受的工压应大于管道实际的工压;气动阀关闭状况下的任何一侧应能承受1.1倍阀门工压值而不渗漏;阀门开启状况下,阀体应能承受二倍阀门工压的要求。

1.4气动阀制造标准,应说明依据的国标编号,若是企业标准,采购合同上应附企业文件。

2.气动阀标质2.1阀体材质,应以球墨铸铁为主,并注明牌号及铸铁实际的物理化学检测数据。

2.2阀杆材质,力求不锈钢阀杆(2CR13),大口径阀门也应是不锈钢嵌包的阀杆。

2.3螺母材质,采用铸铝黄铜或铸铝青铜,且硬度与强度均大于阀杆。

2.4阀杆衬套材质,其硬度与强度均应不大于阀杆,且在水浸泡状况下与阀杆、阀体不形成电化学腐蚀。

2.5密封面的材质①气动阀类别不一,密封方式及材质要求不一;②普通楔式闸阀,铜环的材质、固定方式、研磨方式均应说明;③软密封闸阀,阀板衬胶材料的物理化学及卫生检测数据;④蝶阀应标明阀体上密封面材质及蝶板上密封面材质;它们的物理化学检测数据,特别是橡胶的卫生要求、抗老化性能、耐磨性能;通常采用丁腈橡胶及三元乙丙橡胶等,严禁掺用再生胶。

2.6阀轴填料①由于管网中的气动阀,通常是启闭不频繁的,要求填料在数年内不活动,填料亦不老化,长期保持密封效果;②阀轴填料亦应在承受频繁启闭时,密封效果的良好性;③鉴于上述要求,阀轴填料力求终身不换或十多年不更换;④填料若需更换,气动阀设计应考虑能有水压的状况下更换的措施。

气动调节阀的结构和原理

气动调节阀的结构和原理

气动调节阀的结构和原理气动调节阀是一种控制流体流量和压力的装置,通过气动执行机构将气压信号转换为阀芯运动,在调节阀的进口和出口之间形成阀门开度来控制流体的通断和调节。

本文将详细介绍气动调节阀的结构和工作原理。

一、气动调节阀的结构气动调节阀的结构主要由阀体、阀芯、活塞、气动执行器和配管组成。

1.阀体:阀体是气动调节阀的主要组成部分,一般采用铸造或锻造而成,通常具有高强度、耐腐蚀性和密封性能好的特点。

2.阀芯:阀芯是气动调节阀的关键部件之一,负责控制流体的通断和调节。

阀芯通常呈圆柱形,安装在阀体内部的流道上,可以根据气动执行机构的指令上下移动,从而改变流道的通断程度。

3.活塞:活塞是气动调节阀中的另一重要部件,也是连接阀芯和气动执行机构之间的机械传动部件。

活塞通常呈圆柱形,与阀芯相连,通过气动执行机构的压力变化,驱动活塞上下运动,从而带动阀芯的移动。

4.气动执行机构:气动执行机构是实现气动调节阀控制功能的关键部分,通常由气缸、活塞和气源组成。

当气源输入到气缸内部,气缸的活塞会受到气压力的作用,带动活塞和阀芯运动。

5.配管:配管是将气源和气动执行机构之间进行连接的管道系统,通常由管道、接头和阀门组成。

配管的设计和布置对气动调节阀的工作性能有很大的影响,需要根据具体的应用场景进行合理的设计。

二、气动调节阀的工作原理气动调节阀的工作原理主要包括控制信号的输入、气动执行机构的工作和阀芯的调节。

1.控制信号的输入:控制信号一般由外部控制系统发送给气动调节阀,可以是4-20mA电信号、0-10V电信号或数字信号等。

根据不同的控制要求和信号类型,可以选择不同的控制器和信号转换装置。

2.气动执行机构的工作:当控制信号进入气动执行机构时,通过气缸内部的阀门和活塞的协同作用,将气压信号转换为阀芯的运动。

-当控制信号的压力变化时,气动执行机构会根据信号的大小和方向,调整气缸内部的阀门位置,进一步调整阀芯的运动。

-当气压输入气缸的上方时,活塞会被推向下方,进而带动阀芯向下运动,从而增加流道的通断程度。

气动调节阀的结构和原理

气动调节阀的结构和原理

气动调节阀的结构和原理气动调节阀是一种通过气压力驱动来改变阀门位置,从而调节介质流量或压力的阀门。

它采用气动执行器作为执行机构,通过接收来自控制系统的信号,将阀门的位置调整到所需位置,实现介质流量的调节。

气动调节阀在工业生产中被广泛应用,特别是在需要对介质进行精确控制的场合。

一、气动调节阀的结构气动调节阀的结构一般包括阀体、阀座、阀芯、执行器和附件等部件。

1.阀体:气动调节阀的阀体一般为铸钢、高强度合金钢或不锈钢材质,具有优良的耐压性和耐腐蚀性。

阀体内部一般有导流通道,用于引导介质流动,并设置有阀座和阀芯的安装位置。

2.阀座:阀座是控制介质流通的关键部件,它与阀芯配合形成关闭密封,阀座一般采用耐磨、耐腐蚀的材质,以保证阀门的长期使用寿命。

3.阀芯:阀芯是气动调节阀的主动部件,它负责调节介质的通断和流量。

阀芯的结构和形状会影响阀门的流体特性和流态特性,一般采用单阀芯或双阀芯结构。

4.执行器:执行器是气动调节阀的关键部件,它接收来自控制系统的信号,通过气动驱动将阀门的位置调整到所需位置。

执行器的类型有气动膜片执行器、气缸式执行器和液压执行器等。

5.附件:气动调节阀的附件包括位置传感器、手动操作装置、气动控制阀等,用于对阀门的位置、工作状态进行监测和控制。

二、气动调节阀的原理气动调节阀的工作原理基本上是通过控制气压信号来改变阀门位置,从而实现介质流量或压力的调节。

其工作过程主要包括定位、调节和反馈等步骤。

1.定位:当气动调节阀接收到来自控制系统的信号时,执行器通过气压信号驱动,将阀门的位置调整到所需位置,即定位到控制系统发来的指令位置。

2.调节:一旦阀门定位到指定位置后,气动调节阀就开始对介质进行调节,通过改变阀门的开度来调节介质的流量或压力。

这一过程是根据传感器检测到的介质参数信号,执行器实时调整阀门位置,使介质流量或压力保持在设定值范围内。

3.反馈:气动调节阀在工作过程中会不断接收来自传感器的反馈信号,执行器会根据传感器反馈的信息,实时调整阀门的位置,以确保介质流量或压力的稳定控制。

新型比例调节气动阀结构与静力分析

新型比例调节气动阀结构与静力分析
2 工作原 理
的作 用 ;
() 2 当进 气 口压 力 P 增 加 到 一 定 值 时 , 片 垫 在进 气 口压力 P 、 弹 簧 的作 用力 、 位小 弹 大 复
收 稿 日期 :o 6 1— 2 2o— O 5
维普资讯
5 4
FLUI MACHI D NERY
维普资讯
20 07年第 3 第 6期 5卷
文 章 编 号 : 10 --39 2 0 0 — 0 5 —0 0 5- 2 (0 7)5 0 3 2 -0
流体Biblioteka 机械 5 3
新型 比例调节气 动 阀结构 与静 力分析
吴 健, 肖俊 建
( 浙江工业大 学浙西分校 , 浙江衢州 3 40 ) 2 0 6

要 : 主要 分析了新型 比例 调节气动 阀的结构 以及工作原理 , 并对该 阀进行 了静力分 析 , 过给定的参数 , 通 计算 并绘
制出了该阀 的调 节特 性曲线 , 出了该阀 的应用 场合以及现 实意义 。 指
关键词 : 比例阀 ; 静力分 析 ; 节特 性曲线 调
中图分类号 : T 1 85 H 3.2 文 献标 识码 : B
S r t e a a i r e An y i n Ne Typ o r i na g at d Pne t uc ur nd St tc Fo c al ss o w e Pr po to lRe ul e umatc Va v i l e
WU J n X A nj n i . I O J -a a u i
( s Bac f hj n nvr t o eh o g , uhu3 40 , hn ) Wet rnho e agU i sy f cn l y Q zo 2 0 6 C i Z i e i T o a

比例调节阀

比例调节阀

11/4 (32) 25
0.87
1.73
3.42
9.49
16
2.67
11/2 (40)
1.36 2.72 5.35 14.82
25
4.17
11/4 (32)
0.87 1.73 3.42 9.49
16
2.67
2 (50)
11/2 (40) 25
1.36
2.72
5.35 14.82
25
4.17
2(50)
251 9.88 646 75 241 255 90 100 45 381LSB-30
286 11.25 660 83 256 255 90 100 45 381LSB-30
311 12.25 725 93 321 255 90 100 45 381LSB-50
337 13.25 743 98 338 255 90 100 45 381LSB-50
公称压力:PN 1.6、2.5、4.0、6.4、10.0Mpa ANSI 150、300、600Lb
JIS 10K、20K、30K、40K
连接方式:法兰:FF、RF、RTJ、等 螺纹:(适用于 1”以下) 焊接:SW、BW
法 兰 距:符合 IEC 534
阀盖形式:标准型、加长型(散热、低温、波纹管密封)
10
1.67
3/4 (20)
0.34 0.68 1.35 3.74
6.3
1.05
11/4 1 (25) 25 0.55 1.08 2.14 5.93
10
1.67
11/4 (32)
0.87 1.73 3.42 9.49
16
2.67
1 (25)

比例积分电动调节阀结构

比例积分电动调节阀结构

比例积分电动调节阀结构引言比例积分电动调节阀是一种常用的工业自动化控制设备,用于调节流体介质的流量、压力和温度等参数。

它通过控制阀门的开度来实现对流体介质的精确控制,具有精度高、响应速度快等特点。

本文将详细介绍比例积分电动调节阀的结构及其工作原理。

结构组成比例积分电动调节阀主要由以下几个部分组成:1.阀体:通常由铸铁、不锈钢等材料制成,具有良好的耐腐蚀性和密封性能。

阀体内部设有进口和出口通道,通过控制阀芯的位置来调节介质流量。

2.阀芯:通常采用圆柱形设计,由不锈钢或其他耐磨材料制成。

阀芯上设有多个孔洞,通过旋转或移动来改变介质通道的大小和形状。

3.伺服驱动装置:包括电机、减速器和传感器等组件。

电机提供驱动力,减速器将电机输出的转速转换成合适的转矩,传感器用于检测阀芯位置和介质参数。

4.控制电路:负责接收来自传感器的反馈信号,并根据预设的控制算法计算出驱动电机所需的控制信号。

控制电路通常由微处理器和相关电子元件组成。

5.供电系统:为伺服驱动装置和控制电路提供稳定可靠的电源,通常使用交流或直流电源。

工作原理比例积分电动调节阀通过控制阀芯的位置来调节介质流量。

其工作原理可以分为以下几个步骤:1.传感器检测:传感器检测介质参数(如压力、温度等)以及阀芯位置,并将检测到的数据发送给控制电路。

2.控制算法计算:控制电路根据预设的控制算法,将传感器反馈的数据进行处理和计算,得出驱动电机所需的控制信号。

3.驱动力输出:驱动信号经过放大和处理后,通过伺服驱动装置输出一定转矩给阀芯。

驱动装置通常采用闭环反馈控制方式,能够实时调整驱动力的大小和方向。

4.阀芯调节:阀芯根据驱动力的作用,旋转或移动到相应的位置,改变介质通道的大小和形状。

阀芯位置的变化会导致介质流量的调节。

5.反馈控制:传感器实时监测阀芯位置和介质参数,并将反馈信号发送给控制电路。

控制电路通过比较反馈信号与预设值的差异,不断调整驱动信号,使阀芯保持在预设位置附近。

气动控制阀的定义,分类及工作原理详解

气动控制阀的定义,分类及工作原理详解

气动控制阀(Pneumatic control valves)气动控制阀是指在气动系统中控制气流的压力、流量和流动方向,并保证气动执行元件或机构正常工作的各类气动元件。

气动控制阀的结构可分解成阀体(包含阀座和阀孔等)和阀心两部分,根据两者的相对位置,有常闭型和常开型两种。

阀从结构上可以分为:截止式、滑柱式和滑板式三类阀。

一、气动控制阀的分类气动控制阀是指在气动系统中控制气流的压力、流量和流动方向,并保证气动执行元件或机构正常工作的各类气动元件。

控制和调节压缩空气压力的元件称为压力控制阀。

国内知名的生产厂家有上海权工阀门设备有限公司和湖南新兴水电设备有限公司。

其公司是机械工业部、化工部、中国化工装备总公司定点管理生产企业。

其产品在业内有一定的价格优势和技术优势控制和调节压缩空气流量的元件称为流量控制阀。

改变和控制气流流动方向的元件称为方向控制阀。

除上述三类控制阀外,还有能实现一定逻辑功能的逻辑元件,包括元件内部无可动部件的射流元件和有可动部件的气动逻辑元件。

在结构原理上,逻辑元件基本上和方向控制阀相同,仅仅是体积和通径较小,一般用来实现信号的逻辑运算功能。

近年来,随着气动元件的小型化以及PLC控制在气动系统中的大量应用,气动逻辑元件的应用范围正在逐渐减小。

从控制方式来分,气动控制可分为断续控制和连续控制两类。

在断续控制系统中,通常要用压力控制阀、流量控制阀和方向控制阀来实现程序动作;连续控制系统中,除了要用压力、流量控制阀外,还要采用伺服、比例控制阀等,以便对系统进行连续控制。

气动控制阀分类如图4.1。

二、气动控制阀和液压阀的比较(一) 使用的能源不同气动元件和装置可采用空压站集中供气的方法,根据使用要求和控制点的不同来调节各自减压阀的工作压力。

液压阀都设有回油管路,便于油箱收集用过的液压油。

气动控制阀可以通过排气口直接把压缩空气向大气排放。

(二) 对泄漏的要求不同液压阀对向外的泄漏要求严格,而对元件内部的少量泄漏却是允许的。

调节阀调节机构、阀芯型式及调节阀结构型式介绍

调节阀调节机构、阀芯型式及调节阀结构型式介绍

阀作为执行器的最主要的组成部分,在管路中,具有调节、截断、分配流体等功能。

由于它直接在管路上工作,所以,应该满足工艺流体介质的压力、温度、腐蚀性等各方面的要求,也应符合配管以及自控方面的各种条件。

调节阀与普通阀门一样,是一局部阻力可以改变的节流元件。

由于阀芯在阀体内移动,改变了阀芯与阀座之间的流通面积,也就改变了阀的阻力系数,被控介质的流量也随着相应的改变,从而达到调节工艺参数的目的。

根据阀内节流件的运动轨迹的不同,阀可分为直行程和角行程两大类。

1.直行程阀:球形阀、角形阀、低噪声阀、高压阀、隔膜阀、分体阀、小流量阀等。

1).角行程阀:偏心旋转阀、蝶阀、球阀、旋塞阀等。

在自动控制系统中,作为比例式连续调节的执行器,直行程阀占使用的绝对多数,但角行程阀的发展很快,已有替代直行程阀的趋势。

8.2.3调节阀阀芯型式根据调节阀的阀芯动作型式可分为直行程阀芯和角行程阀芯两大类。

1.直行程阀芯(1)平板型如图8一3(a)。

结构简单,具有快开特性,可作两位控制用。

详情可参考:气动薄膜单座调节阀:/(2)柱塞型如图8一3(b,c,d)。

其中(b)可上、下倒装,实现正、反调节;(c)适用于角型阀和高压阀;(d)适用于小流量阀。

(3)窗口型如图8一3(e)。

左边为合流型,右边为分流型,适用于三通调节阀。

(4)多级阀芯如图8-3(f)。

由于将几个阀芯串接在一起,起到逐级降压的作用,所以适用于高压差阀,可防止汽蚀破坏作用。

2.角行程阀芯如图8-4所示,(a)为偏心旋转芯,适用于偏心旋转阀;(b)为蝶形阀芯,适用于蝶阀,为球形阀芯,适用于球阀。

8.2.4常用调节阀的结构型式1.直通单座阀(图8-5)直通单座阀阀体内只有一个阀芯和一个阀座,它的特点是泄漏量小,单阀芯结构易于保证与阀座间的严密关闭。

但它的不平衡力大,特别是在高压差、大口径时尤为严重,所以仅适用于低压差的场合。

这种阀在结构上又分为调节型和切断型,它们的主要区别在于阀芯形状不同,前者为柱塞型,后者为平板型。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

力最低 , 这 里所 介 绍 的 比例 调 节 气 动 阀 在 输 入 而
压力 为零时 , 连接 一 、 二次 压 力 的可 变 节 流 口通 流 面积最 大 , 即为 “ 常开 ” 态 , 而此 时 输 出压 力 最 状 因
的通 流 面积 减小 , 而使 出气 口压 力 P 随 进气 口 从 2 压力 P 的增 大 而减小 , 到反 比例调 节 的作用 。 起 () 3 当进 气 口压 力 P 到 设 定 最 大 值 时 , 达 垫 片 和复位 小 弹 簧左 移 到 最 大值 , 锥 形 阀瓣 将 出 小 气 口完全堵 死 , 即节 流孔 通 流 面 积为 零 , 气体 只能 从旁 边 的阻尼孔 出去 , 时 P 为 零 。 此 2 () 过 调 节 微 调 旋 钮 可 以调 节 大 小 弹 簧 的 4通
的预紧力 , 使 该 阀具 有在 中低 压 范 围 内实 现 输 可
出出 口压 力 随输 入压 力 的增 加 而降 低 的反 比例 控 制功 能 , 果合理 设计 出该 阀 的结构 参 数 , 得 到 如 将
D1 —垫 片直径 ,L; — rn t r D2 —节 流孔直 径 ,L ; — rn t r d —— 小锥形 阀瓣 前端 圆柱直 径 , i。 a rn 此时, 比例 调节气 动 阀处 于 正 比例 调节 阶段 ,
出气 口压 力 p 与进气 口压 力 p 相 等 , P =P , 2 1 即 1 2 则 P 与 p 之问 的变化 曲线如 图 3所示 。 2 1
预 紧力 , 而可 以调 节工 作压 力 的范 围。 从
高 。当进 口压 力 增 加 到 一 定 值 时 , 可变 节 流 口通
流面 积则变 成最小 为 零 。 目前 该 阀最具 前 景 的应 用 场合 是空 气 压 缩 机 行 业 , 过 反 比例 阀 的 控 制 通
作 用使 得压缩 机 的外部 用 气 量 与压 缩机 的进 气 量
摘 要 :主要 分 析 了新 型 比 例 调 节 气 动 阀 的 结 构 以 及 工 作 原 理 , 对 该 阀进 行 了静 力分 析 , 过 给 定 的 并 通 参 数 , 算 并 绘 制 出 了该 阀 的调 节 特 性 曲 线 , 出 了该 阀的 应 用场 合 以及 现 实 意义 。 计 指 关 键 词 :比例 阀 ; 力 分 析 ; 节 特 性 曲线 静 调
作者简介 : 吴 健 ( 1
年毕业于兰州理工大学化 工机械 专业, 硕士 , 师。一 讲 直从事过程装备与控 制技 术教 学与研 究工作。E a : m i l
w jnea@hv .d .n uahnn z ceuc i t
维普资讯
石 油 化 工 设 计
图 1 比例 调 节 气 动 阀 结 构 原 理 图
1 一阀体 ;2 一带阻尼孔螺钉 ;3 一螺塞 ; 4一呵调旋钮 ;
5一上 弹 簧座 ; 6一大 弹 簧 ; 7一下 弹 簧 座 ; 8一活 塞 ; 9一垫 片 ; l O一小 阀 瓣 ( 形 )1 一复 位 小 弹 簧 ;1 一微 调 旋 钮 锥 ;1 2
维普资讯
工 程 应 用
Ptce i l D s n e ohmc ei r a g
石油 设计 化工
20 , () 2 ~2 07 2 4 4 5 6
新 型 比例 调 节 气 动 阀结 构 与 静 力分析
吴 健
( 州职 业技 术 学 院 , 江 杭 州 30 1) 杭 浙 108
力 P 进气 口 P 增 大 而增 大 , 到正 比例 调节 的 2 1 起



图 2 比例 调 节 气 动 N ;  ̄模 型 0-
()当各力 满足 下面 的条件 时 1

— —

) 男 , 南鹿 邑 县 人 。20 , 河 03
/ 1 0
\ l 1
收 稿 日期 :07 1 5 20 —0 —0 。
第 2 卷 4
式 中: l ——大弹簧预紧力 , ; N
— —
=0. 8 pl +0. 8 p2 + w2一 k & 7 5 D1 7 5 D2 2
复位小弹簧预紧力 , ; N
式 中 :1k— —分别 为 大 弹 簧 和复 位 小 弹簧 弹 性 k,2
系数 , / m; Nm
p 、 2 —进 、 lp— 出气 口压力 , a P;
常规减 压 阀无 论 是 直 动式 、 导式 或 二 通 型 、 先
作用。
三通 型 , 输入 弹簧 力或 电磁 力 为 零 时 , 接 一 次 在 连
进 口压力 与二次 出 口压 力之 间 的可 变 节 流 口通 流 面积 均为最 小 , 即为 “ 闭” 态 , 常 状 因而 此 时输 出压
保 持一 致 _ 。 】 J
1 工作原 理
该 比例调 节 气动 阀( 1的工作原 理 如下 : 图 )
() 1 当进 口压 力 P 比较 小 时 , 片 将 不 会 被 1 垫 顶起 , 小锥 形 阀瓣 处 于全 开状 态 , 时 , 此 出气 口压
2 静 力分 析
该 比例调节 气 动 阀的力学模 型 如 图 2 示 。 所

龇—— 弹簧位 移量 ,I。 IT II I
c + 溉
由上式 可知 , 2 随着 P 的 增 大 而 减 小 , P将 1 起
到反 比例调节的作用。P 与 P 的变化曲线如图 3 2 1
所示 l 。
3 结论
通 过计算 与模 拟 分 析 表 明 , 当调 节 两 弹簧 适
() 2 当进 气 口压 力 P 加 到 一 定 值 时 , 片 增 垫 在进 气 口压力 P 、 弹 簧 的作 用 力 】复 位 小 弹 大 、 簧 的作用 力 以及 出气 口压 力 P 2的联合 作用 下
而左移 , 同时 , 锥 形 阀瓣 也将 左 移 , 使 节 流 孔 小 致
相关文档
最新文档