射频通信电路(06)

合集下载

射频电路原理课件

射频电路原理课件
❖ 4)、压控振荡器(VCX0):同上描述。 ❖ 5)、稳压器(Regulators):作为芯片内部的稳压器,将
输入电池电压转换成内部电路所需的工作电压。
•射频电路原理课件
射频收发信机(U602)
•射频电路原理课件
射频收发信机(U602)
•射频电路原理课件
射频收发信机(U602)
•射频电路原理课件
•射频电路原理课件
双工滤波器(U601)
❖ 器件引脚排列及名称:
表1:器件引脚排列及名称
•射频电路原理课件
双工滤波器(U601)
表2:双工滤•射波频器电路的原开理关课控件 制模式
双工滤波器(U601)
图3:双工滤•射波频电器路相原关理电课件路
声表面滤波器
❖ 3、声表面滤波器(Z600、Z602、Z603): ❖ 是一个带通滤波器,只允许接收频段的射频信号进入接收
•射频电路原理课件
手机通用的接收与发射流程
❖ 2、信号发射流程: 话音采集——放大——ADC——滤波——语音编
码——交织——加密——信道均衡——GMSK调制—— (进入射频部分)IQ调制(IQ调制器)——滤波—— 鉴相鉴频(鉴相鉴频器)——滤波——TX_VCO混频 (混频器Mixer)——功率放大(PA)——双工器—— 天线匹配电路——天线发射。
•射频电路原理课件
射频收发信机(U602)
❖ 在GSM 系统中,有一个公共的广播控制信道(BCCH), 它包含频率校正信息与同步信息等。手机一开机,就会在 逻辑电路的控制下扫描这个信道,从中获取同步与频率校 正信息,如手机系统检测到手机的时钟与系统不同步,手 机逻辑电路就会输出AFC 信号。AFC 信号改变 13MHz/26MHz 电路中VCO 两端的反偏压,从而使该 VCO 电路的输出频率发生变化,进而保证手机与系统同 步。

《射频通信电路》陈邦媛著课后答案详细版

《射频通信电路》陈邦媛著课后答案详细版
' GS = G Σ − G p = 0.01 ms
' = P 2 G ,所以电容接入系数为: 由于 G S S
回路总电容
' GS 0.01 × 10 −3 = = 0.01 ⇒ P = 0.1 GS 10 −3 1 1 C= 2 = = 159PF 6 2 ω 0 L (6.28 × 10 ) × 159 × 10 −6
在 ∆f = 10kHz 处的选择性为: 1 S= 2∆f 1+ Qe f 0 1-6 回路特性阻抗 回路谐振阻抗 由 P22 RL = 1 + RP RS P12

2
=
1 20 1 + 37 × 465.5
2
= 0.532 → −πf 2 ) 2 C 2
L3 =
1-4
1 (2πf 3 ) 2 C 3
= 0.68µH
x
x
f0
f
f0
f
(a) f 0 = x
1 2π LC
(b) f 0 = x
1 2π LC
f1
f2
f
f1
f2
f
(c)
f1 =
1 2π C ( L1 + L2 ) 1 2π CL1
1 1 = = 159 Ω 7 2 πf 0 C 2π × 10 × 100 × 10 −12
可求得 P2 = 0.336
R P = ρQ = 159 × 100 = 15.9kΩ
' 信号源内阻 R S 折合到回路两端为: R S = ' 负载电阻 R L 折合到回路两端为: R L =
RS P12 =
第一章 1-1 S= 1 0.6 × 2 × 66.67) 2 1+ ( 10 = −16dB = 0.158

射频通信电路

射频通信电路

1.3.1 分布参数概念《射频通信电路》常树茂
分布参数元件是指一个元件的特性延伸扩展到一定的 空间范围内,不再局限于元件自身。
《射频通信电路》常树茂
分布参数 例子1
例1-1 如果分布电容为 CD=1pF,请计算在 f=2kHz、2MHz 和 2GHz 时,分布电容的容抗 XD。
解:分布电容 CD 的容抗 XD 为
1.2 微波的定义
微波(MW,Microwave)
自由空间中波长1mm到1m
频率300MHz至300GHz
1.2
《射频通信电路》常树茂
射频通信系统
利用更宽的频带和更高的信息容量; 通信设备的体积进一步减小; 解决频率资源日益紧张的问题; 通信信道频率间隙增大,减小干扰; 小尺寸天线,高增益,移动通信系统
趋肤深度定义
1 f
趋肤效应
《射频通信电路》常树茂
•图 2-1 交流状态下铜导线横截面电流密度对直流 情况的归一化值
趋肤效应
《射频通信电路》常树茂
铜的电导率为 6.45107 S / m ,导磁率=0,则在 f=1kHz、1MHz 和 1GHz 的频率下,趋肤深度分别为
f 1kHz 2.0mm f 1MHz 63m f 1GHz 2.0m
/4DQPSK
0.6~3W 0.6~3W
IS-95 869~894 824~849 50MHz CDMA/ FDMA 1250kHz 55~62 20 15960 FDD 12288kbps
BPSK/OQPSK
0.2~2W 0.2~2W
GSM 935~960 890~915 50MHz TDMA/ FDMA 200kHz 8 124 992 FDD 271kbps GMSK 2~20W

《射频通信电路》习题及解答

《射频通信电路》习题及解答

习题1:之马矢奏春创作本课程使用的射频概念所指的频率范围是几多?解:本课程采纳的射频范围是30MHz~4GHz列举一些工作在射频范围内的电子系统, 根据表1-1判断其工作波段, 并估算相应射频信号的波长.解:广播工作在甚高频(VHF)其波长在10~1m等从成都到上海的距离约为1700km.如果要把50Hz的交流电从成都输送到上海, 请问两地交流电的相位差是几多?解:射频通信系统的主要优势是什么?解:1.射频的频率更高, 可以利用更宽的频带和更高的信息容量2.射频电路中电容和电感的尺寸缩小, 通信设备的体积进一步减小3.射频通信可以提供更多的可用频谱, 解决频率资源紧张的问题4.通信信道的间隙增年夜, 减小信道的相互干扰等等1.5 GSM和CDMA都是移动通信的标准, 请写出GSM和CDMA的英文全称和中文含意.(提示:可以在互联网上搜索.)解:GSM是Global System for Mobile Communications的缩写, 意为全球移动通信系统.CDMA英文全称是Code Division Multiple Address,意为码分多址.有一个C=10pF的电容器, 引脚的分布电感为L=2nH.请问当频率f 为几多时, 电容器开始呈现感抗.解:既那时, 电容器为0阻抗, f继续增年夜时, 电容器呈现感抗.1.7 一个L=10nF的电容器, 引脚的分布电容为C=1pF.请问当频率f为几多时, 电感器开始呈现容抗.解:思路同上, 当频率f小于1.59 GHz时, 电感器呈现感抗.1.8 1)试证明()式.2)如果导体横截面为矩形, 边长分别为a和b, 请给出射频电阻R RF与直流电阻R DC的关系.解:对同一个导体是一个常量当直流时,当交流时,2)直流时,当交流时,试分别计算在100MHz和1GHz的频率下, 三种资料的趋肤深度.解:在100MHz时:Cu为2 mmAl 为Au为在1GHz时:Cu为0.633 mmAl 为Au为某个元件的引脚直径为, 长度为l=25mm, 资料为铜.请计算其直流电阻R DC和在1000MHz频率下的射频电阻R RF.解:贴片器件在射频电路中有很多应用.一般使用数字直接标示电阻、电容和电感.有三个电阻的标示分别为:“203”、“102”和“220R”.请问三个电阻的阻值分别是几多?(提示:可以在互联网上查找贴片元件标示的规则)解:203是20×10^3=20K, 102是10×10^2=1K, 220R是22×10^0=22Ω试编写法式计算电磁波在自由空间中的波长和在铜资料中的趋肤深度, 要求法式接收键盘输入的频率f, 在屏幕上输出波长和趋肤深度.解:float f;float l,h;printf("Input the frequency: f=");scanf("%f",&f);l=3e8/f;h=1/sqrt(3.14*f*6.45*4*3.14) ;printf("wavelength:%f\n",l);printf("qufushendu%fm\n",h);getch() ;1.射频滤波电路的相对带宽为RBW=5%, 如果使用倍数法进行暗示, 则相对带宽K为几多?解答:K=HL ffK(dB)=20 lg HLff∴K(dB)=0.42 dB2.一个射频放年夜电路的工作频率范围为:f L至f H.试分别使用百分法和倍数法暗示该放年夜电路的相对带宽, 并判断该射频放年夜电路是否属于宽带放年夜电路.解答:K=HL ff由于K>2, ∴它属于宽带放年夜电路3.仪表放年夜电路的频带宽度为:DC至10MHz.请分别计算该放年夜电路的绝对带宽和相对带宽, 并判断该放年夜电路是否属于宽带放年夜电路.解答: 绝对带宽:10H L BW f f MHz =-=相对带宽:20lg H L f K f ==∞2K >所以它属于宽带放年夜电路.4. 某射频信号源的输出功率为P OUT =13dBm, 请问信号源实际输出功率P 是几多mW ? 解答:5. 射频功率放年夜电路的增益为G p =7dB, 如果要求输出射频信号功率为P OUT =1W, 则放年夜电路的输入功率P IN 为几多? 6. 在阻抗为Z 0=75的CATV 系统中, 如果丈量获得电压为20dB V, 则对应的功率P 为几多?如果在阻抗为Z 0=50的系统中, 丈量获得相同的电压, 则对应的功率P 又为几多?解答:∴当0Z =75Ω时, ()P dBm =-88.7 dBm 当0Z =50Ω时, ()P dBm =-86.9 dBm7. 并联电路的品质因数Q 0.解答: 假设谐振频率时, 谐振电路获得的电压为00()cos V t V w t =电阻R 损耗的平均功率为因此并联谐振电路的品质因数0Q 为8. 使用图2-12(b )的射频开关电路, 如果PIN 二极管在导通和截止状态的阻抗分别为Z f 和Z r .请计算该射频开关的拔出损耗IL 和隔离度IS.解答:拔出损耗00220lg fZ Z IL Z += 隔离度00220lg rZ Z IS Z += 9. 请总结射频二极管的主要种类、特性和应用领域.解答:种类特性 应用范围肖具有更高的截止频率和更低的反向恢复用于射频检波电特基二级管时间 路, 调制和解调电路, 混频电路等 PIN 二极管正偏置的时候相当于一个电流控制的可变电阻, 可呈现非常低的阻抗, 反偏置的是相当于一平行平板电容 应用于射频开关和射频可变电阻 变容二极管从导通到截止的过程中存在电流突变, 二极管的等效电容随偏置电压而改变 主要用于电调谐, 还可用作射频信号源10. 雪崩二极管、隧道二极管和Gunn 二极管都具有负阻的特性, 尽管形成负阻的机理完全纷歧致.请设计一个简单的电路, 利用二极管的负阻特性构建一个射频振荡电路. 解答:11. 1)试比力射频场效应管与射频双极型晶体管结构和特性上的不同.2)试讨论晶体管小信号模型和年夜信号模型的主要区别.请问能否使用晶体管年夜信号模型分析射频小信号.解答:场效应管是单极性器件, 只有一种载流子对通道电流做出贡献, 属于压控器件, 通过栅极-源极的电压控制源极-漏极电流变动;使用GaAS 半导体资料MISFET 的截止频率可以到达60—70GHz,, HEMT 可以超越100GHz, 因此在射频电路设计中经常选用它们作为有源器件使用;双极型晶体管分为PNP 和NPN 两种类型, 其主要区别在于各级的参杂类型纷歧致, 属于电流控制器件, 正常工作时, 基极-发射极处于正偏, 基极-发射极处于反偏;通过提高搀杂浓度和使用交指结构, 可以提高其截止频率, 使其可以在整个射频频段都能正常工作年夜信号模型是一个非线性模型, 晶体管内部的等效的结电容和结电阻会发生变动, 小信号模型是一个线性模型, 可认为晶体管的个参数坚持不变.能使用晶体管的年夜信号模型分析射频小信号.12. 肖特基二极管的伏安特性为其中反向饱和电流为11210SI A -=⨯, 电阻R S .试编写计算机法式, 计算当V A 在0V~10V 之间变动时, 肖特基二极管电流I 的变动.#include "math.h"float dl(float Va){float i1;if(Va<0)printf("n<0,dataerror");else if(Va==0)i1=0;else i1=2*exp(Va-dl(Va-1)*1.5-1);return(i1);}void main(){float i;float v=0;do{i=dl(v);printf("%f*10(-11)\n",i);v=v+1;}while(v<=10) ;getch();} 习题3: 1. 在“机遇号”抵达火星时, 从火星到地球的无线电通讯年夜约需要20分钟.试估算那时火星和地球之间的距离.解答:811111022s ct ==⨯3⨯10⨯1200=1.8⨯m2. 考察从上海到北京的距离, 假设互联网信号通过光纤传输, 光纤的折射率为.试估算互联网信号从上海到北京再返回上海的过程中, 由于光纤传输发生的时间延迟.解答:从上海到北京的飞行航程是1088公里.飞行路线是交通工具中最年夜可能接近于直线距离的, 所以本题我们取1088公里 时间延迟:81088210007.25310t ms ⨯⨯==⨯ 3.设计特征阻抗为50W 的同轴传输线, 已知内导体半径为a , 当填充介质分别为空气(r )和聚乙烯(r )时, 试分别确定外导体的内径b . 解答:060ln r b Z a =ε适当填充介质为空气时 b=1.38 mm当填充介质为聚乙烯时 b=2.09 mm 4. 设有无耗同轴传输线长度为l =10m, 内外导体间的电容为C S =600pF.若同轴电缆的一端短路, 另一端接有脉冲发生器和示波器, 发现一个脉冲信号来回一次需的时间.试求该同轴电缆的特征阻抗Z 0.解答:得0Z =8.38Ω5. 特征阻抗为50W 的传输线终接负载Z L , 测得传输线上VSWR =.如果在负载处反射波反相, 则负载Z L 应该并联还是串连阻抗Z, 使传输线上为行波传输, 并确定阻抗Z.解答:在负载出反射波反相可得出负载处的电压反射系数为00.20l Γ=∠ 所以应并联一阻抗Z=150Ω, 使传输线上为行波传输.6. 无耗传输线特征阻抗为Z 0=100W, 负载阻抗为Z L =150-j100W.求距终端为l/8、l/4、/2处的输入阻抗Z IN .解答:7. 微带传输线特征阻抗为Z 0=50W, 工作频率为f =100MHz.如果终端连接电阻R=100W 和电感L=10mH 的负载.试计算1)传输线的VSWR ;2)如果频率升高到500MHz, 传输线上的VSWR.获得l Γ简直切值当f=100MHz 时l Γ=0.98 VSWR=99当f=100MHz 时l Γ=0.99 VSWR=1998. LC 并联谐振电路的谐振频率为f 0=300MHz, 电容C 的电抗为X C =50W.若用特征阻抗为Z 0=50W 的短路传输线来取代电感L, 试确定短路传输线的长度l .解答:可得最短的短路传输线了8l λ==0.125 m 9.无耗传输线特征阻抗Z 0=50W, 工作频率为f =3GHZ, 测得VSWR =, 第一个电压波节点离负载的距离为l min =10mm, 相邻两波电压节点的距离为50mm.试计算负载阻抗Z L 及终端反射系数G L . 解答: 相邻两电压节点相差0.5λ=50 mm可得λ=100 mm第一个电压节点离负载min 10l mm =则负载应在()100.25*31000.255πθπ-=-=- 00l l l Z Z Z Z -Γ=+⇒l Z =41.316.3j - 10. 传输线的特征阻抗为Z 0=50W, 测得传输线上驻波电压最年夜值为|V max |=100mV, 最小值为|V min |=20mV, 邻近负载的第一个电压节点到负载的距离为l min .求负载阻抗Z L .解答:min MAX V VSWR V ==5 11l VSWR VSWR -Γ=+ 80.6725l πΓ=∠⇒l Z =33.777.4l Z j +11. 传输线的长度为l , 传输线上电压波腹值为50V, 电压波节值为13V, 波腹距负载.如果传输线特征阻抗为Z 0=50W, 求输入阻抗Z IN 和负载阻抗Z L .解答:min MAXV VSWR V =⇒Γ 波腹距负载λ, 所以负载点应在0.0320.25λπλπ 所以终端负载的电压反射系数0l l l Z Z Z Z -Γ=+L Z ⇒=12486.9j +000l IN l Z jZ tg lZ Z Z jZ tg l ββ+=+=13.811.5j + 12. 特征阻抗为Z 0=50W 传输线终接负载阻抗为Z L =75+j100().试求:负载反射系数L ;2)传输线上的VSWR ;3)最靠近负载Z L 首先呈现电压驻波的波腹点还是波节点.解答:00l l l Z Z Z Z -Γ=+=1454j j ++ 所以最先呈现波腹点 13. 1)证明无损传输线终端接纯电抗负载时, 传输线上电压反射系数|G|=1, 并从物理现象上解释.2)试证明无耗传输线上任意相距l/4的两点处的阻抗的乘积即是传输线特性阻抗的平方.解答:接纯电抗负载时l Z jx =0l l l Z Z Z Z -Γ=+=00jx Z jx Z -+ l Γ=1离负载端距离为l 时, 对应的阻抗为 14. 特征阻抗为Z 0=50W 的无耗传输线终端接负载Z L =100W, 求负载反射系数L , 以及负载前处输入阻抗Z IN 和电压反射系数.000l IN l Z jZ tg l Z Z Z jZ tg l ββ+=+15. 已知传输线的归一化负载阻抗为0.40.8L Z j =+.从负载向信号源移动时, 试问:首先遇到的是电压波节点还是电压波腹点?并求它与负载间的距离l .解答:先遇波腹点0l l l Z Z Z Z -Γ=+=0.64840.82.2557j +i r arctgθΓ=Γ17. 对如图3-34所示无耗传输线系统, 试计算负载Z L 获得的功率P L .图 3-34解答:l Z 在传输线的前真个等效阻抗为63.725.6in Z j =-则等效阻抗获得的功率{}10.252Re G l L V P w Z ==由于是无耗传输线, 所以等效阻抗获得的功率即为l Z 实际获得的功率.18. 特征阻抗为Z 0=50W 的无耗传输线, 长度为10cm (f =1GHz, v p ).若输入阻抗为Z IN =j60W, 1)试用Smith 圆图求出终端负载阻抗Z L ;2)如果用短路终端取代该负载Z L , 请确定输入阻抗Z IN . 解答:终端负载阻抗为112.5l Z j =如果用终端短路取代负载, 则输入阻抗为14.1in Z j =-19. 用阻抗圆图求出如图3-35所示电路的输入端输入阻抗Z IN .图解答:(a ) 5.27.8in Z j =-(b) 29.421.7in Z j =+(c) 22.347.9in Z j =-20. 1)试根据微带传输线特征阻抗的计算公式, 编写计算机法式, 实现输入微带线各个参数(微带线宽度W, 介质厚度h, 介质相对介电常数r ), 输出微带线特征阻抗Z 0的功能.2)设计“对分法”计算机法式, 实现输入微带线特征阻抗Z 0、介质厚度h 和介质相对介电常数r , 输出微带线宽度W 的功能, 而且验证.解答:编程思想请参考/*课本p49-52*/用的C 语言编的1. #include "stdio.h"#include "math.h"float a,b,ef,r,u,w,h,z,f; /*z 为特征阻抗 ef 为相对介电常数 r 为介质的介电常数*/float qiua() ;float qiub() ;float qiuef();float qiuf();float qiuz();main(){printf("please input shus");scanf("%f%f%f",&w,&h,&r);u=w/h;qiua();qiub();qiuef() ;qiuf();qiuz();printf("%f\n%f\n%f\n%f\n%f",a,b,ef,f,z);getch() ;return 0;}float qiua() /*计算a的值*/{a=1+log((pow(u,4)+pow((u/52),2))/(pow(u,4)+0.432))/49+log (1+pow((u/18.1),3))/18.7 ;return(a);}float qiub() /*计算b的值*/{b=0.564*pow((r-0.9)/(r+3),0.053);return(b);}float qiuef() /*计算等效介电常数的值*/{ef=(r+1+(r-1)*pow((1+10/u),-a*b))/2;return(ef);}float qiuf() /*计算F的值*/{f=6+(2*3.1415-6)*exp(-pow(30.666/u,0.7528));return(f);}float qiuz() /*计算特征阻抗的值*/{z=120*3.1415*log(f/u+sqrt(1+pow(2/u,2)))/(2*3.1415*sqrt(e f));return(z);}2.#include "stdio.h"#include "math.h"float a,b,ef,r,u,z0,w;float wl,wh,h,z,f,zl,zh;/*z暗示中心的阻抗值*/ float t;float qiua() ;float qiub() ;float qiuef();float qiuf();float qiuz();main(){printf("please input shus");scanf("%f%f%f",&h,&r,&z0);wl=0.10000;wh=10.00000;t=0.1;while(fabs(t)>1e-3){u=wl/h;qiua();qiub();qiuef() ;qiuf();zl=qiuz();u=wh/h;qiua();qiub();qiuef() ;qiuf();zh=qiuz();w=(wl+wh)/2;u=w/h;qiua();qiub();qiuef() ;qiuf();z=qiuz();t=(z-z0)/z0;if(z>z0){if(zh>z0)wh=w;elsewl=w;}else{if(zl>z0)wh=w;elsewl=w;}}printf("%10.6f",w);getch() ;}子函数同上21.有一款免费的Smith圆图软件, 年夜小只有几百kB字节.请在互联网上搜索并下载该软件, 通过帮手文件学习软件的使用方法, 然后验证习题中利用Smith圆图计算的结果.解答:电子资源网可以找到.习题4:1.比力两端口网络阻抗矩阵、导纳矩阵、转移矩阵、混合矩阵的界说, 讨论四种网络参数的主要特点和应用.解答:见表4-12.分析如图错误!使用“开始”选项卡将应用于要在此处显示的文字。

射频电路

射频电路
射频电路图讲解
Prepared By: Sandy Ding 2012.11.07
射频电路
射频电路框图
射频电路
名词解释
无线收发器:Radio Transceiver 带通滤波器:BPF 功率放大器:PA
低通滤波器:LPF
低噪声放大器:LNA 收发切换器:T/R Switch 天线:Antenna
射频电路
天线与天线连接器
说明:
Atheros芯片会在天线或者天线连接 器的附近放置一个∏型匹配网络.
射频电路框图
完整的射频电路框图
射频电路
无线收发器
典型讯号脚: 电源 数字地、模拟地 射频功率输出
功率检测
温度检测 射频输入
发射、接收切换控制等
射频电路
功率放大器
典型讯号脚: 主电源供电引脚 一级、二级、三级供电引脚 射频输入引脚——RF-IN
射频输出引脚——ቤተ መጻሕፍቲ ባይዱF-OUT
功率检测引脚——Power DETECT
射频电路
功率放大器供电电路
说明: VCC是主电源供电,VC1是芯片内 部第一级放大的供电,VC2是芯 片内部第二级放大的供电, VC1 和VC2 不是简单的供电管脚,这 两个管脚通常不会直接连接到电 源上,一般会串联一个电感(或 者电阻)再连接到电源上。
射频电路
功放输入回路
说明: 1.输入回路由两部分组成:带通 滤波器和是∏型匹配网络 2.带通滤波器的输入输出阻抗都 要控制在50欧姆的标称值 3. C108,C109和L14就组成了一 个∏型匹配网络
射频电路
功放输出回路
说明:
1.输出回路由低通滤波器构成, 2.低通滤波器要解决的主要问题 时由于功放引起的高次谐波,如 二次谐波,三次谐波甚至更高次 数的谐波,低通滤波器还需要解 决阻抗匹配的问题.

射频电路的原理及应用

射频电路的原理及应用

射频电路的原理及应用一、射频电路的定义射频电路是指在射频信号频率范围内工作的电路。

射频信号是指频率超过几十千赫兹(kHz)的电信号。

射频电路在通信、雷达、卫星和无线电频率应用中起着重要的作用。

二、射频电路的原理射频电路的原理涉及信号的传输、调制和解调。

以下是一些常见的射频电路原理:1. 信号的传输在射频电路中,信号传输过程涉及到信号的放大、滤波和混频等操作。

以下是一些常见的射频电路传输原理: - 射频放大器:用于放大射频信号的电路。

- 射频滤波器:用于滤除非期望频率的信号。

- 射频混频器:用于将不同频率的信号进行混频操作。

2. 调制和解调调制是将调制信号嵌入到载波频率上,以便在信道中传输。

解调则是将调制信号从载波中提取出来。

以下是一些常见的射频电路调制和解调原理: - 调制器:用于将一个低频调制信号转换成一个高频调制信号。

- 解调器:用于从射频信号中提取出原始调制信号。

三、射频电路的应用射频电路在各个领域都有着重要的应用。

以下是一些常见的射频电路应用:1. 通信领域射频电路在通信领域中起着至关重要的作用。

以下是一些常见的射频电路在通信领域的应用: - 无线电通信:射频电路在无线电通信中用于信号的传输和调制。

- 手机通信:射频电路在手机通信中用于信号的放大和解调。

- 卫星通信:射频电路在卫星通信中用于信号的放大和传输。

2. 雷达雷达是利用射频信号进行目标探测和测量的一种技术。

射频电路在雷达系统中起着重要的作用,以下是一些射频电路在雷达中的应用: - 发射机:射频发射机产生高功率射频信号并将其送入天线系统。

- 接收机:射频接收机接收从目标返回的信号并对其进行放大和解调。

- 混频器:射频混频器用于将回波信号与本地振荡器产生的信号进行混频。

3. 无线电频率应用射频电路在无线电频率应用中也有着重要的应用,以下是一些常见的射频电路应用: - 无线电发射机:射频电路在无线电发射机中用于信号的放大和传输。

射频电路原理

射频电路原理

射频电路原理
射频电路是指在射频(Radio Frequency, RF)频段工作的电路,通常在无线通信系统、雷达系统、卫星通信系统等中使用。

射频电路的原理主要包括:
1. 射频信号的传输:射频信号是指频率范围在300 kHz到300 GHz之间的信号,射频电路的主要任务是对射频信号进行放大、调制、解调和滤波等,以实现信号的传输和处理。

2. 射频电路的频率响应:射频电路的频率响应是指射频电路对不同频率信号的响应特性。

一般来说,射频电路需要有宽带性能,即能够传输多个频率范围内的信号。

3. 射频电路的阻抗匹配:由于射频信号在传输中会遇到阻抗不匹配的问题,因此射频电路需要进行阻抗匹配。

阻抗匹配可以提高信号传输效率,减少信号反射和损耗。

4. 射频电路的放大:射频信号通常比较微弱,需要经过放大才能提供足够的信号功率。

射频放大器在射频电路中起到放大信号的作用,常用的放大器有共源极放大器、共漏极放大器等。

5. 射频电路的混频和解调:射频电路中的混频器和解调器用于将射频信号转换成基带信号,实现信号的调制和解调。

混频器将射频信号和本地振荡器的信号进行混合,生成中频信号。

总的来说,射频电路的原理是通过对射频信号进行传输、放大、调制和解调等处理,实现无线通信和其他射频应用的需求。

射频电路设计

射频电路设计

射频电路设计是无线通信领域中的关键技术,它与无线通信的性能和特性直接相关。

的目的是为了实现高效的信号传输、抗干扰能力强、信噪比高、频谱资源利用效率高、低功耗等性能优异的无线通信系统。

一、的基本概念射频电路是指在无线通信系统中用于调制、解调、放大、滤波和发射、接收无线信号的电路。

由于无线通信系统中信号的频率一般在几百万赫兹到几千兆赫兹之间,因此射频电路工作在高频范围内,其特点是频率高、电压小、电流大、噪声大、传输距离短等。

的主要任务是实现信号的滤波、放大、混频、调制等操作,从而完成信号的处理和传输。

一般来说,需要考虑以下方面的因素:1.频段和带宽:确定射频电路工作的频率范围和工作带宽。

2.信号处理的功能:确定射频电路要实现的信号处理功能,如滤波、放大、混频、调制等。

3.电路结构和拓扑:确定射频电路的具体拓扑结构和电路元件,并进行系统级的优化设计。

二、中的关键技术1.滤波技术:滤波是射频信号处理中最常用的技术之一,它的主要作用是将所需的信号从噪声和干扰中分离出来。

滤波器一般分为低通、带通、高通和带阻滤波器。

在设计射频电路时,需要根据实际情况进行合理的滤波器选择和设计。

2.放大技术:放大器是中最常用的元件之一,它的主要功能是将信号增强到足够的水平以便在后续处理中进行正常传输。

在中,需要根据具体设计要求选择合适的放大器拓扑结构和参数。

3.混频技术:混频器用于将两个不同频率的信号相乘,产生出新的频率,这个过程叫做混频。

在接收端,混频器主要用于将接收到的高频信号转换为中频信号,同时滤波器用于去除混频后的高频信号。

4.调制技术:调制用于将基带信号(低频)和射频信号(高频)结合起来。

在通信系统中,调制技术是实现高效传输的关键。

常见的调制方式包括振幅调制、频率调制和相位调制等。

5.射频功率放大技术:射频功率放大器是一种用于放大射频信号的放大器,通常要求具有高效、大功率、尽可能小的失真等特点。

在中,功率放大器的设计是一个非常关键的环节,其设计的好坏直接影响整个无线通信系统的性能。

射频通信电路6-7章

射频通信电路6-7章

第六章 6-2若f L >f S ,则本振频率f L 和镜象频率f m 分别为981~95687)894~869(=+=+=I S L f f f MHz 1068~1043=+=I L m f f f MHz 若f L <f S ,则:807~78287)894~869(=-=-=I S L f f f MHz ,695~720m L I f f f =-=MHz 6-4(a )NF M =4dB=2.51,L M =4dB →G M =0.398 ⎪⎩⎪⎨⎧===10dB 101dB 0A NF ①当NF A =0dB 时,dB451.21151.2121==-+=-+=MMG G F F F②当NF A =10dB 时,1012.5125.12140.398F -=+==dB(b )NF M =8dB=6.31,G M =3dB=1.995 ① 当NF A =0dB 时,dB831.6113.6==-+=MG F②当NF A =10dB 时,dB 34.1082.10995.111031.6==-+=F6-5求变频增益G 1因为对应1dB 压缩点时P i =–10dBm ,P 0=1dBm ,则基波增益为:dB12)10(11101=--+=+-=i P P G∵ OIP 3=15dBm ,∴IIP 3=OIP 3–G 1=15–12=3dBm ,求放大器的三阶互调分量增益G 3:∵ OIP 3=G 3·(IIP 3)3 化为dB 时有OIP 3=G 3+3×(IIP由于 15=G 3+3×3 ∴G 3=15–9=6dB由干扰信号引起的三阶互调分量 33M IM P G P ⋅= M IMP G P 33+=,现P IM =–62dBm (626)322.67M P =--÷=-dBm6-6 画出三极管混频器的BE C v i ~,BE m v g ~曲线如图,则g(t)波形如图示。

手机射频电路原理及故障检测维修

手机射频电路原理及故障检测维修
第六章 手机射频电路原理及故障检测维修
早期手机与现代智能手机,在射频电路结构上基本没有多大改变,都包括接收射频电路和 发射射频电路。早期手机射频电路基本只有GSM900M网络的GSM、DCS、PCS三个频段,而智能手 机射频几乎都是包括GSM(2G)网络和WCDMA(3G)网络,不过仍有GSM接收和发射电路, WCDMA接收和发射电路。从手机显示屏上看,普通手机只有信号条,网络就只有单一的“中国移 动”或“中国联通”、“中国电信”,而现代智能手机基本都有GSM(2G)网络和WCDMA(3G) 网络的自动切换,实现用户使用不同类型用户卡的需要。显示屏上信号,表示手机接收和发射信 号的强弱,显示屏上的网络符号则表示不同网络类型的当前状态。早期手机接收射频电路与发射 射频电路是各自单独的电路,而现代多功能手机与智能手机都将接收射频与发射射频集成在一个 中频IC里边,完成收发射频处理工作。当然手机集成度越高,大大减轻了维修难度,但对于电路分 析也带来极大的难度,比如手机接收高放、混频、调制解调、VCO电路的分析理解则不具体。为了 更好的理解射频电路工作过程,这里将重点讲解如何分析集成射频IC内部单元,以便能更好的分析 射频电路。
(1)接收射频部分
在这里,我们要注意射频IC里边混频电路是怎么工作的?什么是混频?混 频电路组成结构是如何?混频电路如何工作呢?
①什么是混频?混频是指将两个频率混合实现差频变换,产生一个新频率 的过程,简单说就是变换频率,用英文“MIX”表示。
②混频电路组成结构及工作原理 由于现代智能手机高度集成技术,使得手机电路结构发生从分立元件转变 到集成电路,到大规模集成电路飞速发展。事实上,无论技术如何发展,其基本 电路结构原理是不能缺少的。比如任何一部手机的接收都必须包括天线、天线开 关、高放、变频、本振、频率合成、中放、解调、数字处理、音频处理等电路。 其中,有的将天线开关和功放集成在一起,有的将高放、变频、本振、频率合成 集成在射频处理器中,有的将数字处理和音频处理集成在CPU中,也有的将本振、 频率合成集成到CPU中,无论怎么集成,我们只要掌握基本的电路,就能更好地 掌握集成上述单元电路的分析方法。

《射频通信电路》陈邦媛

《射频通信电路》陈邦媛


RΣ = 4.43kΩ
回路有载 Q 值为
Qe
=
RΣ ρ
=
4.43 ×103 159
= 27.8
回路的通频常
BW 3dB
= f0 Qe
= 10 ×106 27.8
= 0.359MHz
1-7
由于
BW3dB
=
f0 Qe
所以回路有载
Qe
=
f0 BW3dB
=
10 6 20 ×103
= 50
回路谐振时的总电导为
r = ω 0 L = 2π × 465.5 ×103 × 390 × 10−6 = 11.4Ω
Q0
100
回路的谐振阻抗
RP = r(1 + Q02 ) = 114KΩ
考虑信号源内阻及负载后回路的总谐振阻抗为
RΣ = RS || RP || RL = 42KΩ
回路的有载 Q 值为
通频带
Qe
=
RΣ ρ
Ri
=
V1 3I1
, RL
= V3 I3
=
3V1 I1

Ri R2
=
1 9

Z C1
= ZC2
= V1 I1
=
1 3 RL
V1 Ri
I1
I3 I1 I2 V3
RL
Z C3
= V3 I3
=
3V1 I1
=
RL
V2
I3
I2
(e)
免费考研论坛

免费考研论坛

1
∵接入系数 P =
ωC2 1
=C C2
所示 C2
=C P
= 1590PF

《射频通信电路》第〇章射频通信电路

《射频通信电路》第〇章射频通信电路

04
射频通信电路的设计与实 现
系统设计
01 02
系统架构
射频通信系统的整体架构,包括发射机和接收机两部分。发射机负责将 信息调制到射频信号上并发送出去,而接收机则负责接收信号并将其还 原为原始信息。
调制解调方式
描述了用于信息传输的调制解调方式,如振幅调制、频率调制和相位调 制等。
03
频段选择
根据应用需求选择合适的频段,如低频、中频、高频和微波频段。
嵌入式系统开发
02
描述了用于实现射频通信的嵌入式系统开发,包括微控制器和
相关软件的开发。
软件测试与优化
03
介绍了对软件实现的测试和优化方法,以确保其性能和可靠性。
05
射频通信电路的挑战与解 决方案
噪声和干扰
01
02
03
04
噪声和干扰是影响射频通信电 路性能的主要因素之一。
噪声来源包括自然噪声和人为 噪声,如雷电、电气设备等。
干扰可能来自其他无线通信系 统、电磁辐射等。
解决方案包括采用低噪声放大 器、滤波器、天线隔离等技术
降低噪声和干扰的影响。
频率规划和频谱管理
01
频率规划和频谱管理是确保射频通信电路正常工作的关键环节。
02
频率规划需要综合考虑各种通信系统的需求,避免频率冲突和干扰。
03
频谱管理涉及频谱的分配、使用和保护,以确保无线通信系统的正常 运行。
硬件实现
射频器件
介绍实现射频通信所需的硬件器件,如天线、滤 波器、功率放大器和混频器等。
电路板设计
描述了用于安装和连接射频器件的电路板设计, 包括布局、布线和电磁兼容性考虑。
测试与验证
介绍了对硬件实现的测试和验证方法,以确保其 性能和可靠性。

射频通信电路-黄卡玛-射频电路基础

射频通信电路-黄卡玛-射频电路基础

Q0
0 L
R
1
0C
1 R
2.3.1 串联谐振电路
例 2-3:串联谐振电路中,R 5,L 100nH ,C 10 pF 。试求 1) 电路的谐振频率 f0 和电路的品质因数 Q;2)如果在谐振频率时施加 10V 电压,电路的电流 I、电感上的电压降 VL、电容上的电压降 VC。
解:1)谐振频率
f0
GV
dB
GP
dB
10 log10
V2 OUT Z0 VIN 2 Z0
20 log10
VOUT VIN
2.2 分贝表示法
绝对功率的分贝表示
P
dBm
10
log10
P 1mW
表 2-2 使用 dBm 表示的一些典型功率值
P
0.01mW 0.1mW 1mW 10mW 100mW 1W
2.6 射频晶体管
2.6.1 射频晶体管的结构 2.6.2 射频晶体管的模型
2.6.1 射频晶体管的结构
1. 双极型晶体管 (BJT)
2.6.1 射频晶体管的结构
2. 场效应管 (FET)
金属绝缘栅半导体场效应管(MISFET) 结型场效应管(JFET ) 金属半导体场效应管(MESFET) 异质结场效应管(HEMT)
如果只考虑谐振电路自身,则品质因数称为空载品质因数。
RG
+
VG
Z
I RLC RL
2.4.2 有载品质因数
QE
0 L
RE
1
RE0C
Q0
0 L
R
1
R0C
QLD
0 L
R RE
1
R RE 0C
1 11
QLD Q0 QE

射频电路

射频电路

射频电路的结构和工作原理一、射频电路组成和特点:普通手机射频电路由接收通路、发射通路、本振电路三大电路组成。

其主要负责接收信号解调;发射信息调制。

早期手机通过超外差变频(手机有一级、二级混频和一本、二本振电路),后才解调出接收基带信息;新型手机则直接解调出接收基带信息(零中频)。

更有些手机则把频合、接收压控振荡器(RX —VCO )也都集成在中频内部。

RXI-P RXI-N 900M RXQ-P RXQ-N1800MVCC 频率取样 13M CLK 功 DAT 率 RST 样 取 发射频率取样 信 号TXI-P TXI-N 射频电压TXQ-PTXQ-N等级(射频电路方框图)1、接收电路的结构和工作原理:天 线 开 关接收解调频 率 合 成R X VCO鉴相调制功 率 放大器 TX VCO功控分频发射互感器接收时,天线把基站发送来电磁波转为微弱交流电流信号经滤波,高频放大后,送入中频内进行解调,得到接收基带信息(RXI-P 、RXI-N 、RXQ-P 、RXQ-N );送到逻辑音频电路进一步处理。

1、 该电路掌握重点: (1)、接收电路结构。

(2)、各元件的功能与作用。

(3)、接收信号流程。

电路分析: (1)、电路结构。

接收电路由天线、天线开关、滤波器、高放管(低噪声放大器)、中频集成块(接收解调器)等电路组成。

早期手机有一级、二级混频电路,其目的把接收频率降低后再解调(如下图)。

900M1800MSYN-VCC频率取样 13M SYN-CLK SYN- DAT SYN- RST(接收电路方框图)(2)、各元件的功能与作用。

天 线 开 关接收解调频 率合成R X VCOOCPU (音频)分频数字处理 音频放大1)、手机天线:结构:(如下图)由手机天线分外置和内置天线两种;由天线座、螺线管、塑料封套组成。

塑料封套螺线管天线座微带电感(外置天线)(内置天线)作用:a)、接收时把基站发送来电磁波转为微弱交流电流信号。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Xi'an Jiaotong University 4
2010-112010-11-20
6·1 混频器概述
乘积型混频器
vs (t ) = Vsm (1 + ma cos Ωt ) cos ω s t vL (t ) = VLm cos ω L t vo (t ) = Kvs (t )vL (t ) K = VsmVLm (1 + ma cos Ωt )[cos(ω L − ω s )t + cos(ω L + ω s )t ] 2 K = VsmVLm (1 + ma cos Ωt )[cos ω I t + cos(ω L + ω s )t ] 2 vI = VIm (1 + ma cos Ωt ) cos ω I t
2010-112010-11-20 Xi'an Jiaotong University 23
6.4 混频器的干扰 干扰与本振
若输入干扰信号组合频率为: f p ,q = ± pf L ± qf n 满足: L − qf n = f I 或 qf n − pf L = f I 则产生寄生通道干扰。 pf (1)p=0,q=1 fn=fI , 中频干扰 (2)p=1,q=1 fn=fL+fI=fs+2fI , 镜频干扰 (3)p=2,q=2 fn=fL±fI/2 寄生通道干扰 p=1,q=2 fn=fL/2 ±fI/2 寄生通道干扰 例(1)收听fs1=550kHz电台节目时,还能收到1480kHz干扰电 台声音;(2)收听fs2=1480kHz电台节目时,还能收到740kHz 干扰电台声音;请分析原因。 解:(1)fn1=fs1+2fI=550+2x465=1480kHz;镜频干扰 (2) fn2=fL/2 ±fI/2=(1480-465)/2+465/2=740kHz
2010-112010-11-20
Xi'an Jiaotong University
22
6.4 混频器的干扰 信号与本振
f p,q = pf L ± qf s ; p = 1, q = 1 为有用分量
若满足: pf L − qf s = f I ± F 或 qf s − pf L = f I ± F 则出现干扰哨声,频率为F。 p ±1 F fs = fI ± q− p q− p 一般在p,q 比较小时才会出现,设计工作频点时应当避开这 些干扰频率点。 例,fI=465kHz, fs=927kHz, 问是否会出现干扰哨声? 解:fL=fs+fI=1392kHz , 2fs-fL=2x927-1392=462kHz=465kHz-3kHz 若采用同步解调,可以听到3kHz频率的哨声。
把gm(t)表达式代入iC表达式,得出中频分量为:
gm1 iI = Vsm cos(ω L − ωs ) = I Im cos ω I t 2
定义中频电流振幅与输入信号电压振幅之比为混频跨导gc,有:
I Im gm1 gc = = Vsm 2
2010-112010-11-20 Xi'an Jiaotong University 9
2010-112010-11-20 Xi'an Jiaotong University
24
6.4 混频器的干扰 交调失真 当信号和干扰同时作用于混频器输入端时,ic展开 式中的4次乘幂项12a4vLvsvn2项会产生ωL- ωs频率的 中频输出,其幅度与Vnm2呈正比。 若vn为调幅信号,检波后听到失真的干扰声音 若vn,vs都为调幅信号,输出中含有Ωs, Ωn, Ωs±Ωn, Ωs±2Ωn分量。
第六章
混频器
第六章 内容目录
6.1 混频器概述 6.2 有源混频器电路
6·2·1 单管跨导型混频器 6·2·2 单平衡混频器 6·2·3 吉尔伯特双平衡混频器
6.3 无源混频器
6·3·1 二极管混频 6·3·2 无源场效应管混频器
2010-112010-11-20 'an Jiaotong University 2
6.2 有源混频器电路
Vs为小信号,vL为大信号,用线性时变分析法处理,在 vBE=VBB+vL处展开iC=f(vBE),取一阶乘幂项,可得: iC = IC (t ) + gm (t )vs
IC (t ) = f (VBB + vL ) gm (t ) = f ′(VBB + vL ) = gm0 + gm1 cos ω Lt + gm2 cos 2ω Lt +L
i = f (v) = a0 + a1v + a2 v 2 + a3v3 + L ≈ a0 + a1v + a2 v 2 = a0 + a1 (vs + vL ) + a2 (vs + vL ) 2
2 = a0 + a1 (vs + vL ) + a2 (vs2 + vL ) + 2a2 vs vL
2 iC = a0 + a1vBE + a2 vBE
vBE = VBB + vL + vs iI = a2VsmVLm cos(ω L − ω s )t vI = a2VsmVLm RL cos(ω L − ω s )t
2010-112010-11-20 Xi'an Jiaotong University 8
6·1 混频器概述 混频:在本振信号参与下,将输入信号的频率或已 调信号的载频变换为某一个固定的新频率,而保持 调制类型和调制参数都不变,这样的频率变换过程 称为混频。
2010-112010-11-20
Xi'an Jiaotong University
3
6·1 混频器概述 实现方法
基本方法:两个信号相乘 乘积法:使用乘法器电路(吉尔伯特乘法器) 乘积法:使用乘法器电路(吉尔伯特乘法器) 由模拟乘法器和带通滤波器组成 叠加法: 叠加法:利用器件的非线性特性 二极管 —— 动态范围大,组合频率干扰少, 开关速度快 三极管 —— 有一定的混频增益 场效应管—— 场效应管—— 平方律特性,互调、交调干扰少
6.2 有源混频器电路
讨论: (1)gc与VLm有关。
VLm ↑→ g (t )振幅 ↑→ gm1 ↑→ gc ↑ VLm ↑↑→ g (t )趋于饱和 → gm1 gc ) ↑ 趋缓。 (
在自给偏压的作用下,随着VLm增大,gc还会下降。
2010-112010-11-20 Xi'an Jiaotong University 10
2010-112010-11-20 Xi'an Jiaotong University 20
6.3 无源混频器 二极管双平衡混频
和平衡调制器相比, 有用频率分量幅度加倍, 无Ω频率分量。 Ω
iL = iD1 − iD 2 + iD 3 − id 4 = 2 g D vΩ s (ω c t ) − 2 g d vΩ s(ω c t − π ) 4 4 = 2 g D vΩ s2 (ω c t ) = 2 g DVΩm cos Ωt cos ω c t − cos 3ω c t + L 3π π 组和频率分量为:nω c ± Ω, n为1,,, 35L
2010-112010-11-20 Xi'an Jiaotong University 21
6.4 混频器的干扰 由于混频器是非线性的频率变换电路,故所有加 到混频器上能够组合出中频频率的信号都会到中放 电路去,对有用信号产生干扰。从干扰产生的原因 来看,大体可分为以下四种: 信号与本振组合——干扰哨声 信号与本振组合——干扰哨声 干扰与本振组合——寄生通道干扰 干扰与本振组合——寄生通道干扰 干扰与信号组合——交调失真 干扰与信号组合——交调失真 干扰与干扰组合——互调失真 干扰与干扰组合——互调失真
信号注入方式: 信号注入方式: 分离——在不同极注入,两个源互相不受影响; 叠加——在同一点注入
2010-112010-11-20 Xi'an Jiaotong University 12
6.2 有源混频器电路
2010-112010-11-20
Xi'an Jiaotong University
13
17
6.3 无源混频器 二极管平衡混频
vD1 = vc + vΩ , iD1 = g D (vc + vΩ ) s (ω c t ) vD 2 = vc − vΩ , iD 2 = g D (vc − vΩ ) s(ω c t ) iL = iD1 − iD 2 = 2 g D vΩ s(ω c t ) 1 2 2 = 2 g DVΩm cos Ωt ( + cos ω c t − cos 3ω c t + L) 2 π 3π 组合频率分量为:nω c ± Ω , n为0,1,3,5,L
2010-112010-11-20 Xi'an Jiaotong University 18
6.3 无源混频器 二极管双平衡混频
2010-112010-11-20
Xi'an Jiaotong University
19
6.3 无源混频器 二极管双平衡混频
vD1 = vc + vΩ , iD1 = gD (vc + vΩ )s(ωct ) vD 2 = vc − vΩ , iD 2 = gD (vc − vΩ )s(ωct ) vD3 = −vc − vΩ , iD3 = gD (−vc − vΩ )s(ωct − π ) vD 4 = −vc + vΩ , iD 4 = gD (−vc + vΩ )s(ωct − π )
上混频: 上混频: ω I = ω L + ω s > ω s
相关文档
最新文档