子弹打木块专题
物理知识课件-‘子弹打木块“专题-动量守恒定律及其应用
四 学生练习
[例题3]如图所示,A、B两木块的质量之比为3:2,原来静止在平板小车C上,A
、B间有一根被压缩了的轻弹簧,A、B与平板车的上表面间的动摩擦因素相同,地
面光滑.当弹簧突然释放后,A、B在小车上滑动时有:[
]
A. A、B系统动量守恒 B. A、B、C系统动量守恒 C. 小车向左运动 D. 小车向右运动
碰撞
弹性碰撞非弹性碰撞完全非弹性碰撞
lianhq@
碰撞的特点:
1. 碰撞物体之间的作用时间短, 一般只有百分之几秒,甚至千分之几秒.
2.碰撞物体之间的作用力大,因此经过碰撞以后,物体的状态变化是十分显著的.
设光滑水平面上,质量为m1的物 体A以速度v1向质量为m2的静止 物体B运动,B的左端连有轻弹簧 。(动碰静)
弹性碰撞
⑴弹簧是完全弹性的。
Ⅰ→Ⅱ系统动能减少量全部转化为弹性势能, Ⅱ 状态系统动能最小而弹性势能最大; Ⅱ→Ⅲ弹性势能减少全部转化为动能;因此Ⅰ 、Ⅲ状态系统动能相等。 由动量守恒和能量(动能)守恒可以证明A、 B的最终速度分别为:(学生演版)
v1
m1 m1
m2 m2
v1, v2
2m1 m1 m2
上述三式联立得
即
m1v’1+ m2v’2= m1v1+ m2v2 P’1+ P’2= P1+ P2
动量守恒定律的内容
一个系统不受外力或所受外力的 合力为零,这个系统的总动量保 持不变。这个结论叫做动量守恒 定律。
数学表达式: P=P ’
或
mAvA mBvB mAv’A mBv’B
三 、动量守恒定律的条件
1 2
m1
m2 v2
m1m2v12
动量定理、动能定理专题-子弹打木块模型
动量定理、动能定理专题-⼦弹打⽊块模型动量定理、动能定理专题----⼦弹打⽊块模型⼀、模型描述:此模型主要是指⼦弹击中未固定的光滑⽊块的物理场景,如图所⽰。
其本质是⼦弹和⽊块在⼀对⼒和反作⽤⼒(系统内⼒)的作⽤下,实现系统内物体动量和能量的转移或转化。
⼆、⽅法策略:(1) 运动性质:在该模型中,默认⼦弹撞击⽊块过程中的相互作⽤⼒是恒恒⼒,则⼦弹在阻⼒的作⽤下会做匀减速直线性运动;⽊块将在动⼒的作⽤下做匀加速直线运动。
这会存在两种情况:(1)最终⼦弹尚未穿透⽊块,(2)⼦弹穿透⽊块。
(2) 基本规律:如图所⽰,研究⼦弹未穿透⽊块的情况:三、图象描述:在同⼀个v-t坐标中,两者的速度图线如图甲所⽰。
图线的纵坐标给出各时刻两者的速度,图线的斜率反映了两者的加速度。
两图线间阴影部分⾯积则对应了两者间的相对位移:d=s1-s2。
如果打穿图象如图⼄所⽰。
点评:由此可见图象可以直观形象反映两者的速度的变化规律,也可以直接对⽐出物块的对地位移和⼦弹的相对位移,从⽽从能量的⾓度快速分析出系统产⽣的热量⼀定⼤于物块动能的⼤⼩。
四、模型迁移⼦弹打⽊块模型的本质特征是物体在⼀对作⽤⼒与反作⽤⼒(系统内⼒)的冲量作⽤下,实现系统内物体的动量、能量的转移或转化。
故物块在粗糙⽊板上滑动、⼀静⼀动的同种电荷追碰运动,⼀静⼀动的导体棒在光滑导轨上切割磁感线运动、⼩球从光滑⽔平⾯上的竖直平⾯内弧形光滑轨道最低点上滑等等,如图所⽰。
(1)典型例题:例1.如图所⽰,质量为M的⽊块静⽌于光滑的⽔平⾯上,⼀质量为m、速度为的⼦弹⽔平射⼊⽊块且未穿出,设⽊块对⼦弹的阻⼒恒为F,求:(1)⼦弹与⽊块相对静⽌时⼆者共同速度为多⼤?(2)射⼊过程中产⽣的内能和⼦弹对⽊块所做的功分别为多少?(3)⽊块⾄少为多长时⼦弹才不会穿出?1. ⼀颗速度较⼤的⼦弹,以速度v ⽔平击穿原来静⽌在光滑⽔平⾯上的⽊块,设⽊块对⼦弹的阻⼒恒定,则当⼦弹⼊射速度增⼤为2v 时,下列说法正确的是( )A. ⼦弹对⽊块做的功不变B. ⼦弹对⽊块做的功变⼤C. 系统损耗的机械能不变D. 系统损耗的机械能增加解析:⼦弹的⼊射速度越⼤,⼦弹击中⽊块所⽤的时间越短,⽊块相对地⾯的位移越⼩,⼦弹对⽊块做的功W =fs 变⼩,选项AB 错误;⼦弹相对⽊块的位移不变,由Q =f s 相对知Q 不变,系统损失的机械能等于产⽣的热量,则系统损耗的机械能不变,选项C 正确,D 错误。
子弹打木块专题
§3.7子弹打木块专题 姓名例1、子弹以一定的初速度射入放在光滑水平面上的木块中,并共同运动下列说法中正确的是: ( )A 、子弹克服阻力做的功等于木块动能的增加与摩擦生的热的总和B 、木块对子弹做功的绝对值等于子弹对木块做的功C 、木块对子弹的冲量大小等于子弹对木块的冲量D 、系统损失的机械能等于子弹损失的动能和子弹对木块所做的功的差例2、 如图所示,质量为M =2kg 的小车放在光滑水平面上,在小车右端放一质量为m=1kg 的物块。
两者间的动摩擦因数为μ=0.1,使物块以v 1=0.4m/s 的水平速度向左运动,同时使小车以v 2=0.8m/s 的初速度水平向右运动, (取g= 10m/s 2)求:(1)物块和小车相对静止时,物块和小车的速度大小和方向?(2)为使物块不从小车上滑下,小车的长度L 至少多大?3、如图所示,在光滑水平面上放有质量为2m 的木板,木板左端放一质量为m 的可视为质点的木块。
两者间的动摩擦因数为μ,现让两者以v 0的速度一起向竖直墙向右运动,木板和墙的碰撞不损失机械能,碰后两者最终一起运动。
求碰后:(1)木块相对地面向右运动的最大距离L (2)木块相对木板运动的距离S4、一质量为M的长木板B 静止在光滑水平面上,一质量为m 的小滑块A(可视为质点)以水平速度v0从长木板的一端开始在木板上滑动,到达另一端滑块刚离开木板时的速度为1/3v0,若把此木板固定在水平桌面上,其它条件相同,求:滑块离开木板时的速度。
5 、质量为2m、长为L的木块置于光滑的水平面上,质量为m的子弹以初速度v0水平向右射穿木块后速度为v0 /2。
设木块对子弹的阻力F 恒定。
求:(1)子弹穿过木块的过程中木块的位移(2)若木块固定在传送带上,使木块随传送带始终以恒定速度u<v0水平向右运动,则子弹的最终速度是多少?练习:1、长L=1m,质量M=1kg的木板AB静止于光滑水平面上。
在AB的左端有一质量m=1kg的小木块C,现以水平恒力F=20N作用于C,使其由静止开始向右运动至AB的右端,C与AB间动摩擦因数μ=0.5,求F对C做的功及系统产生的热量2、如图所示,质量为M的小车左端放一质量为m的物体.物体与小车之间的摩擦系数为μ,现在小车与物体以速度v0在水平光滑地面上一起向右匀速运动.当小车与竖直墙壁发生弹性碰撞后,物体在小车上向右滑移一段距离后一起向左运动,求物体在小车上滑移的最大距离.3、光滑水平面上静置厚度不同的木块A与B,质量均为M。
专题:子弹打木块
专题:子弹打木块例题1:如图1所示,在光滑水平桌面上静置一质量为M=980g 的长方形匀质木块,现有一颗质量为m=20g 的子弹以v 0 = 300m/s 的水平速度沿其轴线射向木块,结果子弹留在木块中没有射出,和木块一起以共同的速度运动。
已知木块沿子弹运动方向的长度为L=10cm ,子弹打进木块的深度为d=6cm ,设木块对子弹的阻力保持不变。
求:(1)子弹和木块的共同的速度是多少?用v-t 图表示子弹和木块的运动过程。
(2)子弹和木块在此过程中所增加的内能是多少?(3)木块对子弹的阻力大小是多少?(4)若子弹是以V 0 = 400m/s 的水平速度从同一方向射向该木块的,则它能否射穿该木块?(5)若能射穿木块,求子弹和木块的最终速度是多少?用v-t 图表示子弹和木块的运动过程。
反馈题:矩形滑块由不同材料的上下两层粘结在一起组成,将其放在光滑的水平面上,质量为m 的子弹以速度水平射向滑块,若射击上层,则子弹恰好不射出;若射击下层,则子弹整个儿恰好嵌入,则上述两种情况相比较( )A. 两次子弹对滑块做的功一样多;B. 两次滑块所受冲量一样大;C. 子弹嵌入下层过程中,系统产生的热量较多D. 子弹击中上层过程中,系统产生的热量较多图1例题2:如图2所示,一轻质弹簧的两端连接两滑块A 和B ,已知m A =0.99kg, m B =3kg,放在光滑水平桌面上,开始时弹簧处于原长,现滑块被水平飞来的质量为m C =10g ,速度为400m/s 的子弹击中,且没有穿出,试问:(1) 从子弹开始射入到弹簧压缩到最短的过程中系统动量守恒吗?系统的机械能守恒吗?(2) 子弹击中滑块A 后的瞬间滑块A 和B 的速度各是多少?(3)简单描述一下,以后的运动过程中A 和B 的速度如何变化?(4)运动过程中弹簧的最大弹性势能是多少? (5)滑块B 可能获得的最大动能是多少?例题3:如图3所示,两块质量均为0.6千克的木块A 、B 并排放置在光滑的水平桌面上,一颗质量为0.1千克的子弹以V 0=40米/秒的水平速度射入A 后进入B ,最终和B 一起运动,测得AB 在平整地面上的落点至桌边缘的水平距离之比为1:2,求:(1)子弹穿过A 木块时的速度是多少?(2)子弹穿透A 木块的过程中所所损失的动能△E例4:一根不可伸长的长为的细绳一端固定在O 点,另一端连接一个质量为M 的沙摆,沙摆静止。
2025年高考物理总复习专题21 子弹打木块模型和板块模型(附答案解析)
第1页(共14页)2025年高考物理总复习专题21子弹打木块模型和板块模型模型归纳
1.子弹打木块模型
分类模型特点
示例
子弹嵌
入木块
中(1)子弹水平打进木块的过程中,系统的动量守恒.(2)系统的机械能有损失.两者速度相等,机械能损失最多(完全非弹性碰撞)动量守恒:m v 0=(m +M )v
能量守恒:Q =F f ·s =12m v 02-12
(M +m )v 2子弹穿
透木块(1)子弹水平打进木块的过程中,系统的动量守恒.(2)系统的机械能有损失.动量守恒:m v 0=m v 1+M v 2
能量守恒:Q =F f ·d =12m v 02-(12M v 22+12m v 12)2.子板块模型
分类模型特点
示例
滑块
未滑
离木
板木板M 放在光滑的水平地面上,滑块m 以速度v 0滑上木板,两者间的摩擦力大小为f 。
①系统的动量守恒;
②系统减少的机械能等于摩擦力与两者相对位移大小的乘积,即摩擦生成的热量。
类似于子弹打木块模型中子弹未穿出的情况。
①系统动量守恒:mv 0=(M +m )v ;②系统能量守恒:Q =f ·x =12m 02-12(M +m )v 2。
子弹打木块专题例题
例2、 如图所示,质量为M =2kg的小车放在光滑水平面上, 在小车右端放一质量为m=1kg 的物块。两者间的动摩擦因数为 μ=0.1,使物块以v1=0.4m/s 的水平速度向左运动,同时使小车 以v2=0.8m/s 的初速度水平向右运动, (取g= 10m/s2)求: (1)物块和小车相对静止时,物块和小车的速度大小和方向 (2)为使物块不从小车上滑下,小车的长度L至少多大?
f1 A
f2
L
v0
B
v0 4m v 1 3 M
B
A
v0 /3
V
S2
L
例4、如图所示,质量为M的小车左端放一质量为m 的物体 .物体与小车之间的摩擦系数为 μ,现在小车与物 体以速度v0在水平光滑地面上一起向右匀速运动 .当小车 与竖直墙壁发生弹性碰撞后,物体在小车上向右滑移一 段距离后一起向左运动,求物体在小车上滑移的最大距 离. 解:小车碰墙后速度反向,由动量守恒定律 v0 m (M+m)V= (M-m)v0 最后速度为V,由能量守恒定律
子弹打木块专题
例1、 子弹以一定的初速度射入放在光滑水平面 上的木块中,并共同运动下列说法中正确的是:
( ACD)
A、子弹克服阻力做的功等于木块动能的增加与摩
擦生的热的总和
B、木块对子弹做功的绝对值等于子弹对木块做的功
C、木块对子弹的冲量大小等于子弹对木块的冲量
D、系统损失的机械能等于子弹损失的动能和子弹
8 24 2 24 8 24 v 2 1 V1 5 5 20 由于v1 必是正数,故合理的解是
8 24 V1 0.155m / s 20
2 24 v1 1.38m / s 5
第7单元动量专题九“子弹打木块”模型和“滑块—木板”模型-2025年物理新高考备考课件
的运动过程中,系统动量守恒,有 − = + +1 = 1,2,3, ⋯
解得+1 =
1
5
= 1,2,3, ⋯
设第一次碰撞后小车向左运动的最大距离为1 ,对小车,根据动能定理有
−1 = 0 −
解得1 = 0.6 m
1
2
1
2
热点题型探究
设第次碰撞后小车向左运动的最大距离为 ,对小车根据动能定理有
、碰撞时损失的机械能为
Δ =
1
2
0
2
−
1
2
2
+
1
2
2
= 12 J
热点题型探究
(3)要保证滑块不脱离长木板,长木板的最小长度.
[答案] 1.5 m
[解析] 在、碰撞后到、再次共速的过程中,、相互作用的时间为
=
0 −共
=1s
长木板的长度至少为 = − =
[答案] 12 J
[解析] 、碰撞瞬间,由动量守恒定律可得
0 = +
在、碰撞后到、再次共速的过程中,、组成的系统由动量守恒可得
+ 0 = + 共
根据题意有共 =
联立解得共 = = 3 m/s, = 2 m/s
A.3 J B.4 J C.6 J D.20 J
教师备用习题
[解析]设铁块与木板共速时速度大小为v,铁块相对木板向右运动的最大距离为L,
铁块与木板之间的摩擦力大小为Ff,铁块压缩弹簧使弹簧最短时,由能量守恒定
1
1
2
律得 m0 =FfL+ (M+m)v2+Ep,由动量守恒定律得mv0=(M+m)v,从铁块开始运动
子弹打木块问题
子弹打木块类问题子弹打木块实际上是一种完全非弹性碰撞。
作为一个典型,它的特点是:子弹以水平速度射向原来静止的木块,并留在木块中跟木块共同运动。
下面从动量、能量和牛顿运动定律等多个角度来分析这一过程。
【例1】 设质量为m 的子弹以初速度v 0射向静止在光滑水平面上的质量为M 的木块,并留在木块中不再射出,子弹钻入木块深度为d 。
求木块对子弹的平均阻力的大小和该过程中木块前进的距离。
解析:子弹和木块最后共同运动,相当于完全非弹性碰撞。
从动量的角度看,子弹射入木块过程中系统动量守恒:()v m M mv +=0 从能量的角度看,该过程系统损失的动能全部转化为系统的内能。
设平均阻力大小为f ,设子弹、木块的位移大小分别为s 1、s 2,如图所示,显然有s 1-s 2=d 对子弹用动能定理:22012121mv mv s f -=⋅ ……① 对木块用动能定理:2221Mv s f =⋅ ……② ①、②相减得:()()2022022121v m M Mm v m M mv d f +=+-=⋅ ……③ 点评:这个式子的物理意义是:f d 恰好等于系统动能的损失;根据能量守恒定律,系统动能的损失应该等于系统内能的增加;可见Q d f =⋅,即两物体由于相对运动而摩擦产生的热(机械能转化为内能),等于摩擦力大小与两物体相对滑动的路程的乘积(由于摩擦力是耗散力,摩擦生热跟路径有关,所以这里应该用路程,而不是用位移)。
由上式不难求得平均阻力的大小:()dm M Mmv f +=220 至于木块前进的距离s 2,可以由以上②、③相比得出:d mM m s +=2 从牛顿运动定律和运动学公式出发,也可以得出同样的结论。
由于子弹和木块都在恒力作用下做匀变速运动,位移与平均速度成正比:()d mM m s m m M v v s d v v v v v v s d s +=+==∴+=+=+2020022,,2/2/ 一般情况下m M >>,所以s 2<<d 。
专题-物理-L42-子弹穿木块问题
“子弹打木块未穿出”模型 子弹打木块的常见类型之木块放在光滑的水平面上,子弹以初速度v0射击木块。 图象模型:从子弹击中木块时刻开始,在同一个v-t 坐标系中,两者的速度图线如图1所示。图1中,图 线的纵坐标给出各时刻两者的速度,图线的斜率反 映了两者的加速度。两图线间阴影部分面积则对应 了两者间的相对位移。
“子弹打木块未穿出”模型 子弹打木块的常见类型之木块放在光滑的水平面上,子弹以初速度v0射击木块。 方法模型:把子弹和木块看成一个系统,利用: ①系统水平方向动量守恒; ②系统的能量守恒(机械能不守恒); ③对木块和子弹分别利用动能定理。
“子弹打木块未穿出”模型
子弹打木块的常见类型之木块放在光滑的水平面上,子弹以初速度v0射击木块。 规律模型:
得: FdmvmvMvf
1212120222(') ④ 由①④两式解得:
FdmMMmvMmvmvvf
220220[()()]
②式中s
如图1所示,一个长为L、质量为M的长方形木块,静止在光滑水平面上,一个质量为m的物块(可视 为质点),以水平初速度v0从木块的左端滑向右端,设物块与木块间的动摩擦因数为 ,当物块与木 块达到相对静止时,物块仍在长木块上,求系统机械能转化成内能的量Q。
为: FdsFsFdmvmvMvffft()
1212120222 ① 本题中Fmgf ,物块与木块相对静
止时,vvt ,则上式可简化为
mgdmvmMvt
1212022() ② 又以物块、木块为系统,系统在水平方向不受外力,动量守
恒,则: mvmMvt0 () ③ 联立式②、③得:dMvgMm 022 () 故系统机械能转化
〖解析〗子弹射入木块时,可认为木块未动。子弹与木块构成一个子系统,当此系统获共同 速度v1时,小车速度不变,
专题四 子弹打木块模型 滑块—木板模型(课件)-高二物理(沪科版2020上海选择性必修第一册)
0~2 s内,对滑块有IF-μmgt1=mv1′, 由 IF=0.52+1×2 N·s=1.5 N·s, 解得 v1′=3.5 m/s; 对木板有μmgt1=Mv2,解得v2=1 m/s. 2~4 s 内,对滑块有 a1=F-mμmg=1-0.20.4 m/s2=3 m/s2,x1=v1′t2+12a1t22=13 m; 对 M 有 a2=μMmg=0.5 m/s2,x2=v2t2+12a2t22=3 m, 所以s相对=x1-x2=10 m,Q=μmg·s相对=4 J,故D正确.
例2 如图所示,光滑水平轨道上放置长木板A(上表面粗糙)和滑块C,滑 块B置于A的左端(B、C可视为质点),三者质量分别为mA=2 kg、mB=1 kg、mC=2 kg,A与B间的动摩擦因数为μ=0.5;开始时C静止,A、B一 起以v0=5 m/s的速度匀速向右运动,A与C发生碰撞(时间极短)并粘在一 起,经过一段时间,B刚好滑至A的右端而没掉下来.求: (1)A、C碰撞刚结束时A的速度大小;
答案
Mmv02 2M+mF
解析 设木块最小长度为L,由能量守恒定律得: FL=Q 得木块的最小长度为:L=2MMm+vm02F.
二、滑块—木板模型
1.把滑块、木板看成一个整体,摩擦力为内力,在光滑水平面上滑块 和木板组成的系统动量守恒. 2.由于摩擦生热,机械能转化为内能,系统机械能不守恒,根据能量 守恒定律,机械能的减少量等于因摩擦而产生的热量,ΔE=Ff·s相对, 其中s相对为滑块和木板相对滑动的路程. 3.注意:若滑块不滑离木板,就意味着二者最终具有共同速度,机械 能损失最多.
归纳总结
滑块—木板模型与子弹打木块模型类似,都是通过系统内的滑动摩擦 力相互作用,系统所受的外力为零或内力远大于外力,动量守恒.当 滑块不滑离木板或子弹不穿出木块时,两物体最后有共同速度,相当 于完全非弹性碰撞,机械能损失最多.
专题一-动量守恒定律-子弹打木块
lv 0 v S动量守恒定律—子弹打木块专题此模型包括:“子弹打击木块未击穿”和“子弹打击木块击穿”两种情况,它们有一个共同的特点是:初态时相互作用的物体有一个是静止的(木块),另一个是运动的(子弹) 1.“击穿"类其特点是:在某一方向动量守恒,子弹有初动量,木块有或无初动量,击穿时间很短,击穿后二者分别以某一速度运动。
子弹木块系统动量守恒: ''11112m v =m v +Mv对木块: 对子弹:运动学: f=Ma 1 '2211v =2a s 运动学:f=m 1a 2 '221111v -v =-2a s +l ()动量定理: '2ft=v M 动量定理:'1111-ft=m v -m v动能定理: '2121fs =Mv 2 动能定理: '221111111-f s +l =m v -m v 22() 能量损失,即产生的热量:2'2'211112111Q=fl=m v -m v -Mv 2222.“未击穿"类其特点是:在某一方向上动量守恒,如子弹有初动量而木块无初动量,碰撞时间非常短,子弹射入木块后二者以相同速度一起运动。
子弹木块系统动量守恒: '1111m v =m +M v ()对木块: 对子弹运动学: f=Ma 1 '2112v =2a s 运动学:f=m 1a 2 '2211112v -v =-2a s +s () 动量定理: '1ft=v M 动量定理:'1111-ft=m v -m v动能定理: '2211fs =Mv 2 动能定理:'2212111111-f s +s =m v -m v 22() 能量损失,即产生的热量:2'2'2211111111Q=fs =m v -m v -Mv 222V 1图1s M相S 2S例1:设质量为m 的子弹以初速度为v 0射向静止在光滑水平面上的质量为M 的木块,并留在木块中,子弹钻入木块深度为d.求 木块对子弹的平均阻力的大小和该过程中木块前进的距离. 解析:子弹射入木块过程中系统动量守恒: 0mv =m+M v () 该过程系统损失的动能全部转化为系统的内能,即热量.设平均阻力大小为f ,子弹、木块的位移大小分别为s 1、s 2 则有 s 1-s 2=d 对子弹:由动能定理:221011-fs =mv -mv 22(1) 对木块:由动能定理:221fs =Mv 2(2) 两式相加得:222200111m fd=mv -mv -Mv =v 2222+m M M ()平均阻力的大小: 2mv f=2d +m M M ()木块前进的距离 2mds =+m M ()变式1:一质量为M 的木块放在光滑的水平面上,一质量m 的子弹以初速度v 水平飞来打进木块并留在其中,设相互作用力为f问题1 子弹、木块相对静止时的速度v问题2 子弹在木块内运动的时间t问题3 子弹、木块发生的位移s1、s2以及子弹打进木块的深度s问题4 系统损失的机械能、系统增加的内能1图1图。
子弹打木块模型(解析版)
子弹打木块模型答案解析1、【答案】 C 【解析】设发射子弹的数目为n ,n 颗子弹和木块M 组成的系统在水平方向上所受的合外力为零,满足动量守恒的条件.选子弹运动的方向为正方向,由动量守恒定律有nmv 2-Mv 1=0,得n =12Mv mv 所以C 正确;ABD 错误;故选C 。
2、【答案】 D 【解析】设子弹的质量为m ,沙袋质量为M ,则有M =100m ,取向右为正方向,第一个弹丸射入沙袋,由动量守恒定律得mv 1=101mv ,子弹和沙袋组成系统第一次返回时速度大小仍是v ,方向向左,第二个弹丸以水平速度v 2又击中沙袋的运动中,由动量守恒定律有mv 2−101mv =42mv ',设细绳长度为L ,第一个弹丸射入沙袋,子弹和沙袋共同摆动的运动中,由机械能守恒定律得()()()211cos302M m gL M m v +-=+解得)cos30v =,由上式可知,v 与系统的质量无关,因两次向上的最大摆角均为30°,因此v '=v ,联立解得12:101:203v v =,ABC 错误,D 正确。
故选D 。
3、【答案】 AD 【解析】B .由题知,子弹A 、B 从木块两侧同时射入木块,木块始终保持静止,分析可知,两子弹对木块的推力大小相等方向相反,子弹在木块中运动时间必定相等,否则木块就会运动。
设两子弹所受的阻力大小均为f ,根据动能定理,对A 子弹有kA 0A fd E -=-,得u A E fd =,对B 子弹有k 0B B fd E -=-,得kB B E fd =,由于A B d d >,则子弹入射时的初动能kA kB E E >故B 错误;C .两子弹和木块组成的系统动量守恒,因射入后系统的总动量为零,所以子弹A 的初动量大小等于子弹B 的初动量大小,故C 错误,D 正确;A.根据动量与动能的关系得mv =k kA B E E >,则得到A B m m <,根据动能的计算公式2k 12E mv =,得到初速度A B v v >,故A 正确。
高考复习微专题—子弹打木块模型习题选编 含答案
13.光滑水平面上有一静止木块,质量为 m 的子弹水平射入木块后未穿出,子弹与木块运动的速度图象如
图所示。由此可知( )
A.木块质量是 2m
4 / 18
不要因为长期埋头科学,而失去对生活、对美、对待诗意的感受能力。——达尔文
B.子弹进入木块的深度为 v0t0 2
C.木块所受子弹的冲量为
1 4
mv0
A.
Fx
1 2
mv02
1 2
M
mv2
B. Fx 1 mv2 2
C. FL 1 Mv2 2
D.
F
L
x
1 2
mv02
1 2
M
mv2
19.质量为 m 的均匀木块静止在光滑水平面上,木块左右两侧各有一位拿着完全相同步枪和子弹的射击手.首
先左侧射手开枪,子弹水平射入木块的最大深度为 d1,然后右侧射手开枪,子弹水平射入木块的最大深度为 d2,
15.在光滑水平面上有一木块保持静止,子弹穿过木块,下列说法中正确的是( )
A.子弹对木块做功使木块内能增加
B.子弹损失的机械能等于子弹与木块增加的内能
C.子弹损失的机械能等于木块动能的增加和木块、子弹增加的内能的总和
D.子弹与木块总动能守恒
16.子弹以某一初速度水平击穿放置在光滑水平面上的木块,子弹与木块的速度—时间图像如图所示。假
不要因为长期埋头科学,而失去对生活、对美、对待诗意的感受能力。——达尔文
微专题—子弹打木块模型习题选编
一、选择题 1.子弹以一定的速度 v0 能将置于光滑水平面上的木块击穿后飞出,设子弹所受阻力恒定,若子弹仍以 v0 射入同种材料、同样长度、质量更大的木块时,子弹也能击穿木块,则击穿木块后( ) A.木块获得速度变大 B.子弹穿过木块后速度变大 C.子弹射穿木块的时间变长 D.木块加速位移变小 2.一木块静止在光滑的水平面上,被水平飞来的子弹击中后移动了 L 时子弹与木块具有共同速度,子弹进 入木块的深度为 d。设木块对子弹的阻力恒定为 F,则( )
高中物理 子弹打木块专题
V1
mV
M
V
96年全国24 (8分)一质量为M的长木板B 静止在光滑水平面上,一质量为m 的小滑块 A(可视为质点)以水平速度 v0从长木板的 一端开始在木板上滑动,到达另一端滑块刚
离开木板时的速度为1/3v0 ,若把此木板固 定在水平桌面上,其它条件相同,求:滑块
离开木板时的速度。
解:木板不固定时,如图示:
(1)木块相对地面向右运动的最大距离L (2)木块相对木板运动的距离S
解:木板碰墙后速度反向如图示
(1)当木块速度减小为0时
2mv0-mv0=2mv1
v1=v0/2
m v0
v0
2m
μmgL=1/2×mv02 L= v02/2μg (2)当两者速度相同时
m v0
v0
2m
2mv0-mv0=3mv2
v2=v0/3 v1
f b= 1/2×mv12 - 1/2× (m+M)VB2
= 1/2×mv12 ×M/ (m+M)
v0
∴a / b= v02 / v12 =(M+m) / m
A A
V VB B
南京04年检测二17 如图示,在光滑水平桌面上静置一 质量为M=980克的长方形匀质木块,现有一颗质量为 m=20克的子弹以v0 = 300m/s 的水平速度沿其轴线射 向木块,结果子弹留在木块中没有射出,和木块一起 以共同的速度运动。已知木块沿子弹运动方向的长度 为L=10cm,子弹打进木块的深度为d=6cm,设木块对 子弹的阻力保持不变。
由动量守恒定律 m v0=1/3 mv0+MV
V=2mv0/3M 由能量守恒定律
fL=1/2·mv02-1/2m·1/9 v02-1/2·MV2 = 2/9·m v02 (2-m/M) 若把此木板固定在水平桌面上,滑块离开木板时
高中物理复习试题:选3-5章专项训练2子弹打木块问题
专项训练 子弹打木块问题一、“子弹打木块”题根【例1】 质量为M 的木块静止在光滑的水平面上,一质量为m 的子弹以水平速度v 0射入木块中,深度为d .求:(1)子弹对木块做的功是多少?(2)木块对子弹的阻力是多大?(3)在这段时间内木块移动的距离是多大?【解析】 由题意可画出如图所示的示意图,滑动摩擦力f 使子弹减速,使木块加速.当M 、m 相对静止时,摩擦力为0,随后M 、m 以共同速度匀速运动.由动量守恒定律,得m v 0 =(M +m )v ,所以v =m M +mv 0 对木块用动能定理,得f ·s 木=12M v 2-0① 对子弹用动能定理,得-f ·s 子=12m v 2-12m v 20② ②-①,得f ·s 子-f ·s 木=12m v 20-12(M +m )v 2 即f ·d =12m v 20-12(M +m )v 2③ (1)子弹对木块做的功f ·s 木=12M v 2=Mm 2v 202(M +m )2(2)f =12m v 20-12(M +m )v 2d =Mm v 202d (M +m )(3)s 木=12M v 2f =m M +md 【答案】 (1)Mm 2v 202(M +m )2 (2)Mm v 202d (M +m ) (3)m M +md 【名师点拨】 子弹打木块类型问题的特征之一是木块与地面接触处光滑,可对系统用动能定理:f ·d =12m v 20-12(M +m )v 2,式中的d 是相对路程不是位移.规范作出草图有助于找出几何量间的关系,规范作图显得特别重要.结论(1)子弹损失的机械能有两部分作用: ①一部分用来增加木块的动能:12M v 2 ②另一部分用来转化为系统的内能:E 损=f ·d关系:12m v 20-12m v 2=12M v 2+fd .此式可由题根推导式③变形而得. (2)子弹对木块做的功等于木块动能的增量.(3)系统增加的内能fd =12m v 20-12(M +m )v 2,即系统内能的增加等于系统的初动能与末动能的差值,依据:由能的转化和守恒定律,知系统损失的机械能等于系统内能的增加.系统损失的机械能=摩擦力f 和相互摩擦的两物体间的相对路程的乘积.【触类旁通】 (2011·全国)装甲车和战舰采用多层钢板比采用同样质量的单层钢板更能抵御穿甲弹的射击,通过对以下简化模型的计算可以粗略说明其原因.质量为2m 、厚度为2d 的钢板静止在水平光滑桌面上,质量为m 的子弹以某一速度垂直射向该钢板,刚好能将钢板射穿,现把钢板分成厚度均为d 、质量均为m 的相同两块,间隔一段距离平行放置,如图所示,若子弹以相同的速度垂直射向第一块钢板,穿出后再射向第二块钢板,求子弹射入第二块钢板的深度.设子弹在钢板中受到的阻力为恒力,且两块钢板不会发生碰撞,不计重力影响.【解析】 质量为m 的子弹以某一速度v 0垂直射向该钢板,刚好能将钢板射穿且钢板和子弹获得速度为v ,则由系统动量守恒和摩擦力做功等于系统动能的减少,得m v 0=(m +2m )v ①f ×2d =12m v 20-12×3m v 2② 质量为m 的子弹以某一速度v 0垂直射穿第一块钢板,获得速度v 1,钢板速度v 2,则由系统动量守恒和摩擦力做功等于系统动能的减少,得m v 0=m v 1+m v 2③f ×d =12m v 20-12m v 21-12m v 22④ 质量为m 的子弹以速度v 1垂直射向第二块钢板在第二块钢板中进入深度d 0,共同速度v 3,则由系统动量守恒和摩擦力做功等于系统动能的减少,得m v 1=2m v 3⑤f ×d 0=12m v 21-12×2m v 23⑥ 联立以上六式,化简得d 0=12(32+1)d 子弹射入第二块钢板的深度d 0=12(32+1)d 二、子弹打木块问题的实质及延伸子弹打木块问题的实质是子弹与木块相互作用过程的能量转化.这类题的显著特征是:木块与地面之间接触面光滑,从而在子弹和木块的整个作用过程中,系统有动量守恒,子弹在摩擦力的作用下做匀减速运动,木块在摩擦力的作用下做匀加速运动,直至二者速度相等.此过程中能量的转化和转移为:木块增加的动能来源于子弹对木块的摩擦力做功.子弹损失的能量一部分用来增加木块的动能,另一部分用来增加系统的内能.在子弹打木块模型中,突出体现了“功是能量转化的量度”.子弹打木块问题是动量定理、动量守恒定律、动能定理、能的转化和守恒的综合应用.要掌握子弹打木块模型的基本解法和重要推论:系统损失的能量等于摩擦力与相互摩擦的两物体间的相对路程的乘积.子弹打木块问题不仅在力学中有其广泛的应用,这个模型在电场、磁场中也有延伸.【例2】 如图所示,质量为3m 的木板,静止放在光滑的水平面上,木板左端固定着一根轻弹簧.质量为m 的木块(可视为质点),它从木板右端以未知速度v 0开始沿木板向左滑行,最终回到木板右端刚好未从木板上滑出.若在小木块压缩弹簧的过程中,弹簧具有的最大弹性势能为E p ,小木块与木板间的动摩擦因数大小保持不变,求:(1)木块的未知速度v 0;(2)以木块与木板为系统,上述过程中系统损失的机械能.【解析】 (1)木块从开始到压缩最短过程中,根据动量守恒定律,可知m v 0=(m +3m )v 共,压缩最短时,m 与3m 具有共同速度. 根据能量关系,有12m v 20-12(3m +m )v 2共=μmgL +E p 小木块从开始到最终回到木板右端刚好未从木板上滑出,最终m 和3m 具有共同速度,由动量守恒,知m v 0=(3m +m )v ′共,通过比较可知v ′共=v 共.整个过程的能量关系,有12m v 20-12(3m +m )v 2共=2μmgL 联立以上各式,得v =16E p 3m(2)由上可知E p =μmgL ,损失的机械能E 损=12m v 20-12(3m +m )v 2共=2μmgL =2E p【答案】 (1)16E p 3m (2)2E p 【触类旁通】 (2011·海南)一质量为2m 的物体P 静止于光滑水平地面上,其截面如图所示.图中ab 为粗糙的水平面,长度为L ;bc 为一光滑斜面,斜面和水平面通过与ab 和bc 均相切的长度可忽略的光滑圆弧连接.现有一质量为m 的木块以大小为v 0的水平初速度从a 点向左运动,在斜面上上升的最大高度为h ,返回后在到达a 点前与物体P 相对静止,重力加速度为g .求:(1)木块在ab 段受到的摩擦力f ;(2)木块最后距a 点的距离s .【解析】 (1)木块在斜面上上升到最高点时,木块和物体P 具有相同的水平速度为v 1,由动量和能量守恒,得m v 0=(m +2m )v 112m v 20=12(m +2m )v 21+mgh +fL 联立以上两式,得f =m (v 20-3gh )3L(2)设最后物体与物体P 的共同速度为v 2,由动量守恒定律,得m v 0=(m +2m )v 2整个过程中,根据能量守恒,得12m v 20=12(m +2m )v 22+f (2L -s ) 联立以上四式,得s =v 20-6gh v 20-3gh L 【答案】 (1)m (v 20-3gh )3L (2)v 20-6gh v 20-3ghL 三、子弹打木块问题的变形【例3】 在光滑的水平轨道上,有两个半径都是r 的小球A 和B ,质量分别为m 和2m ,当两球心间距大于L (L 比2r 大得多)时,两球之间无相互作用力;当两球心间的距离等于或小于L 时,两球间存在相互作用的恒定斥力F ,设A 球从远离B 球处以速度v 0沿两球连心线向原来静止的B 球运动,如图所示,欲使两球不发生接触,v 0必须满足什么条件?【解析】 方法一:A 球距B 球远于L 时,A 球做匀速直线运动,B 球静止.当A 、B 两球间的距离小于等于L 时,A 球做匀减速运动,B 球做匀加速运动.设A 球的加速度为a 1,B 球的加速度为a 2,根据牛顿第二定律,有对A :F =ma 1,对B :F =2ma 2A 球速度越来越小,B 球速度越来越大.当两球速度相同时,距离最近,此时距离应等于2r .在此过程中,A 球的位移是s 1,B 球的位移是s 2,由图不难看出L +s 2=s 1+2r .则L + 12a 2t 2=v 0t -12a 1t 2+2r .将a 1=F m 及a 2=F 2m代入上式整理,得3F 4mt 2-v 0t +L -2r =0 若两球不发生接触,则上式t 的一元二次方程应无解,即b 2-4ac <0,即v 20-4×3F 4m (L -2r )<0,得v 0<3F (L -2r )m方法二:运用牛顿运动定律和运动学公式解,两球刚好接触时共同速度为v ,则 对A :v =v 0-F m t ,对B :v =F 2m t ,得v =v 03,根据匀变速直线运动位移关系,有 对A :v 2-v 20=-2×F m s 1,对B :v 2=2×F 2m s 2由图知L +s 2=s 1+2r整理以上各式,解得v 0=3F (L -2r )m ,要使A 、B 两球不接触,则须v 0<3F (L -2r )m 方法三:运用动量守恒、动能定理解.设A 、B 距离最小时两球具有的共同速度为v ,根据动量守恒定律m v 0=(m +2m )v ,解得v =v 03,A 、B 两球的位移s 1、s 2之间关系为 L +s 2—s 1>2r对A 、B 两球分别运用动能定理,得F ·s 1=12m v 20-12m v 2,F ·s 2=12(2m )v 2 解上述各式得v 0<3F (L -2r )m方法四:用相对运动求解,假设B 球不动,A 距B 等于小于L 时,A 相对B 的运动是:以初速度v 0,加速度为a =F m +F 2m的匀减速运动,通过的位移要小于(L -2r ),由运动学公式v 20=2a (L -2r ),解出v 0=3F (L -2r )m ,要使两球不接触,须v 0<3F (L -2r )m方法五:利用子弹打木块模型求解.A 、B 距离最小时有共同速度v A =v B 且s a -s b <L -2r ,对A 、B 组成系统用动量守恒m v 0=(2m +m )v ,系统损失的机械能F (L -2r )= 12m v 20-12(m +2m )v 2 联立上述两式,得v 0=3F (L -2r )m要使两球不接触,须v 0<3F (L -2r )m 【学法指导】 通过以上五种解法可以看出,能够识别题目本质,即抽象出物理模型,是应试的一种能力,利用子弹打木块模型求解,简洁快速.。
专题-物理-L42-子弹穿木块问题
方法二: 解析:子弹与木块组成的系统动量守恒,设共同运动的速度为v,由动量守恒定律得 mv0=(M+m)v ①
对子弹与木块组成的系统由能量守恒定律得:
mv02/2=(M+m)v2/2+fd
②
由以上各式解得:d=Mmv02/2f(M+m)
方法三:
了解子弹打木块模型v-t图的物理意义。 1、木块的厚度理数 3、作用阻力 2、子弹木块质量比 4、小车动能
MBvB+mv1=MBvB+mv2
因为v1<v2
所以vA<vB
而都是光滑面 所以vc=0 所以 vC<vA<vB
后面的不用管
5.如图,M木块,水平面光滑,子弹m以v0沿水平方向射中木块,并最终留在木块中,与木块一起以v 运动距离L,子弹进入的深度s,若木块对子弹的阻力f恒定,则( ) B.fs= 1 2 D.fs= mv0 (M+m)v2 2 2 A.fL= 1 C.fs= -
求:(1)子弹射入木块的深度
(2)从子弹开始进入木块到与木块相对静止的过程中,木块的位移是多大?
15. (1) X= Md/(M+m) (2) S2=
高中物理模型——“子弹打木块”模型 符合的规律:子弹和木块组成的系统动量守恒,机械能不守 恒。 重要结论:系统损失的机械能等于阻力乘以相对位移,即:Efd相对。 共性特征:一 物体在另一物体上,在恒定的阻力作用下相对运动,系统动量守恒,机械能不守恒,满足动量守恒定 律和Efd滑相对。
【体验5】如图18所示,A、B、C三木块质量相等,一切接触面均光滑,一子弹由A射入, 从B射出。设三木块末速度分别为vA,vB,vC,则有:
A.vB最大
B.vA最大
C.vA=vB
专题 子弹打木块模型(解析版)-2024 高考物理疑难题分析与针对性训练
2024高考物理疑难题分析与针对性训练专题子弹打木块模型高考原题1(2024高考湖北卷第10题)10. 如图所示,在光滑水平面上静止放置一质量为M 、长为L 的木块,质量为m 的子弹水平射入木块。
设子弹在木块内运动过程中受到的阻力不变,其大小f 与射入初速度大小v 0成正比,即f =kv 0(k 为已知常数)。
改变子弹的初速度大小v 0,若木块获得的速度最大,则()A.子弹的初速度大小为2kL m +MmMB.子弹在木块中运动的时间为2mMk m +M C.木块和子弹损失的总动能为k 2L 2m +MmM D.木块在加速过程中运动的距离为mLm +M 思路分析题述若木块获得的速度最大,需要根据动量守恒定律和相关知识得出木块获得的速度函数表达式,利用数学知识得出。
【答案】AD 【解析】子弹和木块相互作用过程系统动量守恒,令子弹穿出木块后子弹和木块的速度的速度分别为v 1,v 2,则有mv 0=mv 1+Mv 2子弹和木块相互作用过程中所受合力都为f =kv 0,因此子弹和物块的加速度分别为a 1=f m ,a 2=f M由运动学公式可得子弹和木块的位移分别为2a 1x 1=v 20-v 21,2a 2x 2=v 22联立上式可得v 2=m v 0-v 20-2kv 0m +kv0M L M +m要使木块的速度最大即v 0-v 20-2kv 0m +kv 0M L 取极值即可,因此当v 0=2k m +kM L =2kL M +m Mm 时,木块的速度最大,A 正确;若木块获得的速度最大,则子弹穿过木块时子弹与木块速度相同,由动量守恒定律,mv 0=m +M v 2解得木块的速度为v 2=mv 0M +m由运动学公式v 2=a 2t ,而a 2=f /M ,f =kv 0,联立解得t=mMk m+M,故B错误;由能量守恒可得子弹和木块损失的能量转化为系统摩擦生热,即ΔE=Q=fL=2k2L2m+MmM故C错误;木块加速过程运动的距离为x2=0+v22t=mLM+m,故D正确。
动量守恒之子弹打木块模型及悬绳模型 高三物理一轮复习专题
一.必备知识精讲1.子弹打木块模型基本特点(1)“木块”放置在光滑的水平面上①运动性质:“子弹”对地在滑动摩擦力作用下做匀减速直线运动;“木块”在滑动摩擦力作用下做匀加速直线运动.②处理方法:通常由于“子弹”和“木块”的相互作用时间极短,内力远大于外力,可认为在这一过程中动量守恒.把“子弹”和“木块”看成一个系统:a.系统水平方向动量守恒;b.系统的机械能不守恒;c.对“木块”和“子弹”分别应用动能定理.(2)“木块”固定在水平面上①运动性质:“子弹”对地在滑动摩擦力作用下做匀减速直线运动;“木块”静止不动.②处理方法:对“子弹”应用动能定理或牛顿第二定律.2. 处理子弹打木块模型要点(1)木块放在光滑水平面上,子弹水平打进木块,系统所受的合外力为零,因此动量守恒.(2)两者发生的相对位移为子弹射入的深度x相.(3)根据能量守恒定律,系统损失的动能等于系统增加的内能.(4)系统产生的内能Q=F f·x相,即两物体由于相对运动而摩擦产生的热(机械能转化为内能),等于摩擦力大小与两物体相对滑动的路程的乘积.(5)当子弹速度很大时,可能射穿木块,这时末状态子弹和木块的速度大小不再相等,但穿透过程中系统的动量仍守恒,系统损失的动能为ΔE k=F f·L(L为木块的长度).二.典型例题精讲:题型一:子弹留在木块中例1:(多选)如图,一子弹以初速度v0击中静止在光滑的水平面上的木块,最终子弹未能射穿木块,射入的深度为d,木块加速运动的位移为s.则以下说法正确的是( )A.子弹动能的亏损等于系统动能的亏损B.子弹动量变化量的大小等于木块动量变化量的大小C.摩擦力对木块做的功等于摩擦力对子弹做的功D.子弹对木块做的功等于木块动能的增量答案BD解析子弹射入木块的过程,要产生内能,由能量守恒定律知子弹动能的亏损大于系统动能的亏损,故A错误;子弹和木块组成的系统动量守恒,系统动量的变化量为零,则子弹与木块动量变化量大小相等,方向相反,故B正确;摩擦力对木块做的功为F f s,摩擦力对子弹做的功为-F f (s+d),可知二者不等,故C错误;对木块根据动能定理可知:子弹对木块做的功即为摩擦力对木块的功,等于木块动能的增量,故选项D正确.题型二:子弹穿出木块例2:如图甲所示,一块长度为L、质量为m的木块静止在光滑水平面上.一颗质量也为m 的子弹以水平速度v0射入木块.当子弹刚射穿木块时,木块向前移动的距离为s,如图乙所示.设子弹穿过木块的过程中受到的阻力恒定不变,子弹可视为质点.则子弹穿过木块的时间为( )A.1v0(s+L) B.1v0(s+2L)C.12v0(s+L) D.1v0(L+2s)答案 D解析子弹穿过木块过程,对子弹和木块组成的系统,外力之和为零,动量守恒,以v0的方向为正方向,有:mv0=mv1+mv2,设子弹穿过木块的过程所受阻力为F f ,对子弹由动能定理:-F f (s +L )=12mv 12-12mv 02,由动量定理:-F f t =mv 1-mv 0, 对木块由动能定理:F f s =12mv 22,由动量定理:F f t =mv 2,联立解得:t =1v 0(L +2s ),故选D.三.举一反三,巩固练习1.一颗子弹水平射入置于光滑水平面上的木块A 并留在其中,A 、B 用一根弹性良好的轻质弹簧连在一起,如图所示。
湖北 程伟华 子弹打击木块模型专题
子弹打击木块模型题目分析子弹打击木块模型在物理题型中比较常见,它很容易将力、动量、能量结合起来综合考查学生的能力。
我们要抓住子弹打击木块时间短、子弹和木块之间的作用力大这两个特点来分析这类问题。
【例1】一颗子弹水平射入置于光滑水平面上的木块A 中并留在其中,A 、B 用一根弹性良好的轻质弹簧连在一起,如图(1)所示,则在子弹打中木块A 即弹簧被压缩的过程中,对于子弹、两木块和弹簧组成的系统( ) A .动量守恒,机械能守恒 B .动量不守恒,机械能守恒 C .动量守恒,机械能不守恒 D .无法判断动量、机械能是否守恒 【答案】C【解析】由于子弹打入木块及压缩弹簧的整个过程中系统所受的合外力等于零,则系统的动量守恒。
由于子弹打入木块木块的过程中子弹和木块间的摩擦力做功,使机械能的一部分转化为内能,所以系统的机械能不守恒。
【例2】如图(2)所示装置,木块B 与水平面得接触是光滑的,子弹A 从水平方向射入木块后留在木块内,将弹簧压缩到最短,现将子弹、木块和弹簧合在一起作为研究对象,则此系统在从子弹射入木块到弹簧压缩至最短的过程中( )A .动量守恒,机械能守恒B .动量不守恒,机械能不守恒C .动量守恒,机械能不守恒D .动量不守恒,机械能守恒 【答案】B【解析】A 射入木块的短暂时间内,弹簧还来不及发生形变,系统所受的合外力为零,总动量守恒;但在这个过程中子弹和木块之间的摩擦力对系统做功,系统的机械嫩转化为内能,故系统的机械能不守恒。
子弹和木块达到共同速度后,系统受到墙壁力的作用,系统的总动量不守恒,但墙壁对系统的力不做功,系统的机械能守恒。
故整个过程中系统动量不守恒,机械能也不守恒,选B 。
【例3】如图(3)所示,用长为L 细线悬挂一质量为M 的木块,有一质量为m 的子弹从左向右水平射穿此木块,穿透前后子弹的速度分别为v 0和v ,子弹穿过木块的时间和空气的阻力不计,求(1)子弹穿过木块后木块的速度v M 大小;(2)子弹穿过木块瞬间细线的拉力T 的大小;(3) 子弹穿过木块的过程中子弹和木块系统损失的机械能为多少? 【解析】(1)子弹穿透木块的过程中,以子弹和木块为系统在水平方向上受合力为零,故系统在水平方向上动量守恒。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
消去v1得
v22 -16
v2 +60=0
v2
v1
解得 v1=106 m/s v2=6 m/s
题目 上页
例7 、质量为2m、长为L的木块置于光滑的水平面 上,质量为m的子弹以初速度v0水平向右射穿木块后 速度为v0 /2。设木块对子弹的阻力F 恒定。求: (1)子弹穿过木块的过程中木块的位移(2)若木块 固定在传送带上,使木块随传送带始终以恒定速度 u<v0水平向右运动,则子弹的最终速度是多少? 解析: (1)设子弹穿过木块后木块获得的速度是V (1) 由系统动量守恒得: mv0=mv0/2+2mV 由能量守恒得: FL=1/2×m v 02- 1/2× 2m V2- 1/2× m (v0/2 )2 对木块有: FS= 1/2× 2mV2 V=v0/4 S=L/5 解得: 木块的速度 木块的位移 v0
V
VB
∴ห้องสมุดไป่ตู้ / b= v0 / v1 =(M+m) / m
B
南京04年检测二17 如图示,在光滑水平桌面上静置一 质量为M=980克的长方形匀质木块,现有一颗质量为 m=20克的子弹以v0 = 300m/s 的水平速度沿其轴线射 向木块,结果子弹留在木块中没有射出,和木块一起 以共同的速度运动。已知木块沿子弹运动方向的长度 为L=10cm,子弹打进木块的深度为d=6cm,设木块对 子弹的阻力保持不变。 (1)求子弹和木块的共同的速度以及它们在此过程中 所增加的内能。
B
V1
y C A
V2
题目 上页
例、如图示,M为悬挂在竖直平面内某一点O的木质小 球,(可以看作质点)悬线长为L,质量为m 的子弹以 水平初速v0射入球在中而未穿出,要使子弹射入小球后, 小球能在竖直平面内运动,悬线始终不发生松弛,求子 弹的初速度v0的大小应满足的条件(不计空气阻力) 解: 若小球能在竖直平面内作圆周运动,到最高点的速度为V m1V2 / L ≥ m1 g 式中m1 =(M+m) O 由机械能守恒定律 1/2m V2+m g×2L= 1/2m V 2
对木块所做的功的差
例2、 如图所示,质量为M =2kg的小车放在光滑水平面上, 在小车右端放一质量为m=1kg 的物块。两者间的动摩擦因数为 μ=0.1,使物块以v1=0.4m/s 的水平速度向左运动,同时使小车 以v2=0.8m/s 的初速度水平向右运动, (取g= 10m/s2)求: (1)物块和小车相对静止时,物块和小车的速度大小和方向 (2)为使物块不从小车上滑下,小车的长度L至少多大?
解:木板不固定时,如图示:
由动量守恒定律
m v0=1/3 mv0+MV
V=2mv0/3M
由能量守恒定律 fL=1/2· mv02-1/2m· 1/9 v02-1/2· MV2 = 2/9· m v02 (2-m/M) 若把此木板固定在水平桌面上,滑块离开木板时 的速度为v , 由动能定理 - fL=1/2· m v 2 - 1/2· mv02 由以上四式解得
L
C
F对C做的功 W=F(S+L)=30J
Q=μmgL=5J
F
S A
B
例6、光滑水平面上静置厚度不同的木块A与B,质量 均为M。质量为m的子弹具有这样的水平速度:它击中 可自由滑动的木块A后,正好能射穿它。现A固定,子弹 以上述速度穿过A后,恰好还能射穿可自由滑动的B,两 木块与子弹的作用力相同。求两木块厚度之比。 解:设A木块厚度为a ,B木块厚度为b 射穿自由滑动的A后速度为V mv0=(m+M)V f a= 1/2×mv02 - 1/2× (m+M)V2 = 1/2×mv02 ×M/ (m+M) 子弹射穿固定的A后速度为v1,射穿B后速度为VB 1/2×mv12 = 1/2×mv02 - f a = 1/2× (m+M)V2 v0 mv1=(m+M)VB A f b= 1/2×mv12 - 1/2× (m+M)VB2 v0 = 1/2×mv12 ×M/ (m+M) A 2 2
f1 A
f2
L
v0
B
v0 4m v 1 3 M
B
A
v0 /3
V
S2
L
例4、如图所示,质量为M的小车左端放一质量为m 的物体 .物体与小车之间的摩擦系数为 μ,现在小车与物 体以速度v0在水平光滑地面上一起向右匀速运动 .当小车 与竖直墙壁发生弹性碰撞后,物体在小车上向右滑移一 段距离后一起向左运动,求物体在小车上滑移的最大距 离. 解:小车碰墙后速度反向,由动量守恒定律 v0 m (M+m)V= (M-m)v0 最后速度为V,由能量守恒定律
m=1.0kg
C
v0 =2.0m/s
A
B
M=2.0kg
M=2.0kg
解:先假设小物块C 在木板B上移动距离 x 后,停在B上.这 时A、B、C 三者的速度相等,设为V. 由动量守恒得
mv0 (m 2M )V
①
1 1 2 2 由功能关系得 mg ( s x) mV mv 0 2 2 1 1 2 2 mgx (m 2M )V mv 0
相加得
在此过程中,木板B 的位移为S,小木块C 的位移为S+x.
1 mgs 2 MV 2 2 2
Mv0 x (2M m) g
C
2
2
②
解①、②两式得
代入数值得
③ A x
C
v0
x 1 .6 m
B
S B
④
题目 下页
V
A
x 比B 板的长度l 大.这说明小物块C不会停在B板上, 而要滑到A 板上.设C 刚滑到A 板上的速度为v1,此时A、B 板的速度为V1,如图示: mv0 mv 则由动量守恒得 ⑤ 1 2MV 1 1 1 1 2 由功能关系得 mv 0 mv12 2MV12 mgl ⑥ 2 2 2 以题给数据代入解得
解:(1)木块先向左匀减速运动到0,再匀加速运动到共 同速度V 由动量守恒定律 (m+M)V=Mv2-mv1 v1 V=0.4m/s m M v2 (2)由能量守恒定律 μmgL=1/2×Mv22+ 1/2×mv12 - 1/2×(m+M)V2
m
M m
V M
V1 V
L=0.48m
96年全国24 ( 8 分)一质量为 M 的长木板 B 静止在光滑水平面上,一质量为m 的小滑块 A(可视为质点)以水平速度 v0从长木板的 一端开始在木板上滑动,到达另一端滑块刚 离开木板时的速度为 1/3v0 ,若把此木板固 定在水平桌面上,其它条件相同,求:滑块 离开木板时的速度。
子弹打木块专题
例1、 子弹以一定的初速度射入放在光滑水平面 上的木块中,并共同运动下列说法中正确的是:
( ACD)
A、子弹克服阻力做的功等于木块动能的增加与摩
擦生的热的总和
B、木块对子弹做功的绝对值等于子弹对木块做的功
C、木块对子弹的冲量大小等于子弹对木块的冲量
D、系统损失的机械能等于子弹损失的动能和子弹
v2
m m v1 v0 v0
2m
2m
v=0
v0 v0
L m
2m
S v2
2m
m
例5:长L=1m,质量M=1kg的木板AB静止于光 滑水平面上。在AB的左端有一质量m=1kg的小木块C, 现以水平恒力F=20N作用于C,使其由静止开始向右 运动至AB的右端,C与AB间动摩擦因数μ=0.5,求F对 C做的功及系统产生的热量 解:由于C受到外力作用所以系统动量不守恒,设木板 向前运动的位移是S,则木块的位移为S+L, 时间为t 对C: F(S+L)-μmg(S+L)=1/2×mvm2 m=1kg (F-μmg)t = mvm F=20N C 2 对AB:μmgS = 1/2×MvM A B μmg t = M vM M=1kg 解以上四式得: vm=3vM 摩擦生的热 S=0.5 m
8 24 2 24 8 24 v 2 1 V1 5 5 20 由于v1 必是正数,故合理的解是
8 24 V1 0.155m / s 20
2 24 v1 1.38m / s 5
⑦
B
C
v1
V1 A
⑧
题目 上页 下页
当滑到A之后,B 即以V1= 0.155m/s 做匀速运动.而C 是 以 v1=1.38m/s 的初速在A上向右运动.设在A上移动了y 距离 后停止在A上,此时C 和A 的速度为V2,如图示: 由动量守恒得 解得 由功能关系得 解得
M
1/2(M+m)v0 2- 1/2(M+m)V 2 =μmg S
S
(M m) g
2M0
2
v0
m
v0
M
变形题
V
V
M
m
练习、 如图所示,在光滑水平面上放有质量为2m的 木板,木板左端放一质量为m的可视为质点的木块。 两者间的动摩擦因数为μ,现让两者以v0的速度一起向 竖直墙向右运动,木板和墙的碰撞不损失机械能,碰 后两者最终一起运动。求碰后: (1)木块相对地面向右运动的最大距离L (2)木块相对木板运动的距离S 解:木板碰墙后速度反向如图示 (1)当木块速度减小为0时 2mv0-mv0=2mv1 v1=v0/2 μmgL=1/2×mv02 L= v02/2μg (2)当两者速度相同时 2mv0-mv0=3mv2 v2=v0/3 μmgS=1/2×3mv02- 1/2×3mv22 S =4v02/3μg
( 2)设以400m/s射入时,仍不能打穿,射入深度为d ′ V′=8m/s 由动量守恒定律 mV0 = (M+m)V′ Q′= fd′=1/2×mv0′2 -1/2× (M+m)V′2 =1600-1/2×64=1568J v