八年级初二数学第二学期平行四边形单元 易错题同步练习试卷

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级初二数学第二学期平行四边形单元 易错题同步练习试卷
一、选择题
1.如图, ABCD 为正方形, O 为 AC 、 BD 的交点,在RT DCE 中,DEC ∠= 90︒, DCE ∠= 30︒,若OE =622+,则正方形的面积为( )
A .5
B .4
C .3
D .2
2.如图,在ABCD 中,已知6AB =,8AD =,60B ∠=︒,过BC 的中点E 作EF AB ⊥,垂足为F ,与DC 的延长线相交于点H ,则DEF ∆的面积是( )
A .83
B .123
C .143
D .183 3.平行四边形的对角线分别为 x 、y ,一边长为 12,则 x 、y 的值可能是( )
A .8 与 14
B .10 与 14
C .18 与 20
D .4 与 28 4.如图,在ABC 中,6AB =,8AC =,10BC =,P 为边BC 上一动点,P
E AB ⊥于E ,P
F AC ⊥于F ,M 为EF 中点,则AM 的最小值为( )
A .245
B .4
C .5
D .125
5.如图所示,在Rt ABC ∆中,90ABC ︒∠=,30BAC ︒∠=,分别以直角边AB 、斜边AC 为边,向外作等边ABD ∆和等边ACE ∆,F 为AC 的中点,DE 与AC 交于点O ,DF 与AB 交于点G .给出如下结论:①四边形ADFE 为菱形;②DF AB ⊥;
③14
AO AE =;④4CE FG =;其中正确的是( )
A .①②③
B .①②④
C .①③④
D .②③④
6.如图,点E 是正方形ABCD 外一点,连接AE 、BE 和DE ,过点A 作AE 的垂线交DE 于点P .若AE =AP =1,PB =3.下列结论:①△APD ≌△AEB ;②EB ⊥ED ;③点B 到直线AE 的距离为7;④S 正方形ABCD =8+14.则正确结论的个数是( )
A .1
B .2
C .3
D .4
7.如图,长方形ABCD 中,点E 是边CD 的中点,将△ADE 沿AE 折叠得到△AFE ,且点F 在长方形ABCD 内,将AF 延长交边BC 于点G ,若BG=3CG ,则AD AB
=( )
A .54
B .1
C .5
D .62
8.如图,矩形ABCD 中,O 为AC 的中点,过点O 的直线分别与AB ,CD 交于点E ,F ,连接BF 交AC 于点M ,连接DE ,BO.若∠COB =60°,FO =FC ,则下列结论:
①FB ⊥OC ,OM =CM ;②△EOB ≌△CMB ;③四边形EBFD 是菱形;④MB ∶OE =3∶2.其中正确结论的个数是( )
A .1
B .2
C .3
D .4
9.如图,在菱形ABCD 中,AB=AC=1,点E 、F 分别为边AB 、BC 上的点,且AE=BF ,连接CE 、AF 交于点H ,连接DH 交AC 于点O ,则下列结论:①△ABF ≌△CAE ;②∠FHC=∠B ;③△ADO ≌△ACH ;④=3ABCD S 菱形;其中正确的结论个数是( )
A.1个B.2个C.3个D.4个
10.如图,一个四边形花坛ABCD,被两条线段MN,EF分成四个部分,分别种上红、黄、紫、白四种花卉,种植面积依次是S1、S2、S3、S4,若MN∥AB∥DC,EF∥DA∥CB,则有()
A.S1=S4B.S1+S4=S2+S3C.S1+S3=S2+S4D.S1·S4=S2·S3二、填空题
11.如图,某景区湖中有一段“九曲桥”连接湖岸A,B两点,“九曲桥”的每一段与AC平行或BD平行,若AB=100m,∠A=∠B=60°,则此“九曲桥”的总长度为_____.
12.如图,在平行四边形ABCD中,对角线AC,BD相交于点O,AB=OB,点E,F分别是OA,OD的中点,连接EF,EM⊥BC于点M,EM交BD于点N,若∠CEF=45°,FN=5,则线段BC的长为_____.
13.已知在矩形ABCD中,
3
,3,
2
AB BC
==点P在直线BC上,点Q在直线CD上,且
,
AP PQ
⊥当AP PQ
=时,AP=________________.
14.如图,在矩形ABCD 中,AD =2AB ,∠BAD 的平分线交BC 于点E ,DH ⊥AE 于点H ,连接BH 并延长交CD 于点F ,连接DE 交BF 于点O ,下列结论:①∠AED =∠CED ;②OE =OD ;③BH =HF ;④BC ﹣CF =2HE ;⑤AB =HF ,其中正确的有_____.
15.如图,正方形ABCD 的边长为6,点E 、F 分别在边AD 、BC 上.将该纸片沿EF 折叠,使点A 的对应点G 落在边DC 上,折痕EF 与AG 交于点Q ,点K 为GH 的中点,则随着折痕EF 位置的变化,△GQK 周长的最小值为____.
16.如图,在平行四边形ABCD 中,AC ⊥AB ,AC 与BD 相交于点O ,在同一平面内将△ABC 沿AC 翻折,得到△AB’C ,若四边形ABCD 的面积为24cm 2,则翻折后重叠部分(即S △ACE ) 的面积为________cm 2.
17.如图,菱形OABC 的两个顶点坐标为()0,0O ,()4,4B ,若将菱形绕点O 以每秒45︒的速度逆时针旋转,则第2019秒时,菱形两对角线交点D 的坐标为__________.
18.如图,矩形纸片ABCD ,AB =5,BC =3,点P 在BC 边上,将△CDP 沿DP 折叠,点C 落在点E 处,PE ,DE 分别交AB 于点O ,F ,且OP =OF ,则AF 的值为______.
19.如图,有一张长方形纸片ABCD ,4AB =,3AD =.先将长方形纸片ABCD 折叠,使边AD 落在边AB 上,点D 落在点E 处,折痕为AF ;再将AEF ∆沿EF 翻折,AF 与BC 相交于点G ,则FG 的长为___________.
20.如图,在四边形ABCD 中, //,5,18,AD BC AD BC E ==是BC 的中点.点P 以每秒1个单位长度的速度从点A 出发,沿AD 向点D 运动;点Q 同时以每秒3个单位长度的速度从点C 出发,沿CB 向点B 运动.点P 停止运动时,点Q 也随之停止运动,当运动时间为t 秒时,以点,,,P Q E D 为顶点的四边形是平行四边形,则t 的值等于_______.
三、解答题
21.已知,四边形ABCD 是正方形,点E 是正方形ABCD 所在平面内一动点(不与点D 重合),AB =AE ,过点B 作DE 的垂线交DE 所在直线于F ,连接CF .
提出问题:当点E运动时,线段CF与线段DE之间的数量关系是否发生改变?
探究问题:
(1)首先考察点E的一个特殊位置:当点E与点B重合(如图①)时,点F与点B也重合.用等式表示线段CF与线段DE之间的数量关系:;
(2)然后考察点E的一般位置,分两种情况:
情况1:当点E是正方形ABCD内部一点(如图②)时;
情况2:当点E是正方形ABCD外部一点(如图③)时.
在情况1或情况2下,线段CF与线段DE之间的数量关系与(1)中的结论是否相同?如果都相同,请选择一种情况证明;如果只在一种情况下相同或在两种情况下都不相同,请说明理由;
拓展问题:
(3)连接AF,用等式表示线段AF、CF、DF三者之间的数量关系:.
22.如图,矩形OBCD中,OB=5,OD=3,以O为原点建立平面直角坐标系,点B,点D
分别在x轴,y轴上,点C在第一象限内,若平面内有一动点P,且满足S△POB=1
3
S矩形
OBCD,问:
(1)当点P在矩形的对角线OC上,求点P的坐标;
(2)当点P到O,B两点的距离之和PO+PB取最小值时,求点P的坐标.
23.在一次数学探究活动中,小明对对角线互相垂直的四边形进行了探究,得出了如下结
⊥,则
论:如图1,四边形ABCD的对角线AC与BD相交于点O,AC BD 2222
+=+.
AB CD AD BC
(1)请帮助小明证明这一结论;
(2)根据小明的探究,老师又给出了如下的问题:如图2,分别以Rt ACB的直角边AC和斜边AB为边向外作正ACFG和正方形ABDE,连结CE、BG、GE.已知AB=,求GE的长,请你帮助小明解决这一问题.
AC=,5
4
24.在矩形ABCD中,AE⊥BD于点E,点P是边AD上一点,PF⊥BD于点F,PA=PF.(1)试判断四边形AGFP的形状,并说明理由.
(2)若AB=1,BC=2,求四边形AGFP的周长.
25.如图,在正方形ABCD中,点M是BC边上任意一点,请你仅用无刻度的直尺,用连线的方法,分别在图(1)、图(2)中按要求作图(保留作图痕迹,不写作法).
(1)在如图(1)的AB 边上求作一点N ,连接CN ,使CN AM =;
(2)在如图(2)的AD 边上求作一点Q ,连接CQ ,使CQ AM .
26.(解决问题)如图1,在ABC ∆中,10AB AC ==,CG AB ⊥于点G .点P 是BC 边上任意一点,过点P 作PE AB ⊥,PF AC ⊥,垂足分别为点E ,点F .
(1)若3PE =,5PF =,则ABP ∆的面积是______,CG =______.
(2)猜想线段PE ,PF ,CG 的数量关系,并说明理由.
(3)(变式探究)如图2,在ABC ∆中,若10AB AC BC ===,点P 是ABC ∆内任意一点,且PE BC ⊥,PF AC ⊥,PG AB ⊥,垂足分别为点E ,点F ,点G ,求PE PF PG ++的值.
(4)(拓展延伸)如图3,将长方形ABCD 沿EF 折叠,使点D 落在点B 上,点C 落在点C '处,点P 为折痕EF 上的任意一点,过点P 作PG BE ⊥,PH BC ⊥,垂足分别为点G ,点H .若8AD =,3CF =,直接写出PG PH +的值.
27.如图,四边形ABCD 是边长为3的正方形,点E 在边AD 所在的直线上,连接CE ,以CE 为边,作正方形CEFG (点C 、E 、F 、G 按逆时针排列),连接BF.
(1)如图1,当点E 与点D 重合时,BF 的长为 ; (2)如图2,当点E 在线段AD 上时,若AE=1,求BF 的长;(提示:过点F 作BC 的垂线,交BC 的延长线于点M ,交AD 的延长线于点N.)
(3)当点E 在直线AD 上时,若AE=4,请直接写出BF 的长.
28.如图,等腰直角三角形OAB 的三个定点分别为(0,0)O 、(0,3)A 、(3,0)B -,过A 作y 轴的垂线1l .点C 在x 轴上以每秒32
的速度从原点出发向右运动,点D 在1l 上以每秒332
+的速度同时从点A 出发向右运动,当四边形ABCD 为平行四边形时C 、D 同时停止运动,设运动时间为t .当C 、D 停止运动时,将△OAB 沿y 轴向右翻折得到△1OAB ,1AB 与CD 相交于点E ,P 为x 轴上另一动点.
(1)求直线AB 的解析式,并求出t 的值.
(2)当PE+PD 取得最小值时,求222PD PE PD PE ++⋅的值.
(3)设P 的运动速度为1,若P 从B 点出发向右运动,运动时间为x ,请用含x 的代数式表示△PAE 的面积.
29.如图,在矩形 ABCD 中, AB =16 , BC =18 ,点 E 在边 AB 上,点 F 是边 BC 上不与点 B 、C 重合的一个动点,把△EBF 沿 EF 折叠,点B 落在点 B' 处.
(I)若 AE =0 时,且点 B' 恰好落在 AD 边上,请直接写出 DB' 的长;
(II)若 AE =3 时, 且△CDB' 是以 DB' 为腰的等腰三角形,试求 DB' 的长;
(III)若AE =8时,且点 B' 落在矩形内部(不含边长),试直接写出 DB' 的取值范围.
30.如图,在长方形ABCD中,AB=CD=6cm,BC=10cm,点P从点B出发,以2cm/秒的速度沿BC向点C运动,设点P的运动时间为t秒:
(1)PC=cm.(用t的代数式表示)
(2)当t为何值时,△ABP≌△DCP?
(3)当点P从点B开始运动,同时,点Q从点C出发,以vcm/秒的速度沿CD向点D运动,是否存在这样v的值,使得△ABP与△PQC全等?若存在,请求出v的值;若不存在,请说明理由.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.B
解析:B
【解析】
【分析】
过点O作OM⊥CE于M,作ON⊥DE交ED的延长线于N,判断出四边形OMEN是矩形,根据矩形的性质可得∠MON=90°,再求出∠COM=∠DON,根据正方形的性质可得
OC=OD,然后利用“角角边”证明△COM和△DON全等,根据全等三角形对应边相等可得OM=ON,然后判断出四边形OMEN是正方形,设正方形ABCD的边长为2a,根据直角三
角形30°角所对的直角边等于斜边的一半可得DE=1
2
CD,再利用勾股定理列式求出CE,根
据正方形的性质求出2a,然后利用四边形OCED的面积列出方程求出2a,再根据正方形的面积公式列式计算即可得解.
【详解】
解:如图,过点O 作OM ⊥CE 于M ,作ON ⊥DE 交ED 的延长线于N ,
∵∠CED=90°,
∴四边形OMEN 是矩形,
∴∠MON=90°,
∵∠COM+∠DOM=∠DON+∠DOM ,
∴∠COM=∠DON ,
∵四边形ABCD 是正方形,
∴OC=OD ,
在△COM 和△DON 中,
==CMO=90COM DON N OC OD ∠∠⎧⎪∠∠⎨⎪=⎩

∴△COM ≌△DON (AAS ),
∴OM=ON ,
∴四边形OMEN 是正方形,
设正方形ABCD 的边长为2a ,则222a a = ∵∠CED=90°,∠DCE=30°,
∴DE=12
CD=a , 由勾股定理得,2222(2)3CD DE a a a -=-= ,
∴四边形OCED 的面积=
2111623(2)(2)()2222
a a a a +=⨯, 解得21a =,
所以,正方形ABCD 的面积=22(2)4414a a ==⨯=.
故选B .
【点睛】
本题考查了正方形的性质和判定,全等三角形的判定与性质,勾股定理,直角三角形30°角所对的直角边等于斜边的一半的性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点. 2.A
解析:A
【分析】
根据平行四边形的性质得到6AB CD ==,8AD BC ==,求出BE 、BF 、EF ,根据()BFE CHE ASA 得出2CH =,23EH ,根据三角形的面积公式求DFH ∆的面积,即可求出答案. 【详解】
解:四边形ABCD 是平行四边形,
8AD BC ∴==,//AB CD ,6AB CD ==,
E 为BC 中点,
4BE CE ∴==,
60B ∠=︒,EF AB ⊥,
30FEB ∴∠=︒,
2BF ∴=,
由勾股定理得:EF =,
//AB CD ,
B
ECH , 在BFE ∆和CHE ∆中, B
ECH BE CE BEF CEH ,
()BFE CHE ASA , 23EF EH ,2CH BF , ∴111622323163222DHF S
DH FH DC CH FE HE , 1832DEF DHF S S .
故选:A .
【点睛】
本题主要考查对平行四边形的性质,平行线的性质,勾股定理,含30度角的直角三角形,三角形的面积,三角形的内角和定理等知识点的理解和掌握,能综合运用这些性质进行计算是解此题的关键.
3.C
解析:C
【分析】
如下图,将平行四边形ABCD 向上平移,得到平行四边形ADEF ,使得BC 与AD 重合,在△BDF 中,利用三角形三边关系可得到x+y 与x -y 的取值范围,从而得到结论.
【详解】
如下图,将平行四边形ABCD 向上平移,得到平行四边形ADEF ,使得BC 与AD 重合,连接BD ,DF
根据题意,设AB=12,BD=x,DF=y
则AF=AB=12,BF=24
∴在△BDF中,BD+FD>BF,即:x+y>24
在△BDF中,BD-FD<BF,即:x-y<24
满足条件的只有C选项
故选:C
【点睛】
本题考查三角形三边关系,解题关键是将题干中已知线段和需要求解的线段转化到同一个三角形中去.
4.D
解析:D
【分析】
先求证四边形AFPE是矩形,再根据直线外一点到直线上任一点的距离,垂线段最短,利用面积法可求得AP最短时的长,然后即可求出AM最短时的长.
【详解】
解:连接AP,在△ABC中,AB=6,AC=8,BC=10,
∴∠BAC=90°,
∵PE⊥AB,PF⊥AC,
∴四边形AFPE是矩形,
∴EF=AP.
∵M是EF的中点,
∴AM=1
2 AP,
根据直线外一点到直线上任一点的距离,垂线段最短,即AP⊥BC时,AP最短,同样AM也最短,
∴S△ABC=1
2
BC•AP=
1
2
AB•AC,
∴1
2
×10AP=
1
2
×6×8,
∴AP最短时,AP=24
5

∴当AM最短时,AM=1
2
AP=
12
5

故选:D.
【点睛】
此题主要考查学生对勾股定理逆定理的应用、矩形的判定和性质、垂线段最短和直角三角形斜边上的中线的理解和掌握,此题涉及到动点问题,有一定难度.
5.D
解析:D
【分析】
由题意得出条件证明△ABC≌△DAF,根据对应角相等可推出②正确;由F是AB中点根据边长转换可以推出④正确;先推出△ECF≌△DFA得出对应边相等推出ADFE为平行四边形且有组临边不等得出①错误;再由以上全等即可得出④正确.
【详解】
∵△ABD是等边三角形,
∴∠BAD=60°,AB=AD,
∵∠BAC=30°,知
∴∠FAD=∠ABC=90°,AC=2BC,
∵F为AC的中点道,
∴AC=2AF,
∴BC=AF,
∴△ABC≌△DAF,
∴FD=AC,
∴∠ADF=∠BAC=30°,
∴DF⊥AB,故②正确,
∵EF⊥AC,∠ACB=90°,
∴FG∥BC,
∵F是AB的中点,
∴GF=1
2 BC,
∵BC=1
2
AC,AC=CE,
∴GF=1
4
CE,故④说法正确;
∵AE=CE,CF=AF,
∴∠EFC=90°,∠CEF=30°,
∵∠FAD=∠CAB+∠BAD=90°,∴∠EFC=∠DAF,
∵DF⊥AB,
∴∠ADF=30°,
∴∠CEF=∠ADF,
∴△ECF≌△DFA(AAS),
∴AD=EF,
∵FD=AC,
∴四边形属ADFE为平行四边形,∵AD≠DF,
∴四边形ADFE不是菱形;
故①说法不正确;
∴AO=1
2 AF,
∴AO=1
2 AC,
∵AE=AC,
则AE=4AO,故③说法正确,
故选D.
【点睛】
本体主要考查平行四边形的判定,等边三角形,三角形全等的判定,关键在于熟练掌握基础知识,根据图形结合知识点进行推导.
6.C
解析:C
【分析】
①易知AE=AP,AB=AD,所以只需证明∠EAB=∠PAD即可用SAS说明△APD≌△AEB;
②易知∠AEB=∠APD=135°,则∠BEP=∠AEB﹣∠AEP=135°﹣45°=90°,所以EB⊥ED;
③在Rt△BEP中利用勾股定理求出BE,根据垂线段最短可知B到直线AE的距离
;则③错误;
④要求正方形的面积,则需知道正方形一条边的平方值即可,所以在△AEB中,∠AEB=
135°,AE=1,BE A作AH⊥BE交BE延长线于H点,在Rt△AHB中利用勾股定理AB2=BH2+AH2即可.
【详解】
∵四边形ABCD是正方形,
∴AD=AB,∠DAB=90°.
∴∠DAP+∠BAP=90°.
又∠EAP+∠BAP=90°,
∴∠EAP=∠DAP.
又AE=AP,
∴△APD≌△AEB(SAS).
所以①正确;
∵AE=AP,∠EAP=90°,
∴∠APE=∠AEP=45°,
∴∠APD=180°﹣45°=135°.
∵△APD≌△AEB,
∴∠AEB=∠APD=135°,
∴∠BEP=135°﹣45°=90°,
即EB⊥ED,②正确;
在等腰Rt△AEP中,利用勾股定理可得EP=222
AE AP
+=,
在Rt△BEP中,利用勾股定理可得BE=227
BP EP
-=.
∵B点到直线AE的距离小于BE,所以点B到直线AE的距离为7是错误的,所以③错误;
在△AEB中,∠AEB=135°,AE=1,BE=7,
如图所示,过点A作AH⊥BE交BE延长线于H点.
在等腰Rt△AHE中,可得AH=HE=
2
2
AE=
2
2

所以BH=
2
7
2
+.
在Rt△AHB中利用勾股定理可得AB2=BH2+AH2,
即AB2=(
2
7
2
+)2+(
2
2
)2=14,
所以S正方形ABCD=14.
所以④正确.
所以只有①和②、④的结论正确.
故选:C.
【点睛】
本题主要考查了正方形的性质、全等三角形的判定和性质,解决复杂几何图形时要会分离图形,分离出对解决问题有价值的图形单独解决.
7.B
【解析】
【分析】
根据中点定义得出DE=CE ,再根据折叠的性质得出DE=EF ,AF=AD ,∠AFE=∠D=90°,从而得出CE=EF ,连接EG ,利用“HL”证明△ECG ≌△EFG ,根据全等三角形性质得出CG=FG ,设CG=a ,则BC=4a ,根据长方形性质得出AD=BC=4a ,再求出AF=4a ,最后求出AG=AF+FG=5a ,最后利用勾股定理求出AB ,从而进一步得出答案即可.
【详解】
如图,连接EG ,
∵点E 是CD 中点,
∴DE=EC ,
根据折叠性质可得:AD=AF ,DE=EF ,∠D=∠AFE=90°,
∴CE=EF ,
在Rt △ECG 与Rt △EFG 中,
∵EG=EG ,EC=EF ,
∴Rt △ECG ≌Rt △EFG (HL ),
∴CG=FG ,
设CG=a ,
∴BG=3CG=3
a , ∴BC=4
a , ∴AF=AD=BC=4
a . ∴AG=5
a . 在Rt △ABG 中, ∴224AB AG BG a -=, ∴1AD AB
=, 故选B.
【点睛】
本题主要考查了长方形与勾股定理及全等三角形判定和性质的综合运用,熟练掌握相关概念是解题关键,
8.C
解析:C
【解析】
∵四边形ABCD是矩形,
∴AC=BD,AC、BD互相平分,∵O为AC中点,
∴BD也过O点,
∴OB=OC,
∵∠COB=60°,OB=OC,
∴△OBC是等边三角形,
∴OB=BC=OC,∠OBC=60°,
在△OBF与△CBF中,
FO FC BF BF OB BC









∴△OBF≌△CBF(SSS),
∴△OBF与△CBF关于直线BF对称,∴FB⊥OC,OM=CM;
∴①正确,
∵∠OBC=60°,
∴∠ABO=30°,
∵△OBF≌△CBF,
∴∠OBM=∠CBM=30°,
∴∠ABO=∠OBF,
∵AB∥CD,
∴∠OCF=∠OAE,
∵OA=OC,
易证△AOE≌△COF,
∴OE=OF,
∴OB⊥EF,
∴四边形EBFD是菱形,
∴③正确,
∵△EOB≌△FOB≌△FCB,
∴△EOB≌△CMB错误.
∴②错误,
∵∠OMB=∠BOF=90°,∠OBF=30°,

∵OE=OF ,
∴MB :OE=3:2,
∴④正确;
故选C .
点睛:本题考查了矩形的性质,菱形的判定和性质,全等三角形的判定和性质,等边三角形的判定和性质以及三角函数等的知识,会综合运用这些知识点解决问题是解题的关键.
9.B
解析:B
【分析】
根据菱形的性质,利用SAS 证明即可判断①;根据△ABF ≌△CAE 得到∠BAF=∠ACE ,再利用外角的性质以及菱形内角度数即可判断②;通过说明∠CAH≠∠DAO ,判断
△ADO ≌△ACH 不成立,可判断③;再利用菱形边长即可求出菱形面积,可判断④.
【详解】
解:∵在菱形ABCD 中,AB=AC=1,
∴△ABC 为等边三角形,
∴∠B=∠CAE=60°,
又∵AE=BF ,
∴△ABF ≌△CAE (SAS ),故①正确;
∴∠BAF=∠ACE ,
∴∠FHC=∠ACE+∠HAC=∠BAF+∠HAC=60°,故②正确;
∵∠B=∠CAE=60°,
则在△ADO 和△ACH 中,
∠OAD=60°=∠CAB ,
∴∠CAH≠60°,即∠CAH≠∠DAO ,
∴△ADO ≌△ACH 不成立,故③错误;
∵AB=AC=1,过点A 作AG ⊥BC ,垂足为G ,
∴∠BAG=30°,BG=
12,

∴菱形ABCD 的面积为:BC AG ⨯=12⨯=2,故④错误; 故正确的结论有2个,
故选B.
【点睛】
本题考查了全等三角形判定和性质,菱形的性质和面积,等边三角形的判定和性质,外角的性质,解题的关键是利用菱形的性质证明全等.
10.D
解析:D
【分析】
由于在四边形中,MN∥AB∥DC,EF∥DA∥CB,因此MN、EF把一个平行四边形分割成四个小平行四边形.可设MN到DC的距离为h1,MN到AB的距离为h2,根据AB=CD,
DE=AF,EC=FB及平行四边形的面积公式即可得出答案.
【详解】
解:∵MN∥AB∥DC,EF∥DA∥CB,
∴四边形ABCD,四边形ADEF,四边形BCEF,红、紫、黄、白四边形都为平行四边形,
∴AB=CD,DE=AF,EC=BF.
设MN到DC的距离为h1,MN到AB的距离为h2,
则S1=DE•h1,S2=AF•h2,S3=EC•h1,S4=FB•h2,
因为DE,h1,FB,h2的关系不确定,所以S1与S4的关系无法确定,故A错误;
S1+S4=DE•h1+FB•h2=AF•h1+FB•h2,S2+S3=AF•h2+EC•h1=AF•h2+FB•h1,故B错误;
S1+S3=CD•h1,S2+S4=AB•h2,又AB=CD,而h1不一定与h2相等,故C错误;
S1·S4=DE•h1•FB•h2=AF•h1•FB•h2,S2·S3=AF•h2•EC•h1=AF•h2•FB•h1,所以
S1·S4=S2·S3,
故D正确;
故选:D.
【点睛】
本题考查平行四边形的判定与性质,注意掌握平行四边形的面积等于平行四边形的边长与该边上的高的积.即S=a•h.其中a可以是平行四边形的任何一边,h必须是a边与其对边的距离,即对应的高.
二、填空题
11.200m
【分析】
如图,延长AC、BD交于点E,延长HK交AE于F,延长NJ交FH于M,则四边形EDHF,四边形MNCF,四边形MKGJ是平行四边形,△ABC是等边三角形,由此即可解决问题.
【详解】
如图,延长AC 、BD 交于点E ,延长HK 交AE 于F ,延长NJ 交FH 于M
由题意可知,四边形EDHF ,四边形MNCF ,四边形MKGJ 是平行四边形
∵∠A =∠B =60°
∴18060E A B ∠=-∠-∠=
∴△ABC 是等边三角形
∴ED =FM+MK+KH =CN+JG+HK ,EC =EF+FC =JN+KG+DH
∴“九曲桥”的总长度是AE+EB =2AB =200m
故答案为:200m .
【点睛】
本题考查了平行四边形、等边三角形、三角形内角和的知识;解题的关键是熟练掌握平行四边形、等边三角形、三角形内角和的性质,从而完成求解.
12.5【分析】
设EF =x ,根据三角形的中位线定理表示AD =2x ,AD ∥EF ,可得∠CAD =∠CEF =45°,证明△EMC 是等腰直角三角形,则∠CEM =45°,证明△ENF ≌△MNB ,则EN =MN =12
x ,BN =FN =5,最后利用勾股定理计算x 的值,可得BC 的长.
【详解】
解:设EF =x ,
∵点E 、点F 分别是OA 、OD 的中点,
∴EF 是△OAD 的中位线,
∴AD =2x ,AD ∥EF ,
∴∠CAD =∠CEF =45°,
∵四边形ABCD 是平行四边形,
∴AD ∥BC ,AD =BC =2x ,
∴∠ACB =∠CAD =45°,
∵EM ⊥BC ,
∴∠EMC =90°,
∴△EMC 是等腰直角三角形,
∴∠CEM =45°,
连接BE ,
∵AB =OB ,AE =OE
∴BE ⊥AO
∴∠BEM =45°,
∴BM =EM =MC =x ,
∴BM =FE ,
易得△ENF ≌△MNB ,
∴EN =MN =12
x ,BN =FN =5, Rt △BNM 中,由勾股定理得:BN2=BM2+MN2, 即2221
5()2x x =+
解得,x =5
∴BC =2x =5 故答案为:5
【点睛】
本题考查了平行四边形的性质、等腰直角三角形的判定和性质、全等三角形的判定与性质、勾股定理;解决问题的关键是设未知数,利用方程思想解决问题.
133223102
【分析】 根据点P 在直线BC 上,点Q 在直线CD 上,分两种情况:1.P 、Q 点位于线段上;2.P 、Q 点位于线段的延长上,再通过三角形全等得出相应的边长,最后根据勾股即可求解.
【详解】
解:当P 点位于线段BC 上,Q 点位于线段CD 上时:
∵四边形ABCD 是矩形
,AP PQ ⊥
∴∠BAP=∠CPQ ,∠APB=∠PQC
∵AP PQ =
∴ABP PCQ ≅
∴PC=AB=32,BP=BC-PC=3-32=32
∴AP=223
322+()()=322
当P 点位于线段BC 的延长线上,Q 点位于线段CD 的延长线上时:
∵四边形ABCD 是矩形 ,AP PQ ⊥
∴∠BAP=∠CPQ ,∠APB=∠PQC ∵AP PQ =
∴ABP PCQ ≅
∴PC=AB=32,BP=BC+PC=3+32=92
∴223
922+()()3102
3223102
【点睛】 此题主要考查三角形全等的判定及性质、勾股定理,熟练运用判定定理和性质定理是解题的关键.
14.①②③④
【分析】
①根据角平分线的定义可得∠BAE =∠DAE =45°,可得出△ABE 是等腰直角三角形,根据等腰直角三角形的性质可得AE 2=,从而得到AE =AD ,然后利用“角角边”证明△ABE 和△AHD 全等,根据全等三角形对应边相等可得BE =DH ,再根据等腰三角形两底角相等求出∠ADE =∠AED =67.5°,根据平角等于180°求出∠CED =67.5°,从而判断出①正确; ②求出∠AHB =67.5°,∠DHO =∠ODH =22.5°,然后根据等角对等边可得OE =OD =OH ,判断出②正确;
③求出∠EBH =∠OHD =22.5°,∠AEB =∠HDF =45°,然后利用“角边角”证明△BEH 和△HDF 全等,根据全等三角形对应边相等可得BH =HF ,判断出③正确;
④根据全等三角形对应边相等可得DF =HE ,然后根据HE =AE ﹣AH =BC ﹣CD ,BC ﹣CF =BC ﹣(CD ﹣DF )=2HE ,判断出④正确;
⑤判断出△ABH 不是等边三角形,从而得到AB ≠BH ,即AB ≠HF ,得到⑤错误.
【详解】
∵在矩形ABCD 中,AE 平分∠BAD ,∴∠BAE =∠DAE =45°,∴△ABE 是等腰直角三角形,∴
AE =
. ∵
AD =,∴AE =AD .
在△ABE 和△AHD 中,∵90BAE DAE ABE AHD AE AD ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩
,∴△ABE ≌△AHD (AAS ),
∴BE =DH ,∴AB =BE =AH =HD ,∴∠ADE =∠AED 12
=(180°﹣45°)=67.5°,∴∠CED =180°﹣45°﹣67.5°=67.5°,∴∠AED =∠CED ,故①正确;
∵∠AHB 12
=(180°﹣45°)=67.5°,∠OHE =∠AHB (对顶角相等),∴∠OHE =∠AED ,∴OE =OH .
∵∠DOH =90°﹣67.5°=22.5°,∠ODH =67.5°﹣45°=22.5°,∴∠DOH =∠ODH ,∴OH =OD ,∴OE =OD =OH ,故②正确;
∵∠EBH =90°﹣67.5°=22.5°,∴∠EBH =∠OHD .
在△BEH 和△HDF 中,∵EBH OHD BE DH AEB HDF ∠=∠⎧⎪=⎨⎪∠=∠⎩
,∴△BEH ≌△HDF (ASA ),∴BH =HF ,
HE =DF ,故③正确;
由上述①、②、③可得CD =BE 、DF =EH =CE ,CF =CD ﹣DF ,∴BC ﹣CF =(CD +HE )﹣(CD ﹣HE )=2HE ,所以④正确;
∵AB =AH ,∠BAE =45°,∴△ABH 不是等边三角形,∴AB ≠BH ,∴即AB ≠HF ,故⑤错误;
综上所述:结论正确的是①②③④.
故答案为①②③④.
【点睛】
本题考查了矩形的性质,全等三角形的判定与性质,角平分线的定义,等腰三角形的判定与性质,熟记各性质并仔细分析题目条件,根据相等的度数求出相等的角,从而得到三角形全等的条件或判断出等腰三角形是解题的关键,也是本题的难点.
15.
【分析】
取AB 的中点M ,连接DQ ,QM ,DM .证明QM =QK ,QG =DQ ,求出DQ +QM 的最小值即可解决问题.
【详解】
取AB 的中点M ,连接DQ ,QM ,DM .
∵四边形ABCD是正方形,
∴AD=AB=6,∠DAM=∠ADG=90°,
∵AM=BM=3,
∴DM2222
63
AB AM
+=+5,
∵GK=HK,AB,GH关于EF对称,
∴QM=QK,
∵∠ADG=90°,AQ=QG,
∴DQ=AQ=QG,
∵△QGK的周长=GK+QG+QJ=3+DQ+QM.
又∵DQ+QM≥DM,
∴DQ+QM≥5
∴△QGK的周长的最小值为5,
故答案为5
【点睛】
本题考查了折叠的性质、正方形的性质、勾股定理、最值问题,解题的关键是取AB的中点M,确定QG+QK=QD+QM,属于中考常考题型.
16.6
【分析】
由折叠的性质可得∠BAC=∠B'AC=90°,AB=AB',S△ABC=S△AB'C=12cm2,可证点B,点A,点B'三点共线,通过证明四边形ACDB'是平行四边形,可得B'E=CE,即可求解.
【详解】
解:∵四边形ABCD是平行四边形,
∴AB∥CD,S△ABC=1
24
2
⨯=12cm2,
∵在同一平面内将△ABC沿AC翻折,得到△AB′C,∴∠BAC=∠B'AC=90°,AB=AB',S△ABC=S△AB'C=12cm2,∴∠BAB'=180°,
∴点B,点A,点B'三点共线,
∵AB∥CD,AB'∥CD,
∴四边形ACDB'是平行四边形,
∴B'E=CE,
∴S△ACE=1
2
S△AB'C=6cm2,
故答案为:6.
【点睛】
本题考查了翻折变换,平行四边形的判定和性质,证明点B ,点A ,点B'三点共线是本题的关键.
17.(-,0)
【分析】
先计算得到点D 的坐标,根据旋转的性质依次求出点D 旋转后的点坐标,得到变化的规律即可得到答案.
【详解】
∵菱形OABC 的两个顶点坐标为()0,0O ,()4,4B ,
∴对角线的交点D 的坐标是(2,2),
∴OD ==
将菱形绕点O 以每秒45︒的速度逆时针旋转,
旋转1次后坐标是(0,),
旋转2次后坐标是(-2,2),
旋转3次后坐标是(-,0),
旋转4次后坐标是(-2,-2),
旋转5次后坐标是(0,-
旋转6次后坐标是(2,-2),
旋转7次后坐标是(,0),
旋转8次后坐标是(2,2)
旋转9次后坐标是(0,
由此得到点D 旋转后的坐标是8次一个循环,
∵201982523÷=,
∴第2019秒时,菱形两对角线交点D 的坐标为(-,0)
故答案为:(-0).
【点睛】
此题考查了菱形的性质,旋转的性质,勾股定理,直角坐标系中点坐标的变化规律,根据点D 的坐标依次求出旋转后的坐标得到变化规律是解题的关键.
18.207
【分析】
根据折叠的性质可得出DC=DE 、CP=EP ,由“AAS”可证△OEF ≌△OBP ,可得出OE=OB 、EF=BP ,设EF=x ,则BP=x 、DF=5-x 、BF=PC=3-x ,进而可得出AF=2+x ,在Rt △DAF 中,利用勾股定理可求出x 的值,即可得AF 的长.
【详解】
解:∵将△CDP 沿DP 折叠,点C 落在点E 处,
∴DC =DE =5,CP =EP .
在△OEF 和△OBP 中,
90EOF BOP B E OP OF ∠=∠⎧⎪∠=∠=⎨⎪=⎩
, ∴△OEF ≌△OBP (AAS ),
∴OE =OB ,EF =BP .
设EF =x ,则BP =x ,DF =DE -EF =5-x ,
又∵BF =OB +OF =OE +OP =PE =PC ,PC =BC -BP =3-x ,
∴AF =AB -BF =2+x .
在Rt △DAF 中,AF 2+AD 2=DF 2,
∴(2+x )2+32=(5-x )2,
∴x =67
∴AF =2+67=207
故答案为:
207 【点睛】
本题考查了翻折变换,矩形的性质,全等三角形的判定与性质以及勾股定理的应用,解题时常常设要求的线段长为x ,然后根据折叠和轴对称的性质用含x 的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.
19
【解析】
【分析】
根据折叠的性质可得∠DAF=∠BAF=45°,再由矩形性质可得FC=ED=1,然后由勾股定理求出FG 即可.
【详解】
由折叠的性质可知,∠DAF=∠BAF=45°,
∴AE=AD=3,EB=AB-AD=1,
∵四边形EFCB 为矩形,
∴FC=BE=1,
∵AB ∥FC ,
∴∠GFC=∠DAF=45°,
∴GC=FC=1,
∴FG ===

【点睛】
本题考查了折叠变换,矩形的性质是一种对称变换,理解折叠前后图形的大小不变,位置
变化,对应边和对应角相等是解决此题的关键.
20.2或3.5
【分析】
分别从当Q运动到E和B之间、当Q运动到E和C之间去分析求解即可求得答案.【详解】
如图,
∵E是BC的中点,
∴BE=CE= 1
2
BC=9,
①当Q运动到E和B之间,则得:
3t﹣9=5﹣t,
解得:t=3.5;
②当Q运动到E和C之间,则得:
9﹣3t=5﹣t,
解得:t=2,
∴当运动时间t为2秒或3.5秒时,以点P,Q,E,D为顶点的四边形是平行四边形.【点睛】
“点睛”此题考查了梯形的性质以及平行四边形的判定与性质.解题时注意掌握辅助线的作法,注意掌握数形结合思想、分类讨论思想与方程思想的应用.
三、解答题
21.(1)DE2CF;(2)在情况1与情况2下都相同,详见解析;(3)AF+CF=
2DF或|AF-CF|2
【分析】
(1)易证△BCD是等腰直角三角形,得出2CB,即可得出结果;
(2)情况1:过点C作CG⊥CF,交DF于G,设BC交DF于P,由ASA证得
△CDG≌△CBF,得出DG=FB,CG=CF,则△GCF是等腰直角三角形,2CF,连接BE,设∠CDG=α,则∠CBF=α,∠DEA=∠ADE=90°-α,求出∠DAE=2α,则∠EAB=90°-2α,
∠BEA=∠ABE=1
2
(180°-∠EAB)=45°+α,∠CBE=45°-α,推出∠FBE=45°,得出△BEF是等腰
直角三角形,则EF=BF,推出EF=DG,DE=FG,得出2CF;
情况2:过点C作CG⊥CF交DF延长线于G,连接BE,设CD交BF于P,由ASA证得
△CDG ≌△CBF ,得出DG=FB ,CG=CF ,则△GCF 是等腰直角三角形,得CF ,设∠CDG=α,则∠CBF=α,证明△BEF 是等腰直角三角形,得出EF=BF ,推出DE=FG ,得出
CF ;
(3)①当F 在BC 的右侧时,作HD ⊥DF 交FA 延长线于H ,由(2)得△BEF 是等腰直角三角形,EF=BF ,由SSS 证得△ABF ≌△AEF ,得出∠EFA=∠BFA=12
∠BFE=45°,则△HDF 是等腰
直角三角形,得DF ,DH=DF ,∵∠HDF=∠ADC=90°,由SAS 证得△HDA ≌△FDC ,得
CF=HA ,即可得出;
②当F 在AB 的下方时,作DH ⊥DE ,交FC 延长线于H ,在DF 上取点N ,使CN=CD ,连接BN ,证明△BFN 是等腰直角三角形,得BF=NF ,由SSS 证得△CNF ≌△CBF ,得
∠NFC=∠BFC=12
∠BFD=45°,则△DFH 是等腰直角三角形,得,DF=DH ,由SAS
证得△ADF ≌△CDH ,得出CH=AF ,即可得出DF ;
③当F 在DC 的上方时,连接BE ,作HD ⊥DF ,交AF 于H ,由(2)得△BEF 是等腰直角三角形,EF=BF ,由SSS 证得△ABF ≌△AEF ,得∠EFA=∠BFA=12
∠BFE=45°,则△HDF 是等腰直
角三角形,得出DF ,DH=DF ,由SAS 证得△ADC ≌△HDF ,得出AH=CF ,即可得出

④当F 在AD 左侧时,作HD ⊥DF 交AF 的延长线于H ,连接BE ,设AD 交BF 于P ,证明△BFE 是等腰直角三角形,得EF=BF ,由SSS 证得△ABF ≌△AEF ,得
∠EFA=∠BFA=12
∠BFE=45°,则∠DFH=∠EFA=45°,△HDF 是等腰直角三角形,得DH=DF ,
,由SAS 证得△HDA ≌△FDC ,得出AF=CF ,即可得出DF .
【详解】
解:(1)∵四边形ABCD 是正方形,
∴CD=CB ,∠BCD=90°,
∴△BCD 是等腰直角三角形,
∴CB ,
当点E 、F 与点B 重合时,则CF ,
故答案为:CF ;
(2)在情况1或情况2下,线段CF 与线段DE 之间的数量关系与(1)中结论相同;理由如下:
情况1:∵四边形ABCD 是正方形,
∴CD=CB=AD=AB=AE ,∠BCD=∠DAB=∠ABC=90°,
过点C 作CG ⊥CF ,交DF 于G ,如图②所示:。

相关文档
最新文档