2017-2018学年廊坊市霸州市九年级上期末数学试卷(含答案解析)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2018学年河北省廊坊市霸州市九年级(上)期末数学试卷一、选择题(共16小题,每小题3分,满分48分)
1.下列方程是关于x的一元二次方程的是()
A.ax2+bx+c=0B.=2
C.x2+2x=x2﹣1D.3(x+1)2=2(x+1)
2.抛物线y=(x﹣1)2+2的顶点坐标是()
A.(1,2)B.(1,﹣2)C.(﹣1,2)D.(﹣1,﹣2)3.下列图形是中心对称图形的是()
A.B.
C.D.
4.下列说法中,正确的是()
A.不可能事件发生的概率是0
B.打开电视机正在播放动画片,是必然事件
C.随机事件发生的概率是
D.对“梦想的声音”节目收视率的调查,宜采用普查
5.如图,A,B,C三点在⊙O上,且∠BOC=100°,则∠A的度数为()
A.40°B.50°C.80°D.100°
6.下列图象中是反比例函数y=﹣图象的是()
A.B.
C.D.
7.如图,二次函数y=ax2+bx+c的图象与x轴交于(﹣2,0)和(4,0)两点,当函数值y>0时,自变量x的取值范围是()
A.x<﹣2B.x>4C.﹣2<x<4D.x>0
8.在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号小于4的概率为()
A.B.C.D.
9.如图,△ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()
A.B.
C.D.
10.如图,将△ABC绕着点C按顺时针方向旋转20°,B点落在B′位置,A点落在A′位置,
若AC⊥A′B′,则∠BAC的度数是()
A.50°B.60°C.70°D.80°
11.边长为a的正三角形的内切圆的半径为()
A.a B.a C.a D.a
12.反比例函数y1=(x>0)的图象与一次函数y2=﹣x+b的图象交于A,B两点,其中A(1,2),当y2>y1时,x的取值范围是()
A.x<1B.1<x<2C.x>2D.x<1或x>2
13.如图,在▱ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,S△DEF:S =4:25,则DE:EC=()
△ABF
A.2:5B.2:3C.3:5D.3:2
14.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了182件.如果全组共有x名同学,则根据题意列出的方程是()
A.x(x+1)=182B.x(x+1)=182×
C.x(x﹣1)=182D.x(x﹣1)=182×2
15.如图,在平面直角坐标系中,已知点A(﹣3,6)、B(﹣9,﹣3),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是()
A.(﹣1,2)B.(﹣9,18)
C.(﹣9,18)或(9,﹣18)D.(﹣1,2)或(1,﹣2)
16.二次函数y=ax2+bx+c的图象如图所示,则下列结论中错误的是()
A.函数有最小值
B.当﹣1<x<2时,y>0
C.a+b+c<0
D.当x<,y随x的增大而减小
二、填空题(共4小题,每小题3分,满分12分)
17.关于x的方程kx2﹣4x﹣=0有实数根,则k的取值范围是.
18.如图,AB为⊙O的弦,⊙O的半径为5,OC⊥AB于点D,交⊙O于点C,且CD=1,则弦AB的长是.
19.如图,点A在双曲线上,点B在双曲线y=上,且AB∥x轴,C、D在x轴上,若四边形ABCD为矩形,则它的面积为.
20.如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、
O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去….若点A(,0),B(0,4),则点B2016的坐标为.
三、解答题(共6小题,满分60分)
21.(8分)已知一元二次方程(m﹣1)x2+7mx+m2+3m﹣4=0有一个根为零,求m的值.22.(10分)在某电视台的一档选秀节目中,有三位评委,每位评委在选手完成才艺表演后,出示“通过”(用√表示)或“淘汰”(用×表示)的评定结果,节目组规定:每位选手至少获得两位评委的“通过”才能晋级
(1)请用树形图列举出选手A获得三位评委评定的各种可能的结果;
(2)求选手A晋级的概率.
23.(10分)如图,AB、CD为⊙O的直径,弦AE∥CD,连接BE交CD于点F,过点E 作直线EP与CD的延长线交于点P,使∠PED=∠C.
(1)求证:PE是⊙O的切线;
(2)求证:ED平分∠BEP.
24.(10分)白溪镇2012年有绿地面积57.5公顷,该镇近几年不断增加绿地面积,2014年达到82.8公顷.
(1)求该镇2012至2014年绿地面积的年平均增长率;
(2)若年增长率保持不变,2015年该镇绿地面积能否达到100公顷?
25.(10分)如图,点A(3,5)关于原点O的对称点为点C,分别过点A,C作y轴的平行线,与反比例函数y=(0<k<15)的图象交于点B,D,连接AD,BC,AD与
x轴交于点E(﹣2,0).
(1)求k的值;
(2)直接写出阴影部分面积之和.
26.(12分)如图,已知抛物线y=ax2+bx﹣3与x轴的一个交点为A(﹣1,0),另一个交点为B,与y轴的交点为C,其顶点为D,对称轴为直线x=1.
(1)求抛物线的解析式;
(2)已知点M为y轴上的一个动点,当△ACM是以AC为一腰的等腰三角形时,求点M的坐标.
2017-2018学年河北省廊坊市霸州市九年级(上)期末数学试
卷
参考答案与试题解析
一、选择题(共16小题,每小题3分,满分48分)
1.下列方程是关于x的一元二次方程的是()
A.ax2+bx+c=0B.=2
C.x2+2x=x2﹣1D.3(x+1)2=2(x+1)
【分析】根据一元二次方程的定义解答,一元二次方程必须满足四个条件:未知数的最高次数是2;二次项系数不为0;是整式方程;含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.
【解答】解:A、ax2+bx+c=0当a=0时,不是一元二次方程,故A错误;
B、+=2不是整式方程,故B错误;
C、x2+2x=x2﹣1是一元一次方程,故C错误;
D、3(x+1)2=2(x+1)是一元二次方程,故D正确;
故选:D.
【点评】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.
2.抛物线y=(x﹣1)2+2的顶点坐标是()
A.(1,2)B.(1,﹣2)C.(﹣1,2)D.(﹣1,﹣2)
【分析】根据抛物线的顶点式解析式写出顶点坐标即可.
【解答】解:y=(x﹣1)2+2的顶点坐标为(1,2).
故选:A.
【点评】本题考查了二次函数的性质,熟练掌握利用顶点式解析式写出顶点坐标的方法是解题的关键.
3.下列图形是中心对称图形的是()
A.B.
C.D.
【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.
【解答】解:A、该图形是中心对称图形,正确,
B、该图形不是中心对称图形,错误;
C、该图形不是中心对称图形,错误;
D、该图形是轴对称图形,错误;
故选:A.
【点评】此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.
4.下列说法中,正确的是()
A.不可能事件发生的概率是0
B.打开电视机正在播放动画片,是必然事件
C.随机事件发生的概率是
D.对“梦想的声音”节目收视率的调查,宜采用普查
【分析】根据事件发生的可能性大小判断相应事件的类型即可.
【解答】解:A、不可能事件发生的概率是0,故A符合题意;
B、打开电视机正在播放动画片,是随机事件,故B不符合题意;
C、随机事件发生的概率是0<P<1,故C不符合题意;
D、对“梦想的声音”节目收视率的调查,宜采用抽样调查,故D不符合题意;
故选:A.
【点评】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能
不发生的事件.
5.如图,A,B,C三点在⊙O上,且∠BOC=100°,则∠A的度数为()
A.40°B.50°C.80°D.100°
【分析】在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半,由此可得出答案.
【解答】解:由题意得∠A=∠BOC=×100°=50°.
故选:B.
【点评】本题考查了圆周角定理,属于基础题,掌握圆周角定理的内容是解答本题的关键.
6.下列图象中是反比例函数y=﹣图象的是()
A.B.
C.D.
【分析】利用反比例函数图象是双曲线进而判断得出即可.
【解答】解:反比例函数y=﹣图象的是C.
故选:C.
【点评】此题主要考查了反比例函数的图象,正确掌握反比例函数图象的形状是解题关键.
7.如图,二次函数y=ax2+bx+c的图象与x轴交于(﹣2,0)和(4,0)两点,当函数值y>0时,自变量x的取值范围是()
A.x<﹣2B.x>4C.﹣2<x<4D.x>0
【分析】由抛物线与x轴的交点坐标,结合图象即可解决问题.
【解答】解:
∵二次函数y=ax2+bx+c的图象与x轴交于(﹣2,0)和(4,0)两点,函数开口向下,∴函数值y>0时,自变量x的取值范围是﹣2<x<4,
故选:C.
【点评】本题考查抛物线与x轴的交点,解题的关键是学会根据图象确定自变量的取值范围,属于中考常考题型.
8.在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号小于4的概率为()
A.B.C.D.
【分析】由在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,直接利用概率公式求解即可求得答案.
【解答】解:∵在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,
∴从中随机摸出一个小球,其标号小于4的概率为:.
故选:C.
【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.
9.如图,△ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()
A.B.
C.D.
【分析】根据相似三角形的判定定理对各选项进行逐一判定即可.
【解答】解:A、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;
B、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;
C、两三角形的对应边不成比例,故两三角形不相似,故本选项正确;
D、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误.
故选:C.
【点评】本题考查的是相似三角形的判定,熟知相似三角形的判定定理是解答此题的关键.
10.如图,将△ABC绕着点C按顺时针方向旋转20°,B点落在B′位置,A点落在A′位置,若AC⊥A′B′,则∠BAC的度数是()
A.50°B.60°C.70°D.80°
【分析】根据旋转的性质可知,∠BCB′=∠ACA′=20°,又因为AC⊥A′B′,则∠BAC的度数可求.
【解答】解:∵△ABC绕着点C按顺时针方向旋转20°,B点落在B′位置,A点落在A′位置
∴∠BCB′=∠ACA′=20°
∵AC⊥A′B′,
∴∠BAC=∠A′=90°﹣20°=70°.
故选:C.
【点评】本题考查旋转的性质:旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.要注意旋转的三要素:①定点﹣旋转中心;②旋转方向;③旋转角度.
11.边长为a的正三角形的内切圆的半径为()
A.a B.a C.a D.a
【分析】根据等边三角形的三线合一,可以构造一个由其内切圆的半径、外接圆的半径和半边组成的30°的直角三角形,利用锐角三角函数关系求出内切圆半径即可.【解答】解:∵内切圆的半径、外接圆的半径和半边组成一个30°的直角三角形,
则∠OBD=30°,BD=,
∴tan∠BOD==,
∴内切圆半径OD=×=a.
故选:D.
【点评】此题主要考查了三角形的内切圆,注意:根据等边三角形的三线合一,可以发现其内切圆的半径、外接圆的半径和半边正好组成了一个30°的直角三角形.12.反比例函数y1=(x>0)的图象与一次函数y2=﹣x+b的图象交于A,B两点,其中A(1,2),当y2>y1时,x的取值范围是()
A.x<1B.1<x<2C.x>2D.x<1或x>2
【分析】根据函数解析式画出函数的大致图象,根据图象作出选择.
【解答】解:根据双曲线关于直线y=x对称易求B(2,1).依题意得:
如图所示,当1<x<2时,y2>y1.
故选:B.
【点评】本题考查了反比例函数与一次函数的交点问题.此题利用了双曲线的对称性求得点B的坐标是解题的关键.
13.如图,在▱ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,S△DEF:S △ABF
=4:25,则DE:EC=()
A.2:5B.2:3C.3:5D.3:2
【分析】先根据平行四边形的性质及相似三角形的判定定理得出△DEF∽△BAF,再根据S△DEF:S△ABF=4:25即可得出其相似比,由相似三角形的性质即可求出DE:AB的值,由AB=CD即可得出结论.
【解答】解:∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠EAB=∠DEF,∠AFB=∠DFE,
∴△DEF∽△BAF,
∵S
△DEF :S
△ABF
=4:25,
∴DE:AB=2:5,
∵AB=CD,
∴DE:EC=2:3.
故选:B.
【点评】本题考查的是相似三角形的判定与性质及平行四边形的性质,熟知相似三角形
边长的比等于相似比,面积的比等于相似比的平方是解答此题的关键.
14.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了182件.如果全组共有x名同学,则根据题意列出的方程是()
A.x(x+1)=182B.x(x+1)=182×
C.x(x﹣1)=182D.x(x﹣1)=182×2
【分析】先求每名同学赠的标本,再求x名同学赠的标本,而已知全组共互赠了182件,故根据等量关系可得到方程.
【解答】解:设全组有x名同学,
则每名同学所赠的标本为:(x﹣1)件,
那么x名同学共赠:x(x﹣1)件,
所以,x(x﹣1)=182.
故选:C.
【点评】本题考查一元二次方程的实际运用:要全面、系统地弄清问题的已知和未知,以及它们之间的数量关系,找出并全面表示问题的相等关系,设出未知数,用方程表示出已知量与未知量之间的等量关系,即列出一元二次方程.
15.如图,在平面直角坐标系中,已知点A(﹣3,6)、B(﹣9,﹣3),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是()
A.(﹣1,2)B.(﹣9,18)
C.(﹣9,18)或(9,﹣18)D.(﹣1,2)或(1,﹣2)
【分析】根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k解答.
【解答】解:∵点A(﹣3,6),以原点O为位似中心,相似比为,把△ABO缩小,∴点A的对应点A′的坐标是(﹣1,2)或(1,﹣2),
故选:D.
【点评】本题考查的是位似变换的概念和性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k.16.二次函数y=ax2+bx+c的图象如图所示,则下列结论中错误的是()
A.函数有最小值
B.当﹣1<x<2时,y>0
C.a+b+c<0
D.当x<,y随x的增大而减小
【分析】A、观察可判断函数有最小值;B、由抛物线可知当﹣1<x<2时,可判断函数值的符号;C、观察当x=1时,函数值的符号,可判断a+b+c的符号;D、由抛物线对称轴和开口方向可知y随x的增大而减小,可判断结论.
【解答】解:A、由图象可知函数有最小值,故正确;
B、由抛物线可知当﹣1<x<2时,y<0,故错误;
C、当x=1时,y<0,即a+b+c<0,故正确;
D、由图象可知在对称轴的左侧y随x的增大而减小,故正确.
故选:B.
【点评】本题考查了二次函数图象的性质与解析式的系数的关系.关键是熟悉各项系数与抛物线的各性质的联系.
二、填空题(共4小题,每小题3分,满分12分)
17.关于x的方程kx2﹣4x﹣=0有实数根,则k的取值范围是k≥﹣6.
【分析】由于k的取值不确定,故应分k=0(此时方程化简为一元一次方程)和k≠0(此时方程为二元一次方程)两种情况进行解答.
【解答】解:当k=0时,﹣4x﹣=0,解得x=﹣,
当k≠0时,方程kx2﹣4x﹣=0是一元二次方程,
根据题意可得:△=16﹣4k×(﹣)≥0,
解得k≥﹣6,k≠0,
综上k≥﹣6,
故答案为k≥﹣6.
【点评】本题考查的是根的判别式,注意掌握一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.同时解答此题时要注意分k=0和k≠0两种情况进行讨论.
18.如图,AB为⊙O的弦,⊙O的半径为5,OC⊥AB于点D,交⊙O于点C,且CD=1,则弦AB的长是6.
【分析】连接AO,得到直角三角形,再求出OD的长,就可以利用勾股定理求解.【解答】解:连接AO,
∵半径是5,CD=1,
∴OD=5﹣1=4,
根据勾股定理,
AD===3,
∴AB=3×2=6,
因此弦AB的长是6.
【点评】解答此题不仅要用到垂径定理,还要作出辅助线AO,这是解题的关键.19.如图,点A在双曲线上,点B在双曲线y=上,且AB∥x轴,C、D在x轴上,若四边形ABCD为矩形,则它的面积为2.
【分析】根据双曲线的图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的矩形的面积S的关系S=|k|即可判断.
【解答】解:过A点作AE⊥y轴,垂足为E,
∵点A在双曲线上,
∴四边形AEOD的面积为1,
∵点B在双曲线y=上,且AB∥x轴,
∴四边形BEOC的面积为3,
∴矩形ABCD的面积为3﹣1=2.
故答案为:2.
【点评】本题主要考查了反比例函数中k的几何意义,即过双曲线上任意一点引x 轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.
20.如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去….若点A(,0),B(0,4),则点B2016的坐标为(10080,
4).
【分析】根据图形和旋转规律可得出B n点坐标的变换规律,结合三角形的周长,即可得出结论.
【解答】解:在直角三角形OAB中,OA=,OB=4,
由勾股定理可得:AB=,
△OAB的周长为:OA+OB+AB=+4+=10,
研究三角形旋转可知,当n为偶数时B n在最高点,当n为奇数时B n在x轴上,横坐标规律为:
,
∵2016为偶数,
∴B2016(×10,4).
故答案为:(10080,4).
【点评】本题考查的坐标与图形的变换,解题的关键是在变换中找到规律,结合图形得出结论.
三、解答题(共6小题,满分60分)
21.(8分)已知一元二次方程(m﹣1)x2+7mx+m2+3m﹣4=0有一个根为零,求m的值.【分析】由于一元二次方程(m﹣1)x2+7mx+m2+3m﹣4=0有一个根为零,那么把x=0代入方程即可得到关于m的方程,解这个方程即可求出m的值.
【解答】解:∵一元二次方程(m﹣1)x2+7mx+m2+3m﹣4=0有一个根为零,
∴把x=0代入方程中得
m2+3m﹣4=0,
∴m1=﹣4,m2=1.
由于在一元二次方程中m﹣1≠0,故m≠1,
∴m=﹣4
【点评】此题主要考查了方程解的定义和解一元二次方程,此类题型的特点是,利用方程解的定义找到所求字母的方程,再解此方程即可解决问题.
22.(10分)在某电视台的一档选秀节目中,有三位评委,每位评委在选手完成才艺表演后,出示“通过”(用√表示)或“淘汰”(用×表示)的评定结果,节目组规定:每位选手至少获得两位评委的“通过”才能晋级
(1)请用树形图列举出选手A获得三位评委评定的各种可能的结果;
(2)求选手A晋级的概率.
【分析】(1)利用树状图列举出所有可能即可,注意不重不漏的表示出所有结果;(2)列举出所有情况,让至少有两位评委给出“通过”的结论的情况数除以总情况数即为所求的概率.
【解答】解:(1)画出树状图来说明评委给出A选手的所有可能结果:
;
(2)∵由上可知评委给出A选手所有可能的结果有8种.并且它们是等可能的,对于A选手,晋级的可能有4种情况,
∴对于A选手,晋级的概率是:.
【点评】本题主要考查了树状图法求概率.树状图法可以不重不漏地列举出所有可能发生的情况,适合于两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
23.(10分)如图,AB、CD为⊙O的直径,弦AE∥CD,连接BE交CD于点F,过点E 作直线EP与CD的延长线交于点P,使∠PED=∠C.
(1)求证:PE是⊙O的切线;
(2)求证:ED平分∠BEP.
【分析】(1)连接OE,如图,利用圆周角定理得到∠CED=90°,即∠CEO+∠OED=90°,加上∠C=∠CEO,∠PED=∠C.则∠PED+∠OED=90°,即∠OEP=90°,然后根据切线的性质定理可判定PE是⊙O的切线;
(2)利用圆周角定理得到∠AEB=90°,再利用AE∥CD得到∠EFD=90°,接着利用等角的余角相等可判断∠FED=∠C,所以∠PED=∠FED.
【解答】证明:(1)连接OE,如图,
∵CD为直径,
∴∠CED=90°,即∠CEO+∠OED=90°,
∵OC=OE,
∴∠C=∠CEO,
∴∠C+∠OED=90°,
∵∠PED=∠C.
∴∠PED+∠OED=90°,即∠OEP=90°,
∴OE⊥PE,
∴PE是⊙O的切线;
(2)∵AB为直径,
∴∠AEB=90°,
而AE∥CD,
∴∠EFD=90°,
∴∠FED+∠EDF=90°,
而∠C+∠EDC=90°,
∴∠FED=∠C,
∴∠PED=∠FED,
∴ED平分∠BEP.
【点评】本题考查了切线的性质:经过半径的外端且垂直于这条半径的直线是圆的切线.当已知条件中明确指出直线与圆有公共点时,常连接过该公共点的半径,证明该半径垂直于这条直线.也考查了圆周角定理.
24.(10分)白溪镇2012年有绿地面积57.5公顷,该镇近几年不断增加绿地面积,2014年达到82.8公顷.
(1)求该镇2012至2014年绿地面积的年平均增长率;
(2)若年增长率保持不变,2015年该镇绿地面积能否达到100公顷?
【分析】(1)设每绿地面积的年平均增长率为x,就可以表示出2014年的绿地面积,根据2014年的绿地面积达到82.8公顷建立方程求出x的值即可;
(2)根据(1)求出的年增长率就可以求出结论.
【解答】解:(1)设绿地面积的年平均增长率为x,根据意,得
57.5(1+x)2=82.8
解得:x1=0.2,x2=﹣2.2(不合题意,舍去)
答:增长率为20%;
(2)由题意,得
82.8(1+0.2)=99.36公顷,
答:2015年该镇绿地面积不能达到100公顷.
【点评】本题考查了增长率问题的数量关系的运用,运用增长率的数量关系建立一元二次方程的运用,一元二次方程的解法的运用,解答时求出平均增长率是关键.25.(10分)如图,点A(3,5)关于原点O的对称点为点C,分别过点A,C作y轴的平行线,与反比例函数y=(0<k<15)的图象交于点B,D,连接AD,BC,AD与x轴交于点E(﹣2,0).
(1)求k的值;
(2)直接写出阴影部分面积之和.
【分析】(1)根据点A和点E的坐标求得直线AE的解析式,然后设出点D的纵坐标,代入直线AE的解析式即可求得点D的坐标,从而求得k值;
(2)根据中心对称的性质得到阴影部分的面积等于平行四边形CDGF的面积即可.【解答】解:(1)∵A(3,5)、E(﹣2,0),
∴设直线AE的解析式为y=kx+b,
则,
解得:,
∴直线AE的解析式为y=x+2,
∵点A(3,5)关于原点O的对称点为点C,
∴点C的坐标为(﹣3,﹣5),
∵CD∥y轴,
∴设点D的坐标为(﹣3,a),
∴a=﹣3+2=﹣1,
∴点D的坐标为(﹣3,﹣1),
∵反比例函数y=(0<k<15)的图象经过点D,
∴k=﹣3×(﹣1)=3;
(2)如图:
∵点A和点C关于原点对称,
∴阴影部分的面积等于平行四边形CDGF的面积,
3=12.
∴S
阴影=4×
【点评】本题考查了反比例函数与一次函数的交点问题,解题的关键是能够确定点D的坐标,难度不大.
26.(12分)如图,已知抛物线y=ax2+bx﹣3与x轴的一个交点为A(﹣1,0),另一个交点为B,与y轴的交点为C,其顶点为D,对称轴为直线x=1.
(1)求抛物线的解析式;
(2)已知点M为y轴上的一个动点,当△ACM是以AC为一腰的等腰三角形时,求点M的坐标.
【分析】(1)利用对称性可得B(3,0),则利用交点式得抛物线解析式为y=a(x+1)(x ﹣3)=ax2﹣2ax﹣3a,所以﹣3a=3,解得a=1,于是得到抛物线解析式为y=x2﹣2x﹣3;(2)分类讨论:当AC=AM时,易得点M1(0,3),如图;②当CM=CA时,先计算出AC=,再以C点为圆心,CA为半径画弧交y轴于M2,M3,如图,易得M2(0,﹣3),M3(0,﹣﹣3).
【解答】解:(1)∵点A(﹣1,0)和点B关于直线x=1对称,
∴B(3,0),
∴抛物线解析式为y=a(x+1)(x﹣3)=ax2﹣2ax﹣3a,
∴﹣3a=3,解得a=1,
∴抛物线解析式为y=x2﹣2x﹣3;
(2)当AC=AM时,点M1与点C关于x轴对称,则M1(0,3),如图;
②当CM=CA时,AC==,
以C点为圆心,CA为半径画弧交y轴于M2,M3,如图,则OM2=﹣1,OM3=OC+CM3=3+,则M2(0,﹣3),M3(0,﹣﹣3).
综上所述,满足条件的点M的坐标为(0,3),(0,﹣3),(0,﹣﹣3).
【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.解决(2)小题的关键是利用等腰三角形的性质画出点M的坐标.。