代县二中学校2018-2019学年高二上学期二次月考试卷数学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
代县第二中学校2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________
一、选择题
1. 给出下列各函数值:①sin100°;②cos (﹣100°);③tan (﹣100°);④.其中符号为
负的是( ) A .①
B .②
C .③
D .④
2. 对一切实数x ,不等式x 2+a|x|+1≥0恒成立,则实数a 的取值范围是( )
A .(﹣∞,﹣2)
B . D .上是减函数,那么b+c ( )
A .有最大值
B .有最大值﹣
C .有最小值
D .有最小值﹣
3. 设平面α与平面β相交于直线m ,直线a 在平面α内,直线b 在平面β内,且b ⊥m ,则“α⊥β”是“a ⊥b ”
的( ) A .必要不充分条件
B .充分不必要条件
C .充分必要条件
D .既不充分也不必要条件
4. 设长方体的长、宽、高分别为2a 、a 、a ,其顶点都在一个球面上,则该球的表面积为( ) A .3πa 2 B .6πa 2 C .12πa 2D .24πa 2 5. 下列命题中的假命题是( )
A .∀x ∈R ,2x ﹣1>0
B .∃x ∈R ,lgx <1
C .∀x ∈N +,(x ﹣1)2>0
D .∃x ∈R ,tanx=2
6. 设F 为双曲线22
221(0,0)x y a b a b
-=>>的右焦点,若OF 的垂直平分线与渐近线在第一象限内的交点到
另一条渐近线的距离为1
||2OF ,则双曲线的离心率为( )
A .
B
C .
D .3
【命题意图】本题考查双曲线方程与几何性质,意在考查逻辑思维能力、运算求解能力、方程思想.
7. 复数
的虚部为( )
A .﹣2
B .﹣2i
C .2
D .2i
8. 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若sinB=2sinC ,a 2﹣c 2=3bc ,则A 等于( ) A .30° B .60° C .120° D .150°
9. 已知抛物线C :y x 82
=的焦点为F ,
准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若2=,
则=QF ( ) A .6
B .3
C .
3
8 D .
3
4 第Ⅱ卷(非选择题,共100分) 10.设集合3|01x A x x -⎧⎫
=<⎨⎬+⎩⎭
,集合(){}2|220B x x a x a =+++>,若 A B ⊆,则的取值范围 ( )
A .1a ≥
B .12a ≤≤ C.a 2≥ D .12a ≤< 11.下列各组表示同一函数的是( )
A .y=
与y=(
)2
B .y=lgx 2与y=2lgx
C .y=1+与y=1+
D .y=x 2﹣1(x ∈R )与y=x 2﹣1(x ∈N )
12.下列关系式中正确的是( )
A .sin11°<cos10°<sin168°
B .sin168°<sin11°<cos10°
C .sin11°<sin168°<cos10°
D .sin168°<cos10°<sin11°
二、填空题
13.已知曲线y=(a ﹣3)x 3+lnx 存在垂直于y 轴的切线,函数f (x )=x 3﹣ax 2﹣3x+1在[1,2]上单调递减,则a 的范围为 .
14.如图,在三棱锥P ABC -中,PA PB PC ==,PA PB ⊥,PA PC ⊥,PBC △为等边三角形,则PC 与平面ABC 所成角的正弦值为______________.
【命题意图】本题考查空间直线与平面所成角的概念与计算方法,意在考查学生空间想象能力和计算能力. 15.自圆C :2
2
(3)(4)4x y -++=外一点(,)P x y 引该圆的一条切线,切点为Q ,切线的长度等于点P 到原点O 的长,则PQ 的最小值为( ) A .
1310 B .3 C .4 D .2110
【命题意图】本题考查直线与圆的位置关系、点到直线的距离,意在考查逻辑思维能力、转化能力、运算求解能力、数形结合的思想.
16.甲、乙两个箱子里各装有2个红球和1个白球,现从两个箱子中随机各取一个球,则至少有一
个红球的概率为.
17.如图,是一回形图,其回形通道的宽和OB1的长均为1,回形线与射线OA交于A1,A2,A3,…,若从点O到点A3的回形线为第1圈(长为7),从点A3到点A2的回形线为第2圈,从点A2到点A3的回形线为第3圈…依此类推,第8圈的长为.
18.设p:实数x满足不等式x2﹣4ax+3a2<0(a<0),q:实数x满足不等式x2﹣x﹣6≤0,已知¬p是¬q的必要非充分条件,则实数a的取值范围是.
三、解答题
19.A={x|x2﹣3x+2=0},B={x|ax﹣2=0},若B⊆A,求a.
20.已知a,b,c分别为△ABC三个内角A,B,C的对边,c=asinC﹣ccosA.
(1)求A;
(2)若a=2,△ABC的面积为,求b,c.
21.已知函数f (x )=在(,f ())处的切线方程为8x ﹣9y+t=0(m ∈N ,t ∈R )
(1)求m 和t 的值;
(2)若关于x 的不等式f (x )≤ax+在[,+∞)恒成立,求实数a 的取值范围.
22.已知函数f (x )=(ax 2+x ﹣1)e x ,其中e 是自然对数的底数,a ∈R .
(Ⅰ)若a=0,求曲线f (x )在点(1,f (1))处的切线方程;
(Ⅱ)若
,求f (x )的单调区间;
(Ⅲ)若a=﹣1,函数f (x )的图象与函数的图象仅有1个公共点,求实数m 的取值范
围.
23.在直角坐标系xOy 中,曲线C 1的参数方程为C 1:
为参数),曲线C 2: =1.
(Ⅰ)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,求C 1,C 2的极坐标方程;
(Ⅱ)射线θ=(ρ≥0)与C 1的异于极点的交点为A ,与C 2的交点为B ,求|AB|.
24.【2017-2018学年度第一学期如皋市高三年级第一次联考】设函数()1
ln 1f x a x x
=+
-. (1)当2a =时,求函数()f x 在点()()
11f ,
处的切线方程; (2)讨论函数()f x 的单调性;
(3)当102a <<时,求证:对任意1+2x ⎛⎫∈∞ ⎪⎝⎭,,都有1e x a
a x +⎛⎫
+< ⎪
⎝⎭
.
代县第二中学校2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题
1.【答案】B
【解析】解::①sin100°>0,②cos(﹣100°)=cos100°<0,③tan(﹣100°)=﹣tan100>0,
④∵sin>0,cosπ=﹣1,tan<0,
∴>0,
其中符号为负的是②,
故选:B.
【点评】本题主要考查三角函数值的符号的判断,判断角所在的象限是解决本题的关键,比较基础.
2.【答案】B
【解析】解:由f(x)在上是减函数,知
f′(x)=3x2+2bx+c≤0,x∈,
则
⇒15+2b+2c≤0⇒b+c≤﹣.
故选B.
3.【答案】B
【解析】解:∵b⊥m,∴当α⊥β,则由面面垂直的性质可得a⊥b成立,
若a⊥b,则α⊥β不一定成立,
故“α⊥β”是“a⊥b”的充分不必要条件,
故选:B.
【点评】本题主要考查充分条件和必要条件的判断,利用线面垂直的性质是解决本题的关键.
4.【答案】B
【解析】解:根据题意球的半径R满足
(2R)2=6a2,
所以S球=4πR2=6πa2.
故选B
5.【答案】C
【解析】解:A.∀x∈R,2x﹣1=0正确;
B.当0<x<10时,lgx<1正确;
C.当x=1,(x﹣1)2=0,因此不正确;
D.存在x∈R,tanx=2成立,正确.
综上可知:只有C错误.
故选:C.
【点评】本题考查了指数函数与对数函数、正切函数的单调性,属于基础题.
6.【答案】B
【解析】
7.【答案】C
【解析】解:复数===1+2i的虚部为2.
故选;C.
【点评】本题考查了复数的运算法则、虚部的定义,属于基础题.
8.【答案】C
【解析】解:由sinB=2sinC,由正弦定理可知:b=2c,代入a2﹣c2=3bc,
可得a2=7c2,
所以cosA===﹣,
∵0<A<180°,
∴A=120°.
故选:C.
【点评】本题考查正弦定理以及余弦定理在解三角形中的应用,考查了转化思想,属于基本知识的考查.
9. 【答案】A
解析:抛物线C :y x 82 的焦点为F (0,2),准线为l :y=﹣2,
设P (a ,﹣2),B (m ,),则
=(﹣a ,4),
=(m ,
﹣2),
∵
,∴2m=﹣a ,4=
﹣4,∴m 2=32,由抛物线的定义可得|QF|=
+2=4+2=6.故选A .
10.【答案】A 【解析】
考
点:集合的包含关系的判断与应用.
【方法点晴】本题主要考查了集合的包含关系的判定与应用,其中解答中涉及到分式不等式的求解,一元二次不等式的解法,集合的子集的相关的运算等知识点的综合考查,着重考查了转化与化归思想、分类讨论思想的应用,以及学生的推理与运算能力,属于中档试题,本题的解答中正确求解每个不等式的解集是解答的关键. 11.【答案】C
【解析】解:A .y
=|x|,定义域为R ,y=()2
=x ,定义域为{x|x ≥0},定义域不同,不能表示同一函数.
B .y=lgx 2,的定义域为{x|x ≠0},y=2lgx 的定义域为{x|x >0},所以两个函数的定义域不同,所以不能表示同一函数.
C .两个函数的定义域都为{x|x ≠0},对应法则相同,能表示同一函数.
D .两个函数的定义域不同,不能表示同一函数.
故选:C .
【点评】本题主要考查判断两个函数是否为同一函数,判断的标准就是判断两个函数的定义域和对应法则是否一致,否则不是同一函数.
12.【答案】C
【解析】解:∵sin168°=sin(180°﹣12°)=sin12°,
cos10°=sin(90°﹣10°)=sin80°.
又∵y=sinx在x∈[0,]上是增函数,
∴sin11°<sin12°<sin80°,即sin11°<sin168°<cos10°.
故选:C.
【点评】本题主要考查诱导公式和正弦函数的单调性的应用.关键在于转化,再利用单调性比较大小.二、填空题
13.【答案】.
【解析】解:因为y=(a﹣3)x3+lnx存在垂直于y轴的切线,即y'=0有解,即
y'=在x>0时有解,
所以3(a﹣3)x3+1=0,即a﹣3<0,所以此时a<3.
函数f(x)=x3﹣ax2﹣3x+1在[1,2]上单调递减,则f'(x)≤0恒成立,
即f'(x)=3x2﹣2ax﹣3≤0恒成立,即,
因为函数在[1,2]上单调递增,所以函数的最大值为,
所以,所以.
综上.
故答案为:.
【点评】本题主要考查导数的基本运算和导数的应用,要求熟练掌握利用导数在研究函数的基本应用.
14.【答案】
7
【解析】
15.【答案】D
【解析】
8
16.【答案】
9
【解析】
【易错点睛】古典概型的两种破题方法:(1)树状图是进行列举的一种常用方法,适合于有顺序的问题及较复杂问题中基本事件数的探求.另外在确定基本事件时,),(y x 可以看成是有序的,如()1,2与()2,1不同;有
时也可以看成是无序的,如)1,2)(2,1(相同.(2)含有“至多”、“至少”等类型的概率问题,从正面突破比较困难或者比较繁琐时,考虑其反面,即对立事件,应用)(1)(A P A P -=求解较好. 17.【答案】 63 .
【解析】解:∵第一圈长为:1+1+2+2+1=7 第二圈长为:2+3+4+4+2=15
第三圈长为:3+5+6+6+3=23 …
第n 圈长为:n+(2n ﹣1)+2n+2n+n=8n ﹣1 故n=8时,第8圈的长为63, 故答案为:63.
【点评】本题主要考查了归纳推理,解答的一般步骤是:先通过观察第1,2,3,…圈的长的情况发现某些相同性质,再从相同性质中推出一个明确表达的一般性结论,最后将一般性结论再用于特殊情形.
18.【答案】
.
【解析】解:∵x 2﹣4ax+3a 2
<0(a <0), ∴(x ﹣a )(x ﹣3a )<0, 则3a <x <a ,(a <0), 由x 2
﹣x ﹣6≤0得﹣2≤x ≤3,
∵¬p 是¬q 的必要非充分条件, ∴q 是p 的必要非充分条件,
即,即≤a<0,
故答案为:
三、解答题
19.【答案】
【解析】解:解:集合A={x|x2﹣3x+2=0}={1,2}
∵B⊆A,
∴(1)B=∅时,a=0
(2)当B={1}时,a=2
(3))当B={2}时,a=1
故a值为:2或1或0.
20.【答案】
【解析】解:(1)c=asinC﹣ccosA,由正弦定理有:
sinAsinC﹣sinCcosA﹣sinC=0,即sinC•(sinA﹣cosA﹣1)=0,又,sinC≠0,
所以sinA﹣cosA﹣1=0,即2sin(A﹣)=1,
所以A=;
(2)S
△ABC=bcsinA=,所以bc=4,
a=2,由余弦定理得:a2=b2+c2﹣2bccosA,即4=b2+c2﹣bc,
即有,
解得b=c=2.
21.【答案】
【解析】解:(1)函数f(x)的导数为f′(x)=,
由题意可得,f()=,f′()=,
即=,且=,
由m∈N,则m=1,t=8;
(2)设h(x)=ax+﹣,x≥.
h()=﹣≥0,即a≥,
h′(x)=a﹣,当a≥时,若x>,h′(x)>0,①
若≤x≤,设g(x)=a﹣,
g′(x)=﹣<0,g(x)在[,]上递减,且g()≥0,
则g(x)≥0,即h′(x)≥0在[,]上恒成立.②
由①②可得,a≥时,h′(x)>0,h(x)在[,+∞)上递增,h(x)≥h()=≥0,
则当a≥时,不等式f(x)≤ax+在[,+∞)恒成立;
当a<时,h()<0,不合题意.
综上可得a≥.
【点评】本题考查导数的运用:求切线方程和求单调区间,主要考查不等式恒成立问题转化为求函数最值,正确求导和分类讨论是解题的关键.
22.【答案】
【解析】解:(Ⅰ)∵a=0,∴f(x)=(x﹣1)e x,f′(x)=e x+(x﹣1)e x=xe x,
∴曲线f(x)在点(1,f(1))处的切线斜率为k=f(1)=e.
又∵f(1)=0,∴所求切线方程为y=e(x﹣1),
即.ex﹣y﹣4=0
(Ⅱ)f′(x)=(2ax+1)e x+(ax2+x﹣1)e x=[ax2+(2a+1)x]e x=[x(ax+2a+1)]e x,
①若a=﹣,f′(x)=﹣x2e x≤0,∴f(x)的单调递减区间为(﹣∞,+∞),
②若a<﹣,当x<﹣或x>0时,f′(x)<0;
当﹣<x<0时,f′(x)>0.
∴f (x )的单调递减区间为(﹣∞,﹣],[0,+∞);单调递增区间为[﹣,0]. (Ⅲ)当a=﹣1时,由(Ⅱ)③知,f (x )=(﹣x 2+x ﹣1)e x
在(﹣∞,﹣1)上单调递减,
在[﹣1,0]单调递增,在[0,+∞)上单调递减,
∴f (x )在x=﹣1处取得极小值f (﹣1)=﹣,在x=0处取得极大值f (0)=﹣1,
由
,得g ′(x )=2x 2
+2x .
当x <﹣1或x >0时,g ′(x )>0;当﹣1<x <0时,g ′(x )<0.
∴g (x )在(﹣∞,﹣1]上单调递增,在[﹣1,0]单调递减,在[0,+∞)上单调递增.
故g (x )在x=﹣1处取得极大值,
在x=0处取得极小值g (0)=m ,
∵数f (x )与函数g (x )的图象仅有1个公共点,
∴g (﹣1)<f (﹣1)或g (0)>f (0),即.
.
【点评】本题考查了曲线的切线方程问题,考查函数的单调性、极值问题,考查导数的应用,是一道中档题.
23.【答案】
【解析】解:(Ⅰ)曲线为参数)可化为普通方程:(x ﹣1)2+y 2
=1,
由可得曲线C 1的极坐标方程为ρ=2cos θ,曲线C 2的极坐标方程为ρ2(1+sin 2
θ)=2.
(Ⅱ)射线与曲线C 1的交点A 的极径为,
射线与曲线C 2的交点B 的极径满足
,解得
,
所以
.
24.【答案】(1)10x y --=;(2)见解析;(3)见解析. 【解析】试题分析:(1)当2a =时,求出导数易得()'11f =,即1k =,利用点斜式可得其切线方程;(2)
求得可得()2
1'ax f x x -=
,分为0a ≤和0a >两种情形判断其单调性;(3)当1
02
a <<时,根据(2)可 得函数()f x 在()12,上单调递减,故()11a f f x ⎛⎫+< ⎪⎝⎭,即ln 1a a a x x a
⎛⎫
+<
⎪+⎝⎭,化简可得所证结论. 试题解析:(1)当2a =时,
()12ln 1f x x x =+
-,()112ln1101f =+-=,()221'f x x x =-,()221
'1111
f =-=,所以函数()f x 在点()10,处的切线方程为()011y x -=⨯-,即10x y --=. (2)()1ln 1f x a x x =+
-,定义域为()0+∞,,()2211
'a ax f x x x x
-=-=. ①当0a ≤时,()'0f x <,故函数()f x 在()0+∞,上单调递减; ②当0a >时,令()'0f x =,得1
x
= 综上所述,当0a ≤时,()f x 在()0+∞,上单调递减;当0a >时,函数()f x 在10a ⎛
⎫ ⎪⎝⎭
,上单调递减,在
1a ⎛⎫+∞ ⎪⎝⎭
,上单调递增. (3)当102a <<时,由(2)可知,函数()f x 在10a ⎛⎫ ⎪⎝⎭,上单调递减,显然,12a >,故()1120a ⎛⎫
⊆ ⎪⎝⎭
,,,
所以函数()f x 在()12,上单调递减,对任意1+2x ⎛⎫
∈∞ ⎪⎝⎭
,,都有01a x <<,所以112a x <+<.所以
()11a f f x ⎛⎫+< ⎪⎝⎭,即1ln 1101a a a x x ⎛⎫++-< ⎪⎝⎭+,所以ln 1a a a x x a ⎛⎫+< ⎪+⎝⎭,即1ln 1a x x a
⎛⎫
+< ⎪+⎝⎭,所以()ln 11a x a x ⎛⎫++< ⎪⎝⎭,即ln 11x a
a x +⎛⎫
+<
⎪⎝⎭
,所以1e x a
a x +⎛⎫
+< ⎪
⎝⎭
.。