白玉县第一中学校2018-2019学年高二上学期数学期末模拟试卷含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
白玉县第一中学校2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 在数列中,,,则该数列中相邻两项的乘积为负数的项是{}n a 115a =*
1332()n n a a n N +=-∈(
)
A .和
B .和
C .和
D .和21a 22a 22a 23a 23a 24a 24a 25
a 2. 数列{a n }是等差数列,若a 1+1,a 3+2,a 5+3构成公比为q 的等比数列,则q=(
)
A .1
B .2
C .3
D .4
3. 如图,在四棱锥P ﹣ABCD 中,PA ⊥平面ABCD ,底面ABCD 是菱形,AB=2,∠BAD=60°.(Ⅰ)求证:BD ⊥平面PAC ;
(Ⅱ)若PA=AB ,求PB 与AC 所成角的余弦值;(Ⅲ)当平面PBC 与平面PDC 垂直时,求PA 的长.
【考点】直线与平面垂直的判定;点、线、面间的距离计算;用空间向量求直线间的夹角、距离.4. O 为坐标原点,F 为抛物线的焦点,P 是抛物线C 上一点,若|PF|=4,则△POF 的面积为(
)A .1
B .
C .
D .2
5. 在极坐标系中,圆
的圆心的极坐标系是( )。
A
B C D
6. 如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆.在扇形OAB 内随机取一点,则此点取自阴影部分的概率是(
)
A .1﹣
B .﹣
C .
D .
7. 已知两条直线,其中为实数,当这两条直线的夹角在内变动12:,:0L y x L ax y =-=0,12π⎛⎫
⎪⎝⎭
时,的取值范围是(
)
A .
B .
C .
D .()0,1(⎫
⎪⎪⎭
(8. 若关于的不等式的解集为,则参数的取值范围为( )
x 07|2||1|>-+-++m x x R m A . B . C . D .),4(+∞),4[+∞)4,(-∞]
4,(-∞【命题意图】本题考查含绝对值的不等式含参性问题,强化了函数思想、化归思想、数形结合思想在本题中的应用,属于中等难度.
9. 在△ABC 中,若2cosCsinA=sinB ,则△ABC 的形状是( )
A .直角三角形
B .等边三角形
C .等腰直角三角形
D .等腰三角形
10.已知三棱锥A ﹣BCO ,OA 、OB 、OC 两两垂直且长度均为6,长为2的线段MN 的一个端点M 在棱OA 上运动,另一个端点N 在△BCO 内运动(含边界),则MN 的中点P 的轨迹与三棱锥的面所围成的几何体的体积为( )
A .
B .或36+
C .36﹣
D .或36﹣
11.双曲线=1(m ∈Z )的离心率为(
)
A .
B .2
C .
D .3
12.二项式的展开式中项的系数为10,则( )(1)(N )n x n *+Î3
x n =A .5
B .6
C .8
D .10
【命题意图】本题考查二项式定理等基础知识,意在考查基本运算能力.
二、填空题
13.函数在区间上递减,则实数的取值范围是 .
2
()2(1)2f x x a x =+-+(,4]-∞14.已知定义在R 上的奇函数()f x 满足(4)()f x f x +=,且(0,2)x ∈时2()1f x x =+,则(7)f 的值为
▲ .
15.运行如图所示的程序框图后,输出的结果是
16.在空间直角坐标系中,设,,且,则 .
)1,3(,m A )1,1,1(-B 22||=AB =m 17.设集合 ,满足
{
}{
}
2
2
|27150,|0A x x x B x x ax b =+-<=++≤,,求实数__________.
A B =∅ {}|52A B x x =-<≤ a =18.已知各项都不相等的等差数列,满足,且,则数列项中{}n a 223n n a a =-2
6121a a a =∙12n n S -⎧⎫
⎨
⎬⎩⎭
的最大值为_________.
三、解答题
19.如图,四棱锥中,,P ABC -,//,3,PA BC 4PA ABCD AD BC AB AD AC ⊥=====M 为线段上一点,为的中点.
AD 2,AM MD N =PC
(1)证明:平面;
//MN PAB (2)求直线与平面所成角的正弦值;
AN PMN
20.某商场销售某种品牌的空调器,每周周初购进一定数量的空调器,商场每销售一台空调器可获利500元,若供大于求,则每台多余的空调器需交保管费100元;若供不应求,则可从其他商店调剂供应,此时每台空调器仅获利润200元.
(Ⅰ)若该商场周初购进20台空调器,求当周的利润(单位:元)关于当周需求量n(单位:台,n∈N)的函数解析式f(n);
(Ⅱ)该商场记录了去年夏天(共10周)空调器需求量n(单位:台),整理得表:
周需求量n1819202122
频数12331
以10周记录的各需求量的频率作为各需求量发生的概率,若商场周初购进20台空调器,X表示当周的利润(单位:元),求X的分布列及数学期望.
21.已知A(﹣3,0),B(3,0),C(x0,y0)是圆M上的三个不同的点.
(1)若x0=﹣4,y0=1,求圆M的方程;
(2)若点C是以AB为直径的圆M上的任意一点,直线x=3交直线AC于点R,线段BR的中点为D.判断直线CD与圆M的位置关系,并证明你的结论.
22.(本小题满分10分)选修:几何证明选讲
41- 如图所示,已知与⊙相切,为切点,过点的割线交圆于两点,弦,相PA O A P C B ,AP CD //BC AD , 交于点,为上一点,且.E F CE EC EF DE ⋅=2(Ⅰ)求证:;
P EDF ∠=∠(Ⅱ)若,求的长.
2,3,2:3:===EF DE BE CE PA
23.已知数列{a n }和{b n }满足a 1•a 2•a 3…a n =2
(n ∈N *),若{a n }为等比数列,且a 1=2,b 3=3+b 2.
(1)求a n和b n;
(2)设c n=(n∈N*),记数列{c n}的前n项和为S n,求S n.
24.(本小题满分12分)
在△ABC中,∠A,∠B,∠C所对的边分别是a、b、c,不等式x2cos C+4x sin C+6≥0对一切实数x恒成立.
(1)求cos C的取值范围;
(2)当∠C取最大值,且△ABC的周长为6时,求△ABC面积的最大值,并指出面积取最大值时△ABC的形状.
【命题意图】考查三角不等式的求解以及运用基本不等式、余弦定理求三角形面积的最大值等.
白玉县第一中学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题
1.【答案】C
【解析】
考点:等差数列的通项公式.
2.【答案】A
【解析】解:设等差数列{a n}的公差为d,
由a1+1,a3+2,a5+3构成等比数列,
得:(a3+2)2=(a1+1)(a5+3),
整理得:a32+4a3+4=a1a5+3a1+a5+3
即(a1+2d)2+4(a1+2d)+4=a1(a1+4d)+4a1+4d+3.
化简得:(2d+1)2=0,即d=﹣.
∴q===1.
故选:A.
【点评】本题考查了等差数列的通项公式,考查了等比数列的性质,是基础的计算题.
3.【答案】
【解析】解:(I)证明:因为四边形ABCD是菱形,所以AC⊥BD,
又因为PA⊥平面ABCD,所以PA⊥BD,PA∩AC=A
所以BD⊥平面PAC
(II)设AC∩BD=O,因为∠BAD=60°,PA=AB=2,
所以BO=1,AO=OC=,
以O为坐标原点,分别以OB,OC为x轴、y轴,以过O且垂直于平面ABCD的直线为z轴,建立空间直角坐标系O﹣xyz,则
P(0,﹣,2),A(0,﹣,0),B(1,0,0),C(0,,0)
所以=(1,,﹣2),
设PB与AC所成的角为θ,则cosθ=|
(III)由(II)知,设,
则
设平面PBC的法向量=(x,y,z)
则=0,
所以令,
平面PBC的法向量所以,
同理平面PDC的法向量,因为平面PBC⊥平面PDC,
所以=0,即﹣6+=0,解得t=,
所以PA=.
【点评】本小题主要考查空间线面关系的垂直关系的判断、异面直线所成的角、用空间向量的方法求解直线的夹角、距离等问题,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力
4.【答案】C
【解析】解:由抛物线方程得准线方程为:y=﹣1,焦点F(0,1),
又P为C上一点,|PF|=4,
可得y P=3,
代入抛物线方程得:|x P|=2,
∴S△POF=|0F|•|x P|=.
故选:C.
5.【答案】B
【解析】,圆心直角坐标为(0,-1),极坐标为,选B。
6.【答案】A
【解析】解:设扇形的半径为r,则扇形OAB的面积为,
连接OC,把下面的阴影部分平均分成了2部分,然后利用位移割补的方法,分别平移到图中划线部分,则阴
影部分的面积为:﹣,
∴此点取自阴影部分的概率是.
故选A .
7. 【答案】C 【解析】1111]
试题分析:由直线方程,可得直线的倾斜角为,又因为这两条直线的夹角在,所以1:L y x =0
45α=0,12π⎛⎫
⎪⎝⎭
直线的倾斜角的取值范围是且
,所以直线的斜率为
2:0L ax y -=0
3060α<<045α≠
且或,故选C.00tan 30tan 60a <<0tan 45α≠1a <<1a <<考点:直线的倾斜角与斜率.8. 【答案】A
9. 【答案】D
【解析】解:∵A+B+C=180°,
∴sinB=sin (A+C )=sinAcosC+sinCcosA=2cosCsinA ,∴sinCcosA ﹣sinAcosC=0,即sin (C ﹣A )=0,∴A=C 即为等腰三角形.故选:D .
【点评】本题考查三角形形状的判断,考查和角的三角函数,比较基础.
10.【答案】D
【解析】
【分析】由于长为2的线段MN 的一个端点M 在棱OA 上运动,另一个端点N 在△BCO 内运动(含边界),有空间想象能力可知MN 的中点P 的轨迹为以O 为球心,以1为半径的球体,故MN 的中点P 的轨迹与三棱锥的面所围成的几何体的体积,利用体积分割及球体的体积公式即可.
【解答】解:因为长为2的线段MN 的一个端点M 在棱OA 上运动,另一个端点N 在△BCO 内运动(含边界), 有空间想象能力可知MN 的中点P 的轨迹为以O 为球心,以1为半径的球体,则MN 的中点P 的轨迹与三棱锥的面所围成的几何体可能为该球体的或该三棱锥减去此球体的,即:
或
.
故选D
11.【答案】B
【解析】解:由题意,m 2﹣4<0且m ≠0,∵m ∈Z ,∴m=1∵双曲线的方程是y 2﹣x 2=1∴a 2=1,b 2=3,∴c 2=a 2+b 2=4∴a=1,c=2,∴离心率为e==2.故选:B .
【点评】本题的考点是双曲线的简单性质,考查由双曲线的方程求三参数,考查双曲线中三参数的关系:c 2=a 2+b 2.
12.【答案】B
【解析】因为的展开式中项系数是,所以,解得,故选A .
(1)(N )n x n *+Î3
x 3C n 3
C 10n =5n =二、填空题
13.【答案】3a ≤-【解析】
试题分析:函数图象开口向上,对称轴为,函数在区间上递减,所以
()f x 1x a =-(,4]-∞.
14,3a a -≥≤-考点:二次函数图象与性质.14.【答案】2-【解析】1111]
试题分析:(4)()T 4f x f x +=⇒=,所以(7)(1)(1) 2.f f f =-=-=-考点:利用函数性质求值15.【答案】 0
【解析】解:模拟执行程序框图,可得程序框图的功能是计算并输出S=sin +sin
+…+sin
的值,
由于sin
周期为8,
所以S=sin +sin +…+sin =0.
故答案为:0.
【点评】本题主要考查了程序框图和算法,考查了正弦函数的周期性和特殊角的三角函数值的应用,属于基本知识的考查.
16.【答案】1【解析】试题分析:,解得:,故填:1.
()()()()22131112
22=-+--+-=
m AB 1=m 考点:空间向量的坐标运算17.【答案】7
,32
a b =-=【解析】
考
点:一元二次不等式的解法;集合的运算.
【方法点晴】本题主要考查了集合的综合运算问题,其中解答中涉及到一元二次不等式的解法、集合的交集和集合的并集的运算、以及一元二次方程中韦达定理的应用,试题有一定的难度,属于中档试题,着重考查了学生分析问题和解答问题的能力,同时考查了转化与化归思想的应用,其中一元二次不等式的求解是解答的关键.18.【答案】【解析】
考
点:1.等差数列的通项公式;2.等差数列的前项和.
【方法点睛】本题主要考查等差数列的通项公式和前项和公式.等差数列的通项公式及前项和公式,共涉及
五个量,知其中三个就能求另外两个,体现了用方程的思想解决问题.数列的通项公式和前项和公
1,,,,n n a a d n S 式在解题中起到变量代换作用,而是等差数列的两个基本量,用它们表示已知和未知是常用方法.
1,a d 三、解答题
19.【答案】(1)证明见解析;(2.【解析】
试
题解析:
(2)在三角形中,由,得AMC 22,3,cos 3
AM AC MAC ==∠=
,2222cos 5CM AC AM AC AN MAC =+-∠=A A ,则,
222AM MC AC +=AM MC ⊥∵底面平面,
PA ⊥,ABCD PA ⊂PAD ∴平面平面,且平面平面,ABCD ⊥PAD ABCD PAD AD =∴平面,则平面平面,
CM ⊥PAD PNM ⊥PAD 在平面内,过作,交于,连结,则为直线与平面所成角。
PAD A AF PM ⊥PM F NF ANF ∠AN PMN
在中,由,得,Rt PAM ∆PA AM PM AF =A A AF =sin ANF ∠=
所以直线与平面.1AN PMN
考点:立体几何证明垂直与平行.
20.【答案】
【解析】解:(I)当n≥20时,f(n)=500×20+200×(n﹣20)=200n+6000,
当n≤19时,f(n)=500×n﹣100×(20﹣n)=600n﹣2000,
∴.
(II)由(1)得f(18)=8800,f(19)=9400,f(20)=10000,f(21)=10200,f(22)=10400,
∴P(X=8800)=0.1,P(X=9400)=0.2,P(X=10000)=0.3,P(X=10200)=0.3,P(X=10400)=0.1,X的分布列为
X88009400100001020010400
P0.10.20.30.30.1
∴EX=8800×0.1+9400×0.2+10000×0.3+10200×0.3+10400×0.1=9860.
21.【答案】
【解析】解:(1)设圆的方程为x2+y2+Dx+Ey+F=0
圆的方程为x2+y2﹣8y﹣9=0…
(2)直线CD与圆M相切O、D分别是AB、BR的中点
则OD∥AR,∴∠CAB=∠DOB,∠ACO=∠COD,
又∠CAO=∠ACO,∴∠DOB=∠COD
又OC=OB,所以△BOD≌△COD
∴∠OCD=∠OBD=90°
即OC⊥CD,则直线CD与圆M相切.…
(其他方法亦可)
22.【答案】
【解析】【命题意图】本题考查相交弦定理、三角形相似、切割线定理等基础知识,意在考查逻辑推理能力.
23.【答案】
【解析】解:(1)设等比数列{a n}的公比为q,∵数列{a n}和{b n}满足a1•a2•a3…a n=2(n∈N*),a1=2,
∴,,,
∴b1=1,=2q>0,=2q2,
又b3=3+b2.∴23=2q2,解得q=2.
∴a n=2n.
∴=a1•a2•a3…a n=2×22×…×2n=,
∴.
(2)c n===﹣=
,
∴数列{c n}的前n项和为S n=﹣
+…+
=﹣2
=﹣2+
=﹣﹣1.
【点评】本题考查了等差数列与等比数列的通项公式及其前n项和公式、递推式的应用、“裂项求和”,考查了推理能力与计算能力,属于中档题.
24.【答案】
【解析】。