高考数学压轴专题《等差数列》难题汇编 百度文库

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、等差数列选择题
1.已知数列{}n a ,{}n b 都是等差数列,记n S ,n T 分别为{}n a ,{}n b 的前n 项和,且
713n n S n T n -=,则5
5
a b =( ) A .
34
15
B .
2310
C .
317
D .
62
27
2.数列{}n a 是项数为偶数的等差数列,它的奇数项的和是24,偶数项的和为30,若它的末项比首项大21
2
,则该数列的项数是( ) A .8
B .4
C .12
D .16
3.已知等差数列{}n a 的前n 项和为S n ,若S 2=8,38522a a a +=+,则a 1等于( ) A .1
B .2
C .3
D .4
4.已知数列{}n a 的前n 项和为n S ,且满足212n n n a a a ++=-,534a a =-,则7S =( ) A .7
B .12
C .14
D .21
5.已知数列{}n a 的前n 项和为n S ,15a =,且满足
122527
n n
a a n n +-=--,若p ,*q ∈N ,p q >,则p q S S -的最小值为( )
A .6-
B .2-
C .1-
D .0
6.在巴比伦晚期的《泥板文书》中,有按级递减分物的等差数列问题,其中有一个问题大意是:10个兄弟分100两银子,长兄最多,依次减少相同数目,现知第8兄弟分得6两,则长兄可分得银子的数目为( ) A .
82
5
两 B .
845
两 C .
865
两 D .
885
两 7.设数列{}n a 的前n 项和2
1n S n =+. 则8a 的值为( ).
A .65
B .16
C .15
D .14
8.已知等差数列{a n }的前n 项和为S n ,则下列判断错误的是( ) A .S 5,S 10-S 5,S 15-S 10必成等差数列 B .S 2,S 4-S 2,S 6-S 4必成等差数列 C .S 5,S 10,S 15+S 10有可能是等差数列
D .S 2,S 4+S 2,S 6+S 4必成等差数列9.题目
文件丢失!
10.等差数列{}n a 的前n 项和为n S ,若12a =,315S =,则8a =( ) A .11
B .12
C .23
D .24
11.已知正项数列{}n a 满足11a =,1111114n n n n a a a a ++⎛⎫⎛⎫
+-=
⎪⎪⎝⎭⎝⎭
,数列{}n b 满足
1111n n n
b a a +=+,记{}n b 的前n 项和为n T ,则20T 的值为( ) A .1
B .2
C .3
D .4
12.已知等差数列{}n a 中,前n 项和2
15n S n n =-,则使n S 有最小值的n 是( )
A .7
B .8
C .7或8
D .9
13.已知等差数列{}n a 满足48a =,6711a a +=,则2a =( ) A .10
B .9
C .8
D .7
14.设等差数列{}n a 的前n 项和为n S ,若2938a a a +=+,则15S =( ) A .60 B .120 C .160 D .240 15.在等差数列{a n }中,已知a 5=3,a 9=6,则a 13=( )
A .9
B .12
C .15
D .18
16.冬春季节是流感多发期,某地医院近30天每天入院治疗流感的人数依次构成数列
{}n a ,已知11a =,2
2a
=,且满足()211+-=+-n
n n a a (n *∈N ),则该医院30天入
院治疗流感的共有( )人
A .225
B .255
C .365
D .465
17.设等差数列{}n a 的前n 项之和为n S ,已知10100S =,则47a a +=( ) A .12
B .20
C .40
D .100
18.在等差数列{}n a 的中,若131,5a a ==,则5a 等于( ) A .25
B .11
C .10
D .9
19.已知数列{}n a 的前n 项和()2
*
n S n n N =∈,则{}n
a 的通项公式为( )
A .2n a n =
B .21n a n =-
C .32n a n =-
D .1,1
2,2n n a n n =⎧=⎨
≥⎩
20.已知等差数列{}n a 的前n 项和为n S ,且110a =,56S S ≥,下列四个命题:①公差
d 的最大值为2-;②70S <;③记n S 的最大值为M ,则M 的最大值为30;
④20192020a a >.其真命题的个数是( ) A .4个
B .3个
C .2个
D .1个
二、多选题21.题目文件丢失!
22.著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,…,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{}n a 称为“斐波那契数列”,记S n 为数列{}n a 的前n 项和,则下列结论正确的是( ) A .68a =
B .733S =
C .135********a a a a a ++++=
D .
222
122019
20202019
a a a a a +++= 23.若数列{}n a 满足112,02
121,1
2
n n n n n a a a a a +⎧
≤≤⎪⎪=⎨⎪-<<⎪⎩,135a =,则数列{}n a 中的项的值可能为
( ) A .
1
5
B .
25
C .
45
D .
65
24.已知等差数列{}n a 的前n 项和为n S ,公差为d ,且35a =,73a =,则( ) A .12
d =
B .12
d =-
C .918S =
D .936S =
25.已知递减的等差数列{}n a 的前n 项和为n S ,57S S =,则( ) A .60a > B .6S 最大 C .130S >
D .110S >
26.已知数列{}n a :1,1,2,3,5,…其中从第三项起,每个数等于它前面两个数的和,记n S 为数列{}n a 的前n 项和,则下列结论正确的是( ) A .68S a = B .733S =
C .135********a a a a a +++
+= D .222
2123202020202021a a a a a a ++++=
27.{} n a 是等差数列,公差为d ,前项和为n S ,若56S S <,678S S S =>,则下列结论正确的是( ) A .0d <
B .70a =
C .95S S >
D .170S <
28.已知数列{}n a 的前n 项和为,n S 2
5,n S n n =-则下列说法正确的是( )
A .{}n a 为等差数列
B .0n a >
C .n S 最小值为214
-
D .{}n a 为单调递增数列
29.已知等差数列{}n a 的前n 项和为n S (
)*
n N ∈,公差0d ≠,6
90S
=,7a 是3a 与9
a 的等比中项,则下列选项正确的是( ) A .2d =-
B .1
20a =-
C .当且仅当10n =时,n S 取最大值
D .当0n
S <时,n 的最小值为22
30.设等差数列{a n }的前n 项和为S n ,公差为d .已知a 3=12,S 12>0,a 7<0,则( )
A .a 6>0
B .24
37
d -
<<-
C .S n <0时,n 的最小值为13
D .数列n n S a ⎧⎫
⎨⎬⎩⎭
中最小项为第7项
【参考答案】***试卷处理标记,请不要删除
一、等差数列选择题 1.D 【分析】
利用等差数列的性质以及前n 项和公式即可求解. 【详解】
由713n n S n T n
-=, ()()1955199195519992791622923927
2
a a a a a a S
b b b b b b T ++⨯-======++⨯.
故选:D 2.A 【分析】
设项数为2n ,由题意可得()21
212
n d -⋅=,及6S S nd -==奇偶可求解. 【详解】
设等差数列{}n a 的项数为2n , 末项比首项大
212
, ()212121;2
n a a n d ∴-=-⋅=① 24S =奇,30S =偶,
30246S S nd ∴-=-==奇偶②.
由①②,可得3
2
d =,4n =, 即项数是8, 故选:A. 3.C 【分析】
利用等差数列的下标和性质以及基本量运算,可求出1a . 【详解】
设等差数列{}n a 的公差为d ,
则3856522a a a a a +=+=+,解得652d a a =-=,
212112228S a a a d a =+=+=+=,解得13a =
故选:C 4.C 【分析】
判断出{}n a 是等差数列,然后结合等差数列的性质求得7S . 【详解】
∵212n n n a a a ++=-,∴211n n n n a a a a +++-=-,∴数列{}n a 为等差数列. ∵534a a =-,∴354a a +=,∴173577()7()
1422
a a a a S ++===. 故选:C 5.A 【分析】 转化条件为
122527
n n
a a n n +-=--,由等差数列的定义及通项公式可得()()2327n a n n =--,求得满足0n a ≤的项后即可得解.
【详解】 因为
122527
n n a a n n +-=--,所以122527n n
a a n n +-
=--, 又1127a =--,所以数列27n a n ⎧⎫
⎨⎬-⎩⎭
是以1-为首项,公差为2的等差数列, 所以
()1212327
n
a n n n =-+-=--,所以()()2327n a n n =--, 令()()23270n a n n =--≤,解得
3722
n ≤≤, 所以230,0a a <<,其余各项均大于0, 所以()
()()3123min
13316p q S S a a S S =-=+=⨯-+--⨯=-.
故选:A. 【点睛】
解决本题的关键是构造新数列求数列通项,再将问题转化为求数列中满足0n a ≤的项,即可得解. 6.C 【分析】
设10个兄弟由大到小依次分得()1,2,,10n a n =⋅⋅⋅两银子,数列{}n a 是等差数列,
810
6
100a S =⎧⎨
=⎩利用等差数列的通项公式和前n 项和公式转化为关于1a 和d 的方程,即可求得长兄可分得银子的数目1a . 【详解】
设10个兄弟由大到小依次分得()1,2,,10n a n =⋅⋅⋅两银子,由题意可得 设数列{}n a 的公差为d ,其前n 项和为n S ,
则由题意得8106100a S =⎧⎨=⎩,即1
176109
101002a d a d +=⎧⎪
⎨⨯+=⎪⎩,解得186585a d ⎧
=⎪⎪⎨⎪=-⎪⎩
. 所以长兄分得86
5
两银子. 故选:C. 【点睛】
关键点点睛:本题的关键点是能够读懂题意10个兄弟由大到小依次分得
()1,2,,10n a n =⋅⋅⋅两银子构成公差0d <的等差数列,要熟练掌握等差数列的通项公式和
前n 项和公式. 7.C 【分析】
利用()12n n n a S S n -=-≥得出数列{}n a 的通项公差,然后求解8a . 【详解】
由2
1n S n =+得,12a =,()2
111n S n -=-+,
所以()2
21121n n n a S S n n n -=-=--=-,
所以2,121,2
n n a n n =⎧=⎨-≥⎩,故828115a =⨯-=.
故选:C. 【点睛】
本题考查数列的通项公式求解,较简单,利用()12n n n a S S n -=-≥求解即可. 8.D 【分析】
根据等差数列的性质,可判定A 、B 正确;当首项与公差均为0时,可判定C 正确;当首项为1与公差1时,可判定D 错误. 【详解】
由题意,数列{}n a 为等差数列,n S 为前n 项和,
根据等差数列的性质,可得而51051510,,S S S S S --,和24264,,S S S S S --构成等差数列,所以,所以A ,B 正确;
当首项与公差均为0时,5101510,,S S S S +是等差数列,所以C 正确;
当首项为1与公差1时,此时2426102,31,86S S S S S =+=+=,此时24264,,S S S S S ++不构成等差数列,所以D 错误. 故选:D.
9.无
10.C 【分析】
由题设求得等差数列{}n a 的公差d ,即可求得结果. 【详解】
32153S a ==,25a ∴=, 12a =,∴公差213d a a =-=, 81727323a a d ∴=+=+⨯=,
故选:C. 11.B 【分析】 由题意可得
2
2
1114n n a a +-
=,运用等差数列的通项公式可得21
43n n a =-
,求得1
4n b =,然后利用裂项相消求和法可求得结果
【详解】
解:由11a =,1111114n n n n a a a a ++⎛⎫⎛⎫
+-=
⎪⎪⎝⎭⎝⎭
,得22
1114n n a a +-=, 所以数列21n a ⎧⎫

⎬⎩⎭
是以4为公差,以1为首项的等差数列, 所以
2
1
14(1)43n n n a =+-=-, 因为0n a >
,所以n a =

所以
1111n n n
b a a +=+=
所以1
4
n b =
=,
所以201220T b b b =++⋅⋅⋅+
11
1339(91)244=++⋅⋅⋅+=⨯-=, 故选:B 【点睛】
关键点点睛:此题考查由数列的递推式求数列的前n 项和,解题的关键是由已知条件得
2
2
1114n n a a +-
=,从而数列21n a ⎧⎫⎨⎬⎩⎭
是以4为公差,以1
为首项的等差数列,进而可求n a =
,1
4
n b =
=,然后利用裂项相消法可求得结果,考查计算能力和转化思想,属于中档题 12.C 【分析】
215n S n n =-看作关于n 的二次函数,结合二次函数的图象与性质可以求解.
【详解】
2
2152251524n S n n n ⎛⎫=-=--
⎪⎝
⎭,
∴数列{}n S 的图象是分布在抛物线2
1522524y x ⎛⎫=--
⎪⎝
⎭上的横坐标为正整数的离散的
点.
又抛物线开口向上,以15
2x =为对称轴,且1515|
7822
-=-|, 所以当7,8n =时,n S 有最小值. 故选:C 13.A 【分析】
利用等差数列的性质结合已知解得d ,进一步求得2a . 【详解】
在等差数列{}n a 中,设公差为d ,由
467
811a a a =⎧⇒⎨
+=⎩4448
12311a d a d a d =⎧⇒=-⎨+++=⎩,24210a a d ∴=-=. 故选:A 14.B 【分析】
根据等差数列的性质可知2938a a a a +=+,结合题意,可得出88a =,最后根据等差数列的前n 项和公式和等差数列的性质,得出()
11515815152
a a S a +=
=,从而可得出结果.
【详解】
解:由题可知,2938a a a +=+,
由等差数列的性质可知2938a a a a +=+,则88a =,
故()1158
158151521515812022
a a a S a +⨯=
===⨯=. 故选:B. 15.A 【分析】
在等差数列{a n }中,利用等差中项由95132a a a =+求解. 【详解】
在等差数列{a n }中,a 5=3,a 9=6, 所以95132a a a =+,
所以139522639a a a =-=⨯-=, 故选:A 16.B 【分析】
直接利用分类讨论思想的应用求出数列的通项公式,进一步利用分组法求出数列的和 【详解】
解:当n 为奇数时,2n n a a +=, 当n 为偶数时,22n n a a +-=, 所以13291a a a ==⋅⋅⋅==,
2430,,,a a a ⋅⋅⋅是以2为首项,2为公差的等差数列,
所以30132924301514
()()1515222552
S a a a a a a ⨯=++⋅⋅⋅++++⋅⋅⋅+=+⨯+⨯=, 故选:B 17.B 【分析】
由等差数列的通项公式可得47129a a a d +=+,再由1011045100S a d =+=,从而可得结果. 【详解】 解:
1011045100S a d =+=,
12920a d ∴+=, 4712920a a a d ∴+=+=.
故选:B. 18.D 【分析】
利用等差数列的性质直接求解. 【详解】 因为131,5a a ==,315529a a a a =+∴=,
故选:D . 19.B 【分析】
利用1n n n a S S -=-求出2n ≥时n a 的表达式,然后验证1a 的值是否适合,最后写出n a 的式子即可. 【详解】
2n S n =,∴当2n ≥时,221(1)21n n n a S S n n n -=-=--=-,
当1n =时,111a S ==,上式也成立,
()
*21n a n n N ∴=-∈,
故选:B. 【点睛】
易错点睛:本题考查数列通项公式的求解,涉及到的知识点有数列的项与和的关系,即
11,1,2n n
n S n a S S n -=⎧=⎨-≥⎩,算出之后一定要判断1n =时对应的式子是否成立,最后求得结
果,考查学生的分类思想与运算求解能力,属于基础题. 20.B 【分析】
设公差为d ,利用等差数列的前n 项和公式,56S S ≥,得2d ≤-,由前n 项和公式,得
728S ≤,同时可得n S 的最大值,2d =-,5n =或6n =时取得,结合递减数列判断
D . 【详解】
设公差为d ,由已知110a =,56S S ≥,得5101061015d d ⨯+≥⨯+,所以2d ≤-,A 正确;
所以7710217022128S d =⨯+≤-⨯=,B 错误;
1(1)10(1)0n a a n d n d =+-=+-≥,解得10
1n d
≤-
+,11100n a a nd nd +=+=+≤,解得10n d
≥-, 所以1010
1n d d
-
≤≤-+,当2d =-时,56n ≤≤, 当5n =时,有最大值,此时51010(2)30M =⨯+⨯-=,
当6n =时,有最大值,此时61015(2)30M =⨯+⨯-=,C 正确. 又该数列为递减数列,所以20192020a a >,D 正确.
【点睛】
关键点点睛:本题考查等差数列的前n 项和,掌握等差数列的前n 和公式与性质是解题关
键.等差数列前n 项和n S 的最大值除可利用二次函数性质求解外还可由1
00n n a a +≥⎧⎨≤⎩求得. 二、多选题
21.无
22.ABD
【分析】
根据11a =,21a =,21n n n a a a ++=+,计算可知,A B 正确;根据12a a =,
342a a a =-,564a a a =-,786a a a =-,,201920202018a a a =-,累加可知C 不正
确;根据2121a a a =,222312312()a a a a a a a a =-=-,233423423()a a a a a a a a =-=-,
244534534()a a a a a a a a =-=-,,220192019202020182019202020182019()a a a a a a a a =-=-,累加可知D 正确.
【详解】
依题意可知,11a =,21a =,21n n n a a a ++=+,
312112a a a =+=+=,423123a a a =+=+=,534235a a a =+=+=,
645358a a a =+=+=,故A 正确;
7565813a a a =+=+=,所以
712345671123581333S a a a a a a a =++++++=++++++=,故B 正确; 由12a a =,342a a a =-,564a a a =-,786a a a =-,
,201920202018a a a =-,
可得13572019a a a a a ++++
+=242648620202018a a a a a a a a a +-+-+-++-2020a =,
故C 不正确; 2121a a a =,222312312()a a a a a a a a =-=-,233423423()a a a a a a a a =-=-,
244534534()a a a a a a a a =-=-,,220192019202020182019202020182019()a a a a a a a a =-=-, 所以
2222212342019
a a a a a +++++122312342345342019202020182019a a a a a a a a a a a a a a a a a a =+-+-+-+-
20192020a a =, 所以22212201920202019
a a a a a +++=,故D 正确.
【点睛】
本题考查了数列的递推公式,考查了累加法,属于中档题.
23.ABC
【分析】
利用数列{}n a 满足的递推关系及135
a =,依次取1,2,3,4n =代入计算2345,,,a a a a ,能得到数列{}n a 是周期为4的周期数列,得项的所有可能值,判断选项即得结果.
【详解】
数列{}n a 满足112,02121,12
n n n n n a a a a a +⎧≤≤⎪⎪=⎨⎪-<<⎪⎩,135a =,依次取1,2,3,4,...n =代入计算得, 211215a a =-=,32225a a ==,43425a a ==,5413215
a a a =-==,因此继续下去会循环,数列{}n a 是周期为4的周期数列,所有可能取值为:1234,
,,5555
. 故选:ABC.
【点睛】
本题考查了数列的递推公式的应用和周期数列,属于基础题.
24.BD
【分析】 由等差数列下标和性质结合前n 项和公式,求出9S ,可判断C ,D ,由等差数列基本量运算,可得公差,判断出A ,B .
【详解】
因为1937538a a a a +=+=+=,
所以()1999983622
a a S +⨯===. 因为35a =,73a =,所以公差731732a a d -=
=--. 故选:BD
25.ABD
【分析】
转化条件为670a a +=,进而可得60a >,70a <,再结合等差数列的性质及前n 项和公式逐项判断即可得解.
【详解】
因为57S S =,所以750S S -=,即670a a +=,
因为数列{}n a 递减,所以67a a >,则60a >,70a <,故A 正确;
所以6S 最大,故B 正确;
所以()113137131302a a S a +⨯=
=<,故C 错误; 所以()111116
111102a a S a +⨯==>,故D 正确. 故选:ABD.
26.BCD
【分析】
根据题意写出8a ,6S ,7S ,从而判断A ,B 的正误;写出递推关系,对递推关系进行适当的变形,利用累加法即可判断C ,D 的正误.
【详解】
对A ,821a =,620S =,故A 不正确;
对B ,761333S S =+=,故B 正确;
对C ,由12a a =,342a a a =-,564a a a =-,…,202120222020a a a =-,可得
135********a a a a a +++⋅⋅⋅+=,故C 正确;
对D ,该数列总有21n n n a a a ++=+,2121a a a =,则()222312321a a a a a a a a =-=-,
()233423423a a a a a a a a =-=-,…,()220182018201920172018201920172018a a a a a a a a =-=-, 22019a =2019202020192018a a a a -,220202020202120202019a a a a a =-,
故2222123202020202021a a a a a a +++⋅⋅⋅+=,故D 正确.
故选:BCD
【点睛】
关键点睛:解答本题的关键是对CD 的判断,即要善于利用21n n n a a a ++=+对所给式子进行变形.
27.ABD
【分析】
结合等差数列的性质、前n 项和公式,及题中的条件,可选出答案.
【详解】
由67S S =,可得7670S S a -==,故B 正确;
由56S S <,可得6560S S a -=>,
由78S S >,可得8780S S a -=<,
所以876a a a <<,故等差数列{}n a 是递减数列,即0d <,故A 正确;
又()9567897820S S a a a a a a -=+++=+<,所以95S S <,故C 不正确;
又因为等差数列{}n a 是单调递减数列,且80a <,所以90a <,
所以()
117179171702a a S a +==<,故D 正确.
故选:ABD.
【点睛】
关键点点睛:本题考查等差数列性质的应用,解题的关键是熟练掌握等差数列的增减性及前n 项和的性质,本题要从题中条件入手,结合公式()12n n n a S S n --≥=,及
()12
n n n a a S +=
,对选项逐个分析,可判断选项是否正确.考查学生的运算求解能力与逻辑推理能力,属于中档题.
28.AD
【分析】 利用11,1,2n n
n S n a S S n -=⎧=⎨-≥⎩求出数列的通项公式,可对A ,B ,D 进行判断,对25,n S n n =-进行配方可对C 进行判断
【详解】
解:当1n =时,11154a S ==-=-,
当2n ≥时,2215[(1)5(1)]26n n n a S S n n n n n -=-=-----=-,
当1n =时,14a =-满足上式,
所以26n a n =-,
由于()122n n a a n --=≥,所以数列{}n a 为首项为4-,公差为2的等差数列, 因为公差大于零,所以{}n a 为单调递增数列,所以A ,D 正确,B 错误, 由于225
255()24
n S n n n =-=--,而n ∈+N ,所以当2n =或3n =时,n S 取最小值,且最小值为6-,所以C 错误,
故选:AD
【点睛】
此题考查,n n a S 的关系,考查由递推式求通项并判断等差数列,考查等差数列的单调性和前n 项和的最值问题,属于基础题
29.AD
【分析】
运用等差数列的通项公式和求和公式,解方程可得首项和公差,可判断A ,B ;由二次函数的配方法,结合n 为正整数,可判断C ;由0n
S <解不等式可判断D . 【详解】
等差数列{}n a 的前n 项和为n S ,公差0d ≠,由690S =,可得161590a d +=,即12530a d +=,①
由7a 是3a 与9a 的等比中项,得2739a a a =,即()()()2
111628a d a d a d +=++,化为1100a d +=,②
由①②解得120a =,2d =-,则202(1)222n a n n =--=-,
21(20222)212
n S n n n n =+-=-, 由2
2144124n S n ⎛⎫=--+ ⎪⎝
⎭,可得10n =或11时,n S 取得最大值110; 由2102n S n n -<=,解得21n >,则n 的最小值为22. 故选:AD
【点睛】
本题考查等差数列的通项公式和求和公式,以及等比中项的性质,二次函数的最值求法,考查方程思想和运算能力,属于中档题.
30.ABCD
【分析】
S 12>0,a 7<0,利用等差数列的求和公式及其性质可得:a 6+a 7>0,a 6>0.再利用a 3=a 1+2d =12,可得247
-<d <﹣3.a 1>0.利用S 13=13a 7<0.可得S n <0时,n 的最小值为13.数列n n S a ⎧⎫⎨⎬⎩⎭
中,n ≤6时,n n S a >0.7≤n ≤12时,n n S a <0.n ≥13时,n n S a >0.进而判断出D 是否正确.
【详解】
∵S 12>0,a 7<0,∴()
67122a a +>0,a 1+6d <0.
∴a 6+a 7>0,a 6>0.∴2a 1+11d >0,a 1+5d >0,
又∵a 3=a 1+2d =12,∴247-
<d <﹣3.a 1>0. S 13=()
113132a a +=13a 7<0.
∴S n <0时,n 的最小值为13. 数列n n S a ⎧⎫⎨⎬⎩⎭
中,n ≤6时,n n S a >0,7≤n ≤12时,n n S a <0,n ≥13时,n n S a >0. 对于:7≤n ≤12时,n n
S a <0.S n >0,但是随着n 的增大而减小;a n <0, 但是随着n 的增大而减小,可得:
n n S a <0,但是随着n 的增大而增大.
∴n =7时,n n
S a 取得最小值. 综上可得:ABCD 都正确.
故选:ABCD .
【点评】
本题考查了等差数列的通项公式与求和公式及其性质,考查了推理能力与计算能力,属于难题.。

相关文档
最新文档