人教版八年级初二数学第二学期勾股定理单元专题强化试卷检测试卷

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版八年级初二数学第二学期勾股定理单元专题强化试卷检测试卷
一、选择题
1.如图,在平行四边形ABCD 中,∠DBC=45°,DE ⊥BC 于E ,BF ⊥CD 于F ,DE ,BF 相交于H ,BF 与AD 的延长线相交于点G ,下面给出四个结论:①2BD BE =; ②∠A=∠BHE ;
③AB=BH ; ④△BCF ≌△DCE , 其中正确的结论是( )
A .①②③
B .①②④
C .②③④
D .①②③④
2.如图,在ABC ∆中,,90︒
=∠=AB AC BAC ,ABC ∠的平分线BD 与边AC 相交于点D ,DE BC ⊥,垂足为E ,若CDE ∆的周长为6,则ABC ∆的面积为( ).
A .36
B .18
C .12
D .9
3.如图,AB =AC ,∠CAB =90°,∠ADC=45°,AD =1,CD =3,则BD 的长为( )
A .3
B .11
C .23
D .4
4.我国古代数学家赵爽的“勾股方圆图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a 和b ,那么ab 的值为( )
A .49
B .25
C .12
D .10 5.已知△ABC 的三边分别是6,8,10,则△ABC 的面积是( )
A .24
B .30
C .40
D .48
6.我国古代数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的三角形,如图所示,已知90A ∠=︒正方形ADOF 的边长是2,4BD =,则CF 的长为( )
A .6
B .42
C .8
D .10
7.已知一个三角形的两边长分别是5和13,要使这个三角形是直角三角形,则这个三角形的第三条边可以是( ) A .6
B .8
C .10
D .12
8.已知M 、N 是线段AB 上的两点,AM =MN =2,NB =1,以点A 为圆心,AN 长为半径画弧;再以点B 为圆心,BM 长为半径画弧,两弧交于点C ,连接AC ,BC ,则△ABC 一定是( ) A .锐角三角形
B .直角三角形
C .钝角三角形
D .等腰三角形
9.如图,已知△ABC 中,∠ABC =90°,AB =BC ,三角形的顶点在相互平行的三条直线l 1,l 2,l 3上,且l 1,l 2之间的距离为2,l 2,l 3之间的距离为3,则AC 的长是( )
A .217
B .25
C .42
D .7
10.如图,是一张直角三角形的纸片,两直角边6,8AC BC ==,现将ABC 折叠,使点B 点A 重合,折痕为DE ,则BD 的长为( )
A .7
B .
254
C .6
D .
112
二、填空题
11.将一副三角板按如图所示摆放成四边形ABCD ,发现只要知道其中一边的长就可以求出其它各边的长,若已知AD =32,则AB 的长为__________.
12.如图,在四边形ABCD中,AB =AD,BC=DC,点E为AD边上一点,连接BD、CE,CE 与BD交于点F,且CE∥AB,若 A =60°,AB=4,CE=3,则BC的长为_______.
13.我国古代数学名著《九章算术》中有云:“今有木长二丈,围之三尺.葛生其下,缠木七周,上与木齐.问葛长几何?”大意为:有一根木头长2丈,上、下底面的周长为3尺,葛生长在木下的一方,绕木7周,葛梢与木头上端刚好齐平,则葛长是______尺.(注:l丈等于10尺,葛缠木以最短的路径向上生长,误差忽略不计)
14.如图,在四边形ABCD中,∠A=60°,∠B=∠D=90°,AD=4,AB=3,则CD=_________
15.如图,长方形ABCD中,∠A=∠ABC=∠BCD=∠D=90°,AB=CD=6,AD=BC=10,点E为射线AD上的一个动点,若△ABE与△A′BE关于直线BE对称,当△A′BC为直角三角形时,AE 的长为______.
16.如图,正方体的底面边长分别为2cm和3cm,高为5cm.若一只蚂蚁从P点开始经过四个侧面爬行一圈到达Q点,则蚂蚁爬行的最短路径长为_____cm.
17.如图,P 是等边三角形ABC 内的一点,且PA=3,PB=4,PC=5,以BC 为边在△ABC 外作△BQC ≌△BPA ,连接PQ ,则以下结论中正确有_____________ (填序号) ①△BPQ 是等边三角形 ②△PCQ 是直角三角形 ③∠APB=150° ④∠APC=135°
18.如图,小正方形的边长为1,连接小正方形的三个格点可得△ABC ,则AC 边上的高的长度是_____________.
19.如图,在四边形ABCD 中,AD =4,CD =3,∠ABC =∠ACB =∠ADC =45°,则
2________BD =.
20.如图,在ABC 中,AB AC =,点D 在ABC 内,AD 平分BAC ∠,连结CD ,把ADC 沿CD 折叠,AC 落在CE 处,交AB 于F ,恰有CE AB ⊥.若10BC =,
7AD =,则EF =__________.
三、解答题
21.如图,一架长25米的梯子,斜靠在竖直的墙上,这时梯子底端离墙7米. (1)此时梯子顶端离地面多少米?
(2)若梯子顶端下滑4米,那么梯子底端将向左滑动多少米?
22.如图,在两个等腰直角ABC 和CDE △中,∠ACB = ∠DCE=90°.
(1)观察猜想:如图1,点E 在BC 上,线段AE 与BD 的数量关系是 ,位置关系是 ;
(2)探究证明:把CDE △绕直角顶点C 旋转到图2的位置,(1)中的结论还成立吗?说明理由;
(3)拓展延伸:把CDE △绕点C 在平面内自由旋转,若AC = BC=10,DE=12,当A 、E 、D 三点在直线上时,请直接写出 AD 的长.
23.如图,在ABC 中,90BAC ∠=︒,AB AC =,点D 是BC 上一动点、连接AD ,过点A 作AE AD ⊥,并且始终保持AE AD =,连接CE , (1)求证:ABD ACE ≅; (2)若AF 平分DAE ∠交BC 于F ,
①探究线段BD ,DF ,FC 之间的数量关系,并证明; ②若3BD =,4CF =,求AD 的长,
24.已知a ,b ,c 满足88a a -+-=|c ﹣17|+b 2﹣30b +225,
(1)求a ,b ,c 的值;
(2)试问以a ,b ,c 为边能否构成三角形?若能构成三角形,求出三角形的周长和面积;若不能构成三角形,请说明理由.
25.如图所示,已知ABC ∆中,90B ∠=︒,16AB cm =,20AC cm =,P 、Q 是
ABC ∆的边上的两个动点,其中点P 从点A 开始沿A B →方向运动,且速度为每秒1cm ,点Q 从点B 开始沿B C A →→方向运动,且速度为每秒2cm ,它们同时出发,设出发的时间为ts .
(1)则BC =____________cm ;
(2)当t 为何值时,点P 在边AC 的垂直平分线上?此时CQ =_________?
(3)当点Q 在边CA 上运动时,直接写出使BCQ ∆成为等腰三角形的运动时间.
26.Rt ABC ∆中,90CAB ∠=,4AC =,8AB =,M N 、分别是边AB 和CB 上的动点,在图中画出AN MN +值最小时的图形,并直接写出AN MN +的最小值为 .
27.如图,△ABC 中,90BAC ∠=︒,AB=AC ,P 是线段BC 上一点,且045BAP ︒<∠<︒.作点B 关于直线AP 的对称点D, 连结BD ,CD ,AD . (1)补全图形.
(2)设∠BAP 的大小为α.求∠ADC 的大小(用含α的代数式表示).
(3)延长CD 与AP 交于点E,直接用等式表示线段BD 与DE 之间的数量关系.
28.阅读下列一段文字,然后回答下列问题.
已知在平面内有两点()111, P x y 、()222, P x y ,其两点间的距离
()
()2
2
121212PP x x y y =
-+-,同时,当两点所在的直线在坐标轴或平行于坐标轴或垂
直于坐标轴时,两点间距离公式可化简为12x x -或1|y -2|y . (1)已知()2, 4A 、()3, 8B --,试求A 、B 两点间的距离______.
已知M 、N 在平行于y 轴的直线上,点M 的纵坐标为4,点N 的纵坐标为-1,试求M 、N 两点的距离为______;
(2)已知一个三角形各顶点坐标为()1, 6D 、()3, 3E -、()4, 2F ,你能判定此三角形的形状吗?说明理由.
(3)在(2)的条件下,平面直角坐标系中,在x 轴上找一点P ,使PD PF +的长度最短,求出点P 的坐标及PD PF +的最短长度.
29.已知ABC 是等边三角形,点D 是BC 边上一动点,连结AD
()1如图1,若2BD =,4DC =,求AD 的长;
()2如图2,以AD 为边作60ADE ADF ∠=∠=,分别交AB ,AC 于点E ,F .
①小明通过观察、实验,提出猜想:在点D 运动的过程中,始终有AE AF =,小明把这
个猜想与同学们进行交流,通过讨论,形成了证明该猜想的两种想法
想法1:利用AD 是EDF ∠的角平分线,构造角平分线的性质定理的基本图形,然后通过
全等三角形的相关知识获证.
想法2:利用AD 是EDF ∠的角平分线,构造ADF 的全等三角形,然后通过等腰三角形的相关知识获证.
请你参考上面的想法,帮助小明证明.(AE AF =一种方法即可)
②小聪在小明的基础上继续进行思考,发现:四边形AEDF 的面积与AD 长存在很好的关
系.若用S 表示四边形AEDF 的面积,x 表示AD 的长,请你直接写出S 与x 之间的关系式.
30.(发现)小慧和小雯用一个平面去截正方体,得到一个三角形截面(截出的面),发现截面一定是锐角三角形.为什么呢?她们带着这个疑问请教许老师.
(体验)(1)从特殊入手 许老师用1个铆钉把长度分别为4和3的两根窄木棒的一端连在一起(如图,),保持
不动,让
从重合位置开始绕点转动,在转动的
过程,观测
的大小和
的形状,并列出下表:
的大小 的形状

直角三角形 …
直角三角形

请仔细体会其中的道理,并填空:_____,_____;
(2)猜想一般结论在中,设,,(),
①若为直角三角形,则满足;
②若为锐角三角形,则满足____________;
③若为钝角三角形,则满足_____________.
(探索)在许老师的启发下,小慧用小刀在一个长方体橡皮上切出一个三角形截面
(如图1),设,,,请帮助小慧说明为锐角三角形的道理.
(应用)在小慧的基础上,小雯又切掉一块“角”,得到一个新的三角形截面(如图2),那么的形状是()
A.一定是锐角三角形
B.可能是锐角三角形或直角三角形,但不可能是钝角三角形
C.可能是锐角三角形或直角三角形或钝角三角形
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.A
解析:A
【分析】
先判断△DBE 是等腰直角三角形,根据勾股定理可推导得出
BE ,故①正确;根据∠BHE 和∠C 都是∠HBE 的余角,可得∠BHE=∠C ,再由∠A=∠C ,可得②正确;证明△BEH ≌△DEC ,从而可得BH=CD ,再由AB=CD ,可得③正确;利用已知条件不能得到④,据此即可得到选项. 【详解】
解:∵∠DBC=45°,DE ⊥BC 于E , ∴在Rt △DBE 中,BE 2+DE 2=BD 2,BE=DE , ∴
BE ,故①正确;
∵DE ⊥BC ,BF ⊥DC ,∴∠BHE 和∠C 都是∠HBE 的余角, ∴∠BHE=∠C ,
又∵在▱ABCD 中,∠A=∠C , ∴∠A=∠BHE ,故②正确; 在△BEH 和△DEC 中,
BHE C HEB CED BE DE ∠=∠⎧⎪
∠=∠⎨⎪=⎩
, ∴△BEH ≌△DEC , ∴BH=CD ,
∵四边形ABCD 为平行四边形, ∴AB=CD ,
∴AB=BH ,故③正确;
利用已知条件不能得到△BCF ≌△DCE ,故④错误, 故选A. 【点睛】
本题考查了平行四边形的性质、等腰直角三角形的判定与性质、勾股定理、全等三角形的判定与性质等,熟练掌握相关性质与定理是解题的关键.
2.D
解析:D 【分析】
利用角平分定理得到DE=AD ,根据三角形内角和得到∠BDE=∠BDA ,再利用角平分线定理得到BE=AB=AC ,根据CDE ∆的周长为6求出AB=6,再根据勾股定理求出
218AB =,即可求得ABC ∆的面积.
【详解】 ∵90BAC ︒∠=, ∴AB ⊥AD,
∵DE BC ⊥,BD 平分ABC ∠, ∴DE=AD ,∠BED=90BAC ︒∠=,
∴∠BDE=∠BDA ,
∴BE=AB=AC ,
∵CDE ∆的周长为6,
∴DE+CD+CE=AC+CE=BC=6,
∵,90︒
=∠=AB AC BAC
∴22236AB AC BC +==,
∴2236AB =, 218AB =,
∴ABC ∆的面积=211922
AB AC AB ⋅⋅==, 故选:D.
【点睛】
此题考查角平分线定理的运用,勾股定理求边长,在利用角平分线定理时必须是两个垂直一个平分同时运用,得到到角两边的距离相等的结论. 3.B
解析:B
【分析】
过点A 作AE ⊥AD 交CD 于E ,连接BE ,利用SAS 可证明△BAE ≌△CAD ,利用全等的性质证得∠BED=90°,最后根据勾股定理即可求出BD.
【详解】
解:如图,过点A 作AE ⊥AD 交CD 于E ,连接BE.
∵∠DAE=90°,∠ADE=45°,
∴∠ADE=∠AED=45°,
∴AE=AD=1,
∴在Rt △ADE 中,22112+=
∵∠DAE=∠BAC=90°,
∴∠DAE+∠EAC=∠BAC+∠EAC ,即∠CAD=∠BAE ,
又∵AB=AC,
∴△BAE ≌△CAD(SAS),
∴CD=BE=3,∠AEB=∠ADC=45°,
∴∠BED=90°,
∴在Rt △BED 中, BD=()22223211BE DE +=+
=. 故选B.
【点睛】 本题考查了全等三角形的判定与性质,等腰三角形的判定与性质,勾股定理等知识,作辅助线构造出全等三角形是解题的关键.
4.C
解析:C
【解析】
试题解析:如图,∵大正方形的面积是25,
∴c 2=25,
∴a 2+b 2=c 2=25,
∵直角三角形的面积是(25-1)÷4=6,
又∵直角三角形的面积是
12
ab=6, ∴ab=12.
故选C. 5.A
解析:A
【解析】
已知△ABC 的三边分别为6,10,8,由62+82=102,即可判定△ABC 是直角三角形,两直角边是6,8,所以△ABC 的面积为12
×6×8=24,故选A . 6.A
解析:A
【分析】
设CF=x ,则AC=x+2,再由已知条件得到AB=6,BC=6+x ,再由AB 2+AC 2=BC 2得到62+(x+2)2=(x+4)2,解方程即可.
【详解】
设CF=x ,则AC=x+2,
∵正方形ADOF 的边长是2,BD=4,△BDO ≌△BEO ,△CEO ≌△CFO ,
∴BD=BE ,CF=CE ,AD=AF=2,
∴AB=6,BC=6+x ,
∵∠A=90°,
∴AB 2+AC 2=BC 2,
∴62+(x+2)2=(x+4)2,
解得:x=6,
即CF=6,
故选:A.
【点睛】
考查正方形的性质、勾股定理,解题关键是设CF=x,则AC=x+2,利用勾股定理得到62+(x+2)2=(x+4)2.
7.D
解析:D
【分析】
此题要分两种情况:当5和13都是直角边时;当13是斜边长时;分别利用勾股定理计算出第三边长即可求解.
【详解】
当5和13都是直角边时,第三边长为:22
+=;
513194
当13是斜边长时,第三边长为:22
-=;
13512
故这个三角形的第三条边可以是12.
故选:D.
【点睛】
本题主要考查了勾股定理,当已知条件中没有明确哪是斜边时,要注意讨论,一些学生往往忽略这一点,造成丢解.
8.B
解析:B
【分析】
依据作图即可得到AC=AN=4,BC=BM=3,AB=2+2+1=5,进而得到AC2+BC2=AB2,即可得出△ABC是直角三角形.
【详解】
如图所示,AC=AN=4,BC=BM=3,AB=2+2+1=5,
∴AC2+BC2=AB2,
∴△ABC是直角三角形,且∠ACB=90°,
故选B.
【点睛】
本题主要考查了勾股定理的逆定理,如果三角形的三边长a,b,c满足a2+b2=c2,那么这
个三角形就是直角三角形.
9.A
解析:A
【解析】
试题解析:作AD⊥l3于D,作CE⊥l3于E,
∵∠ABC=90°,
∴∠ABD+∠CBE=90°
又∠DAB+∠ABD=90°
∴∠BAD=∠CBE,
{
BAD CBE AB BC
ADB BEC
∠=∠
=
∠=∠

∴△ABD≌△BCE
∴BE=AD=3
在Rt△BCE中,根据勾股定理,得25+9=34,
在Rt△ABC中,根据勾股定理,得342=217.
故选A.
考点:1.勾股定理;2.全等三角形的性质;3.全等三角形的判定.
10.B
解析:B
【分析】
由折叠的性质得出AD=BD,设BD=x,则CD=8-x,在Rt△ACD中根据勾股定理列方程即可得出答案.
【详解】
解:∵将△ABC折叠,使点B与点A重合,折痕为DE,
∴AD=BD,
设BD=x,则CD=8-x,
在Rt△ACD中,
∵AC2+CD2=AD2,
∴62+(8-x)2=x2,
解得x= 25 4
∴BD=
254
. 故选:B .
【点睛】 本题考查了翻折变换的性质、勾股定理等知识,熟练掌握方程的思想方法是解题的关键.
二、填空题
11.【分析】
利用勾股定理求出AC=6,在Rt △ABC 中,∠BAC=30°,得到12BC AB =
,再利用勾股定理得到222AC BC AB +=,即可求出AB .
【详解】
在Rt △ACD 中,CD=AD=
∴6=,
在Rt △ABC 中,∠BAC=30°, ∴12
BC AB =, ∵222AC BC AB +=, ∴222
1
6()2AB AB +=,
解得AB=
故答案为:
【点睛】
此题考查勾股定理,直角三角形30度角所对的直角边等于斜边的一半,正确理解勾股定理的三边的数量关系是解题的关键.
12
【分析】
连接AC 交BD 于点O ,由题意可证AC 垂直平分BD ,△ABD 是等边三角形,可得∠BAO =∠DAO =30°,AB =AD =BD ,BO =OD ,通过证明△EDF 是等边三角形,可得DE =EF =DF ,由勾股定理可求OC ,BC 的长.
【详解】
连接AC ,交BD 于点O ,
∵AB=AD,BC=DC,∠A=60°,
∴AC垂直平分BD,△ABD是等边三角形,
∴∠BAO=∠DAO=30°,AB=AD=BD=4,BO=OD=2,
∵CE∥AB,
∴∠BAO=∠ACE=30°,∠CED=∠BAD=60°,
∴∠DAO=∠ACE=30°,
∴AE=CE=3,
∴DE=AD−AE=1,
∵∠CED=∠ADB=60°,
∴△EDF是等边三角形,
∴DE=EF=DF=1,
∴CF=CE−EF=2,OF=OD−DF=1,
22
∴=-=,
OC CF OF3
22
BC=OB+OC=7
∴,
故答案为:7.
【点睛】
本题考查了等边三角形的性质和判定,勾股定理,熟练运用等边三角形的判定是本题的关键.
13.【分析】
这种立体图形求最短路径问题,可以展开成为平面内的问题解决,展开后可转化下图,所以是个直角三角形求斜边的问题,根据勾股定理可求出.
【详解】
解:如图,一条直角边(即木棍的高)长20尺,
另一条直角边长7×3=21(尺),
22
+=29(尺).
2021
答:葛藤长29尺.
故答案为:29.
【点睛】
本题考查了平面展开最短路径问题,关键是把立体图形展成平面图形,本题是展成平面图形后为直角三角形按照勾股定理可求出解.
14.
【解析】
【分析】
延长BC,AD交于E点,在直角三角形ABE和直角三角形CDE中,根据30°角所对的直角边等于斜边的一半和勾股定理即可解答.
【详解】
如图,延长AD、BC相交于E,
∵∠A=60°,∠B=∠ADC=90°,
∴∠E=30°
∴AE=2AB,CE=2CD
∵AB=3,AD=4,
∴AE=6, DE=2
设CD=x,则CE=2x,DE=x
即x=2
x=
即CD=
故答案为:
【点睛】
本题考查了勾股定理的运用,含30°角所对的直角边是斜边的一半的性质,本题中构建直角△ABE和直角△CDE,是解题的关键.
15.2或18
【分析】
分两种情况:点E在AD线段上,点E为AD延长线上的一点,进一步分析探讨得出答案即可.【详解】
解:①如图
点E 在AD 线段上,△ABE 与△A ′B E 关于直线BE 对称,
∴△A ′BE ≌△ABE,
∴∠B A′E=∠A=90o ,AB=A ′B
∠B A′C =90o ,∴E 、A',C 三点共线,
在△ECD 与△CB A′中,{CD A B
D BA C DEC ECB
='∠=∠'∠=∠,
∴△ECD ≌△CB A′,
∴CE=BC=10,
在RT △CB A′中,A′C=22BC BA -'=22106-=8,
∴AE= A′E=CE - A′C=10-8=2;
②如图
点E 为AD 延长线上,由题意得:
∠A"BC+∠A"CB=∠DCE+∠A"CB=90o
∴∠A"BC=∠DCE,
在△A"BC 与△DCE 中,"={""A CDE
CD A B A BC DCE
∠∠=∠=∠
∴△A"BC ≌△DCE,DE= A"C,
在RT △ A"BC 中,22"BC BA -22106-
∴AE=AD+DE=AD+ A"C=10+8=18;
综上所知,AE=2或18.
故答案为:2或18.
【点睛】
此题考查翻折的性质,三角形全等的判定与性质,勾股定理,掌握翻折的性质,分类探讨的思想方法是解决问题的关键.
16.5【解析】
【分析】
要求长方体中两点之间的最短路径,最直接的作法,就是将长方体展开,然后利用两点之间线段最短解答.
【详解】
展开图如图所示:
由题意,在Rt △APQ 中,PD=10cm ,DQ=5cm ,
∴蚂蚁爬行的最短路径长2222105PD QD +=+5cm ),
故答案为:5
【点睛】
本题考查了平面展开﹣最短路径问题,解答此类问题时要先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.
17.①②③
【解析】
【详解】
解:∵△ABC 是等边三角形,
60ABC ∴∠=,
∵△BQC ≌△BPA ,
∴∠BPA =∠BQC ,BP =BQ =4,QC =PA =3,∠ABP =∠QBC ,
60PBQ PBC CBQ PBC ABP ABC ∴∠=∠+∠=∠+∠=∠=,
∴△BPQ 是等边三角形,①正确.
∴PQ =BP =4,
2222224325,525PQ QC PC +=+===,
222PQ QC PC ∴+=,
90PQC ∴∠=,即△PQC 是直角三角形,②正确.
∵△BPQ 是等边三角形,
60PBQ BQP ∴∠=∠=,
∵△BQC ≌△BPA ,
∴∠APB =∠B QC ,
6090150BPA BQC ∴∠=∠=+=,③正确.
36015060150APC QPC QPC ∴∠=---∠=-∠,
90PQC PQ QC ∠=≠,,
45QPC ∴∠≠,
即135APC ∠≠,④错误.
故答案为①②③.
18.355 【详解】 四边形DEFA 是正方形,面积是4; △ABF,△ACD 的面积相等,且都是 ×1×2=1. △BCE 的面积是:12×1×1=12
. 则△ABC 的面积是:4﹣1﹣1﹣
12=32. 在直角△ADC 中根据勾股定理得到:AC=222+1=5.
设AC 边上的高线长是x .则
12AC•x=52x=32, 解得:x=355

故答案为
355
. 19.41 【解析】
作AD′⊥AD ,AD′=AD ,连接CD′,DD ′,如图:
∵∠BAC+∠CAD=∠DAD′+∠CAD ,
即∠BAD=∠CAD′,
在△BAD 与△CAD ′中,
;BA CA BAD CAD AD AD ===⎧⎪∠∠'
⎨⎪⎩
∴△BAD ≌△CAD′(SAS ), ∴BD=CD′,
∠DAD′=90°,
由勾股定理得

∠D′DA+∠ADC=90°,
由勾股定理得
BD 2=41.
故答案是:41.
20.4913
【解析】
【分析】
如图(见解析),延长AD ,交BC 于点G ,先根据等腰三角形的三线合一性得出AG BC ⊥,再根据折叠的性质、等腰三角形的性质(等边对等角)得出2345∠+∠=︒,从而得出CDG ∆是等腰直角三角形,然后根据勾股定理、面积公式可求出AC 、CE 、CF 的长,最后根据线段的和差即可得.
【详解】
如图,延长AD ,交BC 于点G AD 平分BAC ∠,,10AB AC BC ==
,B ACB AG BC ∴∠=∠⊥,且AG 是BC 边上的中线
1123,52
B CG B
C ∴∠=∠+∠+∠== 由折叠的性质得12,CE AC ∠=∠=
123223B ∠=∠+∠+∠=∠+∠∴
CE AB ⊥,即90BFC ∠=︒
390B ∴∠+∠=︒
230239+∴∠∠=∠+︒,即2345∠+∠=︒
CDG ∴∆是等腰直角三角形,且5DG CG ==
7512AG AD DG ∴=+=+=
在Rt ACG ∆
中,13AC ===
13CE AB AC ==∴= 由三角形的面积公式得1122
ABC S BC AG AB CF ∆=⋅=⋅
即1110121322CF ⨯⨯=⨯⋅,解得12013
CF = 12049131313EF CE CF ∴=-=-
= 故答案为:4913

【点睛】
本题是一道较难的综合题,考查了等腰三角形的判定与性质、勾股定理等知识点,通过作辅助线,构造一个等腰直角三角形是解题关键.
三、解答题
21.(1)梯子顶端离地面24米(2)梯子底端将向左滑动了8米
【解析】
试题分析:(1)构建数学模型,根据勾股定理可求解出梯子顶端离地面的距离;
(2)构建直角三角形,然后根据购股定理列方程求解即可.
试题解析:(1)如图,∵AB=25米,BE=7米,
梯子距离地面的高度AE=22257-=24米.
答:此时梯子顶端离地面24米;
(2)∵梯子下滑了4米,即梯子距离地面的高度CE=(24﹣4)=20米,
∴22CD CE -222520-,
∴DE=15﹣7=8(米),即下端滑行了8米.
答:梯子底端将向左滑动了8米.
22.(1)AE BD =,AE BD ⊥;(2)成立,理由见解析;(3)14或2.
【分析】
(1)先根据等腰三角形的定义可得AC BC =,CE CD =,再根据三角形全等的判定定理与性质可得AE BD =,EAC DBC ∠=∠,然后根据直角三角形两锐角互余、等量代换即可得90AHD ∠=︒,由此即可得;
(2)先根据三角形全等的判定定理与性质可得AE BD =,EAC DBC ∠=∠,再根据直角三角形两锐角互余可得90EAC AOC ∠+∠=︒,然后根据对顶角相等、等量代换可得90BOH DBC ∠∠+=︒,从而可得90OHB ∠=︒,由此即可得;
(3)先利用勾股定理求出
102AB =,再分①点,,A E D 在直线上,且点E 位于中间,②点,,A E D 在直线上,且点D 位于中间两种情况,结合(1)(2)的结论,利用勾股定理求解即可得.
【详解】
(1)AE BD =,AE BD ⊥,理由如下:
如图1,延长AE 交BD 于H ,
由题意得:AC BC =,90ACE BCD ∠=∠=︒,CE CD =,
∴()ACE BCD SAS ≅,
∴AE BD =,EAC DBC ∠=∠,
∵90DBC BDC ∠+∠=︒,
∴90EAC BDC ∠+∠=︒,
∴0)9018(EAC BD A D C H ∠+∠∠︒==-︒,
即AE BD ⊥,
故答案为:AE BD =,AE BD ⊥;
(2)成立,理由如下:
如图2,延长AE 交BD 于H ,交BC 于O ,
∵90ACB ECD ∠=∠=︒,
∴ACB BCE ECD BCE ∠-∠=∠-∠,即ACE BCD ∠=∠,
在ACE △和BCD 中,AC BC ACE BCD CE CD =⎧⎪∠=∠⎨⎪=⎩

∴()ACE BCD SAS ≅,
∴AE BD =,EAC DBC ∠=∠,
∵90ACB ∠=︒,
∴90EAC AOC ∠+∠=︒,
∵AOC BOH ∠=∠,
∴90BOH DBC ∠∠+=︒,即90OBH BOH ∠+∠=︒,
∴180()90OHB OBH BOH ∠=︒-∠+∠=︒,
即AE BD ⊥;
(3)设AD x =,
10,90AC BC ACB ==∠=︒,
2102AB AC ∴==,
由题意,分以下两种情况:
①如图3-1,点,,A E D 在直线上,且点E 位于中间,
同理可证:AE BD =,AE BD ⊥,
12DE =,
12BD AE AD DE x ∴==-=-,
在Rt ABD △中,222AD BD AB +=,即222(12)(102)x x +-=,
解得14x =或2x =-(不符题意,舍去),
即14AD =,
②如图3-2,点,,A E D 在直线上,且点D 位于中间,
同理可证:AE BD =,AE BD ⊥,
12DE =,
12BD AE AD DE x ∴==+=+,
在Rt ABD △中,222AD BD AB +=,即222(12)(102)x x ++=,
解得2x =或14x =-(不符题意,舍去),
即2AD =,
综上,AD 的长为14或2.
【点睛】
本题考查了三角形全等的判定与性质、勾股定理等知识点,较难的是题(3),正确分两种情况讨论,并画出图形是解题关键.
23.(1)见详解(2)①结论:2
22BD FC DF +=,证明见详解②35
【分析】
(1)根据SAS ,只要证明BAD CAE ∠=∠即可解决问题;
(2)①结论:222BD FC DF +=.连接EF ,进一步证明90ECF ∠=︒,DF EF =,再利用勾股定理即可得证;②过点A 作AG BC ⊥于点G ,在Rt ADG 中求出AG 、DG 即可求解.
【详解】
解:(1)∵AE AD ⊥
∴90DAC CAE ∠+∠=︒
∵90BAC ∠=︒
∴90DAC BAD ∠+∠=︒
∴BAD CAE ∠=∠
∴在ABD △和ACE △中 AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩
∴ABD △≌ACE △()SAS
(2)①结论:2
22BD FC DF +=
证明:连接EF ,如图:
∵ABD △≌ACE △
∴B ACE ∠=∠,BD CE =
∴90ECF BCA ACE BCA B ∠=∠+∠=∠+∠=︒
∴222FC CE EF +=
∴222FC BD EF +=
∵AF 平分DAE ∠
∴DAF EAF ∠=∠
∴在DAF △和EAF △中
AD AE DAF EAF AF AF =⎧⎪∠=∠⎨⎪=⎩
∴DAF △≌EAF △()SAS
∴DF EF =
∴222FC BD DF +=
即2
22BD FC DF +=
②过点A 作AG BC ⊥于点G ,如图:
∵由①可知222223425DF BD FC =+=+=
∴5DF =
∴35412BC BD DF FC =++=++=
∵AB AC =,AG BC ⊥ ∴1112622
BG AG BC ===⨯= ∴633DG BG BD =-=-=
∴在Rt ADG 中,AD ===
故答案是:(1)见详解(2)①结论:222BD FC DF +=,证明见详解②【点睛】
本题考查了全等三角形的判定和性质、直角三角形的判定和性质以及角平分线的性质.综合性较强,属中档题,学会灵活应用相关知识点进行推理证明.
24.(1)a =8,b =15,c =17;(2)能,60
【分析】
(1)根据算术平方根,绝对值,平方的非负性即可求出a 、b 、c 的值;
(2)根据勾股定理的逆定理即可求出此三角形是直角三角形,由此得到面积和周长
【详解】
解:(1)∵a ,b ,c |c ﹣17|+b 2﹣30b +225,
21||7(15)c b +-﹣,
∴a ﹣8=0,b ﹣15=0,c ﹣17=0,
∴a =8,b =15,c =17;
(2)能.
∵由(1)知a =8,b =15,c =17,
∴82+152=172.
∴a 2+c 2=b 2,
∴此三角形是直角三角形,
∴三角形的周长=8+15+17=40; 三角形的面积=
12×8×15=60. 【点睛】
此题考查算术平方根,绝对值,平方的非负性,勾股定理的逆定理判断三角形的形状.
25.(1)12;(2)t=12.5s 时,13 cm ;(3)11s 或12s 或13.2s
【分析】
(1)由勾股定理即可得出结论;
(2)由线段垂直平分线的性质得到PC = PA =t ,则PB =16-t .在Rt △BPC 中,由勾股定理可求得t 的值,判断出此时,点Q 在边AC 上,根据CQ =2t -BC 计算即可;
(3)用t 分别表示出BQ 和CQ ,利用等腰三角形的性质可分BQ =BC 、CQ =BC 和BQ =CQ 三种情况,分别得到关于t 的方程,可求得t 的值.
【详解】
(1)在Rt △ABC 中,BC 12=
==(cm ).
故答案为:12;
(2)如图,点P 在边AC 的垂直平分线上时,连接PC ,
∴PC = PA =t ,PB =16-t . 在Rt △BPC 中,222BC BP CP +=,即222
1216)t t +-=(,
解得:t=25 2

∵Q从B到C所需的时间为12÷2=6(s),25
2
>6,
∴此时,点Q在边AC上,CQ=
25
21213
2
⨯-=(cm);
(3)分三种情况讨论:
①当CQ=BQ时,如图1所示,
则∠C=∠CBQ.
∵∠ABC=90°,
∴∠CBQ+∠ABQ=90°,∠A+∠C=90°,∴∠A=∠ABQ,
∴BQ=AQ,
∴CQ=AQ=10,
∴BC+CQ=22,
∴t=22÷2=11(s).
②当CQ=BC时,如图2所示,
则BC+CQ=24,
∴t=24÷2=12(s).
③当BC=BQ时,如图3所示,
过B 点作BE ⊥AC 于点E ,
则BE 121648205AB BC AC ⋅⨯=
==, ∴CE 2222483612()55
BC BE =-=-==7.2. ∵BC =BQ ,BE ⊥CQ ,
∴CQ =2CE =14.4,
∴BC +CQ =26.4,
∴t =26.4÷2=13.2(s ).
综上所述:当t 为11s 或12s 或13.2s 时,△BCQ 为等腰三角形.
【点睛】
本题考查了勾股定理、等腰三角形的性质、方程思想及分类讨论思想等知识.用时间t 表示出相应线段的长,化“动”为“静”是解决这类问题的一般思路,注意方程思想的应用.
26.作图见解析,
325
【分析】
作A 点关于BC 的对称点A',A'A 与BC 交于点H ,再作A'M ⊥AB 于点M ,与BC 交于点N ,此时AN+MN 最小,连接AN ,首先用等积法求出AH 的长,易证△ACH ≌△A'NH ,可得A'N=AC=4,然后设NM=x ,利用勾股定理建立方程求出NM 的长,A'M 的长即为AN+MN 的最小值.
【详解】
如图,作A 点关于BC 的对称点A',A'A 与BC 交于点H ,再作A'M ⊥AB 于点M ,与BC 交于点N ,此时AN+MN 最小,最小值为A'M 的长.
连接AN ,
在Rt △ABC 中,AC=4,AB=8,
∴2222AB AC =84=45++
∵11AB AC=BC AH 22
⋅⋅

∵CA ⊥AB ,A 'M ⊥AB ,
∴CA ∥A 'M
∴∠C=∠A 'NH ,
由对称的性质可得AH=A 'H ,∠AHC=∠A'HN=90°,AN=A'N
在△ACH 和△A'NH 中,
∵∠C=∠A 'NH ,∠AHC=∠A'HN ,AH=A 'H ,
∴△ACH ≌△A'NH (AAS )
∴A'N=AC=4=AN ,
设NM=x ,
在Rt △AMN 中,AM 2=AN 2-NM 2=222416-=-x x
在Rt △AA'M 中,AA'=2AH=5
,A 'M=A 'N+NM=4+x
∴AM 2=AA '2-A 'M 2=()224-+⎝⎭
x
∴()2
224=16-+-⎝⎭x x 解得125
x = 此时AN MN +的最小值=A'M=A'N+NM=4+
125=325 【点睛】
本题考查了最短路径问题,正确作出辅助线,利用勾股定理解直角三角形是解题的关键.
27.(1)见解析;(2)∠ADC=45α︒+;(3)BD =
【分析】
(1)根据题意画出图形即可;
(2)根据对称的性质,等腰三角形的性质及角与角之间的和差关系进行计算即可; (3)画出图形,结合(2)的结论证明△BED 为等腰直角三角形,从而得出结论.
【详解】
解:(1)如图所示;
(2)∵点B 与点D 关于直线AP 对称,∠BAP=α,
∴∠PAD=α,AB=AD ,
∵90BAC ∠=︒,
∴902DAC α∠=︒-,
又∵AB=AC ,
∴AD=AC ,
∴∠ADC=1[180(902)]2
α⨯︒-︒-=45α︒+; (3)如图,连接BE ,
由(2)知:∠ADC=45α︒+,
∵∠ADC=∠AED+∠EAD ,且∠EAD=α,
∴∠AED=45°,
∵点B 与点D 关于直线AP 对称,即AP 垂直平分BD ,
∴∠AED=∠AEB=45°,BE=DE ,
∴∠BED=90°,
∴△BED 是等腰直角三角形,
∴22222BD BE DE DE =+=,
∴2BD DE =
.
【点睛】
本题考查了轴对称的性质,等腰三角形的性质,勾股定理等知识,明确角与角之间的关系,学会添加常用辅助线构造直角三角形是解题的关键.
28.(1)13,5;(2)等腰直角三角形,理由见解析;(3)当P 的坐标为(1304,)时,PD+PF 的长度最短,最短长度为73.
【解析】
【分析】 (1)根据阅读材料中A 和B 的坐标,利用两点间的距离公式即可得出答案;由于M 、N 在平行于y 轴的直线上,根据M 和N 的纵坐标利用公式1|y -2|y 即可求出MN 的距离; (2)由三个顶点的坐标分别求出DE ,DF ,EF 的长,即可判定此三角形的形状;
(3)作F 关于x 轴的对称点F',连接DF',与x 轴交于点P ,此时PD PF +最短,最短距离为DF',P 的坐标即为直线DF'与x 轴的交点.
【详解】
解:(1)∵()2, 4A 、()3, 8B --
∴()()22AB 234813=+++=
故A 、B 两点间的距离为:13.
∵M 、N 在平行于y 轴的直线上,点M 的纵坐标为4,点N 的纵坐标为-1
∴()MN 415=--=
故M 、N 两点的距离为5.
(2)∵()1, 6D 、()3, 3E -、()4, 2F
∴()()
22DE 13635=++-= ()()22DF 14625=
-+-= ()()22EF 343252=--+-=
∴DE=DF ,222DE DF EF +=
∴△DEF 为等腰直角三角形
(3)
作F 关于x 轴的对称点F',连接DF',与x 轴交于点P ,此时DP+PF 最短
设直线DF'的解析式为y=kx+b
将D (1,6),F'(4,-2)代入得:
642k b k b +=⎧⎨+=-⎩
解得83263k b ⎧=-⎪⎪⎨⎪
=⎪⎩
∴直线DF'的解析式为:826y 33x =-
+ 令y=0,解得13x 4=
,即P 的坐标为(1304,) ∵PF=PF'
∴PD+PF=PD+ PF'= DF'=
()()22146273-++= 故当P 的坐标为(
1304
,)时,PD+PF 的长度最短,最短长度为73. 【点睛】
本题属于一次函数综合题,待定系数法求一次函数解析式以及一次函数与x 轴的交点,弄清楚材料中的距离公式是解决本题的关键.
29.(1)27;(2)证明见解析.
【解析】
【分析】 ()1由等边三角形的性质可求6AB BC ==,132
BG BC ==,1DG =,由勾股定理可求AG ,AD 的长;
()2①想法1:过点A 作AM DF ⊥于点M ,作AH DE ⊥,交DE 的延长线于点H ,由角平分线的性质可得AH AM =,由“AAS ”可证Rt AHE ≌Rt AMF ,可得AE AF =; 想法2:延长DE 至N ,使DN DF =,由“SAS ”可证ADN ≌ADF ,可得AN AF =,AFD N ∠=∠,由四边形内角和为360,可得AEN AFD N ∠=∠=∠,可得AN AE AF ==;
②由想法1可得2324
ADM AEDF AHDM S S S
x ===四边形四边形. 【详解】 () 1如图,过点A 作AG BC ⊥于点G ,
2
BD=,4
DC=,
6
BC
∴=,
ABC是等边三角形,AG BC
⊥,
6 AB BC
∴==,
1
3
2
BG BC
==,321
DG BG BD
∴=-=-=,
在Rt ABG中,2233
AG AB BG
=-=,
在Rt ADG中,2227
AD AG DG
=+=
()2①想法1:如图,过点A作AM DF
⊥于点M,作AH DE
⊥,交DE的延长线于点H,
AD平分EDF
∠,AH DE
⊥,AM DF

AH AM
∴=,
60
ADE ADF
∠=∠=,
120
EDF
∴∠=,
360
AED AFD BAC EDF
∠+∠+∠+∠=,
180
AED AFD
∴∠+∠=,且180
AED AEH
∠+∠=,
AEH AFD
∴∠=∠,且AH AM
=,90
H AMF
∠=∠=,
Rt AHE
∴≌()
Rt AMF AAS
AE AF
∴=,
想法2:如图,延长DE至N,使DN DF
=,
DN DF
=,AD AD
=,60
ADE ADF
∠=∠=,
ADN
∴≌()
ADF SAS
AN AF
∴=,AFD N
∠=∠,
60
ADE ADF
∠=∠=,
120
EDF
∴∠=,
360AED AFD BAC EDF ∠+∠+∠+∠=,
180AED AFD ∴∠+∠=,且180AED AEN ∠+∠=,
AEN AFD ∴∠=∠,
AEN N ∴∠=∠,
AN AE AF ∴==,
②如图,
由①中想法1可得Rt AHE ≌Rt AMF ,
AHE AMF S S ∴=,
AEDF AHDM S S ∴=四边形四边形,
60ADF ∠=,AM DF ⊥, 12DM AD ∴=,33AM DM AD ==, 22133288ADM
S DM AM AD x ∴=⨯⨯==, AD AD =,AH AM =,
Rt ADH ∴≌()Rt ADM HL
ADH ADM S S ∴=,
2324
ADM AEDF AHDM S S S
x ∴===四边形四边形. 【点睛】 本题是三角形综合题,考查了等边三角形的性质,全等三角形的判定和性质,勾股定理等知识,添加恰当辅助线构造全等三角形是本题的关键.
30.【体验】 (1)
,5;(2)②;③;【探索】为锐角三角形;道理见解析;【应用】.
【解析】
【分析】
本题从各个角度证明了勾股定理,运用图形与证明结合,依次证明即可,具体见详解.
【详解】
体验: (1)。

相关文档
最新文档