1.3—1.6整式乘法练习

合集下载

整式的乘法练习题及答案

整式的乘法练习题及答案

整式的乘法练习题及答案整式的乘法练习题及答案整式的乘法是数学中的基本运算之一,它在代数中起着重要的作用。

通过乘法运算,我们可以将两个或多个整式相乘,得到一个新的整式。

整式的乘法练习题可以帮助我们巩固和提高整式乘法的技巧。

在本文中,我将为大家提供一些整式的乘法练习题及答案,希望能够对大家的学习有所帮助。

1. 将多项式 (3x + 2y)(4x - 5y) 展开并化简。

解答:(3x + 2y)(4x - 5y) = 3x * 4x + 3x * (-5y) + 2y * 4x + 2y * (-5y)= 12x^2 - 15xy + 8xy - 10y^2= 12x^2 - 7xy - 10y^22. 将多项式 (2a - 3b)(a + 4b) 展开并化简。

解答:(2a - 3b)(a + 4b) = 2a * a + 2a * 4b - 3b * a - 3b * 4b= 2a^2 + 8ab - 3ab - 12b^2= 2a^2 + 5ab - 12b^23. 将多项式 (5x - 2)(3x^2 + 4x - 1) 展开并化简。

解答:(5x - 2)(3x^2 + 4x - 1) = 5x * 3x^2 + 5x * 4x - 5x * 1 - 2 * 3x^2 - 2 * 4x + 2= 15x^3 + 20x^2 - 5x - 6x^2 - 8x + 2= 15x^3 + 14x^2 - 13x + 24. 将多项式 (2x^2 + 3x - 4)(x^2 - 2x + 1) 展开并化简。

解答:(2x^2 + 3x - 4)(x^2 - 2x + 1) = 2x^2 * x^2 + 2x^2 * (-2x) + 2x^2 * 1 + 3x * x^2 + 3x * (-2x) + 3x * 1 - 4 * x^2 - 4 * (-2x) - 4 * 1= 2x^4 - 4x^3 + 2x^2 + 3x^3 - 6x^2 + 3x - 4x^2 + 8x - 4= 2x^4 - x^3 - 8x^2 + 11x - 45. 将多项式 (a + b + c)(a + b - c) 展开并化简。

整式乘法练习题及答案

整式乘法练习题及答案

整式乘法练习题及答案在代数学中,整式乘法是一项重要的基础技能。

通过掌握整式乘法,我们可以解决多种数学问题,包括方程组的解法、因式分解以及多项式的展开等。

本文将提供一些整式乘法的练习题,以及它们的详细解答。

1. 练习题1:计算下列整式的积:(2x + 3)(x^2 - 4x + 5)解答:我们可以使用分配律逐项相乘的方法来计算整式的乘积:(2x + 3)(x^2 - 4x + 5) = 2x * (x^2 - 4x + 5) + 3 * (x^2 - 4x + 5)首先计算第一项:2x * (x^2 - 4x + 5)= 2x * x^2 - 8x^2 + 10x= 2x^3 - 8x^2 + 10x然后计算第二项:3 * (x^2 - 4x + 5)= 3 * x^2 - 12x + 15= 3x^2 - 12x + 15将两项相加得到最终结果:(2x + 3)(x^2 - 4x + 5) = 2x^3 - 8x^2 + 10x + 3x^2 - 12x + 15= 2x^3 - 5x^2 - 2x + 15因此,(2x + 3)(x^2 - 4x + 5)的乘积为2x^3 - 5x^2 - 2x + 15。

2. 练习题2:计算下列整式的积:(3x - 2y)(2x + 5y)解答:同样地,我们可以使用分配律逐项相乘的方法来计算整式的乘积:(3x - 2y)(2x + 5y) = 3x * (2x + 5y) - 2y * (2x + 5y)首先计算第一项:3x * (2x + 5y)= 6x^2 + 15xy然后计算第二项:-2y * (2x + 5y)= -4xy - 10y^2将两项相加得到最终结果:(3x - 2y)(2x + 5y) = 6x^2 + 15xy - 4xy - 10y^2= 6x^2 + 11xy - 10y^2因此,(3x - 2y)(2x + 5y)的乘积为6x^2 + 11xy - 10y^2。

整式的乘法综合练习题(乘法公式三套)

整式的乘法综合练习题(乘法公式三套)

整式的乘法综合练习题(125题)(一)填空1.a8=(-a5)______.2.a15=( )5.3.3m2·2m3=______.4.(x+a)(x+a)=______.5.a3·(-a)5·(-3a)2·(-7ab3)=______.6.(-a2b)3·(-ab2)=______.7.(2x)2·x4=( )2.8.24a2b3=6a2·______.9.[(a m)n]p=______.10.(-mn)2(-m2n)3=______.11.多项式的积(3x4-2x3+x2-8x+7)(2x3+5x2+6x-3)中x3项的系数是______.12.m是x的六次多项式,n是x的四次多项式,则2m-n是x的______次多项式.14.(3x2)3-7x3[x3-x(4x2+1)]=______.15.{[(-1)4]m}n=______.16.-{-[-(-a2)3]4}2=______.17.一长方体的高是(a+2)厘米,底面积是(a2+a-6)厘米2,则它的体积是______.18.若10m=a,10n=b,那么10m+n=______.19.3(a-b)2[9(a-b)n+2](b-a)5=______(a-b)n+9.20.已知3x·(x n+5)=3x n+1-8,那么x=______.21.若a2n-1·a2n+1=a12,则n=______.22.(8a3)m÷[(4a2)n·2a]=______.23.若a<0,n为奇数,则(a n)5______0.24.(x-x2-1)(x2-x+1)n(x-x2-1)2n=______.25.(4+2x-3y2)·(5x+y2-4xy)·(xy-3x2+2y4)的最高次项是______.26.已知有理数x,y,z满足|x-z-2|+(3x-6y-7)2+|3y+3z-4|=0,则x3n+1y3n+1z4n-1的值(n为自然数)等于______.(二)选择:27.下列计算最后一步的依据是[ ]5a2x4·(-4a3x)=[5×(-4)]·a2·a3·x4·x (乘法交换律)=-20(a2a3)·(x4x) (乘法结合律)=-20a5x5.( )A.乘法意义;B.乘方定义;C.同底数幂相乘法则;D.幂的乘方法则.28.下列计算正确的是[ ]A.9a3·2a2=18a5;B.2x5·3x4=5x9;C.3x3·4x3=12x3;D.3y3·5y3=15y9.29.(y m)3·y n的运算结果是[ ]B.y3m+n;C.y3(m+n);D.y3mn.30.下列计算错误的是[ ]A.(x+1)(x+4)=x2+5x+4;B.(m-2)(m+3)=m2+m-6;C.(y+4)(y-5)=y2+9y-20;D.(x-3)(x-6)=x2-9x+18.31.计算-a2b2·(-ab3)2所得的结果是 [ ]A.a4b8;B.-a4b8;C.a4b7;D.-a3b8.32.下列计算中错误的是[ ]A.[(a+b)2]3=(a+b)6;B.[(x+y)2n]5=(x+y)2n+5;C.[(x+y)m]n=(x+y)mn;D.[(x+y)m+1]n=(x+y)mn+n.33.(-2x3y4)3的值是[ ] A.-6x6y7;B.-8x27y64;C.-8x9y12;D.-6xy10.34.下列计算正确的是[ ]A.(a3)n+1=a3n+1;B.(-a2)3a6=a12;C.a8m·a8m=2a16m;D.(-m)(-m)4=-m5.35.(a-b)2n·(b-a)·(a-b)m-1的结果是[ ]A.(a-b)2n+m;B.-(a-b)2n+m;C.(b-a)2n+m;D.以上都不对.36.若0<y<1,那么代数式y(1-y)(1+y)的值一定是 [ ]A.正的;B.非负;C.负的;D.正、负不能唯一确定.37.(-2.5m3)2·(-4m)3的计算结果是 [ ]A.40m9;B.-40m9;C.400m9;D.-400m9.38.如果b2m<b m(m为自然数),那么b的值是[ ]A.b>0;B.b<0;C.0<b<1;D.b≠1.39.下列计算中正确的是[ ]A.a m+1·a2=a m+2;D.[-(-a)2]2=-a4.40.下列运算中错误的是[ ]A.-(-3a n b)4=-81a4n b4;B.(a n+1b n)4=a4n+4b4n;C.(-2a n)2·(3a2)3=-54a2n+6;D.(3x n+1-2x n)·5x=15x n+2-10x n+1.41.下列计算中,[ ](1)b(x-y)=bx-by,(2)b(xy)=bxby,(3)b x-y=b x-b y,(4)2164=(64)3,(5)x2n-1y2n-1=xy2n-2.A.只有(1)与(2)正确;B.只有(1)与(3)正确;C.只有(1)与(4)正确;D.只有(2)与(3)正确.42.(-6x n y)2·3x n-1y的计算结果是[ ]A.18x3n-1y2;B.-36x2n-1y3;C.-108x3n-1y;D.108x3n-1y3.[ ]44.下列计算正确的是[ ]A.(6xy2-4x2y)·3xy=18xy2-12x2y;B.(-x)(2x+x2-1)=-x3-2x2+1;C.(-3x2y)(-2xy+3yz-1)=6x3y2-9x2y2z2-3x2y;45.下列计算正确的是[ ]58.(3m-n)(m-2n).59.(x+2y)(5a+3b).60.(-ab)3·(-a2b)·(-a2b4c)2.61.[(-a)2m]3·a3m+[(-a)5m]2.62.x n+1(x n-x n-1+x).63.(x+y)(x2-xy+y2).65.5x(x2+2x+1)-(2x+3)(x-5).67.(2x-3)(x+4).74.(m-n)(m5+m4n+m3n2+m2n3+mn4+n5).70.(-2a m b n)(-a2b n)(-3ab2).75.(2a2-1)(a-4)(a2+3)(2a-5).76.2[(x+2)(x+1)-3]+(x-1)(x-2)-3x(x+3).77.(0.3a3b4)2·(-0.2a4b3)3.78.(-4xy3)·(-xy)+(-3xy2)2.80.(5a3+2a-a2-3)(2-a+4a2).81.(3x4-2x2+x-3)(4x3-x2+5).86.[(-a2b)3]3·(-ab2).83.(3a m+2b n+2)(2a m+2a m-2b n-2+3b n).91.(-2x m y n)3·(-x2y n)·(-3xy2)2.87.(-2ab2)3·(3a2b-2ab-4b2).92.(0.2a-1.5b+1)(0.4a-4b-0.5).93.-8(a-b)3·3(b-a).94.(x+3y+4)(2x-y).96.y[y-3(x-z)]+y[3z-(y-3x)].97.计算[(-a)2m]3·a3m+[(-a)3m]3(m为自然数).(四)化简(五)求值;104.先化简y n(y n+9y-12)-3(3y n+1-4y n),再求其值,其中y=-3,n=2.105.先化简(x-2)(x-3)+2(x+6)(x-5)-3(x2-7x+13),再求其值,其中x=106.光的速度每秒约3×105千米,太阳光射到地球上需要的时间约是5×102秒.问地球与太阳的距离约是多少千米?(用科学记数法写出来)107.已知ab2=-6,求-ab(a2b5-ab3-b)的值.108.已知a+b=1,a(a2+2b)+b(-3a+b2)=0.5,求ab的值.110.已知(x-1)(x+1)(x-2)(x-4)≡(x2-3x)2+a(x2-3x)+b,求a,b的值.111.多项式x4+mx2+3x+4中含有一个因式x2-x+4,试求m的值,并求另一个因式.112.若x3-6x2+11x-6≡(x-1)(x2+mx+n),求m,n的值.113.已知一个两位数的十位数字比个位数字小1,若把十位数字与个位数字互换,所得的新两位数与原数的乘积比原数的平方多405,求原数.114.试求(2-1)(2+1)(22+1)(24+1)…(232+1)+1的个位数字.115.比较2100与375的大小.116.解方程3x(x+2)+(x+1)(x-1)=4(x2+8).118.求不等式(3x+4)(3x-4)>9(x-2)(x+3)的正整数解.119.已知2a=3b=6c(a,b,c均为自然数),求证:ab-cb=ac.120.求证:对于任意自然数n,n(n+5)-(n-3)×(n+2)的值都能被6整除.121.已知有理数x,y,z满足|x-z-2|+(3x-6y-7)2+|3y+3z-4|=0,求证:x3n y3n-1z3n+1-x=0.122.已知x=b+c,y=c+a,z=a+b,求证:(x-y)(y-z)(z-x)+(a-b)(b-c)(c-a)=0.123.证明(a-1)(a2-3)+a2(a+1)-2(a3-2a-4)-a的值与a无关.124.试证代数式(2x+3)(3x+2)-6x(x+3)+5x+16的值与x的值无关.125.求证:(m+1)(m-1)(m-2)(m-4)=(m2-3m)2-2(m2-3m)-8.整式的运算练习(提高27题)1、=2、若2x + 5y-3 = 0 则=3、已知a = 355 ,b = 444 ,c = 533则有( )A.a < b < c B.c < b < a C.a < c < b D.c < a < b4、已知,则x =5、21990×31991的个位数字是多少6、计算下列各题(1)(2)(3)(4)7、计算(-2x-5)(2x-5) 8、计算9、计算,当a6 = 64时, 该式的值。

七年极下数学课本习题第1章整式的乘除

七年极下数学课本习题第1章整式的乘除

第一章整式的乘除第1节同底数幂的乘法1. P3-例1计算:(1)(-3)7×(-3)6(2)(1111)3 ×1111(3)-x3·x5(4)b2m·b2m+12. P3-例2光在真空中的速度约为3×108m/s,太阳光射到地球上大约需要5×102s。

地球距离太阳大约有多远?3. P3-随堂练习-1计算:(1)52×57(2)7×73×72(3)-x2·x3(4)(- c)3·(- c)m4. P3-随堂练习-2一种电子计算机每秒可做4×109次运算,它工作5×102 s可做多少次运算?5. P3-随堂练习-3光在真空中的速度大约是3×108m/s。

太阳系以外距离地球最近的恒星是比邻星,它发出的光到达地球大约需要4.22年,一年以3×107s计算,比邻星与地球的距离约为多少?6. P4-习题1.1-1计算:(1)c·c11(2)104×102×10 (3)(-b)3·(-b)2(4)-b3·b2(5)x m-1·x m+1(m>1)(6)a·a3·a n7. P4-习题1.1-2已知a m=2,a n=8,求a m+n。

8. P4-习题1.1-3下面的计算是否正确?如有错误请改正。

(1)a3·a2=a6(2)b4·b4=2b4(3)x5+x5=x10(4)y7·y=y89. P4-习题1.1-4在我国,平均每平方千米的土地一年从太阳得到的能量,相当于燃烧1.3×108kg的煤所产生的能量。

我国960万km2的土地上,一年从太阳得到的能量相当于燃烧多少千克的煤所产生的能量?(结果用科学记数法表示)。

10. P4-习题1.1-5某种细菌每分由1个分裂成2个。

整式的乘法练习题(含解析答案)

整式的乘法练习题(含解析答案)

北师大版数学七年级下册第一章1.4整式的乘法课时练习一、选择题1.(-5a2b)·(-3a)等于()A.15a3b B.-15a2b C.-15a3b D.-8a2b答案:A解析:解答:(-5a2b)·(-3a)=15a3b,故A项正确.分析:由单项式乘单项式法则与同底数幂的乘法法则可完成此题.2.(2a)3·(-5b2)等于()A.10a3b B.-40a3b2C.-40a3b D.-40a2b答案:B解析:解答:(2a)3·(-5b2)=-40a3b2,故B项正确.分析:先由积的乘方法则得(2a)3=8a3,再由单项式乘单项式法则可完成此题.3.(2a3b)2·(-5ab2c)等于()A.-20a6b4c B.10a7b4c C.-20a7b4c D.20a7b4c答案:C解析:解答:(2a3b)2·(-5ab2c)=-20a7b4c,故C项正确.分析:先由积的乘方法则得(2a3b)2=-4a6b2,再由单项式乘单项式法则与同底数幂的乘法可完成此题.4.(2x3y)2·(5xy2)·x7 等于()A.-20x6y4B.10x y y4C.-20x7y4D.20x14y4答案:D解析:解答:(2x3y)2·(5xy2)·x7 =-20x14y4,故D项正确.分析:先由积的乘方法则得(2x3y)2=-4x6y2,再由单项式乘单项式法则与同底数幂的乘法法则可完成此题.5.2a3·(b2-5ac)等于()A.-20a6b2c B.10a5b2c C.2a3b2-10a4c D.a7b4c-10a4c答案:C解析:解答:2a3·(b2-5ac)=2a3b2-10a4c,故C项正确.分析:由单项式乘多项式法则与同底数幂的乘法法则可完成此题.6.x3y·(xy2+z)等于()A.x4y3+xyz B.xy3+x3yz C.z x14y4 D.x4y3+x3yz答案:D解析:解答:x3y·(xy2+z)=x4y3+x3yz,故D项正确.分析:由单项式乘单项式法则与同底数幂的乘法法则可完成此题.7.(-x7)2·(x3y+z)等于()A.x17y+x14z B.-xy3+x3yz C.-x17y+x14z D.x17y+x3yz答案:A解析:解答:(-x7)2·(x3y+z)=x17y+x14z,故A项正确.分析:先由幂的乘方法则得(-x7)2=x14,再由单项式乘多项式法则与同底数幂的乘法法则可完成此题.8.[(-6)3]4 .(b2-ac)等于()A.-612b2-b2c B.10a5-b2c C.612b2-612ac D.b4c-a4c答案:C解析:解答:[(-6)3]4 .(b2-ac)=612b2-612ac,故C项正确.分析:先由幂的乘方法则得[(-6)3]4=612,再由单项式乘多项式法则与同底数幂的乘法法则可完成此题.9.(2x)3.(x3y+z)等于()A.8x6y+x14z B.-8x6y+x3yz C.8x6y+8x3z D.8x6y+x3yz答案:C解析:解答:(2x)3.(x3y+z)=8x6y+8x3z,故C项正确.分析:先由积的乘方法则得(2x)3=8x3,再由单项式乘多项式法则与同底数幂的乘法法则可完成此题.10.(2x)2.[(-y2)2+z]等于()A.4xy4+xz B.-4x2y4+4x2z C.2x2y4+2x2z D.4x2y4+4x2z答案:D解析:解答:(2x)2.[(-y2)2+z]=4x2y4+4x2z,故D项正确.分析:先由积的乘方法则得(2x)2=4x2,由幂的乘方法则得(-y2)2=y4再由单项式乘多项式法则与同底数幂的乘法法则可完成此题.11.x2.x5.(y4+z)等于()A.x7y4+x7z B.-4x2y4+4x2z C.2x2y4+2x2z D.4x2y4+4x2z答案:A解析:解答:x2.x5.(y4+z)=x7y4+x7z,故A项正确.分析:先由同底数幂的乘法法则得x2.x5=x7,再由单项式乘多项式法则可完成此题. 12.x2·(x y2+z)等于()A.xy+xz B.-x2y4+x2z C.x3y2+x2z D.x2y4+x2z答案:C解析:解答:x2.(x y2+z)=x3y2+x2z,故C项正确.分析:由单项式乘多项式法则与同底数幂的乘法法则可完成此题.13.(a3+b2)·(-5ac)等于()A.-5a6b2-c B.5a5-b2c C.5a3b2-10a4c D.-5a4c-5ab2c答案:D解析:解答:(a3+b2)·(-5ac)=-5a4c-5ab2c,故D项正确.分析:由单项式乘多项式法则与同底数幂的乘法法则可完成此题.14.(x2+y5)·(y2+z)等于()A.x2y2+x2z+y7+y5z B.2x2y2+x2z+y5z C.x2y2+x2z+y5z D.x2y2+y7+y5z 答案:A解析:解答:(x2+y5).(y2+z)=x2y2+x2z+y7+y5z,故A项正确.分析:由多项式乘多项式法则与同底数幂的乘法法则可完成此题.15.2(a2+b5)·a2等于()A.a2c+b5c B.2a4+2b5a2C.a4+2b5a2D.2a4+ba2答案:B解析:解答:2(a2+b5)·a2=2a4+2b5a2,故B项正确.分析:由单项式乘多项式法则与同底数幂的乘法法则可完成此题.二、填空题16.5x2·(xy2+z)等于;答案:5x3y2+5x2z解析:解答:5x2·(xy2+z)=5x2·xy2+5x2·z=5x3y2+5x2z分析:由单项式乘多项式法则与同底数幂的乘法法则可完成此题17.2a2·(ab2+4c)等于;答案:2a3b2+8a2c解析:解答:2a2·(ab2+4c)=2a2·ab2+2a2·4c=2a3b2+8a2c分析:由单项式乘多项式法则与同底数幂的乘法法则可完成此题18.2a2·(3ab2+7c)等于;答案:6a3b2+14a2c解析:解答:2a2·(3ab2+7c=2a2·3ab2+2a2·7c=6a3b2+14a2c分析:由单项式乘多项式法则与同底数幂的乘法法则可完成此题19.(-2a2)·(3a+c)等于;答案:-6a3-2a2c解析:解答:-2a2·(3a+c)=(-2a2)·3a+(-2a2)·c=-6a3-6a2c分析:由单项式乘多项式法则与同底数幂的乘法法则可完成此题20.(-4x2)·(3x+1)等于;答案:-12x3-4x2解析:解答:(-4x2)·(3x+1)=(-4x2)·3x+(-4x2)·1=-12x3-4x2分析:由单项式乘多项式法则与同底数幂的乘法法则可完成此题三、计算题21.(-10x2y)·(2xy4z)答案:-20 x3 y5 z解析:解答:解:(-10x2y)·(2xy4z)= -20 x2+1·y4+1·z=-20 x3 y5 z分析:由单项式乘单项式法则与同底数幂的乘法法则可完成此题22.(-2 x y2)·(-3 x2y4)·(- x y)答案:-6 x4 y7解析:解答:解:(-2 x y2)·(-3 x2y4)·(- x y)= -6 x1+2+1·y2+4+1=-6 x4 y7分析:由单项式乘单项式法则与同底数幂的乘法法则可完成此题23.2a·(a+1)- a(3a-2)+2a2 (a2-1)答案:2a4 -3a2+4a解析:解答:解:2a·(a+1)- a(3a-2)+2a2(a2-1) =2a2+2a-3a2+2a+2a4-2a2=2a4-3a2+4a 分析:先由单项式乘多项式法则与同底数幂的乘法法则计算,再合并同类项可完成此题. 24.3ab·(a2b+ ab2-ab)答案:3a3b2+3 a2b3- 3 a2b2解析:解答:解:3ab·(a2b+ ab2-ab)=3ab·a2b+3ab·ab2- 3ab·ab=3a3b2+3 a2b3- 3 a2b2分析:由单项式乘多项式法则与同底数幂的乘法法则计算可完成题.25.(x-8y)·(x-y)答案:x2-9xy +8y2解析:解答:解:(x-8y)·(x-y)= x1+1-xy-8xy+8y1+1= x2-9xy +8y2分析:先由多项式乘多项式法则与同底数幂的乘法法则计算,再合并同类项可完成此题.。

整式的乘法的习题及答案

整式的乘法的习题及答案

整式的乘法的习题及答案整式的乘法是数学中的一个重要概念,它在代数学习中起着至关重要的作用。

在这篇文章中,我们将探讨一些整式乘法的习题及其答案,帮助读者更好地理解和掌握这个概念。

一、单项式的乘法单项式是指只包含一个字母和一个常数的代数式,例如3x、4y²等。

单项式的乘法是指将两个单项式相乘的操作。

1. 习题:计算下列单项式的乘法:a) 5x × 2yb) -3a² × 4b³c) 7m²n × (-2mn³)2. 答案:a) 5x × 2y = 10xyb) -3a² × 4b³ = -12a²b³c) 7m²n × (-2mn³) = -14m³n⁴通过以上习题,我们可以看到单项式的乘法实际上就是将两个单项式的系数相乘,字母部分则按照字母指数相加的规则进行运算。

二、多项式的乘法多项式是指由多个单项式相加或相减而成的代数式,例如3x² + 4xy - 2y²。

多项式的乘法是指将两个多项式相乘的操作。

1. 习题:计算下列多项式的乘法:a) (3x + 2y)(4x - 5y)b) (2a - 3b)(a + b)c) (5m + 7n)(m - n)2. 答案:a) (3x + 2y)(4x - 5y) = 12x² - 15xy + 8xy - 10y² = 12x² - 7xy - 10y²b) (2a - 3b)(a + b) = 2a² + 2ab - 3ab - 3b² = 2a² - ab - 3b²c) (5m + 7n)(m - n) = 5m² - 5mn + 7mn - 7n² = 5m² + 2mn - 7n²通过以上习题,我们可以看到多项式的乘法实际上就是将两个多项式中的每一项进行乘法运算,然后将结果相加。

整式乘法相关练习题

整式乘法相关练习题

整式乘法相关练习题一、单项式乘单项式1. 计算:(3x)(4x)2. 计算:(2a)(5b)3. 计算:(m^2)(n^3)4. 计算:(4xy^2)(3x^2y)5. 计算:(a^3b^2)(2a^2b)二、单项式乘多项式1. 计算:(3x)(x + 2y 3)2. 计算:(4a)(a^2 3a + 2)3. 计算:(5m^2n)(2mn^2 3m^2n + 4)4. 计算:(2xy)(x^2y xy^2 + 3x^2)5. 计算:(3a^2b)(a^3b 2a^2b^2 + 4ab)三、多项式乘多项式1. 计算:(x + 2)(x 3)2. 计算:(a 4)(a + 5)3. 计算:(2m + 3n)(3m 2n)4. 计算:(x^2 + 3x 2)(x 4)5. 计算:(a^2 2ab + b^2)(a + b)四、平方差公式1. 计算:(x + 3)(x 3)2. 计算:(2a + 5)(2a 5)3. 计算:(m 4n)(m + 4n)4. 计算:(x^2 + 6)(x^2 6)5. 计算:(a^3 + b^3)(a^3 b^3)五、完全平方公式1. 计算:(x + 4)^22. 计算:(2a 3)^23. 计算:(m + 2n)^24. 计算:(x^2 5x + 6)^25. 计算:(a^3 + 2a^2b 3ab^2)^2六、整式乘法在实际问题中的应用1. 一个长方形的长是x米,宽是y米,求这个长方形的面积。

2. 一个正方形的边长是a米,求这个正方形的面积。

3. 一个长方体的长是x米,宽是y米,高是z米,求这个长方体的体积。

4. 一辆汽车以v千米/小时的速度行驶了t小时,求汽车行驶的路程。

5. 一个等腰三角形的底边长是b米,高是h米,求这个等腰三角形的面积。

七、多项式乘单项式的扩展1. 计算:(x^3 2x^2 + 4x)(3x^2)2. 计算:(2a^4 5a^3 + 3a^2)(a)3. 计算:(m^2n 3mn^2 + 2n^3)(4mn)4. 计算:(4x^3y^2 3x^2y^3 + 2xy^4)(2xy)5. 计算:(a^2b^3 2ab^4 + 3b^5)(5a^2b^2)八、多项式乘多项式的扩展1. 计算:(x^2 + 3x 2)(x^2 3x + 2)2. 计算:(a^3 2a^2 + a)(a^2 + 2a 1)3. 计算:(2m^2 5mn + 3n^2)(4m^2 + 7mn 2n^2)4. 计算:(x^4 3x^3 + 2x^2)(x^3 + 2x^2 x)5. 计算:(a^4 b^4)(a^2 + b^2)九、混合运算1. 计算:(2x 3)(x + 4) + (x 2)^22. 计算:(3a + 4)(2a 5) (a^2 6)3. 计算:(m n)(m + n) + (2m^2 3mn)4. 计算:(4x^2 5x + 1)(3x 2) (x^3 2x^2)5. 计算:(a^2 + 2ab b^2)(a b) + (a^3 b^3)十、特殊乘法1. 计算:(x + 1)(x + 2)(x + 3)2. 计算:(a 1)(a + 1)(a^2 + 1)3. 计算:(2m n)(m + n)(m n)4. 计算:(x^2 1)(x^2 + 1)(x^4 + 1)5. 计算:(a^3 + b^3)(a^3 b^3)(a + b)答案一、单项式乘单项式1. 12x^22. 10ab3. m^5n^34. 12x^3y^35. 2a^5b^3二、单项式乘多项式1. 3x^2 + 6xy 9x2. 4a^3 + 12a^2 8a3. 10m^3n^3 15m^4n^2 + 20m^2n^34. 2x^3y^2 2x^2y^3 + 6x^3y5. 3a^5b + 6a^4b^2 12a^3b^2三、多项式乘多项式1. x^2 3x + 62. a^2 + a 203. 6m^2 + mn 6n^24. x^3 11x^2 + 28x 245. a^4 3a^3b + 3a^2b^2 a^2b^3四、平方差公式1. x^2 92. 4a^2 253. m^2 16n^24. x^4 365. a^6 b^6五、完全平方公式1. x^2 + 8x + 162. 4a^2 12a + 93. m^2 + 4mn + 4n^24. x^4 10x^3 + 19x^2 12x + 365. a^6 + 4a^5b 12a^4b^2 + 12a^3b^3 9a^2b^4六、整式乘法在实际问题中的应用1. xy2. a^23. xyz4. vt5. (1/2)bh七、多项式乘单项式的扩展1. 3x^5 6x^4 + 12x^32. 2a^5 + 5a^4 3a^33. 4m^3n^2 12m^2n^3 + 8mn^44. 8x^4y^3 + 6x^3y^4 4x^2y^55. 5a^4b^5 10a^3b^6 + 15a^2b^7八、多项式乘多项式的扩展1. x^4 6x^3 + 9x^2 + 6x 42. a^5 4a^4 + a^3 + 2a^2 a3. 8m^4 31m^3n + 41m^2n^2 15mn^3 + 6n^44. x^7 5x^6 + 8x^5 2x^45. a^5 a^4b^4 a^3b^4 + a^2b^8九、混合运算1. 2x^2 + 5x 142. 6a^2 7a 223. m^2 n^2 + 2m^2 3mn4. 12x^3 23x^2 + 9x 25. a^4 2a^3b a^2b^2 + a^3b a^2b^3十、特殊乘法1. x^3 + 6x^2 + 11x + 62. a^4 13. m^3 2m^2n mn^2 + 2n^34. x^8 x^4 15. a^6 b^6a + a^6b b^6。

14.1整式乘法练习题

14.1整式乘法练习题

14.1整式乘法练习题整式乘法是代数学中的一个重要概念,它涉及到多项式与多项式、单项式与多项式之间的乘法运算。

以下是一些整式乘法的练习题,供同学们练习和巩固相关知识。

练习题1:单项式与单项式的乘法计算下列单项式的乘积:1. \( 3a \times 5b \)2. \( -2x^2 \times 3y \)练习题2:单项式与多项式的乘法计算下列单项式与多项式的乘积:1. \( 4x \times (2x + 3y) \)2. \( -5a \times (b - 2a^2) \)练习题3:多项式与多项式的乘法计算下列多项式的乘积:1. \( (x + y) \times (x - y) \)2. \( (2x^2 - 3x + 1) \times (3x + 1) \)练习题4:完全平方公式的应用使用完全平方公式计算下列多项式的乘积:1. \( (x + 2)^2 \)2. \( (3x - 1)^2 \)练习题5:平方差公式的应用使用平方差公式计算下列多项式的乘积:1. \( (2x + 1)(2x - 1) \)2. \( (a + b)(a - b) \)练习题6:多项式乘法的混合运算计算下列表达式的值:1. \( (3x^2 + 2x - 1)(2x - 1) - (2x + 1)(2x - 1) \)2. \( (x^2 - 4)(2x + 3) \)练习题7:多项式乘法的因式分解找出下列多项式的因式分解:1. \( x^3 - 8 \)2. \( a^3 - b^3 \)练习题8:多项式乘法的逆运算给定下列多项式的乘积,找出原始的多项式:1. \( 6x^2y + 9xy^2 \)2. \( 4x^3 - 25x \)通过这些练习题,同学们可以加深对整式乘法的理解,掌握如何将单项式、多项式进行乘法运算,以及如何应用完全平方公式和平方差公式。

希望同学们能够认真完成这些练习,提高自己的代数运算能力。

专题1.6整式的乘法(3)多项式乘多项式

专题1.6整式的乘法(3)多项式乘多项式

2020-2021学年七年级数学下册尖子生同步培优题典【北师大版】专题1.6整式的乘法(3)多项式乘多项式姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,试题共24题,选择10道、填空8道、解答6道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2020秋•南关区校级期中)计算(a+3)(﹣a+1)的结果是()A.﹣a2﹣2a+3B.﹣a2+4a+3C.﹣a2+4a﹣3D.a2﹣2a﹣3【分析】运用多项式乘以多项式法则,直接计算即可.解析(a+3)(﹣a+1)=﹣a2﹣3a+a+3=﹣a2﹣2a+3.故选:A.2.(2020秋•朝阳区期中)若(x﹣3)(2x+1)=2x2+ax﹣3,则a的值为()A.﹣7B.﹣5C.5D.7【分析】将题中所给等式左边利用多项式乘多项式的运算法则进行计算,再与等式右边比较即可得出答案.解析(x﹣3)(2x+1)=2x2+x﹣6x﹣3=2x2﹣5x﹣3,∵(x﹣3)(2x+1)=2x2+ax﹣3,∴a=﹣5.故选:B.3.(2020秋•偃师市期中)若(x2+px+8)(x2﹣3x+1)乘积中不含x2项,则p的值为() A.p=0B.p=3C.p=﹣3D.p=﹣1【分析】先利用多项式乘多项式法则,把(x2+px+8)(x2﹣3x+1)展开合并,根据积不含x2的项,得关于p 的方程,求解即可.解析(x2+px+8)(x2﹣3x+1)=x4+px3+8x2﹣3x3﹣3px2﹣24x+x2+px+8=x4+(p﹣3)x3+(9﹣3p)x2+(p﹣24)x+8.∵(x2+px+8)(x2﹣3x+1)乘积中不含x2项,∴9﹣3p=0.∴p=3.故选:B.4.(2020秋•射洪市期中)如果(x﹣3)(3x+m)的积中不含x的一次项,则m的值为() A.7B.8C.9D.10【分析】先根据多项式乘以多项式法则展开,再合并同类项,根据已知得出m﹣9=0,求出即可.解析(x﹣3)(3x+m)=3x2+mx﹣9x﹣3m=3x2+(m﹣9)x﹣3m,∵(x﹣3)(3x+m)的积中不含x的一次项,∴m﹣9=0,解得:m=9,故选:C.5.(2020秋•房县期中)若x+y=1且xy=﹣2,则代数式(1﹣x)(1﹣y)的值等于() A.﹣2B.0C.1D.2【分析】先根据多项式乘以多项式法则进行计算,再变形,最后求出答案即可.解析∵x+y=1,xy=﹣2,∴(1﹣x)(1﹣y)=1﹣y﹣x+xy=1﹣(x+y)+xy=1﹣1+(﹣2)=﹣2,故选:A.6.(2020秋•西陵区校级期中)以下表示图中阴影部分面积的式子,不正确的是()A.x(x+5)+15B.x2+5(x+3)C.(x+3)(x+5)﹣3x D.x2+8x【分析】根据长方形和正方形的面积公式得出各个部分的面积,再逐个判断即可.解析阴影部分的面积为x(x+5)+3×5=x(x+5)+15或x2+5(x+3)或(x+3)(x+5)﹣3x,即选项A、B、C不符合题意,选项D符合题意,故选:D.7.(2020秋•路南区期中)若关于x的多项式(2x﹣m)与(3x+5)的乘积中,一次项系数为25,则m的值() A.5B.﹣5C.3D.﹣3【分析】先求出两个多项式的积,再根据一次项系数为25,得到关于m的一次方程,求解即可.解析(2x﹣m)(3x+5)=6x2﹣3mx+10x﹣5m=6x2+(10﹣3m)x﹣5m.∵积的一次项系数为25,∴10﹣3m=25.解得m=﹣5.故选:B.8.(2020秋•思明区校级期中)如图是一所楼房的平面图,下列式子中不能表示它的面积的是()A.x2+3x+6B.(x+3)(x+2)﹣2xC.x(x+3)+6D.x(x+2)+x2【分析】把楼房的平面图转化为三个矩形,求出三个矩形的面积和即可.解析S楼房的面积=S矩形ABCD+S矩形DEFC+S矩形CFHG=AD•AB+DC•DE+CF•FH.∵AB=DC=AD=x,DE=CF=3,FH=2,∴S楼房的面积=x2+3x+6.故选:D.9.(2021•宁波模拟)已知a、b、c三个数中有两个奇数,一个偶数,n是整数,如果S=(a+n+1)+(b+2n+2)+(c+3n+3),那么()A.S是偶数B.S是奇数C.S的奇偶性与n的奇偶性相同D.S的奇偶不能确定【分析】弄清a+n+1,b+2n+2,c+3n+3的奇偶性即可.可将3数相加,可知和为偶数,再根据三数和为偶数必有一数为偶数的性质可得积也为偶数.解析(a+n+1)+(b+2n+2)+(c+3n+3)=a+b+c+6(n+1).∵a+b+c为偶数,6(n+1)为偶数,∴a+b+c+6(n+1)为偶数∴S是偶数.故选:A.10.(2020秋•沙河口区期末)若(x+a)(x+b)=x2+4x+3,则a+b的值为()A.3B.﹣3C.4D.﹣4【分析】直接利用多项式乘以多项式运算法则去括号,进而得出a+b的值.解析∵(x+a)(x+b)=x2+4x+3,∴x2+(a+b)x+ab=x2+4x+3,∴a+b=4.故选:C.二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2020秋•浦东新区期中)计算:(3x+2)(2x﹣3)=6x2﹣5x﹣6.【分析】运用多项式乘多项式的法则计算即可.解析原式=6x2﹣9x+4x﹣6=6x2﹣5x﹣6.故答案为:6x2﹣5x﹣6.12.(2020秋•香坊区校级期中)已知a﹣b=6,ab=5,则(a+1)(b﹣1)=﹣2.【分析】原式利用多项式乘以多项式法则计算,整理后将已知等式代入计算即可求出值.解析∵a﹣b=6,ab=5,∴(a+1)(b﹣1)=ab﹣a+b﹣1=ab﹣(a﹣b)﹣1=5﹣6﹣1=﹣2;故答案为:﹣2.13.(2020秋•浦东新区期中)将关于x的多项式x2+2x+3与2x+b相乘,若积中不出现一次项,则b=﹣3.【分析】根据题意,利用多项式乘多项式法则计算,确定出b的值即可.解析根据题意得:(x2+2x+3)(2x+b)=2x3+(4+b)x2+(6+2b)x+3b,由积中不出现一次项,得到6+2b=0,解得:b=﹣3.故答案为:﹣3.14.(2020秋•朝阳区期中)如图,现有A类、B类正方形卡片和C类长方形卡片各若干张,若要拼一个长为(3a+b),宽为(a+2b)的大长方形,则需要7张C类卡片.【分析】用长乘以宽,列出算式,根据多项式乘以多项式的运算法则展开,然后根据A、B、C类卡片的形状可得答案.解析∵(3a+b)(a+2b)=3a2+6ab+ab+2b2=3a2+7ab+2b2,∴若要拼一个长为(3a+b),宽为(a+2b)的大长方形,则需要A类3张,B类2张,C类7张.故答案为:7.15.(2020秋•沙坪坝区校级期中)已知x﹣y=7,xy=5,则(2﹣x)(y+2)的值为﹣15.【分析】认真观察题目的特点,易发现(2﹣x)(y+2)化简后会出现,x﹣y,xy,可以进行整体代入即可求得答案.解析(2﹣x)(y+2)=2y+4﹣xy﹣2x=﹣xy﹣2(x﹣y)+4,把x﹣y=7,xy=5代入,原式=﹣5﹣2×7+4=﹣15.故答案为:﹣15.16.(2020秋•九龙坡区校级期中)已知(x﹣2)(x2+mx+n)的乘积项中不含x2和x项,则m+n=6.【分析】直接利用多项式乘多项式计算,再得出m,n的值,即可得出答案.解析(x﹣2)(x2+mx+n)=x3+mx2+nx﹣2x2﹣2mx﹣2n=x3+(m﹣2)x2+(n﹣2m)x﹣2n∵(x﹣2)(x2+mx+n)的乘积项中不含x2和x项,∴m﹣2=0,n﹣2m=0,解得:m=2,n=4,∴m+n=6.故答案为:6.17.(2020秋•崇川区校级期中)如果(m2+n2+1)与(m2+n2﹣1)的乘积为15,那么m2+n2的值为4.【分析】根据题意列出等式,再根据平方差公式进行计算,最后求出答案即可.解析解;∵(m2+n2+1)与(m2+n2﹣1)的乘积为15,∴(m2+n2+1)(m2+n2﹣1)=15,∴(m2+n2)2﹣1=15,即(m2+n2)2=16,解得:m2+n2=4(负数舍去),故答案为:4.18.(2020秋•西峰区期末)若(x+m)(x+n)=x2﹣7x+mn,则﹣m﹣n的值为7.【分析】按照多项式的乘法法则展开运算后解析∵(x+m)(x+n)=x2+(m+n)x+mn=x2﹣7x+mn,∴m+n=﹣7,∴﹣m﹣n=7,故答案为:7.三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤) 19.(2020秋•南岗区期末)化简:(1)(2x)3(﹣5xy2);(2)(3x+2)(x+2).【分析】(1)先算积的乘方,然后再利用单项式乘以单项式计算法则进行计算即可;(2)根据多项式乘以多项式的计算法则进行计算即可.解析(1)原式=8x3•(﹣5xy2)=﹣8x3•5xy2=﹣40x4y2;(2)原式=3x2+6x+2x+4=3x2+8x+4.20.(2020秋•淅川县期末)已知(x2+mx+n)(x﹣1)的结果中不含x2项和x项,求m、n的值.【分析】把式子展开,合并同类项后找到x2项和x项的系数,令其为0,可求出m和n的值.解析(x2+mx+n)(x﹣1)=x3+(m﹣1)x2+(n﹣m)x﹣n.∵结果中不含x2的项和x项,∴m﹣1=0且n﹣m=0,解得:m=1,n=1.21.计算:(1)(2a﹣1)(a﹣4)﹣(a+3)(a﹣1);(2)t2﹣(t+1)(t﹣5);(3)(x+1)(x2+x+1);(4)(2x+3)(x2﹣x+1).【分析】(1)根据多项式的乘法和合并同类项解答即可;(2)根据多项式的乘法和合并同类项解答即可;(3)根据多项式的乘法和合并同类项解答即可;(4)根据多项式的乘法和合并同类项解答即可.解析(1)(2a﹣1)(a﹣4)﹣(a+3)(a﹣1)=2a2﹣8a﹣a+4﹣a2+a﹣3a+3=a2﹣11a+7;(2)t2﹣(t+1)(t﹣5)=t2﹣t2+5t﹣t+5=4t+5;(3)(x+1)(x2+x+1);=x3+x2+x+x2+x+1=x3+2x2+2x+1;(4)(2x+3)(x2﹣x+1)=2x3﹣2x2+2x+3x2﹣3x+3=2x3+x2﹣x+3.22.(2020秋•新宾县期末)如图,某市有一块长(3a+b)米,宽为(2a+b)米的长方形地块,规划部门计划将阴影部分进行绿化,中间空白处将修建一座雕像.(1)求绿化的面积是多少平方米.(2)当a=2,b=1时求绿化面积.【分析】(1)绿化面积=长方形的面积﹣正方形的面积;(2)把a=2,b=1代入(1)求出绿化面积.解析(1)S绿化面积=(3a+b)(2a+b)﹣(a+b)2=6a2+5ab+b2﹣a2﹣2ab﹣b2=5a2+3ab;答:绿化的面积是(5a2+3ab)平方米;(2)当a=2,b=1时,绿化面积=5×22+3×2×1=20+6=26.答:当a=2,b=1时,绿化面积为26平方米.23.如图1,长方形的两边分别是m+8,m+4.如图2的长方形的两边为m+13,m+3(其中m为正整数).(1)求出两个长方形的面积S1、S2,并比较S1、S2的大小;(2)现有一个正方形,它的周长与图1的长方形的周长相等,试证明该正方形的面积与图1的长方形的面积的差是一个常数,并求出这个常数.【分析】(1)利用长方形的面积=长×宽易得S1,S2的大小,并用作差的方法进行比较;(2)利用正方形的周长与图1中的长方形的周长相等易得正方形的边长,从而得正方形的面积,再作差去解决问题.解析(1)∵S1=(m+8)(m+4)=m2+12m+32,S2=(m+13)(m+3)=m2+16m+39,m为正整数,∴S1﹣S2=m2+12m+32﹣(m2+16m+39)=﹣4m﹣7<0,∴S1<S2;(2)∵一个正方形的周长与图1中的长方形的周长相等,∴正方形的边长为2(m+8+m+4)÷4=m+6,正方形的面积为(m+6)2=m2+12m+36,∴m2+12m+36﹣(m2+12m+32)=m2+12m+36﹣m2﹣12m﹣32=4,∴该正方形的面积与图1的长方形的面积的差是一个常数4.24.(2020秋•岳麓区校级月考)定义:L(A)是多项式A化简后的项数.例如多项式A=x2+2x﹣3,则L(A)=3.一个多项式A乘以多项式B,化简得到多项式C(即C=A×B),如果L(A)≤L(C)≤L(A)+1,则称B是A的“郡园多项式”;如果L(A)=L(C),则称B是A的“郡园志勤多项式”.(1)若A=x﹣2,B=x+3;那么B是不是A的“郡园多项式”,说明理由;(2)若A=x﹣2,B=x2+ax+4是关于x的多项式且B是A的“郡园志勤多项式”,求a的值?(3)若A=x2﹣x+3m,B=x2+x+m是关于x的多项式且B是A的“郡园志勤多项式”,求m的值?【分析】(1)根据多项式乘多项式的法则计算,根据“郡园多项式”的定义判断;(2)根据多项式乘多项式的法则计算,根据“郡园志勤多项式”,得到关于a的方程,解方程即可求解;(3)根据多项式乘多项式的法则计算,根据“郡园志勤多项式”,得到关于m的方程,解方程即可求解.解析(1)B是A的“郡园多项式”,理由如下:(x﹣2)(x+3)=x2﹣2x+3x﹣6=x2+x﹣6,x2+x﹣6的项数比A的项数多1项,则B是A的“郡园多项式”;(2)(x﹣2)(x2+ax+4)=x3+ax2+4x﹣2x2﹣2ax﹣8=x3+(a﹣2)x2+(4﹣2a)x﹣8,∵B是A的“郡园志勤多项式”,∴a﹣2=0且4﹣2a=0,解得a=2.∴a的值是2;(3)(x2﹣x+3m)(x2+x+m)=x4+x3+mx2﹣x3﹣2x2﹣mx+3mx2+3mx+3m2=x4+(4m+1)x2+2mx+3m2,∵B是A的“郡园志勤多项式”,∴4m+1=0或m=0,解得m=−14或0.∴m的值是−14或0.。

整式的乘法练习题含解析答案

整式的乘法练习题含解析答案

北师大版数学七年级下册第一章1.4整式的乘法课时练习一、选择题2b)·(-3a)等于(1.(-5a )3232b -8a DC.-15a.b 15a b B.-15a b A.答案:A23b,故A项正确15a. b)·(-3a)解析:解答:(-5a=分析:由单项式乘单项式法则与同底数幂的乘法法则可完成此题.32)等于()-5b.(2a)·(233232ba D.-40a40b B.-40a b C.A.10a-b答案:B3232,故B项正确.b )=-40a解析:解答:(2a)b·(-533,再由单项式乘单项式法则可完成此题a). =8分析:先由积的乘方法则得(2a322c)等于(ab)b)·(-3.(2a564747474c bD.C .-20a20bacA.-20a b c B.10a b c答案:C32274c,故C项正确20a.)b·(-5ab c)=-解析:解答:(2ab3262,再由单项式乘单项式法则与同底数幂的乘法=-4aab)b分析:先由积的乘方法则得(2可完成此题.3227 等于())·2xxy)·(5xy4.(6y4y474144 y20 D20x.yx B.10x y C.-20A.-x答案:D3227 144,故D项正确y.)·x =-解析:解答:(2x20y)·(5xyx3262,再由单项式乘单项式法则与同底数幂的乘法y=-4分析:先由积的乘方法则得(2xxy)法则可完成此题.32-5ac)等于(a)·(b 5.26252324744c 0ac .Da.10a2b c C.a-1bb-10acaA.-20Bbc答案:C32324c,故C项正确.2ab -10解答:解析:2aa·(b-5ac)=分析:由单项式乘多项式法则与同底数幂的乘法法则可完成此题.32 等于()(xy)+zx6. y·4333144 433yz y.+x yz Czxy+x xD.xyB xA.y+xyz .答案:D32 433yz ,故D项正确xz(x解析:解答:y·xy+)=y+x.分析:由单项式乘单项式法则与同底数幂的乘法法则可完成此题.1 / 4723 等于()x)y+7.(-xz)·(1714331714 173yz xy+x z yx+z B.-xyx+xDyz C.-xA.x.y+答案:A723 1714z ,故xA项正确y+z.)=x 解析:解答:(-xy)+·(x7214,再由单项式乘多项式法则与同底数幂的乘法法则可-x=)x分析:先由幂的乘方法则得(完成此题.34 2-ac)等于(.(b8.[(-6))]1222521221244c -bac ac -b c C.6DbA.-6.b--bc B.10a6答案:C34 212212ac ,故C项正确6ac)=.b解析:解答:[(-6)]-.(b6-3412,再由单项式乘多项式法则与同底数幂的乘法法)=]6分析:先由幂的乘方法则得[(-6则可完成此题.33y+z)等于()(2x).(x9.6146363 63yz x D..8x8y+8xxz 8A.x y+xyz B.-8xy+x+yz C 答案:C3363z,故C项正确.x y+x)8.(xxy+z)=8解析:解答:(233,再由单项式乘多项式法则与同底数幂的乘法法则可=8先由积的乘方法则得(2x)x分析:完成此题.222+z]等于((-y ))10.(2x).[4242242 242z +4xD.4xxz C.2x yy+2xz xA.4xyxz+B.-4 y +4答案:D222242z ,故D项正确.]=4x y4解析:解答:(2x).[(-y+)x+z22224再由单项式乘多项y=x))=4xy,由幂的乘方法则得(-分析:先由积的乘方法则得(2式法则与同底数幂的乘法法则可完成此题.254+z)等于().x .(yx11.747242242 242z +4xD.4x4xy2+4xz C.x yy+2xz .Ax y+xz B.-答案:A254747z ,故A项正确=z)x.y 解析:解答:x+.x.(yx+257,再由单项式乘多项式法则可完成此题xx. x分析:先由同底数幂的乘法法则得=.22x+z)等于(x)·(y 12.242322 242zy+.Cxxy+xz .Dx xB +.Axyxz .-y+xz答案:C22322x z ,故C项正确x)(解答:解析:x.y+z=y+x.分析:由单项式乘多项式法则与同底数幂的乘法法则可完成此题.2 / 432)·(-5acb)等于()13.(a +625232442c 5aabc - c D-b.c C.5a-b5-10A.-5aabc-B.5a 答案:D3242c,故D项正确-5ab.(-5ac)=-5a 解析:解答:(ac+b )·分析:由单项式乘多项式法则与同底数幂的乘法法则可完成此题.252+z)等于(·(y14.(x)+y )2227522252225 2275z y D.xy++xyz +y zxz +y +y z B.2xyy+x+z +y z C.Ax.yx+答案:A25222275z ,故A项正确+y(y.+z)=x+yy+x 解析:解答:(xz+y.)分析:由多项式乘多项式法则与同底数幂的乘法法则可完成此题.252等于()·(aa+b )15.225452452 42+ba D C.a.+2b2A.aac+bac B.2a+2b a答案:B252452,故B项正确.+2ab+b )·aa=2a解析:解答:2(分析:由单项式乘多项式法则与同底数幂的乘法法则可完成此题.二、填空题22+z)等于16.5x ·(xy;322z xy +5答案:5x22222322zxx+yxy+5x5·x解析:解答:5z·(xy=+z)=5x5·分析:由单项式乘多项式法则与同底数幂的乘法法则可完成此题22+4c)等于·(ab ;17.2a322c +8答案:2aab22222322c +c=2a)=2a8·abb+2aa·2解析:解答:a4·(abc+4分析:由单项式乘多项式法则与同底数幂的乘法法则可完成此题22+7c)等于.182a ·(3ab;322c 14aab +答案:622222322cab +a=·7c6a解答:2a·(3abc+7=2a14·3ab+2解析:分析:由单项式乘多项式法则与同底数幂的乘法法则可完成此题2)·(3a+c)等于(-19.2a ;32c 2a答案:-6a -22232c -6·)c=-6a2a(+·(3ac)=-2a)·3+(-aaa-解析:解答:2分析:由单项式乘多项式法则与同底数幂的乘法法则可完成此题2)·(3x+1)等于x(-20.4 ;32 412答案:-x-x3 / 422232 4xxx-)·1=-+1)=(-4x12)·3x+(-4解析:解答:(-4x3)·(x分析:由单项式乘多项式法则与同底数幂的乘法法则可完成此题三、计算题24z)(210xxyy)·21.(-35 z20 x y答案:-242+14+135 z 20 x·y y··(2xyzz)= -20 x=-解析:解答:解:(-10x)y分析:由单项式乘单项式法则与同底数幂的乘法法则可完成此题224)·(- x y3 x)y22.(-2 x y )·(-47y-答案:6 x2241+2+12+4+147y=-6 x)·(- x y)= -6 x解析:解答:解:(-2 x y()·-3 xyy·分析:由单项式乘单项式法则与同底数幂的乘法法则可完成此题22-1) (a 23a- 2)+a·23.2a(a+1)- a(42+4a3a答案:2a -22224242+4aa2a a+2a- -2a3)(3a-2+2a= (a-1) =2a+2a - 3a+2)(解答:解:解析:2a·a+1- a分析:先由单项式乘多项式法则与同底数幂的乘法法则计算,再合并同类项可完成此题.22- ab b+ ab)ab24.3·(a322322- b3a abb+3 a 3 答案:2222322322--- b ab ab·ab =3a 3b a+a(解答:解:解析:3ab·a+b ab= ab )3ab·3b+ab·ab3 3分析:由单项式乘多项式法则与同底数幂的乘法法则计算可完成题.25.(x-8y)·(x-y)22y89xy +答案:x-1+11+122y+8xy x8xy- x)yx·y-(解析:解答:解:x8)(- =-xy8+y=-9分析:先由多项式乘多项式法则与同底数幂的乘法法则计算,再合并同类项可完成此题.4 / 4。

整式乘法公式练习题

整式乘法公式练习题

整式乘法公式练习题整式乘法公式专项过关训练一、用乘法公式计算1) $(-m+5n)(-m-5n)$解:使用公式$(a+b)(a-b)=a^2-b^2$,得到:m+5n)(-m-5n)=(-m)^2-(5n)^2=m^2-25n^2$ 2) $(3x-1)(3x+1)$解:使用公式$(a+b)(a-b)=a^2-b^2$,得到:3x-1)(3x+1)=(3x)^2-(1)^2=9x^2-1$3) $(y-5)^2$解:使用公式$(a-b)^2=a^2-2ab+b^2$,得到:y-5)^2=y^2-10y+25$4) $(-2x+5)^2$解:使用公式$(a-b)^2=a^2-2ab+b^2$,得到:2x+5)^2=(-2x)^2-2(-2x)(5)+5^2=4x^2-20x+25$ 5) $(3^2x-y)^2$解:使用公式$(a-b)^2=a^2-2ab+b^2$,得到:3^2x-y)^2=(9x)^2-2(9x)(y)+y^2=81x^2-18xy+y^2$ 6) $(y+3x)(3x-y)$解:使用公式$(a+b)(c-d)=ac-ad+bc-bd$,得到:y+3x)(3x-y)=3x^2-y^2$7) $(-2+ab)(2+ab)$解:使用公式$(a+b)(c+d)=ac+ad+bc+bd$,得到:2+ab)(2+ab)=-4+a^2b^2$8) $(2x-3)^2$解:使用公式$(a-b)^2=a^2-2ab+b^2$,得到:2x-3)^2=4x^2-12x+9$9) $(-2x+3y)(-2x-3y)$解:使用公式$(a+b)(c+d)=ac+ad+bc+bd$,得到:2x+3y)(-2x-3y)=12x^2-9y^2$10) $(m-3)(m+3)$解:使用公式$(a-b)(a+b)=a^2-b^2$,得到:m-3)(m+3)=m^2-9$11) $(x+6y)^2$解:使用公式$(a+b)^2=a^2+2ab+b^2$,得到:x+6y)^2=x^2+12xy+36y^2$13) $(x+1)(x-3)-(x+2)^2+(x+2)(x-2)$解:先按照乘法公式计算:x+1)(x-3)=x^2-2x-3$x+2)^2=x^2+4x+4$x+2)(x-2)=x^2-4$代入原式得:x+1)(x-3)-(x+2)^2+(x+2)(x-2)=x^2-2x-3-x^2-4x-4+x^2-4=x^2-6x-11$14) $(a+2b-1)^2$解:使用公式$(a+b)^2=a^2+2ab+b^2$,得到:a+2b-1)^2=a^2+4ab-2a+4b^2-4b+1$15) $(2x+y+z)(2x-y-z)$解:使用公式$(a+b)(c-d)=ac-ad+bc-bd$,得到:2x+y+z)(2x-y-z)=4x^2-y^2-z^2$16) $(2x-1)(x+2)-(x-2)^2-(x+2)^2$解:先按照乘法公式计算:2x-1)(x+2)=2x^2+3x-2$x-2)^2=x^2-4x+4$x+2)^2=x^2+4x+4$代入原式得:2x-1)(x+2)-(x-2)^2-(x+2)^2=2x^2+3x-2-x^2+4x-4-x^2-4x-4=-2x^2-5$17) $12^2-12\cdot2\cdot4$解:使用公式$a^2-b^2=(a+b)(a-b)$,得到:12^2-12\cdot2\cdot4=(12+8)(12-8)=20\cdot4=80$18) $(2x+3)(2x-3)-(2x-1)^2$解:先按照乘法公式计算:2x+3)(2x-3)=4x^2-9$2x-1)^2=4x^2-4x+1$代入原式得:2x+3)(2x-3)-(2x-1)^2=4x^2-9-(4x^2-4x+1)=-9+4x$ 19) $(2x+y+1)(2x+y-1)$解:使用公式$(a+b)(a-b)=a^2-b^2$,得到:2x+y+1)(2x+y-1)=(2x+y)^2-1=4x^2+4xy+y^2-1$ 20) $(2x-1)(x-3)$解:使用公式$(a-b)(c-d)=ac-ad-bc+bd$,得到:2x-1)(x-3)=2x^2-7x+3$二、判断正误:对的画“√”,错的画“×”.1) $(a-b)(a+b)=a^2-b^2$ √2) $(b+a)(a-b)=a^2-b^2$ ×3) $(b+a)(-b+a)=a^2-b^2$ √4) $(b-a)(a+b)=a^2-b^2$ √5) $(a-b)(a-b)=a^2-b^2$ ×6) $(a+b)^2=a^2+b^2$ ×7) $(a-b)^2=a^2-b^2$ ×8) $(a-b)^2=(b-a)^2$ √三、填空题1.$(2x+5y)^2=4x^2+20xy+25y^2$2.$(2x+3y)(3x-y)=6x^2+5xy-3y^2$3.$(2x-3y)(3x-2y)=6x^2-13xy+6y^2$4.$(4x+6y)(2x-3y)=8x^2-6xy+18y^2$5.$(x-2y)^2=x^2-4xy+4y^2$6.$(x-3)(x+3)(x^2+9)=x^4-9$7.$(2x+1)(2x-1)+1=4x^2$8.$(x+2)(x-2)=x^2-4$9.$(2x-1)^2-(x+2)^2=x^2-6x-3$10.$(x+1)(x-2)-(x-3)(x+3)=2x-7$11.将(2x+ )( -y) = 4x^2 - y^2中的空格填上4x和y,得到(2x+4x)(y -y) = 4x^2 - y^2.小幅度改写为:将(2x+ )( -y) = 4x^2 - y^2转化为(2x+4x)(y -y) = 4x^2 - y^2.12.(1+x)(1-x)(1+x^2)(a+x^4)中间没有等号,无法求解,删除该段。

1.6 整式的乘法

1.6 整式的乘法

1.6 整式的乘法一、填空题: 1.(-3xy)·(-x 2z)·6xy 2z=_________. 2. 2(a+b)2·5(a+b)3·3(a+b)5=____________.3.(2x 2-3xy+4y 2)·(-xy)=_________.4.3a(a 2-2a+1)-2a 2(a-3)=________.5.已知有理数a 、b 、c 满足│a-1│+│a+b │+│a+b+c-2│=0,则代数式(-3ab).(-a 2c).6ab 2的值为________.6.(a+2)(a-2)(a 2+4)=________.7.已知(3x+1)(x-1)-(x+3)(5x-6)=x 2-10x+m,则m=_____.8.已知ax 2+bx+1与2x 2-3x+1的积不含x 3的项,也不含x 的项,那么a=_______,b=_____.9.()()123221123221n n n n n n n n n n a a a b a b a b b b a a b a b a b b ----------+++++-+++++= _________. 10.a 6b ·(-4a 6b )= . 11.(-2.5×102) ×(2×103)=12..x (-5x -2y +1)= 13.(a +1)(a -21)= 14.将一个长为x ,宽为y 的长方形的长增加1,宽减少1,得到的新长方形的面积是15. 计算: 221(3)3x y xy ⎛⎫-= ⎪⎝⎭1(246)2x x y -+=_________;(2)(3)x x +-=___________. 16.已知P (0P ≠)是单项式,Q 为四项式,如果P ·Q =G ,则G 是______项式.17.两个单项式的乘积为-538x y z ,那么这两个单项式可能是_____________________.18.计算:(25)(3)a b a b -+=_______________.19. 当2x =时,代数式234(2)(38)x x x x x -+的值是___________. 20.一个三角形的底边长为(26)a b +,高是(45)a b -,则这个三角形的面积是______.21.如图,某养鸡专业户要搭建一个长方形养鸡场,鸡场的一边靠墙,另外三边用篱笆围成,若篱笆长为11米,垂直于墙的一边长x 米,则养鸡场的面积为_____________________.二、选择题:22.下列式子正确的是( )A.(-x 4)·(-x 2)=x 4B.(a -b )3(b -a )4=(a -b )7C.(6ab 2)2=12a 2b 4D. a 6+b 6=a 1223.下列各式中,计算正确的是( )A.(-3a 1+n b )·(-2a )=6a1+n b B.(-6a 2b )·(-ab 2)·21b 3c =3a 3b 6c C.(-4ab )·(-a 2c )·21ab 2=2a 3b 3c D.(a n b 3c )·(-31ab 1-n )=-31a 1+n b 13-n c 24.下列各题计算正确的是( ) A.-3xy 2(xy -1)=-3x 2y 3-3xy 2 B.(3x 2+xy -y 2)·2x 2=6x 4+2x 3y -y 2C.-5a (1-3a +a 2)=15a 2-5a 3D.(-4x )(2x 2+3x -1)=-8x 3-12x 2+4x25.为参加“爱我校园”摄影赛,小明同学将参与植树活动的照片放大为长acm ,宽43acm 的形状,又精心在四周加上了宽2cm 的木框,则这幅摄影作品占的面积是( )A. 43a 2-27a +4B. 43a 2-7a +16C. 43a 2+27a +4D. 43a 2+7a +16 26.如果三角形的一边长为2a +4,这条边上的高为2a 2+a +1,则三角形的面积( )A.2a 3+5a 2+3a +2B.4a 3+6a 2+6a +4C.(2a +4)(2a 2+a +1)D.2a 3+227.下列计算错误的是( )A.-4a (2a 2+3a -1)=-8a 3-12a 2+4aB.a m (a 2-a +1)=am 2-a 1+m +a m C.(x -1)(x -2)=x 2-3x +2 D.(3a 2b )3·(91ab )=3a 7b 4 28.若(x -a )(x -b )=x 2+mx +n ,则m ,n 的值分别为( )A.m =a +b ,n =abB.m =a +b ,n =-abC.m =-(a +b ),n =abD.m =-(a +b ),n =-ab29.三个连续奇数,若中间一个a ,则它们的积为( )A.a 3-4aB. a 3-6aC. 4a 3-aD. 4a 3-6a30.M是关于x 的三次式,N是关于x 的五次式,则下列结论正确的是( )A.M+N是八次式B.N-M是二次式C.M·N是八次式D.M·N是十五次式31.若62(810)(510)(210)10a M ⨯⨯⨯=⨯,则M 、a 的值可为( )A.M=8,a=8B.M=2,a=9C.M=8,a=10D.M=5,a=1032.三个连续奇数,若中间一个为n,则它们的积为( )A.6n 2-6nB.4n 3-nC.n 3-4nD.n 3-n33.下列计算中正确的个数为( )①(2a-b)(4a 2+4ab+b 2)=8a 3-b 3 ②(-a-b)2=a 2-2ab+b 2 ③(a+b)(b-a)=a 2-b 2 ④(2a+12b)2=4a 2+2ab+14b 2 A.1 B.2 C.3 D.433.设多项式A 是个三项式,B 是个四项式,则A ×B 的结果的多项式的项数一定是( )A.多于7项B.不多于7项C.多于12项D.不多于12项34.当n 为偶数时,()()m n a b b a -⋅-与()m n b a +-的关系是( )A.相等B.互为相反数C.当m 为偶数时互为相反数,当m 为奇数时相等D.当m 为偶数时相等,当m 为奇数时为互为相反数35.若234560a b c d e <,则下列等式正确的是( )A.abcde>0B.abcde<0C.bd>0D.bd<036.已知a<0,若33n a a -⋅的值大于零,则n 的值只能是( )A.奇数B.偶数C.正整数D.整数37.M=(a+b)(a-2b),N=-b(a+3b)(其中a ≠0),则M,N 的大小关系为( )A.M>NB.M=NC.M<ND.无法确定38.若4ax ·12412m x x =,则适合条件的a 、m 的值分别是( ).A.3,3B.3,8C.8,3D.8,839.下面计算错误的是( ).A.325(3)(2)6a a a -=-B.224(3)(2)18a a a =C.33a ·2626a a =D.224(3)(2)6a a a --=40.一个长方体的长、宽、高分别是34x -、2x 、x ,则它的体积是( ).A.3234x x -B.3268x x -C.2xD.268x x -41.用科学记数法表示25(410)(1510)⨯⨯⨯的结果是( ).A.76010⨯B.6610⨯C.8610⨯D.10610⨯42.如果()(3)x m x ++的乘积中不含x 的一次项,那么m 的值为( ).A.3B.-3C.0D.143.下列多项式相乘的结果是2412m m +-的是( ).A.(3)(4)m m +-B.(3)(4)m m -+C.(2)(6)m m -+D.(2)(6)m m +-44.计算22(1)(21)m m m m m +---的结果是( ).A.2m m --B.221m m ++C.23m m -D.23m m +45. 已知:a +b =m ,ab =-4, 化简(a -2)(b -2)的结果是( ).A. 6B. 2 m -8C. 2 mD. -2 m三、解答题:46.(1)化简求值:x(x 2-4)-(x+3)(x 2-3x+2)-2x(x-2),其中x=1.5(2)-xy (x 2y 5-xy 3―y ),其中xy 2=-2.47.已知3n m x x x x ⋅⋅=,且m 是n 的2倍,求m 、n48.已知x+3y=0,求32326x x y x y +--的值.49.在多项式533ax bx cx ++-中,当x=3时,多项式的值为5,求当x=-3时,多项式的值.50.求证:221253236n n n n N ++=⋅⋅-⋅ 能被13整除.51.求N=171225⨯是几位正整数52.计算:(1)3(2)x ·2(5)x y -; (2)(4×310)·(5×510)·(3×210);(3)(4)x -·2(231)x x +-; (4)2(21)(431)a a a -++.53.李叔叔刚分到一套新房,其结构如图,他打算除卧室外,其余部分铺地砖,则(1)至少需要多少平方米地砖?(2)如果铺的这种地砖的价格m /米2.54.一个长方形的长为2x cm ,宽比长少4cm ,若将长方形的长和宽都扩大3cm.(1)求面积增大了多少?(2)若2x =cm ,则增大的面积为多少?。

整式的乘除整章练习题(完整)

整式的乘除整章练习题(完整)
4.计算:(1) ____________;(2) _______.
5.已知 ,则 ____________.
6.计算:(1) ______________.(2) ____________.
7.下列计算正确的是( )
A. B.
C. D.
8.下列计算正确的个数为( )
(1) (2) (3) (4)
A.0个B.1个C.2个D.3个
10.计算.
(1)(2x 一3 +4x-1)(一3x);
(2) .
11.计算.
(1)2 - (2 -5b)-b(5 -b);
(2) .
12.先化简,再求值.
(1)m (m+3)+2m(m —3)一3m(m +m-1),其中m ;
(2)4 b( b- b + 6)一2 b (2 —3 b+2 ),其中 =3,b=2.
第1章整式的乘除
第1课时幂的运算(一)
1.计算:(1) _________;(2) _____________.
2.计算:(1) ___________;(2) ______________.
3.计算:(1) ________;(2) ____________.
4.计算: ____________.5.计算:(1) __________;(2) __________.
7.下列运算中,正确的是( )
A.( 一2b)( -2b)= -4b B.(- +2b)( 一2b)=- 一2b
C.( +2b)( 一2b)=- -2b D.(一 一2b)(一 +2b)= -4b
8.在下列各式中,运算结果为36y +49x 的是( )

北师大版七年级数学下册题第一章_整式的乘除 (1.1——1.7) 随堂练习(附答案)

北师大版七年级数学下册题第一章_整式的乘除 (1.1——1.7) 随堂练习(附答案)

1.1同底数幂的乘法一、单选题1.计算3()()x y x y -⋅-=( ).A.4()x y -B.3()x y -C.4()x y --D.4()x y +2.下列计算过程正确的是( )A.2358x x x x ⋅⋅=B.347x y xy ⋅=C.57(9)(3)3-⋅-=-D.56()()x x x --= 3.下列各式的计算结果为7a 的是( )A.25()()a a -⋅-B.25()()a a -⋅- C.25()()a a -⋅- D.6()()a a -⋅- 4.当0,a n <为正整数时,52()()n a a -⋅-的值 ( )A.正数B.负数c.非正数 D.非负数 5.10,10x ya b ==,则210x y ++等于( )A.2abB.a b +C.2a b ++D.100ab6.已知2,3,m n x x ==则m n x +的值是( )A.5B. 6C. 8D. 97.计算·53a a 正确的是( ) A. 2aB. 8aC. 10aD.15a8.在等式3211()a a a ⋅⋅=中,括号里面的代数式是( ).A.7aB.8aC.6aD.3a9.已知m n 34a a ==,,则m+n a 的值为( ).A.12B.7 二、解答题10.求下列各式中x 的值.(1)21381243;x +=⨯(2)3141664 4.x -⨯=⨯三、填空题11.已知34x =,则23x += .12.计算34x x x ⋅+的结果等于________.13.已知1428m +=,则4m = .14.若2m 5x x x ⋅=,则m =_____.参考答案1.答案:A解析:2.答案:D解析:选项A 中,2351359x x x x x ++⋅⋅==,故本选项错误;选项B 中,3x 与4y 不是同底数幕,不能运算,故本选项错误;选项C 中,5257(9)(3)3(3)3-⋅-=-⋅-=,故本选项错误;选项D 中,5516()()()x x x x +--=-=,故本选项正确.故选D3.答案:C解析:选项A 中,275()()a a a -⋅-=-,故此选项错误;选项B 中,257()()a a a -⋅-=-,故此选项错误;选项C 中,275()()a a a -⋅-=,故此选项正确;选项D 中,67()()a a a ⋅-=--.故此选项错误.4.答案:A解析:5225()()(),n n a a a +-⋅-=-∴当0,a n <为正整数,即0a ->时,25()0,n a +->是正数5.答案:D解析:2210101010100x y x y ab ++=⨯⨯=.6.答案:B解析:2,3,23 6.m n m n m n x x x x x +==∴=⋅=⨯=7.答案:B解析:8.答案:C解析:9.答案:A解析:10.答案:解(1)21381243x +=⨯2145333x +=⨯则219x +=解得4x =(2)31416644x -⨯=⨯3124444x -⨯=314x +=则1x =解得解析:11.答案:36解析:223334936x x +=⋅=⨯=.12.答案:42x解析:13.答案:7解析:因为11444m m +=⨯,所以4428m ⨯=,所以47.m =14. 答案:3 1.2幂的乘方与积的乘法一、单选题1.下列运算正确的是( )A.326x x x ⋅=11=C.224+=x x xD.()22436x x = 2.计算(-2x 2)3的结果是( )A.-8x 6B.-6x 6C.-8x 5D.-6x 53.下列各式计算正确的是( )A. 235ab ab ab +=B. ()22345a ba b -=C. =D. ()2211a a +=+4.计算(-xy 2)3的结果是( )A.-x 3y 6B.x 3y 6C.x 4y 5D.-x 4y 55.下列运算正确的是( )A.x 2·x 3=x 6B.x 3+x 2=x 5C.(3x 3)2=9x 5D.(2x)2=4x 26.计算正确的是( )A.a 3-a 2=aB.(ab 3)2=a 2b 5C.(-2)0=0D.3a 2·a -1=3a 7.下列计算正确的是( )A.a 3·a 2=a 6B.3a+2a 2=5a 2C.(3a)3=9a 3D.(-a 3)2=a 6 8.计算(-x 2)3的结果是( )A.-x 5B.x 5C.x 6D.-x 6 9.计算(-a 2)5的结果是( )A.a 7B.-a 7C.a 10D.-a 10 二、解答题10.已知 333,2,m n a b ==求()()332242m n m n m n a b a b a b ⋅+-的值 。

1.6 整式的乘法(精选6篇)

1.6 整式的乘法(精选6篇)

1.6 整式的乘法(精选6篇)1.6 整式的乘法篇1(2)教学目标:1.经受探究整式的乘法运算法则的过程,会进行简洁的整式的乘法运算.2.理解整式的乘法运算的算理,体会乘法安排律的作用和转化思想,进展有条理的思索及语言表达力量.教学重点:整式的乘法运算.教学难点:推想整式乘法的运算法则.教学过程:一、探究练习:展现图画,让同学观看图画用不同的形式表示图画的面积.并做比较. 由此得到单项式与多项式的乘法法则. 观看式子左右两边的特点,找出单项式与多项式的乘法法则.跟着用乘法安排律来验证.单项式与多项式相乘:就是依据安排律用单项式去乘多项式的每一项再把所得的积相加.二、例题讲解:例2:计算(1)2ab(5ab2+3a2b);(2)解略.三、巩固练习:1.推断题:(1)3a3·5a3=15a3 ()(2)()(3)()(4)-x2(2y2-xy)=-2xy2-x3y ()2.计算题:(1);(2);(3);(4)-3x(-y-xyz);(5)3x2(-y-xy2+x2);(6)2ab(a2b- c);(7)(a+b2+c3)·(-2a);(8)[-(a2)3+(ab)2+3]·(ab3);(9);(10);(11)( .四、应用题:1.有一个长方形,它的长为3acm,宽为(7a+2b)cm,则它的面积为多少?五、提高题:1.计算:(1)(x3)2―2x3[x3―x(2x2―1)];(2)xn(2xn+2-3xn-1+1).2.已知有理数a、b、c满意|a―b―3|+(b+1)2+|c-1|=0,求(-3ab)·(a2c-6b2c)的值.3.已知:2x·(xn+2)=2xn+1-4,求x的值.4.若a3(3an-2am+4ak)=3a9-2a6+4a4,求-3k2(n3mk+2km2)的值.小结:要擅长在图形变化中发觉规律,能娴熟的对整式加减进行运算. 作业:课本p11习题1.3 教学后记:1.6 整式的乘法(3)——多项式乘以多项式教学目标:1.经受探究多项式乘法的法则的过程,理解多项式乘法的法则,并会进行多项式乘法的运算.2.进一步体会乘法安排律的作用和转化的思想,进展有条理的思索和语言表达力量.教学重点:多项式乘法的运算.教学难点:探究多项式乘法的法则,留意多项式乘法的运算中“漏项”、“符号”的问题教学过程:一、探究练习:如图,计算此长方形的面积有几种方法?如何计算?小组争论. 你从计算中发觉了什么?多项式与多项式相乘,_____________________________.二、巩固练习: 1.计算下列各题:(1);(2);(3);(4);(5);(6);(7);(8);(9);(10);(11) .三、提高练习:1.若;则m=_____,n=________2.若,则k的值为()(a)a +b (b)-a-b (c)a-b (d)b-a3.已知,则a=______,b=______.4.若成立,则x为__________.5.计算:+2 .6.某零件如图示,求图中阴影部分的面积s.7.在与的积中不含与项,求p、q的值.一、小结:本节课学习了多项式乘法的运算,要特殊留意多项式乘法的运算中不要“漏项”、和“符号”的正确处理.六、作业:第28页习题1、21.6 整式的乘法篇2整式的乘法是在同学学习了同底数幂的乘法、幂的乘方、积的乘方等学问之后支配的有关整式的运算学习。

整式的乘法练习题

整式的乘法练习题

整式的乘法练习题整式的乘法是数学中的一项重要概念,它涉及到对两个以上整式进行乘法运算。

通过练习乘法运算,我们可以加深对整式乘法的理解和掌握。

在本文中,我们将提供一些整式的乘法练习题,以帮助读者更好地掌握这一概念。

练习题1:计算以下乘法:(2x + 3)(4x - 5)解答:(2x + 3)(4x - 5) = 2x × 4x + 2x × (-5) + 3 × 4x + 3 × (-5)= 8x² - 10x + 12x - 15= 8x² + 2x - 15练习题2:计算以下乘法:(3a + 2b)(5a - 4b)(3a + 2b)(5a - 4b) = 3a × 5a + 3a × (-4b) + 2b × 5a + 2b × (-4b) = 15a² - 12ab + 10ab - 8b²= 15a² - 2ab - 8b²练习题3:计算以下乘法:(6x² + 5x - 3)(x - 2)解答:(6x² + 5x - 3)(x - 2) = 6x²× x + 6x²× (-2) + 5x × x + 5x × (-2) - 3 × x - 3 × (-2)= 6x³ - 12x² + 5x² - 10x - 3x + 6= 6x³ - 7x² - 13x + 6练习题4:计算以下乘法:(2x - 3y)(3x + 4y)(2x - 3y)(3x + 4y) = 2x × 3x + 2x × 4y - 3y × 3x - 3y × 4y= 6x² + 8xy - 9xy - 12y²= 6x² - xy - 12y²练习题5:计算以下乘法:(5a² - 4a + 3)(a - 2)解答:(5a² - 4a + 3)(a - 2) = 5a²× a + 5a²× (-2) - 4a × a - 4a × (-2) + 3 × a + 3 × (-2)= 5a³ - 10a² - 4a² + 8a + 3a - 6= 5a³ - 14a² + 11a - 6练习题6:计算以下乘法:(2x - 1)(3x² + 2x - 4)(2x - 1)(3x² + 2x - 4) = 2x × 3x² + 2x × 2x + 2x × (-4) - 1 × 3x² - 1 × 2x - 1 × (-4)= 6x³ + 4x² - 8x - 3x² - 2x + 4= 6x³ + x² - 10x + 4通过以上的练习题,读者可以加深对整式乘法的理解和应用。

整式乘法计算专题训练(含答案)

整式乘法计算专题训练(含答案)

整式乘法计算专题训练1、(2a+3b)(3a﹣2b)2、3、(x+2y﹣3)(x+2y+3)4、5x(2x2﹣3x+4)5、6、计算:a3·a5+(-a2)4-3a8 >7、﹣5a2(3ab2﹣6a3)8、计算:(x+1)(x+2)9、(x﹣2)(x2+4)10、2x11、计算:(x﹣1)(x+3)﹣x(x﹣2)12、﹣(﹣a)2•(﹣a)5•(﹣a)313、(﹣)×(﹣)2×(﹣)3;14、(x﹣y)(x2+xy+y2).15、(﹣2xy2)2•(xy)3;16、17、*18、计算:(x+3)(x+4)﹣x(x﹣1)18、(a+2b)(3a﹣b)﹣(2a﹣b)(a+6b)19、3x(x﹣y)﹣(2x﹣y)(x+y)20、(﹣a2)3﹣6a2•a421、|22、(y﹣2)(y+2)﹣(y+3)(y﹣1)22、23、(2x﹣y+1)(2x+y+1)24、~25、4(a+2)(a+1)-7(a+3)(a-3)参考答案一、计算题【1、(2a+3b)(3a﹣2b)=6a2﹣4ab+9ab﹣6b2=6a2+5ab﹣6b2【点评】此题考查多项式的乘法,关键是根据三角函数、零指数幂和负整数指数幂计算.2、3、(x+2y﹣3)(x+2y+3)=(x+2y)2﹣9=x2+4xy+4y2﹣9;4、【考点】单项式乘多项式.<【分析】原式利用单项式乘多项式法则计算即可得到结果.【解答】解:原式=10x3﹣15x2+20x.5、6、——————————6分7、原式=﹣15a3b2+30a5;8、原式=x2+2x+x+2=x2+3x+2;9、(x﹣2)(x2+4)=x3﹣2x2+4x﹣8;10、原式=x2﹣2x+x2+2x=2x2;11、(x﹣1)(x+3)﹣x(x﹣2)—=x2+2x﹣3﹣x2+2x=4x﹣3;12、原式=﹣a2•a5•a3=﹣a10;13、原式=(﹣)1+2+3=(﹣)6=;14、(x﹣y)(x2+xy+y2)=x3+x2y+xy2﹣x2y﹣xy2﹣y3=x3﹣y3.【点评】此题主要考查了整式的混合运算,正确掌握运算法则是解题关键.15、(﹣2xy2)2•(xy)3=4x2y4•x3y3;=4x5y7;16、17、【考点】整式的混合运算.【分析】直接利用多项式乘以多项式以及单项式乘以多项式运算法则化简求出即可.【解答】解:(x+3)(x+4)﹣x(x﹣1)=x2+7x+12﹣x2+x=8x+12.【点评】此题主要考查了整式的混合运算,正确掌握相关运算法则是解题关键.18、(a+2b)(3a﹣b)﹣(2a﹣b)(a+6b)·=3a2﹣ab+6ab﹣2b2﹣2a2﹣12ab+ab+6b2=a2﹣6ab+4b219、原式=3x2﹣3xy﹣2x2﹣xy+y2=x2﹣4xy+y2;20、(﹣a2)3﹣6a2•a4=﹣a6﹣6a6=﹣7a6;21、(y﹣2)(y+2)﹣(y+3)(y﹣1)=y2﹣4﹣y2﹣2y+3=﹣2y﹣1;22、==2a6b5c5;23、(2x﹣y+1)(2x+y+1)=[(2x+1)﹣y][(2x+1)+y] =(2x+1)2﹣y2=4x2+4x+1﹣y2;24、6a3-35a2+13a (25、。

1.4~1.6整式乘法、平方差公式、完全平方公式(教案)

1.4~1.6整式乘法、平方差公式、完全平方公式(教案)
举例:如2x乘以3x,应得出6x^2;对于(2x+3)乘以(x+1),能正确展开为2x^2+2x+3x+3。
(2)平方差公式:掌握(a+b)(a-b)=a^2-b^2的平方差公式,并能够应用于因式分解和简化计算。
举例:对于表达式x^2-9,能迅速识别为平方差公式的应用,分解为(x+3)(x-3)。
(3)完全平方公式:掌握(a+b)^2=a^2+2ab+b^2和(a-b)^2=a^2-2ab+b^2的完全平方公式,能够运用到实际问题中。
五、教学反思
在今天的教学中,我发现学生们对整式乘法、平方差公式和完全平方公式的理解程度参差不齐。有些学生能够迅速掌握运算规律,而部分学生在符号处理和公式运用上还存在困难。这让我意识到,在今后的教学中,我需要更加关注这些难点,采取更有针对性的教学方法。
在导入新课环节,通过提问学生们日常生活中的实际问题,成功引起了他们的兴趣。但在新课讲授过程中,我发现有些学生对理论介绍部分的理解不够深入。在今后的教学中,我应尽量用生动的例子和实际应用来解释抽象的概念,帮助他们更好地理解。
举例:对于表达式(x+3)^2,能正确展开为பைடு நூலகம்^2+6x+9。
2.教学难点
(1)整式乘法中的符号处理:在整式乘法过程中,学生容易在符号处理上出错,如漏乘符号、符号错误等。
举例:对于(2x-3y)乘以(4x+5y),学生可能会得出8x^2+10xy-12xy-15y^2的错误结果,而正确答案是8x^2+2xy-15y^2。
此外,从学生的反馈来看,他们在解决实际问题时,对于如何运用所学知识还存在一定困扰。针对这一问题,我计划在课后布置一些与生活紧密相关的练习题,让学生们练习运用整式乘法、平方差公式和完全平方公式,以提高他们解决实际问题的能力。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.3—1.6同底数幂的乘法、积的乘方 和幂的乘方、同底数幂的除法、整式的乘法练习
一、选择题:
1、下列各式的计算中不正确的个数是( ).
1
)10
1
()10()4(8
)2
1
()1.0()3(;
1000)72(.10
)2(;1010
10)1(44300
41
0-=-÷-=-÷=⨯=÷----- A .4个 B .3个 C .2个 D .1个 2、下列计算正确的是:( )
A 、2a 2
+2a 3
=2a 5
B 、2a -1
=12a
C 、(5a 3)2=25a 5
D 、(-a 2)2÷a=a 3
3、关于2008
20082)2
1(⋅计算正确的是( ) A 、0 B 、1 C 、-1 D 、24016
4、计算=-⨯-
20052005)5
22()125(( ) (A )-1 (B )1 (C )0 (D )1997
5、若a = -0.42, b = -4-
2, c =2
41-⎪

⎫ ⎝⎛-,d =0
41⎪⎭

⎝⎛-, 则 a 、b 、c 、d 的大小关系为( )
(A ) a<b<c<d (B )b<a<d<c (C ) a<d<c<b (D )c<a<d<b
6、计算:30
02
2)2(21)x (4554---÷⎪⎭

⎝⎛--π-+⎪


⎝⎛-÷⎪⎭⎫ ⎝⎛得到的结果是( )
(A )8 (B )9 (C )10 (D )11
()
72047632.a b c a b ab ÷-÷的结果是(

A a b c
B a b ..--553355
C a b
D a b ..555552
-
()()8.已知的乘积式中不含的一次项,则,满足(

x a x b x a b ++
A a b
B a
C a b
D b ....===-=0
9、若(x -3)0 -2(3x -6)
-2
有意义,则x 的取值范围是( )
(A ) x >3 (B )x ≠3 且x ≠2 (C ) x ≠3或 x ≠2 (D )x < 2 10、若关于x 的积)7)((+-x m x 中常数项为14,则m 的值为( )
A 、2
B 、-2
C 、7
D 、-7
11、若))(3(152
n x x mx x
++=-+,则m 的值为( )
A 、-5
B 、5
C 、-2
D 、2
12、若
()()232y y y my n +-=++,则m 、n 的值分别为( ).
A .5m =,6n
= B .1m =,6n =- C .1m =,6n = D .5m =,6n =-
13、已知a=255
,b=344
,c=433
则a 、b 、c 、的大小关系为:( )
A 、b>c>a
B 、a>b>c
C 、c>a>b
D 、a<b<c
二、填空题:
1、若a m
=2,a n
=3,则a
2m-3n
的值是 。

2、若23n
x =,则6n x = .
3、
()()
2
3
342a b ab -÷= .
4、3
22
43b a 21c b a 43⎪⎭

⎝⎛-÷⎪⎭⎫ ⎝⎛-= .
5、2005
20064
0.25⨯= .
6、已知2×8m
=42m
求m=
()7122113
2022
.若
,则的值是。

x y x y -+-=
81051031023.若,,则。

m n m n ===
-
9、)3()918(252
ab b a b a
-÷-=_________。

10、计算:
65
105104⨯⨯⨯= _; ()_______)3(10
2
=----π
11、已知多项多项式14223
--x x
除以多项式A 得商式为x 2,余式为1-x ,则多项式A
为________________。

12、若
c bx ax x x ++=-+2)4)(3( ,则=a _______、=b _______、=c _______。

三、计算题: 1、化简:
()
()·1133222
22
-⎛⎝ ⎫

⎪-x y x y
()()
()220511100100
2003
5
-⨯⨯-÷--.
(3)2
2232)2(2
1c b a bc a -⋅
()()[
]
()432323222
22x y x y x y xy
--++÷
(5) (2x 2
y)2
·(-7xy 2
)∙(14x 4y 3
) (6)
3240
)2
1
()21()21()2(----⨯-÷-+-
(7)(15x 2y 2
-12x 2y 3
-3x 2
)∙(-3x 2
) (8))18()3610854(22
xy xy xy y x
÷--
(9)(3xy -2x 2-3y 2)+(x 2-5xy +3y 2) (10)-5
1x 2
(5x 2-2x +1) (11)(-
3
5ab 3c)⋅103a 3bc ⋅(-8abc)2 (12)200520063
15155321352125.0)
()()()(-⨯+⨯-
2、解方程:
0)2)(2(3)23)(12()3(2
=-+--+--x x x x x
3、已知将)4+x 3-x )(n +mx +x (23乘开的结果不含3x 和2
x 项。

求m 、n 的值;。

相关文档
最新文档