定海区第二中学校2018-2019学年高二上学期第二次月考试卷数学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定海区第二中学校2018-2019学年高二上学期第二次月考试卷数学
班级__________ 姓名__________ 分数__________
一、选择题
1. 设双曲线=1(a >0,b >0)的渐近线方程为y=
x ,则该双曲线的离心率为( )
A .
B .2
C .
D .
2. 从1、2、3、4、5中任取3个不同的数、则这3个数能构成一个三角形三边长的概率为( ) A.110 B.15 C.310 D.25
3. 在△ABC 中,已知D 是AB 边上一点,若
=2
,
=
,则λ=( )
A .
B .
C .﹣
D .﹣
4. 已知集合A={0,m ,m 2
﹣3m+2},且2∈A ,则实数m 为( )
A .2
B .3
C .0或3
D .0,2,3均可
5. 与向量=(1,﹣3,2)平行的一个向量的坐标是( )
A .(,1,1)
B .(﹣1,﹣3,2)
C .(﹣,,﹣1)
D .(,﹣3,﹣2)
6. 设f (x )=(e -x -e x )(12x +1-1
2
),则不等式f (x )<f (1+x )的解集为( )
A .(0,+∞)
B .(-∞,-1
2
)
C .(-12,+∞)
D .(-1
2,0)
7. 方程x 2+2ax+y 2=0(a ≠0)表示的圆( )
A .关于x 轴对称
B .关于y 轴对称
C .关于直线y=x 轴对称
D .关于直线y=﹣x 轴对称
8. 已知lga+lgb=0,函数f (x )=a x 与函数g (x )=﹣log b x 的图象可能是( )
A .
B .
C .
D .
9.设命题p :,则p为()
A .
B .
C .
D .
10.已知f(x)=m•2x+x2+nx,若{x|f(x)=0}={x|f(f(x))=0}≠∅,则m+n的取值范围为()A.(0,4) B.[0,4)C.(0,5] D.[0,5]
11.∃x∈R,x2﹣2x+3>0的否定是()
A.不存在x∈R,使∃x2﹣2x+3≥0 B.∃x∈R,x2﹣2x+3≤0
C.∀x∈R,x2﹣2x+3≤0 D.∀x∈R,x2﹣2x+3>0
12.点集{(x,y)|(|x|﹣1)2+y2=4}表示的图形是一条封闭的曲线,这条封闭曲线所围成的区域面积是()
A
.B
.C
.D
.
二、填空题
13.方程22x﹣1
=的解x=.
14.【盐城中学2018届高三上第一次阶段性考试】已知函数f(x)=lnx-m
x
(m∈R)在区间[1,e]上取得
最小值4,则m=________.
15.设数列{a n}的前n项和为S n,已知数列{S n}是首项和公比都是3的等比数列,则{a n}的通项公式a n=.
16.已知实数x,y满足
2
330
220
y
x y
x y
≤
⎧
⎪
--≤
⎨
⎪+-≥
⎩
,目标函数3
z x y a
=++的最大值为4,则a=______.
【命题意图】本题考查线性规划问题,意在考查作图与识图能力、逻辑思维能力、运算求解能力.
17.已知z,ω为复数,i为虚数单位,(1+3i)z为纯虚数,ω
=,且|ω
|=5,则复数ω=.
18.已知实数x,y
满足约束条,则
z=的最小值为.
三、解答题
19
.已知,数列{a n}
的首项
(1)求数列{a n}的通项公式;
(2)设,数列{b n}的前n项和为S n,求使S n>2012的最小正整数n.
20.若数列{a n}的前n项和为S n,点(a n,S n)在y=x的图象上(n∈N*),
(Ⅰ)求数列{a n}的通项公式;
(Ⅱ)若c1=0,且对任意正整数n都有,求证:对任意正整数n≥2,总有
.
21.设函数.
(1)若x=1是f(x)的极大值点,求a的取值范围.
(2)当a=0,b=﹣1时,函数F(x)=f(x)﹣λx2有唯一零点,求正数λ的值.
22.如图1,圆O的半径为2,AB,CE均为该圆的直径,弦CD垂直平分半径OA,垂足为F,沿直径AB将半圆ACB所在平面折起,使两个半圆所在的平面互相垂直(如图2)
(Ⅰ)求四棱锥C﹣FDEO的体积
(Ⅱ)如图2,在劣弧BC上是否存在一点P(异于B,C两点),使得PE∥平面CDO?若存在,请加以证明;若不存在,请说明理由.
23.已知{a n}为等比数列,a1=1,a6=243.S n为等差数列{b n}的前n项和,b1=3,S5=35.
(1)求{a n}和{B n}的通项公式;
(2)设T n=a1b1+a2b2+…+a n b n,求T n.
24.已知a,b,c分别是△ABC内角A,B,C的对边,sin2B=2sinAsinC.
(Ⅰ)若a=b,求cosB;
(Ⅱ)设B=90°,且a=,求△ABC的面积.
定海区第二中学校2018-2019学年高二上学期第二次月考试卷数学(参考答案)
一、选择题
1.【答案】C
【解析】解:由已知条件知:;
∴;
∴;
∴.
故选C.
【点评】考查双曲线的标准方程,双曲线的渐近线方程的表示,以及c2=a2+b2及离心率的概念与求法.
2.【答案】
【解析】解析:选C.从1、2、3、4、5中任取3个不同的数有下面10个不同结果:(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,
4,5),能构成一个三角形三边的数为(2,3,4),(2,4,5),(3,4,5),故概率P=3
10.
3.【答案】A
【解析】解:在△ABC中,已知D是AB边上一点
∵=2,=,
∴=,
∴λ=,
故选A.
【点评】经历平面向量分解定理的探求过程,培养观察能力、抽象概括能力、体会化归思想,基底给定时,分解形式唯一,字母系数是被基底唯一确定的数量.
4.【答案】B
【解析】解:∵A={0,m,m2﹣3m+2},且2∈A,
∴m=2或m2﹣3m+2=2,
解得m=2或m=0或m=3.
当m=0时,集合A={0,0,2}不成立. 当m=2时,集合A={0,0,2}不成立. 当m=3时,集合A={0,3,2}成立.
故m=3. 故选:B .
【点评】本题主要考查集合元素和集合之间的关系的应用,注意求解之后要进行验证.
5. 【答案】C
【解析】解:对于C 中的向量:(﹣,,﹣1)=﹣(1,﹣3,2)=﹣,
因此与向量=(1,﹣3,2)平行的一个向量的坐标是.
故选:C .
【点评】本题考查了向量共线定理的应用,属于基础题.
6. 【答案】
【解析】选C.f (x )的定义域为x ∈R ,
由f (x )=(e -x -e x )(12x +1-1
2)得
f (-x )=(e x -e -x )(12-x +1-1
2)
=(e
x
-e -x )(
-1
2x +1+12
) =(e -x -e x )(12x +1-1
2)=f (x ),
∴f (x )在R 上为偶函数,
∴不等式f (x )<f (1+x )等价于|x |<|1+x |,
即x 2<1+2x +x 2,∴x >-1
2
,
即不等式f (x )<f (1+x )的解集为{x |x >-1
2},故选C.
7. 【答案】A
【解析】解:方程x 2+2ax+y 2=0(a ≠0)可化为(x+a )2+y 2=a 2
,圆心为(﹣a ,0),
∴方程x 2+2ax+y 2
=0(a ≠0)表示的圆关于x 轴对称,
故选:A .
【点评】此题考查了圆的一般方程,方程化为标准方程是解本题的关键.
8.【答案】B
【解析】解:∵lga+lgb=0
∴ab=1则b=
从而g(x)=﹣log b x=log a x,f(x)=a x与
∴函数f(x)与函数g(x)的单调性是在定义域内同增同减
结合选项可知选B,
故答案为B
9.【答案】A
【解析】【知识点】全称量词与存在性量词
【试题解析】因为特称命题的否定是全称命题,p为:。
故答案为:A
10.【答案】B
【解析】解:设x1∈{x|f(x)=0}={x|f(f(x))=0},
∴f(x1)=f(f(x1))=0,
∴f(0)=0,
即f(0)=m=0,
故m=0;
故f(x)=x2+nx,
f(f(x))=(x2+nx)(x2+nx+n)=0,
当n=0时,成立;
当n≠0时,0,﹣n不是x2+nx+n=0的根,
故△=n2﹣4n<0,
故0<n<4;
综上所述,0≤n+m<4;
故选B.
【点评】本题考查了函数与集合的关系应用及分类讨论的思想应用,同时考查了方程的根的判断,属于中档题.
11.【答案】C
【解析】解:因为特称命题的否定是全称命题,所以,∃x∈R,x2﹣2x+3>0的否定是:∀x∈R,x2﹣2x+3≤0.
故选:C.
12.【答案】A
【解析】解:点集{(x ,y )|(|x|﹣1)2+y 2
=4}表示的图形是一条封闭的曲线,关于x ,y 轴对称,如图所示.
由图可得面积S==+=+2.
故选:A .
【点评】本题考查线段的方程特点,由曲线的方程研究曲线的对称性,体现了数形结合的数学思想.
二、填空题
13.【答案】 ﹣ .
【解析】解:22x ﹣1
=
=2﹣2,
∴2x ﹣1=﹣2,
解得x=﹣,
故答案为:﹣
【点评】本题考查了指数方程的解法,属于基础题.
14.【答案】-3e 【解析】f ′(x )=1x +2m x =2x m x
,令f ′(x )=0,则x =-m ,且当x<-m 时,f ′(x )<0,f (x )单调递减,
当x>-m 时,f ′(x )>0,f (x )单调递增.若-m ≤1,即m ≥-1时,f (x )min =f (1)=-m ≤1,不可能等于4;
若1<-m ≤e ,即-e ≤m<-1时,f (x )
min =f (-m )=ln (-m )+1,令ln (-m )+1=4,得m =-e 3(-e ,-
1);若-m>e ,即m<-e 时,f (x )min =f (e )=1-m e ,令1-m
e
=4,得m =-3e ,符合题意.综上所述,m
=-3e.
15.【答案】 .
【解析】解:∵数列{S n }是首项和公比都是3的等比数列,∴S n =3n
.
故a 1=s 1=3,n ≥2时,a n =S n ﹣s n ﹣1=3n ﹣3
n ﹣1
=2•3n ﹣1,
故a n =
.
【点评】本题主要考查等比数列的通项公式,等比数列的前n 项和公式,数列的前n 项的和Sn 与第n 项an 的关系,属于中档题.
16.【答案】3-
【解析】作出可行域如图所示:作直线0l :30x y +=,再作一组平行于0l 的直线l :3x y z a +=-,当直线
l 经过点5(,2)3M 时,3z a x y -=+取得最大值,∴max 5()3273
z a -=⨯+=,所以max 74z a =+=,故
3a =-.
17.【答案】 ±(7﹣i ) .
【解析】解:设z=a+bi (a ,b ∈R ),∵(1+3i )z=(1+3i )(a+bi )=a ﹣3b+(3a+b )i 为纯虚数,∴.
又ω=
==
,|ω|=,∴
.
把a=3b 代入化为b 2
=25,解得b=±5,∴a=±15.
∴ω=±
=±(7﹣i ).
故答案为±(7﹣i ).
【点评】熟练掌握复数的运算法则、纯虚数的定义及其模的计算公式即可得出.
18.【答案】.
【解析】解:作出不等式组对应的平面区域如图:(阴影部分).
由z==32x+y,
设t=2x+y,
则y=﹣2x+t,
平移直线y=﹣2x+t,
由图象可知当直线y=﹣2x+t经过点B时,直线y=﹣2x+t的截距最小,
此时t最小.
由,解得,即B(﹣3,3),
代入t=2x+y得t=2×(﹣3)+3=﹣3.
∴t最小为﹣3,z有最小值为z==3﹣3=.
故答案为:.
【点评】本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.
三、解答题
19.【答案】
【解析】解:(Ⅰ),
,
.
数列是以1为首项,4为公差的等差数列.…
,
则数列{a n}的通项公式为.…
(Ⅱ).…①
.…②
②﹣①并化简得.…
易见S n为n的增函数,S n>2012,
即(4n﹣7)•2n+1>1998.
满足此式的最小正整数n=6.…
【点评】本题考查数列与函数的综合运用,解题时要认真审题,仔细解答,注意错位相减求和法的合理运用.20.【答案】
【解析】(I)解:∵点(a n,S n)在y=x的图象上(n∈N*),
∴,
当n≥2时,,
∴,化为,
当n=1时,,解得a1=.
∴==.
(2)证明:对任意正整数n都有=2n+1,
∴c n=(c n﹣c n﹣1)+(c n﹣1﹣c n﹣2)+…+(c2﹣c1)+c1
=(2n﹣1)+(2n﹣3)+…+3
=
=(n+1)(n ﹣1).
∴当n ≥2时, ==
.
∴
=
+…+
=
<
=,
又=.
∴
.
【点评】本题考查了等比数列的通项公式与等差数列的前n 项和公式、“累加求和”、“裂项求和”、对数的运算性质、“放缩法”、递推式,考查了推理能力与计算能力,属于中档题.
21.【答案】
【解析】解:(Ⅰ)f (x )的定义域为(0,+∞),,由f'(1)=0,得b=1﹣a .
∴
.…
①若a ≥0,由f'(x )=0,得x=1.
当0<x <1时,f'(x )>0,此时f (x )单调递增; 当x >1时,f'(x )<0,此时f (x )单调递减. 所以x=1是f (x )的极大值点.…
②若a <0,由f'(x )=0,得x=1,或x=.
因为x=1是f (x )的极大值点,所以>1,解得﹣1<a <0.
综合①②:a 的取值范围是a >﹣1.…
(Ⅱ)因为函数F (x )=f (x )﹣λx 2
有唯一零点,
即λx 2
﹣lnx ﹣x=0有唯一实数解,
设g (x )=λx 2
﹣lnx ﹣x ,
则.令g'(x )=0,2λx 2
﹣x ﹣1=0.
因为λ>0,所以△=1+8λ>0, 方程有两异号根设为x 1<0,x 2>0. 因为x >0,所以x 1应舍去.
当x ∈(0,x 2)时,g'(x )<0,g (x )在(0,x 2)上单调递减;
当x∈(x2,+∞)时,g'(x)>0,g(x)在(x2,+∞)单调递增.
当x=x2时,g'(x2)=0,g(x)取最小值g(x2).…
因为g(x)=0有唯一解,所以g(x2)=0,
则即
因为λ>0,所以2lnx2+x2﹣1=0(*)
设函数h(x)=2lnx+x﹣1,因为当x>0时,
h(x)是增函数,所以h(x)=0至多有一解.
因为h(1)=0,所以方程(*)的解为x2=1,
代入方程组解得λ=1.…
【点评】本题考查函数的单调性、极值、零点等知识点的应用,解题时要认真审题,仔细解答,注意合理地进行等价转化.
22.【答案】
【解析】解:(Ⅰ)如图1,∵弦CD垂直平分半径OA,半径为2,
∴CF=DF,OF=,
∴在Rt△COF中有∠COF=60°,CF=DF=,
∵CE为直径,∴DE⊥CD,
∴OF∥DE,DE=2OF=2,
∴,
图2中,平面ACB⊥平面ADE,平面ACB∩平面ADE=AB,
又CF⊥AB,CF⊂平面ACB,
∴CF⊥平面ADE,则CF是四棱锥C﹣FDEO的高,
∴.
(Ⅱ)在劣弧BC上是存在一点P(劣弧BC的中点),使得PE∥平面CDO.
证明:分别连接PE,CP,OP,
∵点P为劣弧BC弧的中点,∴,
∵∠COF=60°,∴∠COP=60°,则△COP为等边三角形,
∴CP∥AB,且,又∵DE∥AB且DE=,
∴CP∥DE且CP=DE,
∴四边形CDEP为平行四边形,
∴PE∥CD,
又PE⊄面CDO,CD⊂面CDO,
∴PE∥平面CDO.
【点评】本题以空间几何体的翻折为背景,考查空间几何体的体积,考查空间点、线、面的位置关系、线面平行及线面垂直等基础知识,考查空间想象能力,求解运算能力和推理论证能力,考查数形结合,化归与数学转化等思想方法,是中档题.
23.【答案】
【解析】解:(Ⅰ)∵{a n}为等比数列,a1=1,a6=243,
∴1×q5=243,解得q=3,
∴.
∵S n为等差数列{b n}的前n项和,b1=3,S5=35.
∴5×3+d=35,解得d=2,
b n=3+(n﹣1)×2=2n+1.
(Ⅱ)∵T n=a1b1+a2b2+…+a n b n,
∴
①
②
①﹣②得:
,
整理得:.
【点评】本题考查数列的通项公式的求法,考查数列的前n项和的求法,解题时要认真审题,注意错位相减法的合理运用.
24.【答案】
【解析】解:(I)∵sin2B=2sinAsinC,
由正弦定理可得:>0,
代入可得(bk)2=2ak•ck,
∴b2=2ac,
∵a=b,∴a=2c,
由余弦定理可得:cosB===.
(II)由(I)可得:b2=2ac,
∵B=90°,且a=,
∴a2
+c2=b2=2ac,解得a=c=.
∴S△ABC==1.。