上海梅陇中学人教版七年级上册数学期末试卷及答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上海梅陇中学人教版七年级上册数学期末试卷及答案.doc
一、选择题
1.如图,直线AB ⊥直线CD ,垂足为O ,直线EF 经过点O ,若35BOE ∠=,则
FOD ∠=( )
A .35°
B .45°
C .55°
D .125°
2.若34(0)x y y =≠,则( )
A .34y 0x +=
B .8-6y=0x
C .3+4x y y x =+
D .43
x y = 3.如图,点A ,B 在数轴上,点O 为原点,OA OB =.按如图所示方法用圆规在数轴上截取
BC AB =,若点A 表示的数是a ,则点C 表示的数是( )
A .2a
B .3a -
C .3a
D .2a - 4.下列调查中,适宜采用全面调查的是()
A .对现代大学生零用钱使用情况的调查
B .对某班学生制作校服前身高的调查
C .对温州市市民去年阅读量的调查
D .对某品牌灯管寿命的调查
5.如图,OA ⊥OC ,OB ⊥OD ,①∠AOB=∠COD ;②∠BOC+∠AOD=180°;③∠AOB+∠COD=90°;
④图中小于平角的角有6个;其中正确的结论有几个( )
A .1个
B .2个
C .3个
D .4个
6.在直线AB 上任取一点O ,过点O 作射线OC 、OD ,使OC ⊥OD ,当∠AOC=40°时,
∠BOD 的度数是( )
A .50°
B .130°
C .50°或 90°
D .50°或 130°
7.下列式子中,是一元一次方程的是( )
A .3x+1=4x
B .x+2>1
C .x 2-9=0
D .2x -3y=0
8.如果+5米表示一个物体向东运动5米,那么-3米表示( ).
A .向西走3米
B .向北走3米
C .向东走3米
D .向南走3米 9.单项式﹣6ab 的系数与次数分别为( ) A .6,1
B .﹣6,1
C .6,2
D .﹣6,2 10.“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”,用数学知识解释其道理应是( )
A .两点确定一条直线
B .两点之间,线段最短
C .直线可以向两边延长
D .两点之间线段的长度,叫做这两点之间的距离
11.下列各组数中,互为相反数的是( )
A .2与12
B .2(1)-与1
C .2与-2
D .-1与21-
12.图中是几何体的主视图与左视图, 其中正确的是( )
A .
B .
C .
D .
二、填空题
13.从一个n 边形的同一个顶点出发,分别连结这个顶点与其余各顶点,若把这个多边形
分割为6个三角形,则n 的值是___________.
14.数轴上到原点的距离不大于3个单位长度的点表示的最小整数的数是_____.
15.如图,将一张长方形纸片分別沿着EP ,FP 对折,使点B 落在点B ,点C 落在点C ′.若
点P ,B ′,C ′不在一条直线上,且两条折痕的夹角∠EPF =85°,则∠B ′PC ′=_____.
16.|-3|=_________;
17.写出一个比4大的无理数:____________.
18.已知23,9n m n a a -==,则m a =___________.
19.如图,若12l l //,1x ∠=︒,则2∠=______.
20.如图,某海域有三个小岛A,B,O,在小岛O处观测到小岛A在它北偏东61°的方向上,观测到小岛B在它南偏东38°的方向上,则∠AOB的度数是__________°.
21.如图是一个正方体的表面沿着某些棱剪开后展成的一个平面图形,若这个正方体的每两个相对面上的数字的和都相等,则这个正方体的六个面上的数字的总和为________.
22.如图,在平面直角坐标系中,动点P按图中箭头所示方向从原点出发,第1次运动到
P1(1,1),第2次接着运动到点P2(2,0),第3次接着运动到点P3(3,-2),…,按这的运动规律,点P2019的坐标是_____.
23.用“>”或“<”填空:1
3
_____
3
5

2
2
3
_____﹣3.
24.众所周知,中华诗词博大精深,集大量的情景情感于短短数十字之间,或豪放,或婉约,或思民生疾苦,或抒发己身豪情逸致,文化价值极高.而数学与古诗词更是有着密切的联系.古诗中,五言绝句是四句诗,每句都是五个字;七言绝句是四句诗,每句都是七个字.有一本诗集,其中五言绝句比七言绝句多13首,总字数却反而少了20个字.问两种诗各多少首?设七言绝句有x首,根据题意,可列方程为______.
三、压轴题
25.数轴上A、B两点对应的数分别是﹣4、12,线段CE在数轴上运动,点C在点E的左边,且CE=8,点F是AE的中点.
(1)如图1,当线段CE运动到点C、E均在A、B之间时,若CF=1,则AB=,AC =,BE=;
(2)当线段CE运动到点A在C、E之间时,
①设AF长为x,用含x的代数式表示BE=(结果需化简
.....);
②求BE与CF的数量关系;
(3)当点C运动到数轴上表示数﹣14的位置时,动点P从点E出发,以每秒3个单位长度的速度向右运动,抵达B后,立即以原来一半速度返回,同时点Q从A出发,以每秒2个单位长度的速度向终点B运动,设它们运动的时间为t秒(t≤8),求t为何值时,P、Q 两点间的距离为1个单位长度.
26.已知长方形纸片ABCD,点E在边AB上,点F、G在边CD上,连接EF、EG.将∠BEG 对折,点B落在直线EG上的点B′处,得折痕EM;将∠AEF对折,点A落在直线EF上的点A′处,得折痕EN.
(1)如图1,若点F与点G重合,求∠MEN的度数;
(2)如图2,若点G在点F的右侧,且∠FEG=30°,求∠MEN的度数;
(3)若∠MEN=α,请直接用含α的式子表示∠FEG的大小.
27.问题:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?
探究:要研究上面的问题,我们不妨先从最简单的情形入手,进而找到一般性规律.
探究一:将边长为2的正三角形的三条边分别二等分,连接各边中点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?
如图①,连接边长为2的正三角形三条边的中点,从上往下看:
边长为1的正三角形,第一层有1个,第二层有3个,共有个;
边长为2的正三角形一共有1个.
探究二:将边长为3的正三角形的三条边分别三等分,连接各边对应的等分点,则该三角
形中边长为1的正三角形和边长为2的正三角形分别有多少个?
如图②,连接边长为3的正三角形三条边的对应三等分点,从上往下看:边长为1的正三
角形,第一层有1个,第二层有3个,第三层有5个,共有个;边长为
2的正三角形共有个.
探究三:将边长为4的正三角形的三条边分别四等分(图③),连接各边对应的等分点,
则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?
(仿照上述方法,写出探究过程)
结论:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三
角形中边长为1的正三角形和边长为2的正三角形分别有多少个?
(仿照上述方法,写出探究过程)
应用:将一个边长为25的正三角形的三条边分别25等分,连接各边对应的等分点,则该
三角形中边长为1的正三角形有______个和边长为2的正三角形有______个.
28.如图,从左到右依次在每个小方格中填入一个数,使得其中任意三个相邻方格中所填
数之和都相等.
6a b x-1-2...
(1)可求得x =______,第 2021 个格子中的数为______;
(2)若前k 个格子中所填数之和为 2019,求k 的值;
(3)如果m ,n为前三个格子中的任意两个数,那么所有的|m-n | 的和可以通过计算
|6-a|+|6-b|+|a-b|+|a-6| +|b-6|+|b-a| 得到.若m ,n为前8个格子中的任意两个数,求所有的|m-n|的和.
29.如图,数轴上点A表示的数为4
-,点B表示的数为16,点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动同时点Q从点B出发,以每秒2个单位长度的速度
向左匀速运动.设运动时间为t秒(t0)
>.
()1A,B两点间的距离等于______,线段AB的中点表示的数为______;
()2用含t的代数式表示:t秒后,点P表示的数为______,点Q表示的数为______;()3求当t为何值时,1
PQ AB
2
=?
()4若点M为PA的中点,点N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变请直接写出线段MN的长.
30.已知,如图,A、B、C分别为数轴上的三点,A点对应的数为60,B点在A点的左侧,并且与A点的距离为30,C点在B点左侧,C点到A点距离是B点到A点距离的4倍.
(1)求出数轴上B点对应的数及AC的距离.
(2)点P从A点出发,以3单位/秒的速度向终点C运动,运动时间为t秒.
①当P点在AB之间运动时,则BP=.(用含t的代数式表示)
②P点自A点向C点运动过程中,何时P,A,B三点中其中一个点是另外两个点的中点?求出相应的时间t.
③当P点运动到B点时,另一点Q以5单位/秒的速度从A点出发,也向C点运动,点Q到达C点后立即原速返回到A点,那么Q点在往返过程中与P点相遇几次?直.接.写.出.相遇时P点在数轴上对应的数
31.已知:如图数轴上两点A、B所对应的数分别为-3、1,点P在数轴上从点A出发以每秒钟2个单位长度的速度向右运动,点Q在数轴上从点B出发以每秒钟1个单位长度的速度向左运动,设点P的运动时间为t秒.
(1)若点P和点Q同时出发,求点P和点Q相遇时的位置所对应的数;
(2)若点P比点Q迟1秒钟出发,问点P出发几秒后,点P和点Q刚好相距1个单位长度;
(3)在(2)的条件下,当点P和点Q刚好相距1个单位长度时,数轴上是否存在一个点C,使其到点A、点P和点Q这三点的距离和最小,若存在,直接写出点C所对应的数,若不存在,试说明理由.
32.(阅读理解)
若A ,B ,C 为数轴上三点,若点C 到A 的距离是点C 到B 的距离的2倍,我们就称点C 是(A ,B )的优点.
例如,如图①,点A 表示的数为﹣1,点B 表示的数为2.表示1的点C 到点A 的距离是2,到点B 的距离是1,那么点C 是(A ,B )的优点;又如,表示0的点D 到点A 的距离是1,到点B 的距离是2,那么点D 就不是(A ,B )的优点,但点D 是(B ,A )的优点. (知识运用)
如图②,M 、N 为数轴上两点,点M 所表示的数为﹣2,点N 所表示的数为4.
(1)数 所表示的点是(M ,N )的优点;
(2)如图③,A 、B 为数轴上两点,点A 所表示的数为﹣20,点B 所表示的数为40.现有一只电子蚂蚁P 从点B 出发,以4个单位每秒的速度向左运动,到达点A 停止.当t 为何值时,P 、A 和B 中恰有一个点为其余两点的优点?
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.C
解析:C
【解析】
【分析】
根据对顶角相等可得:BOE AOF ∠=∠,进而可得FOD ∠的度数.
【详解】
解:根据题意可得:BOE AOF ∠=∠,
903555FOD AOD AOF ∴∠=∠-∠=-=.
故答案为:C.
【点睛】
本题考查的是对顶角和互余的知识,解题关键在于等量代换.
2.D
【解析】
【分析】
根据选项进行一一排除即可得出正确答案.
【详解】
解:A 中、34y 0x +=,可得34y x =-,故A 错;
B 中、8-6y=0x ,可得出43x y =,故B 错;
C 中、3+4x y y x =+,可得出23x y =,故C 错;
D 中、
43
x y =,交叉相乘得到34x y =,故D 对. 故答案为:D.
【点睛】 本题考查等式的性质及比例的性质,熟练掌握性质定理是解题的关键.
3.B
解析:B
【解析】
【分析】
根据题意和数轴可以用含a 的式子表示出点B 表示的数,从而得到点C 表示的数.
【详解】
解:由点O 为原点,OA OB =,可知A 、B 表示的数互为相反数,
点A 表示的数是a ,所以B 表示的数为-a ,
又因为BC AB =,所以点C 表示的数为3a -.
故选B.
【点睛】
本题考查数轴,解答本题的关键是明确题意结合相反数,利用数形结合的思想解答.
4.B
解析:B
【解析】
【分析】
调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.
【详解】
解:A 、对现代大学生零用钱使用情况的调查,工作量大,用抽样调查,故此选项错误; B 、对某班学生制作校服前身高的调查,需要全面调查,故此选项正确;
C 、对温州市市民去年阅读量的调查,工作量大,用抽样调查,故此选项错误;
D 、对某品牌灯管寿命的调查,有破坏性,用抽样调查,故此选项错误.
【点睛】
本题考查的是调查方法的选择,正确选择调查方式要根据全面调查和抽样调查的优缺点再结合实际情况去分析.
5.C
解析:C
【解析】
【分析】
根据垂直的定义和同角的余角相等分别计算后对各小题进行判断,由此即可求解.
【详解】
∵OA⊥OC,OB⊥OD,
∴∠AOC=∠BOD=90°,
∴∠AOB+∠BOC=∠COD+∠BOC=90°,
∴∠AOB=∠COD,故①正确;
∠BOC+∠AOD=90°﹣∠AOB+90°+∠AOB=180°,故②正确;
∠AOB+∠COD不一定等于90°,故③错误;
图中小于平角的角有∠AOB,∠AOC,∠AOD,∠BOC,∠BOD,∠COD一共6个,故④正确;
综上所述,说法正确的是①②④.
故选C.
【点睛】
本题考查了余角和补角,垂直的定义,是基础题,熟记概念与性质并准确识图,理清图中各角度之间的关系是解题的关键.
6.D
解析:D
【解析】
【分析】
根据题意画出图形,再分别计算即可.
【详解】
根据题意画图如下;
(1)
∵OC⊥OD,
∴∠COD=90°,
∵∠AOC=40°,
∴∠BOD=180°﹣90°﹣40°=50°,
(2)
∵OC⊥OD,
∴∠COD=90°,
∵∠AOC=40°,
∴∠AOD=50°,
∴∠BOD=180°﹣50°=130°,
故选D.
【点睛】
此题考查了角的计算,关键是根据题意画出图形,要注意分两种情况画图.7.A
解析:A
【解析】A. 3x+1=4x是一元一次方程,故本选项正确;
B. x+2>1是一元一次不等式,故本选项错误;
C. x2−9=0是一元二次方程,故本选项错误;
D. 2x−3y=0是二元一次方程,故本选项错误。

故选A.
8.A
解析:A
【解析】
∵+5米表示一个物体向东运动5米,
∴-3米表示向西走3米,
故选A.
9.D
解析:D
【解析】
【分析】
直接利用单项式的次数与系数确定方法分析得出答案.
【详解】
解:单项式﹣6ab的系数与次数分别为﹣6,2.
故选:D.
【点睛】
此题主要考查了单项式,正确把握单项式的次数与系数确定方法是解题关键.
解析:A
【解析】
【分析】
根据题目可知:两棵树的连线确定了一条直线,可将两棵树看做两个点,再运用直线的公理可得出答案.
【详解】
解:“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”,这种做法运用到的数学知识是“两点确定一条直线”.
故答案为:A.
【点睛】
本题考查的知识点是直线公理的实际运用,易于理解掌握.
11.C
解析:C
【解析】
【分析】
根据相反数的定义进行判断即可.
【详解】
A. 2的相反数是-2,所以2与12
不是相反数,不符合题意; B. 2(1)=1-,1的相反数是-1,所以2(1)-与1不是相反数,不符合题意;
C. 2与-2互为相反数,符合题意;
D. 211=--,所以-1与21-不是相反数,不符合题意;
故选:C .
【点睛】
本题考查了相反数的判断与乘方计算,熟记相反数的定义是解题的关键.
12.D
解析:D
【解析】
【分析】
从正面看到的图叫做主视图,从左面看到的图叫做左视图.根据图中正方体摆放的位置判定则可.
【详解】
解:从正面看,左边1列,中间2列,右边1列;从左边看,只有竖直2列,故选D .
【点睛】
本题考查简单组合体的三视图.本题考查了空间想象能力及几何体的主视图与左视图.
二、填空题
【解析】
【分析】
根据从一个n边形的某个顶点出发,可以引(n-3)条对角线,把n边形分为(n-2)的三角形作答.
【详解】
设多边形有n条边,
则n−2=6,
解得n=8.
故答案为8.
【点
解析:8
【解析】
【分析】
根据从一个n边形的某个顶点出发,可以引(n-3)条对角线,把n边形分为(n-2)的三角形作答.
【详解】
设多边形有n条边,
则n−2=6,
解得n=8.
故答案为8.
【点睛】
此题考查多边形的对角线,解题关键在于掌握计算公式.
14.-3
【解析】
【分析】
根据有理数在数轴上的分布,此题注意考虑两种情况:要求的点在已知点的左侧或右侧.
【详解】
数轴上到原点的距离不大于3个单位长度的点表示的数有:﹣3、﹣2、﹣1、0、1、2、
解析:-3
【解析】
【分析】
根据有理数在数轴上的分布,此题注意考虑两种情况:要求的点在已知点的左侧或右侧.【详解】
数轴上到原点的距离不大于3个单位长度的点表示的数有:﹣3、﹣2、﹣1、0、1、2、
所以最小的整数是﹣3.
故答案为:﹣3.
【点睛】
本题考查了数轴,注意数轴上距离某个点是一个定值的点有两个,左右各一个,不要漏掉任一种情况.
15.10°.
【解析】
【分析】
由对称性得:∠BPE=∠B′PE,∠CPF=∠C′PF,再根据角的和差关系,可得
∠B′PE+∠C′PF=∠B′PC′+85°,再代入2∠B′PE+2∠C′PF-∠B′P
解析:10°.
【解析】
【分析】
由对称性得:∠BPE=∠B′PE,∠CPF=∠C′PF,再根据角的和差关系,可得
∠B′PE+∠C′PF=∠B′PC′+85°,再代入2∠B′PE+2∠C′PF-∠B′PC′=180°计算即可.
【详解】
解:由对称性得:∠BPE=∠B′PE,∠CPF=∠C′PF,
∴2∠B′PE+2∠C′PF﹣∠B′PC′=180°,
即2(∠B′PE+∠C′PF)﹣∠B′PC′=180°,
又∵∠EPF=∠B′PE+∠C′PF﹣∠B′PC′=85°,
∴∠B′PE+∠C′PF=∠B′PC′+85°,
∴2(∠B′PC′+85°)﹣∠B′PC′=180°,
解得∠B′PC′=10°.
故答案为:10°.
【点睛】
此题考查了角的计算,以及折叠的性质,熟练掌握折叠的性质是解本题的关键.
16.3
【解析】
分析:根据负数的绝对值等于这个数的相反数,即可得出答案.
解答:解:|-3|=3.
故答案为3.
解析:3
【解析】
分析:根据负数的绝对值等于这个数的相反数,即可得出答案.
解答:解:|-3|=3.
故答案为3.
17.答案不唯一,如:
【解析】
【分析】
无理数是指无限不循环小数,根据定义和实数的大小比较法则写出一个即可.【详解】
一个比4大的无理数如.
故答案为.
【点睛】
本题考查了估算无理数的大小,实数的
解析:
【解析】
【分析】
无理数是指无限不循环小数,根据定义和实数的大小比较法则写出一个即可.
【详解】
一个比4

【点睛】
本题考查了估算无理数的大小,实数的大小比较的应用,能估算无理数的大小是解此题的关键,此题是一道开放型的题目,答案不唯一.
18.27
【解析】
【分析】
首先根据an=9,求出a2n=81,然后用它除以a2n−m,即可求出am的值.【详解】
解:∵an=9,
∴a2n=92=81,
∴am=a2n÷a2n−m=81÷3=2
解析:27
【解析】
【分析】
首先根据a n=9,求出a2n=81,然后用它除以a2n−m,即可求出a m的值.
【详解】
解:∵a n=9,
∴a2n=92=81,
∴a m=a2n÷a2n−m=81÷3=27.
故答案为:27.
【点睛】
此题主要考查了同底数幂的除法的运算法则以及幂的乘方的运算法则,解题的关键是熟练掌握基本知识,属于中考常考题型.
19.(180﹣x)°.
【解析】
【分析】
根据平行线的性质得出∠2=180°﹣∠1,代入求出即可.
【详解】
∵l1∥l2,∠1=x°,
∴∠2=180°﹣∠1=180°﹣x°=(180﹣x)°.

解析:(180﹣x)°.
【解析】
【分析】
根据平行线的性质得出∠2=180°﹣∠1,代入求出即可.
【详解】
∵l1∥l2,∠1=x°,
∴∠2=180°﹣∠1=180°﹣x°=(180﹣x)°.
故答案为(180﹣x)°.
【点睛】
本题考查了平行线的性质的应用,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.
20.81
【解析】
【分析】
根据方位角的表示可知,∠AOB=180°-61°-38°计算即可得出结果.
【详解】
根据题意可知,OA表示北偏东61°方向的一条射线,OB表示南偏东38°方向的一条射线,
解析:81
【解析】
【分析】
根据方位角的表示可知,∠AOB=180°-61°-38°计算即可得出结果.
【详解】
根据题意可知,OA 表示北偏东61°方向的一条射线,OB 表示南偏东38°方向的一条射线, ∴∠AOB=180°-61°-38°=81°,
故答案为:81.
【点睛】
本题考查了方位角及其计算,掌握方位角的概念是解题的关键.
21.36
【解析】
【分析】
根据题意和展开图,求出x 和A 的值,然后计算数字综合即可解决.
【详解】
解:∵正方体的每两个相对面上的数字的和都相等

∴x=2,A=14
∴数字总和为:9+3+6+6+
解析:36
【解析】
【分析】
根据题意和展开图,求出x 和A 的值,然后计算数字综合即可解决.
【详解】
解:∵正方体的每两个相对面上的数字的和都相等 ∴
()934322
x x x A +=++=+- ∴x=2,A=14
∴数字总和为:9+3+6+6+14-2=36,
故答案为36.
【点睛】 本题考查了正方体的展开图和一元一次方程,解决本题的关键是正确理解题意,能够找到正方体展开图中相对的面
22.(2019,-2)
【解析】
【分析】
观察不难发现,点的横坐标等于运动的次数,纵坐标每4次为一个循环组循环,用2019除以4,余数是几则与第几次的纵坐标相同,然后求解即可.
【详解】
∵第1次运动
解析:(2019,-2)
【解析】
观察不难发现,点的横坐标等于运动的次数,纵坐标每4次为一个循环组循环,用2019除以4,余数是几则与第几次的纵坐标相同,然后求解即可.
【详解】
∵第1次运动到点(1,1),第2次运动到点(2,0),第3次接着运动到点(3,-2),第4次运动到点(4,0),第5次运动到点(5,1)…,
∴运动后点的横坐标等于运动的次数,
第2019次运动后点P的横坐标为2019,
纵坐标以1、0、-2、0每4次为一个循环组循环,
∵2019÷4=504…3,
∴第2019次运动后动点P的纵坐标是第504个循环组的第3次运动,与第3次运动的点的纵坐标相同,为-2,
∴点P(2019,-2),
故答案为:(2019,-2).
【点睛】
本题是对点的坐标的规律的考查,根据图形观察出点的横坐标与纵坐标的变化规律是解题的关键.
23.<>
【解析】
【分析】
有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.
【详解】
解:<;>﹣3.
故答
解析:<>
【解析】
【分析】
有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.
【详解】
解:1
3

3
5

2
2
3
>﹣3.
故答案为:<、>.
【点睛】
此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.24.28x-20(x+13)=20
【分析】
利用五言绝句与七言绝句总字数之间的关系得出等式进而得出答案.
【详解】
设七言绝句有x 首,根据题意,可列方程为: 28x-20(x+13)=20,
解析:28x-20(x+13)=20
【解析】
【分析】
利用五言绝句与七言绝句总字数之间的关系得出等式进而得出答案.
【详解】
设七言绝句有x 首,根据题意,可列方程为: 28x-20(x+13)=20,
故答案为: 28x-20(x+13)=20.
【点睛】
本题主要考查一元一次方程应用,关键在于找出五言绝句与七言绝句总字数之间的关系.
三、压轴题
25.(1)16,6,2;(2)①162x -②2BE CF =;(3)t=1或3或
487或527 【解析】
【分析】
(1)由数轴上A 、B 两点对应的数分別是-4、12,可得AB 的长;由CE =8,CF =1,可得EF 的长,由点F 是AE 的中点,可得AF 的长,用AB 的长减去2倍的EF 的长即为BE 的长;
(2)设AF =FE =x ,则CF =8-x ,用含x 的式子表示出BE ,即可得出答案
(3)分①当0<t ≤6时; ②当6<t ≤8时,两种情况讨论计算即可得解
【详解】
(1)数轴上A 、B 两点对应的数分别是-4、12,
∴AB=16,
∵CE=8,CF=1,∴EF=7,
∵点F 是AE 的中点,∴AF=EF=7,
,∴AC=AF ﹣CF=6,BE=AB ﹣AE=16﹣7×2=2,
故答案为16,6,2;
(2)∵点F 是AE 的中点,∴AF=EF ,
设AF=EF=x,∴CF=8﹣x ,
∴BE=16﹣2x=2(8﹣x ),
∴BE=2CF.
故答案为①162x -②2BE CF =;
(3) ①当0<t ≤6时,P 对应数:-6+3t ,Q 对应数-4+2t ,
=4t t =2t =1PQ ﹣+2﹣(﹣6+3)﹣,
解得:t=1或3;
②当6<t ≤8时,P 对应数()33126t 22
t ---=21 , Q 对应数-4+2t , 37=4t =t 2=12
t PQ -﹣+2﹣()25﹣21, 解得:48t=7或527
; 故答案为t=1或3或
487或527. 【点睛】 本题考查了一元一次方程在数轴上的动点问题中的应用,根据题意正确列式,是解题的关健
26.(1)∠MEN =90°;(2)∠MEN =105°;(3)∠FEG =2α﹣180°,∠FEG =180°﹣2α.
【解析】
【分析】
(1)根据角平分线的定义,平角的定义,角的和差定义计算即可.
(2)根据∠MEN=∠NEF+∠FEG+∠MEG ,求出∠NEF+∠MEG 即可解决问题.
(3)分两种情形分别讨论求解.
【详解】
(1)∵EN 平分∠AEF ,EM 平分∠BEF
∴∠NEF =12∠AEF ,∠MEF =12
∠BEF ∴∠MEN =∠NEF +∠MEF =
12∠AEF +12∠BEF =12(∠AEF +∠BEF )=12∠AEB ∵∠AEB =180°
∴∠MEN =12
×180°=90° (2)∵EN 平分∠AEF ,EM 平分∠BEG
∴∠NEF =12∠AEF ,∠MEG =12
∠BEG ∴∠NEF +∠MEG =12∠AEF +12∠BEG =12(∠AEF +∠BEG )=12
(∠AEB ﹣∠FEG ) ∵∠AEB =180°,∠FEG =30° ∴∠NEF +∠MEG =
12(180°﹣30°)=75° ∴∠MEN =∠NEF +∠FEG +∠MEG =75°+30°=105°
(3)若点G 在点F 的右侧,∠FEG =2α﹣180°,
若点G 在点F 的左侧侧,∠FEG =180°﹣2α.
【点睛】
考查了角的计算,翻折变换,角平分线的定义,角的和差定义等知识,解题的关键是学会用分类讨论的思想思考问题.
27.探究三:16,6;结论:n²,;应用:625,300.
【解析】
【分析】
探究三:模仿探究一、二即可解决问题;
结论:由探究一、二、三可得:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,边长为1的正三角形共有个;边长为2的正三角形共有个;
应用:根据结论即可解决问题.
【详解】
解:探究三:
如图3,连接边长为4的正三角形三条边的对应四等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,第四层有7个,共有
个;
边长为2的正三角形有个.
结论:
连接边长为的正三角形三条边的对应等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,第四层有7个,……,第层有个,共有
个;
边长为2的正三角形,共有个.
应用:
边长为1的正三角形有=625(个),
边长为2的正三角形有(个).
故答案为探究三:16,6;结论:n², ;应用:625,300.
【点睛】
本题考查规律型问题,解题的关键是理解题意,学会模仿例题解决问题.
28.(1)6,-1;(2)2019或2014;(3)234
【解析】
【分析】
(1)根据三个相邻格子的整数的和相等列式求出a、x的值,再根据第9个数是-2可得
b=-2,然后找出格子中的数每3个为一个循环组依次循环,在用2021除以3,根据余数的情况确定与第几个数相同即可得解.
(2)可先计算出这三个数的和,再照规律计算.
(3)由于是三个数重复出现,因此可用前三个数的重复多次计算出结果.
【详解】
(1)∵任意三个相邻格子中所填整数之和都相等,∴6+a +b =a +b +x ,解得x =6,a +b +x =b +x -1,∴a =-1,所以数据从左到右依次为6、-1、b 、6、-1、b ,第9个数与第三个数相同,即b =-2,所以每3个数“6、-1、-2”为一个循环组依次循环.
∵2021÷3=673…2,∴第2021个格子中的整数与第2个格子中的数相同,为-1. 故答案为:6,-1.
(2)∵6+(-1)+(-2)=3,∴2019÷3=673.
∵前k 个格子中所填数之和可能为2019,2019=673×3或2019=671×3+6,∴k 的值为:673×3=2019或671×3+1=2014.
故答案为:2019或2014.
(3)由于是三个数重复出现,那么前8个格子中,这三个数中,6和-1都出现了3次,-2出现了2次.
故代入式子可得:(|6+2|×2+|6+1|×3)×3+(|-1-6|×3+|-1+2|×2)×3+(|-2-6|×3+|-2+1|×3)×2=234.
【点睛】
本题考查了列一元一次方程解实际问题的运用,规律推导的运用,此类题的关键是找出是按什么规律变化的,然后再按规律找出字母所代表的数,再进行进一步的计算.
29.(1)20,6;(2)43t -+,162t -;(3)t 2=或6时;(4)不变,10,理由见解析.
【解析】
【分析】
(1)由数轴上两点距离先求得A ,B 两点间的距离,由中点公式可求线段AB 的中点表示的数;
(2)点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动同时点Q 从点B 出发,向右为正,所以-4+3t ;
Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动,向左为负,16-2t.
(3)由题意,1PQ AB 2
=
表示出线段长度,可列方程求t 的值; (4)由线段中点的性质可求MN 的值不变.
【详解】 解:()1点A 表示的数为4-,点B 表示的数为16,
A ∴,
B 两点间的距离等于41620--=,线段AB 的中点表示的数为
41662
-+= 故答案为20,6 ()2点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,
∴点P 表示的数为:43t -+,。

相关文档
最新文档