全国备战高考物理法拉第电磁感应定律的推断题综合备战高考真题汇总及答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全国备战高考物理法拉第电磁感应定律的推断题综合备战高考真题汇总及答案
一、法拉第电磁感应定律
1.如图(a )所示,间距为l 、电阻不计的光滑导轨固定在倾角为θ的斜面上。

在区域I 内有方向垂直于斜面的匀强磁场,磁感应强度为B ;在区域Ⅱ内有垂直于斜面向下的匀强磁场,其磁感应强度B t 的大小随时间t 变化的规律如图(b )所示。

t =0时刻在轨道上端的金属细棒ab 从如图位置由静止开始沿导轨下滑,同时下端的另一金属细棒cd 在位于区域I 内的导轨上由静止释放。

在ab 棒运动到区域Ⅱ的下边界EF 处之前,cd 棒始终静止不动,两棒均与导轨接触良好。

已知cd 棒的质量为m 、电阻为R ,ab 棒的质量、阻值均未知,区域Ⅱ沿斜面的长度为2l ,在t =t x 时刻(t x 未知)ab 棒恰进入区域Ⅱ,重力加速度为g 。

求:
(1)通过cd 棒电流的方向和区域I 内磁场的方向; (2)ab 棒开始下滑的位置离EF 的距离;
(3)ab 棒开始下滑至EF 的过程中回路中产生的热量。

【答案】(1)通过cd 棒电流的方向从d 到c ,区域I 内磁场的方向垂直于斜面向上;(2)3l (3)4mgl sin θ。

【解析】 【详解】
(1)由楞次定律可知,流过cd 的电流方向为从d 到c ,cd 所受安培力沿导轨向上,由左手定则可知,I 内磁场垂直于斜面向上,故区域I 内磁场的方向垂直于斜面向上。

(2)ab 棒在到达区域Ⅱ前做匀加速直线运动,
a =
sin mg m
θ
=gs in θ cd 棒始终静止不动,ab 棒在到达区域Ⅱ前、后,回路中产生的感应电动势不变,则ab 棒在区域Ⅱ中一定做匀速直线运动,可得:
1Blv t
∆Φ
=∆ 2(sin )x x
B l I
BI g t t θ⋅⋅= 解得
2sin x l
t g θ
=
ab 棒在区域Ⅱ中做匀速直线运动的速度
12sin v gl θ
=
则ab 棒开始下滑的位置离EF 的距离
2
1232
x h at l l =
+= (3)ab 棒在区域Ⅱ中运动时间
222sin x
l l
t v g θ=
= ab 棒从开始下滑至EF 的总时间
222
sin x l
t t t g θ
=+= 感应电动势:
12sin E Blv Bl gl θ==
ab 棒开始下滑至EF 的过程中回路中产生的热量:
Q =EIt =4mgl sin θ
2.如下图所示,MN 、PQ 为足够长的光滑平行导轨,间距L =0.5m.导轨平面与水平面间的夹角θ= 30°,NQ 丄MN ,N Q 间连接有一个3R =Ω的电阻,有一匀强磁场垂直于导轨平面,磁感应强度为01B T =,将一根质量为m =0.02kg 的金属棒ab 紧靠NQ 放置在导轨上,且与导轨接触良好,金属棒的电阻1r =Ω,其余部分电阻不计,现由静止释放金属棒,金属棒沿导轨向下运动过程中始终与NQ 平行,当金属棒滑行至cd 处时速度大小开始保持不变,cd 距离NQ 为 s=0.5 m ,g =10m/s 2。

(1)求金属棒达到稳定时的速度是多大;
(2)金属棒从静止开始到稳定速度的过程中,电阻R 上产生的热量是多少?
(3)若将金属棒滑行至cd 处的时刻记作t =0,从此时刻起,让磁感应强度逐渐减小,可使金属棒中不产生感应电流,则t =1s 时磁感应强度应为多大? 【答案】(1)8m/s 5 (2)0.0183J(3) 5T 46
【解析】 【详解】
(1) 在达到稳定速度前,金属棒的加速度逐渐减小,速度逐渐增大,达到稳定速度时,有
sin A mg F θ=
其中
,A E
F BIL I R r
==
+ 根据法拉第电磁感应定律,有E BLv = 联立解得:
m 1.6s
v =
(2) 根据能量关系有
2
1·sin 2
mgs mv Q θ=
+ 电阻R 上产生的热量
R R
Q Q R r
=
+ 解得:
0.0183J R Q =
(3) 当回路中的总磁通量不变时,金属棒中不产生感应电流,此时金属棒将沿导轨做匀加速运动,根据牛顿第二定律,有:
sin mg ma θ=
根据位移时间关系公式,有
21
2
x vt at =+
设t 时刻磁感应强度为B ,总磁通量不变,有:
()BLs B L s x '=+
当t =1s 时,代入数据解得,此时磁感应强度:
5T 46
B '=
3.如图所示,光滑的长平行金属导轨宽度d=50cm ,导轨所在的平面与水平面夹角θ=37°,导轨上端电阻R=0.8Ω,其他电阻不计.导轨放在竖直向上的匀强磁场中,磁感应强度B=0.4T .金属棒ab 从上端由静止开始下滑,金属棒ab 的质量m=0.1kg .(sin37°=0.6,g=10m/s 2)
(1)求导体棒下滑的最大速度;
(2)求当速度达到5m/s 时导体棒的加速度;
(3)若经过时间t ,导体棒下滑的垂直距离为s ,速度为v .若在同一时间内,电阻产生的热与一恒定电流I 0在该电阻上产生的热相同,求恒定电流I 0的表达式(各物理量全部用字
【答案】(1)18.75m/s (2)a=4.4m/s 2
(3)2
22mgs mv Rt
-
【解析】
【分析】根据感应电动势大小与安培力大小表达式,结合闭合电路欧姆定律与受力平衡方程,即可求解;根据牛顿第二定律,由受力分析,列出方程,即可求解;根据能量守恒求解;
解:(1)当物体达到平衡时,导体棒有最大速度,有:sin cos mg F θθ= , 根据安培力公式有: F BIL =, 根据欧姆定律有: cos E BLv I R R
θ==, 解得: 222sin 18.75cos mgR v B L θ
θ
=
=;
(2)由牛顿第二定律有:sin cos mg F ma θθ-= ,
cos 1BLv I A R
θ
=
=, 0.2F BIL N ==, 24.4/a m s =;
(3)根据能量守恒有:22012
mgs mv I Rt =
+ , 解得: 2
02mgs mv I Rt -=
4.如图甲所示,两根足够长、电阻不计的光滑平行金属导轨相距为L 1=1m,导轨平面与水平面成θ=30°角,上端连接阻值R =1.5Ω的电阻,质量为m =0.2Kg 、阻值r=0.5Ω的金属棒放在两导轨上,距离导轨最上端为L 2=4m,棒与导轨垂直并保持良好接触.整个装置处于一匀强磁场中,该匀强磁场方向与导轨平面垂直,磁感应强度大小随时间变化的情况如图乙所示.为保持ab 棒静止,在棒上施加了一平行于导轨平面的外力F ,g =10m/s 2求:
(1)当t =1s 时,棒受到安培力F 安的大小和方向; (2)当t =1s 时,棒受到外力F 的大小和方向;
(3)4s 后,撤去外力F ,金属棒将由静止开始下滑,这时用电压传感器将R 两端的电压即时采集并输入计算机,在显示器显示的电压达到某一恒定值后,记下该时刻棒的位置,测出该位置与棒初始位置相距2m,求棒下滑该距离过程中通过金属棒横截面的电荷量q. 【答案】(1)0.5N ;方向沿斜面向上(2)0.5N ,方向沿斜面向上(3)1.5C
【分析】 【详解】
(1)0-3s 内,由法拉第电磁感应定律得:
122V B
E L L t t
∆Φ∆=
==∆∆ T =1s 时,F 安=BIL 1=0.5N 方向沿斜面向上
(2)对ab 棒受力分析,设F 沿斜面向下,由平衡条件: F +mg sin30° -F 安=0 F =-0.5N
外力F 大小为0.5N .方向沿斜面向上 (3)q =It ,E
I R r =+;E t
∆Φ=∆; 1∆Φ=BL S 联立解得1 1.512
C 1.5C 1.50.5
BL S q R r ⨯⨯=
==++
5.如图所示,在匀强磁场中有一足够长的光滑平行金属导轨,与水平面间的夹角θ=30°,间距L =0.5 m ,上端接有阻值R =0.3 Ω的电阻.匀强磁场的磁感应强度大小B =0.4 T ,磁场方向垂直导轨平面向上.一质量m =0.2 kg ,电阻r =0.1 Ω的导体棒MN ,在平行于导轨的外力F 作用下,由静止开始向上做匀加速运动,运动过程中导体棒始终与导轨垂直,且接触良好.当棒的位移d =9 m 时,电阻R 上消耗的功率为P =2.7 W .其它电阻不计,g 取10 m/s 2.求:
(1)此时通过电阻R 上的电流; (2)这一过程通过电阻R 上的电荷量q ; (3)此时作用于导体棒上的外力F 的大小. 【答案】(1)3A (2)4.5C (3)2N 【解析】 【分析】 【详解】
(1)根据热功率:P =I 2R , 解得:3A P
I R
=
= (2)回路中产生的平均感应电动势:E n
t
φ∆=∆
由欧姆定律得:+E I R r
=
得电流和电量之间关系式:q I t n R r
φ
∆=⋅∆=+ 代入数据得: 4.5C BLd
q R r
=
=+ (3)此时感应电流I =3A ,由E BLv
I R r R r
==++ 解得此时速度:()6m/s I R r v BL
+=
=
由匀变速运动公式:v 2=2ax ,
解得:2
22m/s 2v a d
==
对导体棒由牛顿第二定律得:F -F 安-mgsin30°=ma , 即:F -BIL -mgsin30°=ma , 解得:F =ma +BIL +mgsin30°=2 N 【点睛】
本题考查电功率,电量表达式及电磁感应电动势表达式结合牛顿第二定律求解即可,难度不大,本题中加速度的求解是重点. 【考点】
动生电动势、全电路的欧姆定律、牛顿第二定律.
6.如图所示,ACD 、EFG 为两根相距L =0.5m 的足够长的金属直角导轨,它们被竖直固定在绝缘水平面上,CDGF 面与水平面夹角θ=300.两导轨所在空间存在垂直于CDGF 平面向上的匀强磁场,磁感应强度大小为B`=1T .两根长度也均为L =0.5m 的金属细杆ab 、cd 与导轨垂直接触形成闭合回路,ab 杆的质量m 1未知,cd 杆的质量m 2=0.1kg ,两杆与导轨之间的动摩擦因数均为μ=
3
,两金属细杆的电阻均为R =0.5Ω,导轨电阻不计.当ab 以速度v 1沿导轨向下匀速运动时,cd 杆正好也向下匀速运动,重力加速度g 取10m/s 2.
(1)金属杆cd 中电流的方向和大小 (2)金属杆ab 匀速运动的速度v 1 和质量m 1
【答案】I =5A 电流方向为由d 流向c; v 1=10m/s m 1=1kg 【解析】
【详解】
(1)由右手定则可知cd 中电流方向为由d 流向c
对cd 杆由平衡条件可得:μ
=+00
22安sin 60(cos 60)m g m g F
=安F BLI
联立可得:I =5A (2) 对ab: 由 =12BLv IR
得 1
10m/s v = 分析ab 受力可得: 0011sin 30cos 30m g BLI m g μ=+
解得: m 1=1kg
7.如图所示,两条平行的金属导轨相距L =lm ,金属导轨的倾斜部分与水平方向的夹角为37°,整个装置处在竖直向下的匀强磁场中.金属棒MN 和PQ 的质量均为m =0.2kg ,电阻分别为R MN =1Ω和R PQ =2Ω.MN 置于水平导轨上,与水平导轨间的动摩擦因数μ=0.5,PQ 置于光滑的倾斜导轨上,两根金属棒均与导轨垂直且接触良好.从t =0时刻起,MN 棒在水平外力F 1的作用下由静止开始以a =1m /s 2的加速度向右做匀加速直线运动,PQ 则在平行于斜面方向的力F 2作用下保持静止状态.t =3s 时,PQ 棒消耗的电功率为8W ,不计导轨的电阻,水平导轨足够长,MN 始终在水平导轨上运动.求: (1)磁感应强度B 的大小;
(2)t =0~3s 时间内通过MN 棒的电荷量; (3)求t =6s 时F 2的大小和方向;
(4)若改变F 1的作用规律,使MN 棒的运动速度v 与位移s 满足关系:v =0.4s ,PQ 棒仍然静止在倾斜轨道上.求MN 棒从静止开始到s =5m 的过程中,系统产生的焦耳热.
【答案】(1)B = 2T ;(2)q = 3C ;(3)F 2=-5.2N (负号说明力的方向沿斜面向下)(4)
20
3
Q J =
【解析】 【分析】
t =3s 时,PQ 棒消耗的电功率为8W ,由功率公式P =I 2R 可求出电路中电流,由闭合电路欧姆定律求出感应电动势.已知MN 棒做匀加速直线运动,由速度时间公式求出t =3s 时的速度,即可由公式E =BLv 求出磁感应强度B ;根据速度公式v =at 、感应电动势公式E =BLv 、闭合电路欧姆定律和安培力公式F =BIL 结合,可求出PQ 棒所受的安培力大小,再由平衡条件求解F 2的大小和方向;改变F 1的作用规律时,MN 棒做变加速直线运动,因为速度v 与位
移x 成正比,所以电流I 、安培力也与位移x 成正比,可根据安培力的平均值求出安培力做功,系统产生的热量等于克服安培力,即可得解. 【详解】
(1)当t =3s 时,设MN 的速度为v 1,则v 1=at =3m/s 感应电动势为:E 1=BL v 1 根据欧姆定律有:E 1=I (R MN + R PQ ) 根据P =I 2 R PQ 代入数据解得:B =2T
(2)当t =6 s 时,设MN 的速度为v 2,则 速度为:v 2=at =6 m/s 感应电动势为:E 2=BLv 2=12 V 根据闭合电路欧姆定律:2
24MN
PQ
E I A R R ==+
安培力为:F 安=BI 2L =8 N
规定沿斜面向上为正方向,对PQ 进行受力分析可得: F 2+F 安cos 37°=mg sin 37°
代入数据得:F 2=-5.2 N(负号说明力的方向沿斜面向下)
(3)MN 棒做变加速直线运动,当x =5 m 时,v =0.4x =0.4×5 m/s =2 m/s 因为速度v 与位移x 成正比,所以电流I 、安培力也与位移x 成正比,
安培力做功:120
23
MN PQ BLv W BL x J R R =-⋅⋅=-+安
【点睛】
本题是双杆类型,分别研究它们的情况是解答的基础,运用力学和电路.关键要抓住安培力与位移是线性关系,安培力的平均值等于初末时刻的平均值,从而可求出安培力做功.
8.如图所示,两根间距为L 的平行金属导轨,其cd 右侧水平,左侧为竖直的
1
4
画弧,圆弧半径为r ,导轨的电阻与摩擦不计,在导轨的顶端接有阻值为R 1的电阻,整个装置处在竖直向上的匀强磁场中。

现有一根阻值为R 2、质量为m 的金属杆,在水平拉力作用下,从图中位置ef 由静止开始做加速度为a 的匀加速直线运动,金属杆始终保持与导轨垂直且接触良好。

开始运动后,经时间t 1,金属杆运动到cd 时撤去拉力,此时理想电压表的示数为U ,此后全属杆恰好能到达圆弧最高处ab 。

重力加速度为g 。

求:
(1)金属杆从ef 运动到cd 的过程中,拉力F 随时间t 变化的表达式; (2)金属杆从ef 运动到cd 的过程中,电阻R 1上通过的电荷量;
(3)金属杆从cd 运动到ab 的过程中,电阻R1上产生的焦耳热。

【答案】(1)21222
11()U R R t F ma R at +=+;(2)11
2Ut q R =;(3)22
11121()2R Q ma h mgr R R =-+ 【解析】 【分析】
利用法拉第电磁感应定律和电流公式联合求解。

根据能量守恒定律求出回路产生的总焦耳热,再求出R 1上产生的焦耳热。

【详解】
(1) 金属杆运动到cd 时,由欧姆定律可得 11
U
I R = 由闭合电路的欧姆定律可得 E 1=I 1(R 1+R 2) 金属杆的速度 v 1=at 1
由法拉第电磁感应定律可得 E 1=BLv 1 解得:1211()
U R R B R Lat +=

由开始运动经过时间t ,则 v=at 感应电流12
BLv
I R R =
+
金属杆受到的安培力 F 安 =BIL 由牛顿运动定律 F -F 安=ma
可得21222
11()U R R t
F ma R at +=+;
(2) 金属杆从 ef 运动到cd 过程中,位移2112
x at = 电阻R 1上通过的电荷量:
q I t =∆
12
E
I R R =
+
E t
∆Φ
=
∆ B S ∆Φ=∆ S xL ∆=
联立解得:1
1
2Ut q R =
; (3) 金属杆从cd 运动到ab 的过程中,由能量守恒定律可得
2
12
Q mv mgr =
- 因此电阻R 1上产生的焦耳热为
1
112
R Q Q R R =
+ 可得
2
211121
()2
R Q ma h mgr R R =
-+。

【点睛】
此题为一道综合题,牵涉知识点较多,明确求电动势、安培力、焦耳热的方法是解题的关键,灵活利用法拉第电磁感应定律和能量守恒的结论是解题的捷径。

9.在如图所示的电路中,螺线管上线圈的匝数n=1500匝,横截面积.螺线管上
线圈的电阻r=1.0Ω,定值电阻

,电容器的电容C=30μF.在一段时间
内,螺线管中磁场的磁感应强度
B 按如图所示的规律变化.
(1)求螺线管中产生的感应电动势.
(2)闭合开关S ,电路中的电流稳定后,求电阻的电功率.
(3)开关S 断开后,求流经电阻的电荷量. 【答案】(1) 1.2V (2) (3)
【解析】 【详解】
(1)根据法拉第电磁感应定律得
(2)根据闭合电路欧姆定律得
电阻
的电功率
.
(3)开关S 断开后,流经电阻的电荷量即为S 闭合时电容器所带的电荷量.
电容器两端的电压
流经电阻
的电荷量
. 故本题答案是:(1)1.2V (2) (3)
【点睛】
根据法拉第电磁感应定律求出回路中的电动势,在结合闭合电路欧姆定律求电流,即可求解别的物理量。

10.如图1所示,MN和PQ为竖直放置的两根足够长的光滑平行金属导轨,两导轨间距为l,电阻均可忽略不计.在M和P之间接有阻值为R的定值电阻,导体杆ab质量为m、电阻不计,并与导轨接触良好.整个装置处于磁感应强度为B、方向垂直纸面向里的匀强磁场中.将导体杆ab由静止释放.求:
(1)a. 试定性说明ab杆的运动;b. ab杆下落稳定后,电阻R上的热功率.
(2)若将M和P之间的电阻R改为接一电动势为E,内阻为r的直流电源,发现杆ab由静止向上运动(始终未到达MP处),如图2所示.
a. 试定性说明ab杆的运动:
b. 杆稳定运动后,电源的输出功率.
(3)若将M和P之间的电阻R改为接一电容为C的电容器,如图3所示.ab杆由静止释放.请推导证明杆做匀加速直线运动,并求出杆的加速度.
【答案】(1)加速度逐渐减小的变加速直线运动;P=
22
22
m g R
B l
(2)加速度逐渐减小的
加速;P=mgE
Bl
-
22
22
m g r
B l
(3)a=
22
mg
m B l C
+
【解析】
(1)a、对ab杆下滑过程,由牛顿第二定律
22
B l v
mg ma
R
-=,可知随着速度的增大,加速
度逐渐减小,当
22
B l v
mg
R
=时,加速度为零,杆做匀速直线运动;故杆先做加速度逐渐
减小的加速,再做匀速直线运动.
b、ab杆稳定下滑时,做匀速直线运动:
22
B l v
mg
R
=,可得
22
mgR
v
B l
=

2222
2222
B l v mgR m g R P v mg
R B l B l =⋅=⋅=
(2)a、对ab杆上滑过程,由牛顿第二定律:BIL mg ma
-=,上滑的速度增大,感应电流与电源提供的电流方向相反,总电流逐渐减小,故加速度逐渐减小;同样加速度为零时杆向上匀速直线运动.
B、杆向上匀速时,BIl mg
=
mg
I
Bl
=
电源的输出功率2P EI I r =- 解得:2
()Emg mg P r Bl Bl
=
- (3)设杆下滑经t ∆时间,由牛顿第二定律:mg BIl ma -=,
电容器的充电电流Q
I t
∆=∆ 电容器增加的电量为:Q C U CBL v ∆=∆=∆

v
a t
∆=∆ 联立解得:mg B CBla l ma -⋅⋅=
可知杆下滑过程给电容器充电的过程加速度恒定不变,故为匀加速直线运动. 解得:22mg
a m B l C
=
+
【点睛】对于电磁感应问题研究思路常常有两条:一条从力的角度,重点是分析安培力作用下物体的平衡问题;另一条是能量,分析电磁感应现象中的能量如何转化是关键.
11.如图(1)所示,两足够长平行光滑的金属导轨MN 、PQ 相距为0.8m ,导轨平面与水平面夹角为α,导轨电阻不计.有一个匀强磁场垂直导轨平面斜向上,长为1m 的金属棒ab 垂直于MN 、PQ 放置在导轨上,且始终与导轨电接触良好,金属棒的质量为0.1kg 、与导轨接触端间电阻为1Ω.两金属导轨的上端连接右端电路,电路中R 2为一电阻箱.已知灯泡的电阻R L =4Ω,定值电阻R 1=2Ω,调节电阻箱使R 2=12Ω,重力加速度g=10m/s 2.将电键S 打开,金属棒由静止释放,1s 后闭合电键,如图(2)所示为金属棒的速度随时间变化的图象.求:
(1)斜面倾角α及磁感应强度B 的大小;
(2)若金属棒下滑距离为60m 时速度恰达到最大,求金属棒由静止开始下滑100m 的过程中,整个电路产生的电热;
(3)改变电阻箱R 2的值,当R 2为何值时,金属棒匀速下滑时R 2消耗的功率最大;消耗的最大功率为多少?
【答案】(1)斜面倾角α是30°,磁感应强度B 的大小是0.5T ;
(2)若金属棒下滑距离为60m 时速度恰达到最大,金属棒由静止开始下滑100m 的过程中,整个电路产生的电热是32.42J ;
(3)改变电阻箱R 2的值,当R 2为4Ω时,金属棒匀速下滑时R 2消耗的功率最大,消耗的
最大功率为1.5625W.
【解析】
【分析】
(1)电键S打开,ab棒做匀加速直线运动,由速度图象求出加速度,由牛顿第二定律求
解斜面的倾角α.开关闭合后,导体棒最终做匀速直线运动,由F安=BIL,I=得到安培
力表达式,由重力的分力mgsinα=F安,求出磁感应强度B.
(2)金属棒由静止开始下滑100m的过程中,重力势能减小mgSsinα,转化为金属棒的动能和整个电路产生的电热,由能量守恒求解电热.
(3)改变电阻箱R2的值后,由金属棒ab匀速运动,得到干路中电流表达式,推导出R2消耗的功率与R2的关系式,根据数学知识求解R2消耗的最大功率.
【详解】
(1)电键S打开,从图上得:a=gsi nα==5m/s2
得sinα=,则得α=30°
金属棒匀速下滑时速度最大,此时棒所受的安培力F安=BIL
又 I=,R总=R ab+R1+=(1+2+)Ω=6Ω
从图上得:v m=18.75m/s
由平衡条件得:mgsinα=F安,所以mgsinα=
代入数据解得:B=0.5T;
(2)由动能定理:mg•S•sinα﹣Q=mv m2﹣0
由图知,v m=18.75m/s
得Q=mg•S•sinα﹣mvm2=32.42J;
(3)改变电阻箱R2的值后,金属棒匀速下滑时的速度为v m′,则有
mgs inα=BI总L
R2和灯泡并联电阻 R并′==()Ω,
R2消耗的功率:P2==
由上联立解得 P2=()2
由数学知识得,当=R2,即R2=4Ω时,R2消耗的功率最大:
最大功率为 P 2m =()2(
)=W=1.5625W .
12.如图所示,两足够长的平行光滑的金属导轨MN 、PQ 相距为d ,导轨平面与水平面的夹角30θ=︒,导轨电阻不计,磁感应强度为B 的匀强磁场垂直于导轨平面向上.长为的金属棒ab 垂直于MN 、PQ 放置在导轨上,且始终与导轨接触良好,金属棒的质量为
m 、电阻为r R =.两金属导轨的上端连接一个灯泡,灯泡的电阻L R R =,重力加速度为
g .现闭合开关S ,给金属棒施加一个方向垂直于杆且平行于导轨平面向上的、大小为
F mg =的恒力,使金属棒由静止开始运动,当金属棒达到最大速度时,灯泡恰能达到它
的额定功率.求:
(1)金属棒能达到的最大速度v m ; (2)灯泡的额定功率P L ;
(3)若金属棒上滑距离为L 时速度恰达到最大,求金属棒由静止开始上滑4L 的过程中,金属棒上产生的电热Q r .
【答案】(1) 22mgR B d ;(2) 2222
4m g R
B d ;(3) 322444m g R mgL B d -
【解析】 【详解】
解:(1)金属棒先做加速度逐渐减小的加速运动,当加速度为零时,金属棒达到最大速度,此后开始做匀速直线运动;设最大速度为m v ,当金属棒达到最大速度时,做匀速直线运动,由平衡条件得:30F BId mgsin =+︒ 又:F mg = 解得:2mg I Bd
= 由2L E E
I R r R
=
=+,m E Bdv = 联立解得:22
m mgR
v B d =
; (2)灯泡的额定功率:2222
22
()24L L mg m g R
P I R R Bd B d
=== (3)金属棒由静止开始上滑4L 的过程中,由能量守恒定律可知:
2
144302
m Q F L mg Lsin mv =•-•︒-
金属棒上产生的电热:322
44
124r m g R Q Q mgL B d
==-
13.如图甲所示,光滑且足够长的平行金属导轨MN 、PQ 固定在同一水平面上,两导轨间距030m .L =.导轨电阻忽略不计,其间连接有固定电阻0.40R =Ω.导轨上停放一质量0.10kg m =、电阻020Ω.r =的金属杆ab ,整个装置处于磁感应强度0.50T B =的匀强磁场中,磁场方向竖直向下.用一外力F 沿水平方向拉金属杆ab ,使之由静止开始做匀加速运动,电压传感器可将R 两端的电压U 即时采集并输入电脑,获得电压U 随时间t 变化的关系如图乙所示.
(1)计算加速度的大小; (2)求第2s 末外力F 的瞬时功率;
(3)如果水平外力从静止开始拉动杆2s 所做的功035J .W =,求金属杆上产生的焦耳热.
【答案】(1)21m/s (2)0.35W (3)25.010J -⨯ 【解析】 【详解】
(1)根据,,R R
E Blv v at U E R r
===+ 结合图乙所示数据,解得:a =1m/s 2.
(2)由图象可知在2s 末,电阻R 两端电压为0.2V 通过金属杆的电流R
U I R
=
金属杆受安培力F BIL =安
设2s 末外力大小为F 2,由牛顿第二定律,2安F F ma -= , 故2s 末时F 的瞬时功率22035W .P F v ==
(3)设回路产生的焦耳热为Q ,由能量守恒定律,2
2
12
W Q mv =+ 电阻R 与金属杆的电阻r 串联,产生焦耳热与电阻成正比 金属杆上产生的焦耳热r Qr
Q R r
=
+
解得:2r 5010J .Q -=⨯ .
14.桌面上放着一个单匝矩形线圈,线圈中心上方一定高度上有一竖立的条形磁体(如图),此时线圈内的磁通量为0.04Wb 。

把条形磁体竖放在线圈内的桌面上时,线圈内磁通量为0.12Wb 。

分别计算以下两个过程中线圈中的感应电动势。

(1)把条形磁体从图中位置在0.5s 内放到线圈内的桌面上;
(2)换用100匝的矩形线圈,线圈面积和原单匝线圈相同,把条形磁体从图中位置在0.1s 内放到线圈内的桌面上。

【答案】(1)0.16V ;(2)80V 【解析】 【分析】 【详解】
(1)根据法拉第电磁感应定律,把条形磁体从图中位置在0.5s 内放到线圈内的桌面上线圈中的感应电动势
0.120.04
V 0.16V 0.5
E t ϕ∆-=
==∆ (2)换用100匝的矩形线圈条形磁体从图中位置在0.1s 内放到线圈内的桌面上的感应电动势
0.120.04100V 80V 0.1
E n
t ϕ∆-==⨯=∆
15.如图所示,电阻1r =Ω的金属棒ab 放在水平光滑平行导轨PQMN 上(导轨足够长),ab 棒与导轨垂直放置,导轨间间距30cm L =,导轨上接有一电阻5R =Ω,整个导轨置于竖直向下的磁感强度1T B =的匀强磁场中,其余电阻均不计.现使ab 棒以速度
2.0m/s v =向右作匀速直线运动,试求:
(1)ab 棒中的电流大小 (2)R 两端的电压U
(3)ab 棒所受的安培力大小ab F 和方向.
【答案】(1)0.1A ;(2)0.5V ;(3)0.03N ;方向水平向左
【解析】(1)金属棒ab 切割磁感线产生的感应电动势为
10.32V 0.6V E BLv ==⨯⨯=,电路中的电流为0.6
A 0.1A 15
E I R r =
==++. 由右手定则判断可以知道ab 中感应电流方向由b a →. (2)金属棒ab 两端的电压为0.15V 0.5V ab U IR ==⨯=;
(3)金属棒ab 所受的安培力为10.10.3N 0.03N A F BIL ==⨯⨯=,由左手定则知方向水平向左.。

相关文档
最新文档