低功耗 MCU TR4P153BT

合集下载

STMCU低功耗产品系列详解

STMCU低功耗产品系列详解
Int. RC 38 KHz
Clock Controller
Debug ModuleSWIM
Up to 41 I/Os
PVD
Xtal 32,768 KHz
DMA
12 bit DAC
2xComparators
Boot ROM
LCD driverUp to 4 x 28
1x16 bit TimerAdv Control3 Channels
超低功耗微控制器平台的关键词
低功耗的承诺从STM8L到STM32L完整的低功耗微控制器平台采用最新、超低漏电流的工艺极大的改善包括动态和静态的功耗高效率的承诺由于采用最新的架构,性能/功耗比达到新高运行模式功耗低至:150 µA/MHz在低功耗模式下,仅需 350nA,SRAM和寄存器数据还可以保留优化的产品分布采用通用单片机从8位到32位全覆盖的策略针对特殊的应用,提供片上集成的安全特性最佳的性价比
64 pins LQFP(10x10)
STM8L152M84 KB RAM
STM8L151M84 KB RAM
80 pins LQFP(14x14)
STM8L101 8K 结构框图
SPI
USART
I²C
2x16 bit Timer2 Channels
1x8-bit Timer
Ind. Wd with 38KHz int.
所有都包含:
USART, SPI, I2C
看门狗(STM8L15x 具有双看门狗)
多通道16-bit 定时器
内置 16 MHz 和 38 kHz RC 振荡器
复位电路(上电复位,掉电复位)
Up to 8 KB Flash
STM8L101
Up to 1.5 KB SRAM

微芯片频率技术 TFS 153C 滤波器规格说明书

微芯片频率技术 TFS 153C 滤波器规格说明书

Measurement conditionAmbient temperature T A: 23 °CInput power level: 0 dBmTerminating impedance: *Input: 63 Ω || -34 pFOutput: 55 Ω || -44 pFCharacteristicsRemark:The nominal frequency f N is fixed at 153.6. The insertion loss a e is defined as loss value determined at f N. Reference level for the relative attenuation a rel of the TFS153C is the insertion loss a e. The centre frequency f c is the arithmetic mean value of the upper and lower frequencies at the 3 dB filter attenuation level relative to the insertion loss a e. All specified data are met within the operating temperature range.D a t a typ. value tolerance / limitInsertion loss a e11.5 dB max. 12.5 dB (reference level)Nominal frequency f N 153.6 MHz Passband PB - f N 10 MHz Ripple within PB p-p 0.2 dB max. 1 dB Relative attenuation a relf N- 152.6 MHz ... f N- 15 MHz 45 dB min. 35 dBf N+ 15 MHz ... f N+ 138.6 MHz 40 dB min. 35 dBf N+ 138.6 MHz ... f N+ 168.6 MHz 70 dB min. 20 dBf N+ 168.6 MHz ... f N+ 346.4 MHz 70 dB min. 35 dB Group delay ripple p-pf N- 10 MHz ... f N+ 10 MHz 45 ns max. 60 ns Phase linearity p-pf N- 10 MHz ... f N+ 10 MHz 4 deg max. 5 deg Triple transit response suppression 70 dB min. 35 dB Input power level - max. 17 dBm Third order intercept IIP3** 42 dBm min. 35 dBm Input /Output return loss .f N- 4 MHz ... f N+ 4 MHz 12 dB min. 10 dBf N- 10 MHz ... f N+ 10 MHz 9 dB min. 8 dB Operating temperature range OTR - -25 °C..... +85 °C Storage temperature range - -55 °C..... +125 °C Temperature coefficient of frequency TC f *** -87 ppm/K -*) The terminating impedances depend on parasitics and q-values of matching elements and the board used, and are to be understood as reference values only. Should there be additional questions do not hesitate to ask for an application note or contact our design team.**) Measured with tones spaced at 5 MHz and 10 MHz above and below f C***) ∆f=TC f(T−T A)f NGenerated:Checked / Approved:Microchip Frequency Technology GmbHPotsdamer Straße 18Microchip Frequency Technology GmbH Potsdamer Straße 18 Filter characteristicConstruction and pin connection(All dimensions in mm)50 Ω Test circuitL2Output 50 OhmInput L11,2,3,4,6,7,8,9,10,121 Ground2 Ground3 Ground4 Ground5 Output6 Ground7 Ground8 Ground9 Ground 10 Ground 11 Input 12 GroundDate code: Year + week H 2016 J 2017 K 2018 ...Microchip Frequency Technology GmbH Potsdamer Straße 18 Stability characteristics, reliabilityAfter the following tests the filter shall meet the whole specification:1. Shock: 500 g, 1 ms, half sine wave, 3 shocks each plane; DIN IEC 60068 T2 - 272. Vibration: 10 Hz to 2000 Hz, 0.35 mm or 5 g respectively, 1 octave per min, 10 cycles perplane, 3 planes; DIN IEC 60068 T2 - 63. Change of temperature: -55 °C to 125 °C / 15 min. each / 100 cycles DIN IEC 60068 part 2 – 14 Test N4. Resistance tosolder heat (reflow): reflow possible: three times max.; for temperature conditions refer to the attached "Air reflow temperature conditions" on page 4;5. SAW devices are Electrostatic Discharge (ESD) sensitive devices.This filter is RoHS compliant (2011/65/EU)PackingTape & Reel: IEC 286 – 3, with exception of value for N and minimum bending radius; tape type II, embossed carrier tape with top cover tape on the upper side; max. pieces of filters per reel:1700reel of empty components at start:min. 300 mm reel of empty components at start including leader: min. 500 mm trailer:min. 300 mmGDoWC tFEGD1P 2P 1P o BoAoP ull Off DirectionP IN Marker T ypDate Code K o tThe minimum bending radius is 45 mm.Tape (all dimensions in mm) W : 24.00 +0.30/-0.10 Po : 4.00 ±0.1 Do : 1.50 +0.1/0 E : 1.75 ±0.10 F : 11.50 ±0.10 G(min) : 0.60 P2 : 2.00 ±0.1 P1 : 12.00 ±0.1 D1(min) : 1.50 Ao : 7.00 ±0.10 Bo : 13.80 ±0.10 Ct : 21.00 ±0.1 Ko: 2.10 ±0.10 t : 0.30 ±0.05Reel (all dimensions in mm) A : 330 or 180 W1 : 24.4 +2/-0 W2(max) : 30.40 N(min) : 60.00 C : 13.0 +0.5/-0.2Microchip Frequency Technology GmbH Potsdamer Straße 18 Air reflow temperature conditionsConditionsExposureAverage ramp-up rate (30 °C to 217 °C) less than 3 °C / second> 100 °C between 300 and 600 seconds > 150 °C between 240 and 500 seconds > 217 °Cbetween 30 and 150 seconds Peak temperaturemax. 260 °CTime within 5 °C of actual peak temperature between 10 and 30 seconds Cool-down rate (Peak to 50 °C)less than 6 °C / secondTime from 30 °C to Peak temperatureno greater than 300 secondsTemperature / °CTime / smax. 260 °C217 °C10 ... 30 s 30 ... 150 smax. 300 sChip-mount air reflow profileHistoryVersion Reason of Changes Name Date1.0 - generation of specification according to customer requirements Roizengaft 02.02.2004 1.1 - generated filter specification Chilla 15.06.2004- added termination impedances- added typical values- changed insertion loss- changed group delay ripple- changed phase linearity- changed input/output return loss- changed IP3 description- changed storage temperature range- deleted description for power level- added filter characteristic- changed construction and pin connection- added test circuit- changed packing1.2 - added temperature coefficient of frequency Chilla 23.09.2005 1.3 - added IIP3 Chilla 27.02.20091.4 - changed temperature coefficient Chilla 06.04.20092.0 - Change tape & reel dimensions Bonnen 04.11.2016- Update header and footer sections- Update data section- Update storage temperature range- Update stability characteristics, reliabilityMicrochip Frequency Technology GmbHPotsdamer Straße 18。

MSP430系列16位超低功耗单片机原理与实践

MSP430系列16位超低功耗单片机原理与实践

MSP430单片机的中断系统 GIE、CPUOFF、
中断请求

中断响应过程
将当前指令执行完 PUSH PC PUSH SR 如果有多个中断 发生,选择最高 优先级的中断 如果是单源中断 则清除中断标志, 否则中断标志保 持置位状态
OSCOFF、 SCG1、C、N、 V、Z清零, SCG0不变
中断向量地址中 的内容装入PC, 开始执行中断服 务程序 POP SR
概述
单片微型计算机 单片机的概念 单片机的特点 单片机的应用

MSP430系列单片机 MSP430系列单片机的特点 MSP430系列单片机命名规则 MSP430系列单片机选型

单片微型计算机:单片机的概念
微处理器的发展一方面是朝着面向数据运算、 信息处理等功能的系统机方向发展。系统机 以速度快、功能强、存储量大、软件丰富、 输入/输出设备齐全为主要特点,采用高级语 言编程,适用于数据运算、文字信息处理、 人工智能、网络通信等场合。 另一方面,在一些应用领域中,如智能化仪 器仪表、电讯设备、自动控制设备、汽车乃 至家用电器等,要求的运算、控制功能相对
MSP430 Roadmap
MSP430X11X系列
MSP430X12X系列
MSP430X13X系列
MSP430X14X系列
MSP430F15X/F16(1)X 系列
MSP430F15X/F16(1)X 系列
MSP430X41X系列
MSP430F43X系列
MSP430F44X系列
函数类型 函数名(形式参数表) 形式参数说明 { 局部变量定义 函数体语句 } [ 存储变量类型 ] interrupt [ 中断矢量变量 ] 函数类型 函数名(形式参数表) 形式参数说明 { 局部变量定义 函数体语句 }

宇凡微电子YF153J 8位单片机用户手册说明书

宇凡微电子YF153J 8位单片机用户手册说明书

深圳宇凡微电子有限公司8-Bit Single-Chip Microcontrollers YF153J用户手册(Ver1.1)2019年12月修订目录1芯片简介 (3)1.1功能特性 (3)1.2引脚分配 (4)1.3引脚描述 (5)1.4系统框图 (6)2存储器结构 (7)2.1程序存储器区 (7)2.2数据存储区 (8)3寄存器配置 (9)3.1操作寄存器 (9)3.1.1RPAGE~R0(间接地址存储器) (9)3.1.2RPAGE~R1(TCC定时计数器) (9)3.1.3RPAGE~R2(PC程序计数器) (9)3.1.4RPAGE~R3(STATUS状态寄存器) (10)3.1.5RPAGE~R4(FSR RAM选择寄存器) (11)3.1.6RPAGE~R5(P0RT5数据寄存器) (11)3.1.7RPAGE~R6(P0RT6数据寄存器) (12)3.1.8RPAGE~R7(LVD控制寄存器) (12)3.1.9RPAGE~R8(T1控制寄存器) (12)3.1.10RPAGE~R9(PWM周期寄存器) (13)3.1.11RPAGE~RA(PWM1占空比寄存器) (13)3.1.12RPAGE~RB(PWM2占空比寄存器) (13)3.1.13RPAGE~RC(PWM3占空比寄存器) (13)3.1.14RPAGE~RD(P6端口中断唤醒使能寄存器) (14)3.1.15RPAGE~RE(CPU模式控制寄存器) (14)3.1.16RPAGE~RF(中断标志寄存器) (15)3.2控制寄存器 (16)3.2.1CONT(控制寄存器) (17)3.2.2IOPAGE~IOC5(P5端口方向控制寄存器) (18)3.2.3IOPAGE~IOC6(P6端口方向控制寄存器) (18)3.2.4IOPAGE~IOC9(端口上下拉控制寄存器) (18)3.2.5IOPAGE~IOCB(端口下拉控制寄存器) (18)3.2.6IOPAGE~IOCD(P6端口上拉控制寄存器) (19)3.2.7IOPAGE~IOCE(WDT控制寄存器) (19)3.2.8IOPAGF~IOCF(WDT唤醒及中断使能控制寄存器) (20)3.3重要说明 (20)4封装类型 (21)5封装尺寸 (22)5.114PIN封装尺寸 (22)5.28PIN封装尺寸 (24)1芯片简介1.1功能特性CPU配置●1K×14-Bit OTP ROM●48×8-Bit SRAM●5级堆栈空间●28级可编程电压检测(LVD)2.0V~4.7V,0.1V/级●8级可编程电压复位(LVR)1.2V,1.6V,1.8V,2.4V2.7V,3.3V,3.6V,3.9V●工作电流小于2mA(4MHz/5V)●工作电流30μA(32KHz/3V)●休眠电流小于1μA(休眠模式)I/O配置●2组双向IO端口:P5,P6●12个I/O引脚●唤醒端口:P6口●12个可编程上拉I/O引脚●11个可编程下拉I/O引脚●端口驱动可增强●P63(复位引脚)可配置上拉和输出●外部电压检测:P63●外部中断:P60工作电压●工作电压范围:1.8V~5.5V(0℃-70℃)2.3V~5.5V(-40℃-85℃)常温(25℃)工作电压可低至1.5V●工作温度范围:工作温度-40℃-85℃工作频率范围●外部晶振HXT,LXT●外部晶振内置电容:Disable、7PF、9PF、12.5PF●内置IRC振荡电路:8MHz/1MHz●时钟周期分频选择:2Clock,4Clock,8Clock16Clock,32Clock外围模块●8Bit实时时钟/计数器●3路共周期8Bit脉宽调制器PWM 中断源●TCC溢出中断●外部中断●输入端口状态改变产生中断●T1/PWM周期溢出中断特性●可编程WDT定时器4.5ms、18ms、72ms、288ms●内置RC振荡器供电:VDD、LDO2.1V封装类型●YF153J-DIP14;●YF153J-SOP14;●YF153J-DIP8;●YF153J-SOP8;YF153J-14PIN脚位图YF153J-8PIN脚位图序号管脚名I/O功能描述P50P50I/O(上/下拉)GPIO,可编程上下拉、高驱动P51P51I/O(上/下拉)GPIO,可编程上下拉、高驱动P52P52I/O(上/下拉)GPIO,可编程上下拉、高驱动P53P53I/O(上/下拉)GPIO,可编程上下拉、高驱动P60P60I/O(上/下拉)GPIO,可编程上下拉、高驱动、端口唤醒EXINT I(SMT)外部中断输入端口PWM3O PWM3输出P61P61I/O(上/下拉)GPIO,可编程上下拉、高驱动、端口唤醒PWM20PWM2输出P62P62I/O(上/下拉)GPIO,可编程上下拉、高驱动、端口唤醒TCC I外部TCC信号源输入脚PWM10PWM1输出P63P63I/O(上拉)GPIO,可编程上拉、端口唤醒RST I(SMT)复位引脚EXVDET I(ANALOG)电压检测引脚P64P64I/O(上/下拉)GPIO,可编程上下拉、高驱动、端口唤醒P65P65I/O(上/下拉)GPIO,可编程上下拉、高驱动、端口唤醒P66P66I/O(上/下拉)GPIO,可编程上下拉、高驱动、端口唤醒P67P67I/O(上/下拉)GPIO,可编程上下拉、高驱动、端口唤醒VDD--电源VSS--地1.4系统框图2存储器结构2.1程序存储器区2.2数据存储区RPAGE\IOPAGE\Bank数据寄存器区地址R页面寄存器CTLX0页面寄存器0x00R0(间接地址存储器)保留0x01R1(TCC定时计数器)CONT(控制寄存器)0x02R2(PC程序计数器)保留0x03R3(STATUS状态寄存器)保留0x04FSR RAM选择寄存器保留0x05P0RT5数据寄存器P5方向控制寄存器0x06P0RT6数据寄存器P6方向控制寄存器0x07LVD控制寄存器保留0x08PWM控制寄存器保留0x09PWM周期寄存器端口上下拉控制寄存器0x0A PWM1占空比寄存器保留0x0B PWM2占空比寄存器端口下拉控制寄存器0x0C PWM3占空比寄存器保留0x0D输入状态变化中断使能控制器端口上拉控制寄存器0x0E CPU模式控制寄存器WDT使能控制寄存器0x0F中断标志寄存器中断使能控制寄存器地址Bank寄存器0x10~通用寄存器0x3F3寄存器配置3.1操作寄存器3.1.1RPAGE~R0(间接地址存储器)Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0RIND<7:0>间接寻址寄存器并不是一个实际存在的寄存器,它的主要功能是作为间接寻址的指针。

PIC16F193X 194X微控器高性能与行业领先的低功耗微控技术说明书

PIC16F193X 194X微控器高性能与行业领先的低功耗微控技术说明书

PIC16F193X/194X Microcontrollers Advanced Performance & Integration with Industry Leading Low PowerM i c r o chi p T e c h n o l o g y I n c o r p o r a t e dSummaryAs the demand for sophistication in consumer and embedded products continues to expand, so does the need for 8-bit microcontrollers that can meet the design challenges this creates. This requires microcontrollers that provide increased performance, maximum integration, and the lowest power – the PIC16F193X/194X family does just that.Based on the 8-bit Enhanced Mid-Range core, thePIC16F193X/194X microcontrollers have a total of 49 instructions to optimize program code and data handling, while increasing effi ciency and reducing clock cycles. The PIC16F193X/194X provide up to 28 KB of Flash program memory and numerous enhanced capabilities inclusive of; 16 level hardware stack, up to 1 KB data memory, low power 1.8V operation, nanoWatt XLP, 32 MHz internal oscillator, up to 2x SPI/I2C™ & UART, up to 17 channels 10-bit ADC, up to 5 (E)CCP, 2x comparators, integratedmTouch™ and LCD control.The on-chip LCD drive supports up to 184 segments and provides a low-power drive mode for lower power and increased effi ciency. In addition, there are up to 5 Pulse Width Modulation (PWM) channels with independent time bases for controlling various motor types, LED’s, and peripherals.“LF” family members feature Microchip’s nanoWatt XLP Technology – for extreme Low Power consumption – enabling designs to achieve world-leading battery lifetime. These new MCUs feature active currents down to50 μA/MHz and sleep currents down to 60 nA and sets the industry benchmark for low-power and peripheral integration. All of these general-purpose MCUs are well suited fora multitude of applications in the appliance, consumer, industrial and automotive markets, among others.Key Features■U p to 28 KB of Flash Program Memory■Up to 1 KB of Data Memory■256 bytes of High Endurance Data EEPROM■32 MHz internal oscillator■Integrated LCD Control with up to 184 segments■I ntegrated mTouch Capacitive Sensing Module■Up to (17) 10-bit ADC channels ■U p to 3 comparators with Rail-to-Rail input and 555 timer functionality■U p to 2 each: Master SPI/I2C and EUSART support for RS-232/RS-485, as well as LIN support■5-bit DAC providing 32 level voltage reference– Easily implemented as a low voltage detect■U p to 3 Enhanced and 2 Capture Compare PWM peripherals with independent time base■L ow Power ‘LF’ Variants with XLP Technology– Dynamic currents down to 50 μA/MHz– Sleep currents of 60 nA– Watchdog Timer (WDT) current of 500 nA– Low-power 32 kHz Timer1 oscillator current of 600 nA ■1.8V operation up to 5.5V– Full analog operation throughout■16-level hardware stack, with overfl ow/underfl ow interrupt ■4x8-bit and 1x16-bit timers, with eXtreme Low Power Real-Time Clock (RTC) support■R obust and reliable operational monitors, such as Power-On Reset (POR), Brown-out Reset (BOR) and low-power Watchdog Timer (WDT)PIC® microcontrollers with the Enhance Mid-Range core are denoted as PIC1X F1XXXLearn more at /enhanced and/F1Eval.Information subject to change. The Microchip name and logo, the Microchip logo, MPLAB and PIC are registered trademarks and mTouch, PICDEM and PICkit are trademarks of Microchip TechnologyIncorporated in the U.S.A. and other countries. All other trademarks mentioned herein are property of their respective companies. © 2010, Microchip Technology Incorporated. All Rights Reserved. Printed in the U.S.A. 8/10 DS41435A*DS41435A*Visit our web site for additional product information and to locate your local sales office.Microchip Technology Inc. • 2355 W. Chandler Blvd. • Chandler, AZ 85224-6199/enhanced /F1EvalPart Number Development Tool Part Number Development ToolDV164131PICkit™ 3 Debug Express(Coming Soon)F1 + Low Voltage Evaluation PlatformDV164035MPLAB ICD 3 In-Circuit Debugger Kit (Coming Soon)F1 BLDC Motor add-on for the F1 Evaluation Platform DM164130-1F1 Evaluation Platform/F1Eval (Coming Soon)F1 BDC Motor add-on for the F1 Evaluation PlatformDV164132F1 Evaluation Kit (Coming Soon)F1 Bipolar Stepper Motor add-on for the F1 Evaluation Platform DM183032PIC18 Explorer Board (Coming Soon)F1 Unipolar Stepper Motor add-on for the F1 Evaluation Platform DM163030PICDEM™ LCD 2 Demo Board(Coming Soon)PIC16F/LF1947 Plug-in Module(Accessory for the PIC18 Explorer or PICDEM LCD 2)Additional Information■ PIC16F/LF193X Data Sheet , DS41364■ PIC16F/LF194X Data Sheet , DS41414■ PIC1XF1XXX Software Migration , DS41375■ I 2C Bootloader for the PIC16F1XXX , AN1302■ mTouch™ Sensing Solution User’s Guide , DS41328■ 8-bit PIC Microcontroller Solution Brochure , DS39630■ Corporate Focus Product Selector Guide , DS01308■ Quick Guide to Microchip Development Tools Brochure ,DS51894Sample/Purchasing Information■ On-line Sampling: ■ On-line Purchasing: Device Flash (Bytes)Data RAM (Bytes)Data EEPROM (Bytes)LCD Segments 10-bit ADC ComparatorsECCP/CCP Communication Operating Voltage Pins Packages PIC16F1933 PIC16LF19337K 256256601123/2EUSART , I 2C, SPI 1.8V-5.5V 1.8V-3.6V 28SPDIP , SOIC, SSOP ,6X6 QFN, 4X4 UQFN PIC16F1934 PIC16LF19347K 256256961423/2EUSART , I 2C, SPI 1.8V-5.5V 1.8V-3.6V 40/44PDIP , TQFP , 8X8 QFN, 5X5 UQFN PIC16F1936 PIC16LF193614K 512256601123/2EUSART , I 2C, SPI 1.8V-5.5V 1.8V-3.6V 28SPDIP , SOIC, SSOP ,6X6 QFN, 4X4 UQFN PIC16F1937 PIC16LF193714K 512256961423/2EUSART , I 2C, SPI 1.8V-5.5V 1.8V-3.6V 40/44PDIP , TQFP , 8X8 QFN, 5X5 UQFN PIC16F1938 PIC16LF193828K 1024256601123/2EUSART , I 2C, SPI 1.8V-5.5V 1.8V-3.6V 28SPDIP , SOIC, SSOP ,6X6 QFN, 4X4 UQFN PIC16F1939 PIC16LF193928K 1024256961423/2EUSART , I 2C, SPI 1.8V-5.5V 1.8V-3.6V 40/44PDIP , TQFP , 8X8 QFN, 5X5 UQFN PIC16F1946 PIC16LF1946 14K 5122561841733/22x EUSART , 2x I 2C,2x SPI 1.8V-5.5V 1.8V-3.6V 64TQFP , 9X9 QFN PIC16F1947 PIC16LF194728K10242561841733/22x EUSART , 2x I 2C,2x SPI1.8V-5.5V 1.8V-3.6V64TQFP , 9X9 QFNAvailable in 28-, 44- & 64-pin packages.PIC16F193X/194X Block DiagramInternal Oscillator32 MHzData EEPROM256BData MemoryUp to 1 KB Linear AddressingEnhanced Mid-Range CPU14-bit Instruction49 Total Instructions(2) 16-bit File Select RegistersInterrupt Context SaveReliable Low PowerWDT, RTC, BOR, POR,nanoWatt XLPLCD Drive Up to 184 segments 10-bit ADC Up to 17 channelsUp to 3x Comparators with SR Latch mTouch™Capacitive Sensing ModuleCommunications Up to 2x each MI C, SPI, EUSARTCapture/Compare/PWMUp to 5 Channels16-Level Stack &Program CounterReset CapabilitiesProgram MemoryUp to 28 KB (16K Instructions)5-bit DAC 32-Level V。

MSP430系列十六位超低功耗单片机教学实验系统实验教程

MSP430系列十六位超低功耗单片机教学实验系统实验教程
另外,MSP430 系列单片机采用矢量中断,支持十多个中断源,并可以任意嵌套。用中断请求将 CPU 唤醒只要 6us,通过合理编程,既以降低系统功耗,又可以对外部事件请求作出快速响应。
在这里.需要对低功耗问题作一些说明。 首先,对一个处理器而言,活动模式时的功耗必须与其性能一起来考察、衡量,忽略性能来看功耗是 片面的。在计算机体系结构中,是用 W/MIPS(瓦特/百万指令每秒)来衡量处理器的功耗与性能关系的, 这种标称方法是合理的。MSP430 系列单片机在活动模式时耗电 250uA/MIPS,这个指标是很高的(传统 的 Mcs51 单片机约为 10~20mA/MIPS)。 其次,作为一个应用系统,功耗是整个系统的功耗,而不 仅仅是处理器的功耗。比如,在一个有多个输入信号的应用系统中,处理器输入端口的漏电流对系统的耗 电影响就较大了。MSP430 单片机输入端口的漏电流最大为 50nA,远低于其他系列单片机(一般为 l~10uA)。 另外,处理器的功耗还要看它内部功能模块是否可以关闭.以及模块活动情况下的耗电.比如低电压 监测电路的耗电等。还要注意,有些单片机的某些参数指标中.虽然典型值可能很小,但最大值和典型值 相差数十倍,而设计时要考虑到最坏情况,就应该关心参数标称的最大值,而不是典型值。总体而言, MSP430 系列单片机堪称目前世界上功耗最低的单片机,其应用系统可以做到用一枚电池使用 10 年。
MSP430 系列单片机有独特的时钟系统设计,包括两个不同的时钟系统:基本时钟系统和锁频环(FLL 和 FLL+)时钟系统或 DCO 数字振荡器时钟系统。由时钟系统产生 CPU 和各功能模块所需的时钟,并且这 些时钟可以在指令的控制下打开或关闭,从而实现对总体功耗的控制。由于系统运行时使用的功能模块不 同,即采用不同的工作模式,芯片的功耗有明显的差异。在系统中共有种活动模式(AM)和 5 种低功耗模式 (LPM0~LPM4)。

CA51F003 系列 MCU 中文用户手册

CA51F003 系列 MCU 中文用户手册

Built-in 16 Bit PWM / 12 Bit ADC / 1T 8051 18K Flash MCUCA51F003系列MCU中文用户手册REV 2.3深圳市锦锐科技股份有限公司电话:*************传真:*************地址:中国广东省深圳市南山区沙河西路深圳湾科技生态园一区2栋B座5层目录1概述 (6)2基本特性 (6)3芯片型号功能介绍 (9)4系统框图 (10)5引脚封装及其描述 (11)5.1封装定义 (11)5.2引脚描述 (13)6 中央处理器(CPU) (16)6.1CPU简介 (16)6.2寄存器描述 (16)7 存储器系统 (20)7.1 随机数据存储器(RAM) (20)7.2 特殊功能寄存器(SFR) (20)7.3 Flash存储器 (22)7.3.1 功能简介 (22)7.3.2 Flash存储器组织结构 (22)7.3.3 Flash寄存器描述 (22)7.3.4 Flash控制例程 (25)7.4外部RAM映射为程序空间 (27)8 中断系统 (28)8.1 功能简介 (28)8.2 中断逻辑 (28)8.3 中断向量表 (29)8.4 中断控制寄存器 (29)8.5 外部中断 (33)8.5.1外部中断介绍 (33)8.5.2外部中断寄存器 (33)8.5.3外部中断控制例程 (36)9 时钟系统 (38)9.1 时钟系统介绍 (38)9.1.1 时钟专用名称定义 (38)9.1.2 内置32MHz RC振荡器(IRCH) (38)9.1.3内置131 KHz RC振荡器(IRCL) (39)9.1.4外部高速晶体谐振器(XOSCH)和外部时钟输入(CLKIN) (39)9.2 时钟控制寄存器描述 (39)9.3 系统时钟 (42)9.3.1 系统时钟结构图 (42)9.3.2 系统时钟控制寄存器描述 (42)9.3.3 系统时钟控制方法及例程 (44)10 供电和复位系统 (46)10.1 供电系统 (46)10.1.1 LDO功能简介 (46)10.1.2 LDO控制寄存器 (47)10.2 复位系统 (49)11 功耗管理 (51)11.1 IDLE模式 (51)11.2 STOP模式 (51)11.3 低速运行模式 (52)11.4 低功耗相关寄存器描述 (52)11.5 低功耗模式控制例程 (54)12 通用定时器(定时器0,定时器1,定时器2) (56)12.1 定时器0 (56)12.1.1 定时器0介绍 (56)12.1.2 定时器0寄存器描述 (57)12.2 定时器1 (59)12.2.1 定时器1介绍 (59)12.2.2 定时器1寄存器描述 (60)12.3 定时器2 (61)12.3.1 功能简介 (61)12.3.2 定时器2寄存器描述 (62)13 看门狗定时器(WDT) (67)13.1 看门狗定时器(WDT)功能简介 (67)13.2 看门狗定时器(WDT)寄存器描述 (67)13.3 看门狗定时器控制例程 (69)14 TMC定时器 (70)14.1 TMC功能简介 (70)14.2 TMC寄存器描述 (70)14.3 TMC控制例程 (71)15 通用输入输出口(GPIO)及复用定义 (72)15.1 功能简介 (72)15.2 引脚寄存器描述 (74)15.3 引脚控制例程 (82)16 通用串行接口(UART1/UART2) (83)16.1 UART1和UART2 (83)16.1.1 介绍 (83)16.1.2 UARTx寄存器描述 (84)17 I²C接口 (88)17.1 功能简介 (88)17.2 I2C主要特点 (88)17.3 I2C功能描述 (88)17.4 I2C通信引脚的映射 (90)17.5 寄存器描述 (90)17.6 I2C控制例程 (94)18 PWM (100)18.1 PWM功能简介 (100)18.3 PWM寄存器描述 (105)18.4 PWM功能控制例程 (114)19 模/数转换器(ADC) (116)19.1 功能简介 (116)19.2 主要特性 (116)19.3 结构框图 (116)19.4 功能描述 (117)19.5 寄存器描述 (118)19.6 ADC控制例程 (122)20运放(AMP) (123)20.1 功能简介 (123)20.2寄存器描述 (123)21蜂鸣器(BUZZER) (124)21.1 功能描述 (124)21.2寄存器描述 (124)22低电压检测(LVD) (126)22.1 功能简介 (126)22.2 功能描述 (126)22.3 寄存器描述 (127)22.4 LVD控制例程 (128)23无线充解码 (129)23.1 功能简介 (129)23.2寄存器描述 (129)24乘除法器(MDU) (134)24.1 功能简介 (134)24.2 结构图 (134)24.3 功能描述 (135)24.3.1 乘法器 (135)24.3.2 除法器 (135)24.3.3 移位运算 (135)24.4 寄存器描述 (136)24.5 MDU控制例程 (138)25 SPI接口 (142)25.1 功能简介 (142)25.2 寄存器描述 (144)25.3 SPI控制例程 (146)26 SWIM接口 (149)26.1 简介 (149)26.2 寄存器描述 (149)26 程序下载和仿真 (152)26.1 程序下载 (152)26.2 在线仿真 (152)27 电气特性 (153)27.2 直流电气特性 (153)27.3交流电气特性 (155)28封装类型 (156)29附录 (159)附录1 指令集速查表 (159)1概述CA51F003系列芯片是基于1T 8051内核的8位微控制器,通常情况下,运行速度比传统的8051芯片快10倍,性能更加优越。

LTC2245-16 16 位、5 MSPS、低功耗、并行 16 位 ADC 数据手册说明书

LTC2245-16 16 位、5 MSPS、低功耗、并行 16 位 ADC 数据手册说明书

产品特性单电源供电:1.8V 或3V 低功耗:32mW (电源电压1.8V )54mW (电源电压3.0V )信噪比(SNR):75dBFS(5MHz Fin 、10MSPS)无杂散动态范围(SFDR):95dBFs(5MHz Fin 、10MSPS)采样频率可以低至1MSPS CMOS 输出并口配置模式32引脚(5mm ×5mm )QFN 封装支持内置或外置参考电压源应用通信便携式医学成像多通道数据采集产品聚焦1.管脚兼容ADI 公司LTC2245系列2.单电源供电,支持1.8V 或3V 两档电源电压3.CMOS 输出4.并口配置支持1.8V~3.6V 电平功能框图图 1.功能框图修订历史(内部)版本时间位置修订内容V1.02021/11/09手册初稿目录产品特性 (1)应用 (1)产品聚焦 (1)功能框图 (1)修订历史(内部) (2)目录 (3)概述 (4)技术规格 (5)ADC直流规格 (5)ADC交流规格 (6)数字规格 (7)时序规格 (7)时序图 (8)绝对最大额定值 (9)热特性 (9)ESD警告 (9)引脚配置和功能描述 (10)典型工作特性 (12)等效电路 (13)应用信息 (13)转换器工作 (13)模拟输入 (13)输入滤波 (14)变压器耦合电路 (14)放大器电路 (15)参考电平 (15)REFH,REFL (15)时钟输入 (15)输出数据格式 (16)输出停用 (16)睡眠模式 (16)应用信息 (17)设计指南 (17)外形尺寸 (18)名词对照表 (19)概述ZYL2245是一款单通道、14位10MSPS低噪声模数转换器(ADC),旨在支持需要高性能、低噪声、低成本、小尺寸、多功能的数据采集和通信应用。

ZYL2245支持3V或1.8V两种电源模式。

这款双通道ADC内核采用差分、多级流水线结构,集成了输出纠错逻辑,集成内置基准源,支持引入外置基准源作为ADC的基准电压。

基于单片机控制的GPS车载监控机系统低功耗方案

基于单片机控制的GPS车载监控机系统低功耗方案

基于单片机控制的GPS车载监控机系统低功耗方案关键词:单片机车载监控机低功耗随着我国交通事业的发展,各级交通部门和运输单位正在积极运用先进的通信、控制等技术对传统运输系统进行改造,并将建成一种信息化、智能化、实时化的新型交通运输模式。

物流公司、出租车公司、汽车租赁公司、各种运输车队的数量和规模也在不断扩大,车辆的在线管理和跟踪显得尤为重要。

同时,成本低廉的gps车载监控机在摩托车、电动车防盗追踪领域开始使用,户外特种作业人员、老人、小孩的定位跟踪上也被逐步使用。

一、车载监控系统整体结构车载监控机可以通过gprs (通用分组无线业务)将gps(全球卫星定位系统)定位数据传回监控中心,监控中心可根据回传信息对车辆实时监控、实时控制。

在出租汽车、运输车辆上安装gps车载监控机后,通过网络监控平台可以对车辆实时监控和信息交流,对管理部门提高运输组织水平、提高车队调度效率、监督车辆、监控车辆行踪等方面具有重要的作用。

二、低功耗方案车辆在未启动状态下车载监控机会消耗汽车电瓶电量,一旦汽车电瓶电量消耗殆尽,车辆将无法正常启动。

所以在保证产品性能的前提下,功耗越低越好,并且当车辆进入长期停止后,应让车载机进入低功耗模式。

1、单片机控制车载监控机电源管理的方案gps车载监控机行业内目前普遍采用的低功耗方案为通过检测车辆acc状态判断车辆是否启动,通过控制车辆停止与启动状态下的gprs数据上传次数,实现车辆静止状态下降低车载监控机功耗的目的。

这样功耗可由5w可降低到3w,但是这种低功耗方案还是会造成长期停放车辆及电池容量较小的摩托车等车辆电瓶亏电。

通过对产品电路的设计,同时参考了其它一些车载电子设备的要求,设定了产品的待机功耗不大于10ma的设计目标。

针对这样的技术要求,通过对比选择了增加单片机msp430的形式来实现低功耗模式,msp430是ti公司推出的一款高性能、低成本单片机,具有丰富的片内资源和外部接口。

电源工作原理:车载监控机接收来自车辆的9v~16v电源,经开关电源芯片转换将其转换成5.0v电压,输出的5.0v电压经锂电池充电芯片bq24070转化为4.4v为gsm模块供电,同时为锂电池充电。

em78p153_pdf_中文版

em78p153_pdf_中文版
y 1$¸Æ 0 z Ü 3~7 ûü$EF 0 z RF &¸Æ 0$Ûf& 1 z IOCF0 >~ UV4 注意:读 RF 的结果为 RF 和 IOCF0 相与的结果。
8) R10~R2F îUV4
R¬UV4
1) A ×4 ßaµ$ð¤Ga?f&¯¥








符号 Vdd P65/OSCI
P64/OSCO
P63//RESET/Vpp
P62/TCC P61
表 1 EM78P153 引脚描述
I/O 类型 功能
-
电源
I/O
*通用 I/O 引脚
WDT c RC YZ4ÙYZ+,4Ö-Ä$WDT ./ $º© èé0º#WDT {FÎ[à ä WDT ü¬ ©12G\$WDT &¸ IOCE0 WDTE Aü¬ðC©^_O34$WDT {F\]5 18ms kl
*置为/RESET 时有上拉
I/O
*通用 I/O 引脚
*上拉/下拉/漏极开路
*引脚状态变化将单片机从休眠模式唤醒
*外部时钟/计数器输入引脚
I/O
*通用 I/O 引脚
*上拉/下拉/漏极开路
*引脚状态变化将单片机从休眠模式唤醒



3) IOC5~IOC6 I/O UV4
z 1 q³¿ I/O àá$0 qF z IOC5 Q 4 &q z IOC5 IOC6 UV4&E5
4) IOCB UV4









TI MSP430FR2355超低功耗开发方案

TI MSP430FR2355超低功耗开发方案

TI MSP430FR2355超低功耗FRAM MCU开发方案TI公司的MSP430FR2355是超低功耗MSP430FRx系列基于FRAM的微控制器(MCU),提供扩展的数据记录和安全功能,在FRAM微控制器系列产品中采用小型LQFP封装(7mm × 7 mm),集成了各种外设和超低功耗. FRAM(铁电存储器)是一种尖端的存储技术,在非易失存储器中集合了闪存和RAM的最好特性.MSP430FR2355工作电压1.8V-3.6V,具有16位RISC架构,高达24MHz系统时钟和8MHz FRAM接入,32KB可编FRAM,512B信息FRAM和4KB RAM,12路12位ADC,两个增强的比较器和集成的6位DAC 作为基准电压,四个智能模拟组合体(SAC-L3),三个16位计时器有三个捕获/比较寄存器(Timer_B3),一个16位计时器有七个捕获/比较寄存器(Timer_B7),32位硬件乘法器(MPY).器件的工作温度–40°到105°C,主要用在烟雾和热检测器,传感器发送器,电路中断器,传感器信号调理,有线工业通信,光模块以及其电池组管理和收费标签.本文介绍了MSP430FR2355主要特性,功能框图以及开发板MSP-EXP430FR2355 LaunchPad™主要特性,框图,电路图,材料清单和PCB设计图.MSP430FR215x and MSP430FR235x microcontrollers (MCUs) are part of the MSP430™ MCU value line portfolio of ultra-low-power low-cost devices for sensing and measurement applications. MSP430FR235x MCUs integrate four configurable signal-chain modules called smart analog combos, each of which can be used as a 12-bit DAC or a configurable programmable-gain Op-Amp to meet the specific needs of a system while reducing the BOM and PCB size. The device also includes a 12-bit SAR ADC and two comparators. The MSP430FR215x and MSP430FR235x MCUs all support an extended temperature range from –40° up to 105°C, so higher temperature industrial applications can benefit from the devices’FRAM data-logging capabilities. The extended temperature range allows developers to meet requirements of applications such as smoke detectors, sensor transmitters, and circuit breakers.The MSP430FR215x and MSP430FR235x MCUs feature a powerful 16-bit RISC CPU, 16-bit registers, and a constant generator that contribute to maximum code efficiency. The digitally controlled oscillator (DCO) allows the device to wake up from low-power modes to active mode typically in less than 10 μs.The MSP430 ultra-low-power (ULP) FRAM microcontroller platform combines uniquely embedded FRAM and a holistic ultra-low-power system architecture, allowing system designers to increase performance while lowering energy consumption. FRAM technology combines the low-energy fast writes, flexibility, and endurance of RAM with the nonvolatile behavior of flash.MSP430FR215x and MSP430FR235x MCUs are supported by an extensive hardware and software ecosystem with reference designs and code examples to get your design started quickly. Development kits include the MSP-EXP430FR2355 LaunchPad™ development kit and the MSP-TS430PT48 48-pin target development board. TI also provides free MSP430Ware™ software, which is available as a component of Code Co mposer Studio™ IDE desktop and cloud versions within TI Resource Explorer.The MSP430 MCUs are also supported by extensive online collateral, training, and online support through the E2E™ community forum.MSP430FR2355主要特性:• Embedded microcontroller– 16-bit RISC architecture up to 24 MHz– Extended temperature: –40°C to 105°C– Wide supply voltage range from 3.6 V down to 1.8 V (operational voltage is restricted by SVS levels, see VSVSH- and VSVSH+ in PMM, SVS and BOR)• Optimized low-power modes (at 3 V)–Active mode: 142 μA/MHz– Standby:– LPM3 with 32768-Hz crystal: 1.43 μA (with SVS enable d)– LPM3.5 with 32768-Hz crystal: 620 nA (with SVS enabled)– Shutdown (LPM4.5): 42 nA (with SVS disabled)• Low-power ferroelectric RAM (FRAM)– Up to 32KB of nonvolatile memory– Built-in error correction code (ECC)– Configurable write protection– Unified memory of program, constants, and storage– 1015 write cycle endurance– Radiation resistant and nonmagnetic• Ease of use– 20KB ROM library includes driver libraries and FFT libraries• High-performance analog– One 12-channel 12-bit analog-to-digital converter (ADC)– Internal shared reference (1.5, 2.0, or 2.5 V)– Sample-and-hold 200 ksps– Two enhanced comparators (eCOMP)– Integrated 6-bit digital-to-analog converter (DAC) as reference voltage– Programmable hysteresis– Configurable high-power and low-power modes– One with fast 100-ns response time– One with 1-μs response time with 1.5-μA low power– Four smart analog combo (SAC-L3) (MSP430FR235x devices only)– Supports General-Purpose Operational Amp lifi er (OA)– Rail-to-rail input and output– Multiple input selections– Configurable high-power and low-power modes– Configurable PGA mode supports– Noninverting mode: ×1, ×2, ×3, ×5, ×9, ×17, ×26, ×33– Inverting mode: ×1, ×2, ×4, ×8, ×16, ×25, ×32– Built-in 12-bit reference DAC for offset and bias settings– 12-bit voltage DAC mode with optional references• Intelligent digital peripherals– Three 16-bit timers with three capture/compare registers each (Timer_B3)– One 16-bit timer with seven capture/compare registers each (Timer_B7)– One 16-bit counter-only real-time clock counter (RTC)– 16-bit cyclic redundancy checker (CRC)– Interrupt compare controller (ICC) enabling nested hardware interrupts– 32-bit hardware multiplier (MPY32)– Manchester codec (MFM)• Enhanced serial communications– Two enhanced USCI_A (eUSCI_A) modules support UART, IrDA, and SPI– Two enhanced USCI_B (eUSCI_B) modules support SPI and I2C• Clock system (CS)– On-chip 32-kHz RC oscillator (REFO)– On-chip 24-MHz digitally controlled oscillator (DCO) with frequency locked loop (FLL) – ±1% accuracy with on-chip reference at room temperature– On-chip very low-frequency 10-kHz oscillator (VLO)– On-chip high-frequency modulation oscillator (MODOSC)– External 32-kHz crystal oscillator (LFXT)– External high-frequency crystal oscillator up to 24 MHz (HFXT)– Programmable MCLK prescaler of 1 to 128– SMCLK derived from MCLK with programmable prescaler of 1, 2, 4, or 8• General input/output and pin functionality– 44 I/Os on 48-pin package– 32 interrupt pins (P1, P2, P3, and P4) can wake MCU from LPMs• Development tools and software (also see Tools and Software)–LaunchPad™ development kit (MSP-EXP430FR2355)– Target development board (MSP-TS43048PT)– Free professional development environments• Family members (also see Device Comparison)– MSP430FR2355: 32KB of program FRAM, 512 bytes of data FRAM, 4KB of RAM– MSP430FR2353: 16KB of program FRAM, 512 bytes of data FRAM, 2KB of RAM– MSP430FR2155: 32KB of program FRAM, 12 bytes of data FRAM, 4KB of RAM– MSP430FR2153: 16KB of program FRAM, 512 bytes of data FRAM, 2KB of RAM• Package options– 48-pin: LQFP (PT)– 40-pin: VQFN (RHA)– 38-pin: TSSOP (DBT)– 32-pin: VQFN (RSM)MSP430FR2355应用:• Smoke and heat detectors• Sensor transmitters• Circuit breakers• Sensor signal conditioning• Wired industrial communications• Optical modules• Battery pack management• Toll tags图1. MSP430FR235x系列功能框图开发板MSP-EXP430FR2355 LaunchP ad™MSP430FR2355 LaunchPad™ Development Kit (MSP-EXP430FR2355)The MSP-EXP430FR2355 LaunchPad™ Development Kit is an easy-to-use Evaluation Module (EVM) for the MSP430FR2355 microcontroller (MCU). The kit contains everything needed to start developing on the ultra-low-power MSP430FRx FRAM microcontroller platform, including onboard debug probe for programming, debugging, and energy measurements. The board also features onboard buttons and LEDs for quick integration of a simple user interface, an onboard Grove connector for external Grove sensors, as well as an ambient light sensor to showcase the integrated analog peripherals.The 24-MHz MSP430FR2355 device features 32KB of embedded FRAM (ferroelectric random access memory), a nonvolatile memory known for its ultra-low power, high endurance, and high speed write access. Combined with 4KB of on-chip RAM, users have access to 32KB of memory to split between their program and data as required. For example, a data logging application may require a large data memory with relatively small program memory, so the memory may be allocated as required between program and data memory.Rapid proto typing is simplified by the 40-pin BoosterPack™ plug-in module headers, which support a wide range of available BoosterPack plug-in modules. You can quickly add features like wireless connectivity, graphical displays, environmental sensing, and much more. Design your own BoosterPack plug-in module or choose among many already available from TI and third-party developers.开发板MSP-EXP430FR2355 LaunchPad™主要特性:• MSP ULP FRAM technology based MSP430FR2355 16-bit MCU• EnergyTrace technology available for ultra-low-power debugging• 40-pin LaunchPad development kit standard leveraging the BoosterPack plug-in module ecosystem • Onboar d eZ-FET debug probe• 2 buttons and 2 LEDs for user interaction• Ambient light sensor for the Out-of-Box Experience demo• Grove connector for external Grove sensors开发板MSP-EXP430FR2355 LaunchPad™包括:• 1 MSP-EXP430FR2355 LaunchPad Development Kit• 1 Mic ro USB cable• 1 Quick Start Guide图2. 开发板MSP-EXP430FR2355 LaunchPad™外形图图3. 开发板MSP-EXP430FR2355 LaunchPad™概述图图4. 开发板MSP-EXP430FR2355 LaunchPad™框图图5. 开发板MSP-EXP430FR2355 LaunchPad™电路图(1)图6. 开发板MSP-EXP430FR2355 LaunchPad™电路图(2)图7. 开发板MSP-EXP430FR2355 LaunchPad™ PCB设计图(1)图8. 开发板MSP-EXP430FR2355 LaunchPad™ PCB设计图(2)图9. 开发板MSP-EXP430FR2355 LaunchPad™ PCB设计图(3)图10. 开发板MSP-EXP430FR2355 LaunchPad™ PCB设计图(4)图11. 开发板MSP-EXP430FR2355 LaunchPad™ PCB设计图(5)图12. 开发板MSP-EXP430FR2355 LaunchPad™ PCB设计图(6)图13. 开发板MSP-EXP430FR2355 LaunchPad™ PCB设计图(7)图14. 开发板MSP-EXP430FR2355 LaunchPad™ PCB设计图(8)图15. 开发板MSP-EXP430FR2355 LaunchPad™ PCB设计图(9)图16. 开发板MSP-EXP430FR2355 LaunchPad™ PCB设计图(10)。

msp430f系列中文资料

msp430f系列中文资料

超低功耗微控制器MSP430F40xi n de s i g n x31xLCD92x32xLCD84ADC14x33xLCD120Timer_A USART MPY8-bit T/Cx11x1Comp_AX12x USARTi n de s i g n F13xTimer_B ADC12USART Comp_AF14xTimer_B ADC122 USART MPY Comp_ANewNewF41xi n de s i g n F42xi n de s i g n F44xi n de s i g nUltra -low power design withM S P430August 00 / 11FLASH 型的时钟系统(F13x,F14x)2 个晶振, 1 个DCO, 适应不同频率需要采样/转换控制可编程参考源选择片内温度传感器Ultra -low power design withM S P430August 00 / 34F11x 应用实例)Floating Point Package)Starter Kit MSP-STK430X320TI 软件包仿真器评估板TI 软件库C-编译器编程器)TI Programming AdapterAugust 00 / 37New电源的高效率y电池缩减/ 电池寿命延长y电源电路简化/ 可远程供电硬件简化y外部元件极少y集成实时钟y集成LCD 驱动电路y集成ADC加速产品开发y用Flash 或OTP 型可快速制作样机y用Flash 型可作现场更新y容易学习和设计程序y代码效率高廉价的微控制器MSP430和开发工具FET/sc/docs/products/micro/msp430E-mail: lierda@ (wzptt)/sc/docs/products/micro/msp430E-mail: lierda@ (wzptt)。

2SC0435T_Manual_2013-02-21_CN

2SC0435T_Manual_2013-02-21_CN

概述 .................................................................................................................................... 12 DC/DC 输出(VISOx)、发射极(VEx)和 COMx 端子 .................................................................... 12 参考端子(REFx) ................................................................................................................... 12 集电极电位检测端子(VCEx) .................................................................................................. 12 有源钳位(ACLx) ................................................................................................................... 13 门极开通(GHx)和门极关断(GLx)端子 ..................................................................................... 14
2SC0435T SCALE-2 驱动器的详细工作原理...................................................................................... 14

MSP430系列超低功耗16位单片机原理与应用

MSP430系列超低功耗16位单片机原理与应用
Байду номын сангаас
振荡器控制逻辑
LFXT1
振荡器控制 逻辑
XT2振荡器控
制逻辑
DCO振荡器
控制逻辑
MSP430-2002~2004 -
30
DCO频率的调节 频率的调节
MSP430-2002~2004 -
8
第一章习题
微处理器的发展方向是什么? 单片机的概念是什么? 单片机和我们通常所用的微型计算机有什么区别和联系? 单片机常见的领用领域有哪些? 如何理解MSP430系列单片机的“单片”解决能力? MSP430系列单片机最显著特性是什么? 如何理解MSP430系列单片机的低功耗特性? 为什么MSP430系列单片机特别适用于电池供电和手持设备? 如何理解MSP430系列单片机的强大处理能力?在开发环境方面, MSP430系列单片机和传统单片机相比,有哪些显著优势? 构成MSP430系列单片机的各类存储器有什么特点?各自适用于哪些场 合? MSP430系列单片机应用选型的依据是什么?
MSP430-2002~2004 -
23
本章小结
在结构上MSP430系列单片机集成了一部计算机的各个基本 组成部分。虽然其工作原理与普通微机并无差异,但 MSP430系列单片机在结构上更加突出了体积小、功能强、 面向控制的特点,具有很高的性能价格比。 MSP430系列单片机由CPU、存储器和外围模块组成,这些 部件通过内部地址总线、数据总线和控制总线相连构成单 片微机系统。 MSP430的内核CPU结构是按照精简指令集的宗旨来设计的 。具有丰富的寄存器资源、强大的处理控制能力和灵活的 操作方式。 MSP430的存储器结构采用了统一编址方式,可以使得对外 围模块寄存器的操作象普通的RAM单元一样方便、灵活。 MSP430存储器的信息类型丰富,并具有很强的系统外围模 块扩展能力。

153芯片

153芯片

153芯片153芯片是一种先进的集成电路芯片,具有高度集成化、低功耗、高性能等特点。

它是面向物联网、人工智能、移动通信等领域的应用而开发的一款芯片,能够满足各种复杂应用场景的需求。

首先,153芯片具有高度集成化的特点。

在尺寸方面,153芯片比较小巧,可以在各种终端设备上灵活应用,如智能手机、智能家居设备、车载导航等。

它采用了先进的制程工艺,能够将更多的功能集成在一个芯片中,减少了系统复杂度和功耗,提高了系统的整体性能。

其次,153芯片具有低功耗的特点。

在物联网和移动通信领域,终端设备需要长时间持续工作,因此低功耗是一个非常重要的指标。

153芯片采用了先进的功耗优化技术,通过电源管理单元、睡眠模式等手段,降低了芯片的功耗,延长了终端设备的续航时间。

此外,153芯片还具有高性能的特点。

它采用了先进的架构设计和多核处理器,能够提供更快的数据处理能力和更高的运算速度。

在人工智能领域,153芯片的高性能保证了机器学习和深度学习算法的高效运行,提升了人工智能应用的响应速度和推理能力。

尤其值得一提的是,153芯片支持5G通信技术。

作为下一代移动通信标准,5G将大幅提升移动通信的速度和带宽,为物联网应用带来了更多的机会和挑战。

153芯片具备5G通信的能力,能够支持高速数据传输和更稳定的连接,为物联网和移动通信领域开创更多应用可能。

总结起来,153芯片是一款具有高度集成化、低功耗、高性能和支持5G通信技术的先进芯片。

它能够满足物联网、人工智能、移动通信等领域的复杂应用需求,不仅提升了终端设备的性能和用户体验,也促进了信息技术的创新和发展。

相信随着技术的不断进步和应用的扩大,153芯片将发挥更大的作用,推动各行各业的进步和发展。

柳林 MGTR-W4131 微功耗遥测终端使用说明书

柳林 MGTR-W4131 微功耗遥测终端使用说明书

MGTR-W4131微功耗遥测终端产品使用手册智能传感终端系列版本:1.0.0日期:2022-4-11状态:临时文件市柳林自动化设备有唐山市柳林自动化设备有限公司市柳林自动化设备有限公司前言唐山市柳林自动化设备有限公司是一家专业从事物联网安全通讯终端、智能仪表与智慧应用系统的研发、生产、销售和系统工程技术服务的高新技术企业,河北省双软企业。

公司成立于2007年,拥有1总部(唐山)提供物联网智能终端、数字孪生、SaaS、PaaS、DaaS的研发、生产及销售;1中心(合肥)负责工程系统运维及客户服务,倾听需求,解决问题,成就客户;1研究院(南京)提供生态系统服务10+优质生态合作伙伴、100+核心渠道伙伴、20万+已实施系统现场软硬件设备在线运行。

如您需要任何帮助,您可以关注“唐山柳林自动化”公众号了解产品信息,也可以随时联系我司唐山总部,联系方式如下:地址:河北唐山高新区火炬路410号110楼3号客服热线:130****1802(24小时在线)邮箱:*********************网址:https://免责声明由于产品版本升级或其他原因,本文档内容会不定期更新。

除非另有约定,本文档仅作为使用指导,本文档中的所述内容、信息和建议均不构成任何明示或暗示的担保。

设备正常操作及安装对于测量的精度以及可靠性影响很大,因此必须保证安装的正常性,并进行反复检查。

保密义务除非唐山市柳林自动化设备有限公司特别授权,否则我司所提供文档和信息的接收方须对接收的文档和信息保密,不得将其用于除本项目的实施与开展以外的任何其他目的。

未经我司书面同意,不得获取、使用或向第三方泄露我司所提供的文档和信息。

对于任何违反保密义务、未经授权使用或以其他非法形式恶意使用所述文档信息或图片的违法侵权行为,我司有权追究法律责任。

版权申明本文档版权属于唐山市柳林自动化设备有限公司,任何人未经我司允许而复制转载该文档将承担法律责任。

版权所有©唐山市柳林自动化设备有限公司2022,保留一切权利。

EM78P153S

EM78P153S

1、一般描述EM78P153S是采用低耗高速CMOS工艺制造的8位单片机,它内部包含一个1024*13-bit的一次性可编程只读电存储器(OTP-ROM)。

有15位选项位可满足用户要求,其中的保护位可用来防止程序被读出由于有OTP-ROM,EM78P153S提供给用户一个方便的开发和检验他们的程序的环境。

而且,程序代码可用ELAN编程器写入芯片。

OTP ROM2、特征14个引线封装:EM78P153S工作电压范围:2.3V~5.5V适用温度范围:0 ℃~70℃工作频率范围(基于2个Clock):晶振模式:DC-20MHZ at 5V,DC-8MHZ at 3V,DC-4MHZ at 2.3VERC模式:DC-4MHZ at 5V,DC-4MHZ at 3V,DC-4MHZ at 2.3V低功耗:* 在5V/4MHz时低于1.5mA* 在3V/32KHz时为15uA* 在休眠模式时为1uA1024x13位片内ROM内置4个校准IRC振荡器(8MHZ,4MHZ,1MHZZ,455KHZ)振荡器起振时间预分频系数可编程一个安全位(代码寄存器中)保护程序不被读出一个结构寄存器满足用户要求32x8bits片内寄存器组(SRAM,一般寄存器)2组双向I/O端口5级用于子程序嵌套的堆栈8位实时计时/计数器(TCC),其信号源、触发边沿可编程选择,溢出时产生中断节能模式(SLEEP模式)三种可用的中断:* TCC溢出中断* 输入引脚变化中断(从休眠模式唤醒)* 外部中断可编程自由运行看门狗定时器(WDT)7个可编程上拉I/O引脚7个可编程漏极开路 I/O引脚6个可编程下拉I/O引脚每个指令周期为两个时钟周期:99.9%的指令为单周期指令封装类型:14脚SOP、DIP14管脚DIP 300mil:EM78P153SP14管脚SOP 150mil:EM78P153SN系统高低频率的变化点是400KHZOTP ROM3、管脚分配图1 管脚分配表1 管脚说明 SymbolPin No.TypeFunctionVdd 4 - 电源提供.P65/OSCI 5 I/O * 一般i/o 脚.* 外部时钟信号输入.* 晶振的输入脚.* 内部上拉和漏级开路* 脚的状态改变时从睡眠模式唤醒. P64/OSCO 6 I/O *一般i/o 脚*外部时钟信号输入.*晶振的输入脚.* 内部上拉和漏级开路* 脚的状态改变时从睡眠模式唤醒P63//RESET 7I * 如果被设置为/reset 且保持在逻辑低,系统将会复位 *脚的状态改变时从睡眠模式唤醒 * 正常模式下,/reset 脚上的电压不能大于vdd* 定义为/reset 时具有内部上拉功能 * P63只能是输入脚P62/TCC 8 I/O*一般i/o 脚*内部上拉/漏级开路/内部下拉*脚的状态改变时从睡眠模式唤醒 * 外部定时/计数输入 P61 9 I/O *一般i/o 脚.*内部上拉/漏级开路/内部下拉.*脚的状态改变时从睡眠模式唤醒.OTP ROM* 编程模式下为施密特触发器输入P60//INT 10 I/O *一般i/o 脚.*内部上拉/漏级开路/内部下拉.*脚的状态改变时从睡眠模式唤醒.*编程模式下为施密特触发器输入. * 低电平触发的外部中断脚. P66, P67 2, 3 I/O *一般i/o 脚.*内部上拉/漏级开路*脚的状态改变时从睡眠模式唤醒. P50~P53 1,14~13 I/O*一般i/o 脚.*内部下拉P53 12 I/O *一般i/o 脚. VSS 11 - *地.OTP ROM 4、功能描述图2 功能块图4.1 操作寄存器1、R0(间接地址寄存器)R0并非实际存在的寄存器。

士兰微电子 SC51P1364 I O 型低压低功耗 8 位 MCU 说明书

士兰微电子 SC51P1364 I O 型低压低功耗 8 位 MCU 说明书

VDD 1 VSS 2 INT0/P0.0 3 ENMO/T2/P0.5 4 [PDATA]/T2EX/P0.6 5 [PCLK]/P0.7 6 KI0/P1.0 7 KI1/P1.1 8
SC51P1364SC1
16 XOUT/P9.1 15 XIN/P9.0 14 nRST/P10.0/[VPP] 13 P3.0/REM 12 P2.1/RXD0 11 P2.0/TXD0 10 P1.3/KI3 9 P1.2/KI2
VDD=1.8~3.6V,TAMB=B -40~85°C (典型值条件:VDD=3V,TAMB=B 25°C) VDD=1.8~3.6V,TAMB=B -40~85°C (典型值条件:VDD=3V,TAMB=B 25°C)
P0/P1/P2/P3/P9.0/nRST
P9.1
P0/P1/P2/P3/P9/nRST
内部框图
SC51P1364 说明书
封装形式 SOP-16-225-1.27 SOP-24-375-1.27 SOP-28-375-1.27 SSOP-20-225-0.65 SSOP-24-300-0.65
打印名称 SC51P1364SC1 SC51P1364SC1 SC51P1364SH1 SC51P1364SH1 SC51P1364SJ1 SC51P1364SJ1 SC51P1364RC1 SC51P1364RC1 SC51P1364RM1 SC51P1364RM1
9
7
8
6
-SC1
4~6 7~10 11~12 13 -
管脚描述
15~16
14 7~10
13 14 6 5 3 4
5
4
输入/输出端口,不可位操作。 开漏输出脚。
键盘输入脚,可产生中断唤醒 MCU。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

TR4P153BT/BF General Purpose MCU1. General DescriptionsThe TR4P153BT/BF series are high-performance 4-bit RISC micro-controller embedded with 2KX12 bits OTP, 256X4 bits SRAM, 8 bit PWM, 11 Input/Output ports and one input port. It’s flexible and cost-effective solution for general purpose MCU applications.2. Featuresz Operating voltage: (1) 2.0V to 5.5V for Temp. = 25J (2) 2.2V to 5.5V for Temp. = -40J~+85Jz These MCU can operate in high speed. Oscillator type can be selected by option setting. High speed and low speed operating mode is selectable by software. Below is the chip performance in different modes.(a)Internal high speed HRCOSC: 8 MIPS / 4 MIPS / 2 MIPS / 1 MIPS or low speed LRCOSC114.69KIPS( thousand instructions per second) / 57.34 KIPS / 28.67 KIPS / 14.33 KIPS.(b)External EXTOSC: 8 MIPS (16 MHz X’tal) ~ 0.5 MIPS (1 MHz X’tal ).z Memory SizeProgram ROM size : 2KX12 bits (OTP type)SRAM size: total 256x4 bits SRAMz Wake up function for power-down modeHALT mode wake up source: RTC timer overflow, PA0~3, PB0~3 and PD0~3 edge triggerz11 input /output ports: PA0~PA2, PB0~PB3, PD0~PD3. Each I/O can be bit programmable as input or output port. These 11 I/Os also provided level-change-wakeup function. Pull up and pull down resistor setting is available by software.z 1 input port PA3, PA3 is shared with RSTB (reset) pin by option. It also provides level-change-wakeup function. Pull up and pull down resistor can be configured by software too.z Port A, Port B and Port D are provided with high sink current 24mA @VDD=5V,Vol=0.5V( except PA3 ) z Port A, Port B and Port D are provided with high drive current 23mA @VDD=5V,Voh=4.5V( except PA3 ) z PA1 built-in 38KHz modulator by option.z One Op-Amp is provided, three pins shared with PD0, PD1, PB2 (by option).z One comparator is provided, two input pins shared with PD2, PD3 (by option).z Three timersTimer 1: 8 bits timer/counter/PWM, its clock source can be from chip-internal or external.Timer 2: 8 bits timerRTC : time period 0.125 /0.25/0.5/1 Sec or 15.625/31.25/62.5/125 ms,RTC Clock source comes from internal LRCOSC.z Four reset conditionLow voltage reset (LVR 1.8V)Power on resetExternal RSTB pin shared with PA3 pin by option.Watch dog timer overflow reset ( 0.125 sec ~ 1 sec by option )z Three internal interrupt sources: TIMER1, TIMER2 or RTC interrupt.z WDT(Watch dog timer)WDT can be enabled/disabled in HALT mode by optionWDT clock source comes from internal LRCOSC.z Provides 8 Bits PWM, PWM signal output is shared with PA2 pin by option.z Built-in external X’tal oscillator ( EXTOSC, use 1MHz~16MHz external ceramic resonator or crystal oscillator ). These two crystal pins are shared with PB1 and PB0 by option.z Built-in high frequency internal 32MHz RC oscillator ( HRCOSC, frequency deviation within ¡2%, temperature range at -40J~+85J, Vdd = 2.0V to 5.5V )z Built-in low frequency internal RC OSC (LRCOSC) 459KHz ( frequency deviation within ¡12% )ALL RIGHTS STRICTLY RESERVED, ANY PORTION IN THIS PAPER SHALL NOT BE REPRODUCED, COPIED WITHOUT PERMISSION.ALL RIGHTS STRICTLY RESERVED, ANY PORTION IN THIS PAPER SHALL NOT BE REPRODUCED, COPIED WITHOUT PERMISSION.codes …etc. It’s located at address 640h ~ 66Fh.Package (8/14 SOP)SOP 14PA0PA1/IR38KPA2/PWM/BZ/CKIPA3/RSTB/VPPPB0/XOUT/OSCADJPB1/XINPB2/CA3PB3PD1/CA2VDDVSSPD0/CA1PD3/CB2PD2/CB1PA0PA1/IR38KPA2/PWM/BZ/CKIPA3/RSTB/VPPPB0/XOUT/OSCADJPB1/XINVDDVSSSOP 8TR4P153BT/BFTR4P153BT/BFALL RIGHTS STRICTLY RESERVED, ANY PORTION IN THIS PAPER SHALL NOT BE REPRODUCED, COPIED WITHOUT PERMISSION.3. Pads InformationPAD NameType State AfterResetDescriptionPower Input VDD I High Power input pinVSS I Low Ground input pinGeneral I/O ports PA0~PA2 I/OXXX PA0~PA2 are programmable I/O ports, with pull up and down resistor100K ohm.Level-change-wakeup function is provided. PA1 is shared with IR38K function by option.PA2 is shared with PWM/CKI/BZ functions by option.PA3 (RSTB/VPP) I X PA3 is an input pin only, with pull up resistor 60K ohm, or pull down resistor 100K ohm.Level-change-wakeup function is provided. PA3 is shared with RSTB pin by option.PB0~PB3 I/O XXXX PB0~PB3 are programmable I/O ports, with pull up and down resistor100K ohm.Level-change-wakeup function is provided.PB0 is shared with XOUT/OSCADJ by option. OSCADJ pin is used for frequency adjust of HRCOSC.PB1 is shared with XIN pin by option.XIN and XOUT is connected to external X’tal.PB2 is shared with the output CA3 of Op Amp by option.PD0~PD3 I/O XXXX Port D is a programmable I/O port, with pull up and down resistor 100Kohm.Level-change-wakeup function is provided.PD0 and PD1 are shared with two inputs (CA1, CA2) of Op AMP by option.PD2 and PD3 are shared with two inputs (CB1, CB2) of a comparator by option.Block DiagramVDD4. ELECTRICAL CHARACTERISTICS4.1 Absolute Maximum RatingsABSOLUTE MAXIMUM RATINGSPARAMETER SYSMBOL RATING UNIT DC Supply Voltage V+ < 7.0 V Input Voltage Range V IN-0.5 to VDD+0.5 VAStorage Temperature T STO-50 to +150 ºC 4.2 DC/AC CharacteristicsDC CHARACTERISTICS ( TA = 25¢J, VDD = 3V, unless otherwise noted )PARAMETER SYMBOL TEST CONDITIONSLIMITUNIT Min Typ MaxOperating voltage V VDD1Temp. = 25¢J 2.0 - 5.5 V V VDD2Temp.= -40¢J~+85¢J 2.2 5.5 VOperating Current I OP1VDD=3V , MCU run 8 MIPS 2.6 mA I OP2VDD=5V , MCU run 8 MIPS 3.0 mA I OP3VDD=3V , MCU run 1 MIPS 1.6 mA I OP4VDD=5V , MCU run 1 MIPS 2.0 mA I OP5VDD=3V , MCU run 14 KIPS50 uA I OP6VDD=3V , MCU run 114.7 KIPS200 uAStandby Current I STBY1 MCU stop in HALT mode WDT& RTC off2.5 (VDD=3V)3 (VDD=5V)uAI STBY2_1.VDD=5V2.MCU stop in HALT mode,WDT on or RTC on8 uAInput High Level VIHAll I/O port 0.8*V DD V Input Low Level V IL All I/O port 0.2*V DD VOutput Drive Current I OH1VDD=3V , V OH=2.5V,All I/O port-8 -15 mA I OH2VDD=5V , V OH=4.5V,All I/O port-12 -23 mAOutput Sink Current I OL1VDD=3V , V OL=0.5V,All I/O port8 15 mA I OL2VDD=5V , V OL=0.5V,All I/O port12 24 mAPA,PB,PD pull down Res. R down1Pull down 180K ohm, VDD=3V140 180 220 K ohm R down2Pull down 100K ohm, VDD=5V60 90 120 K ohmPA,PB,PD pull up Res. ( except PA3 ) R up1Pull up 180K ohm, VDD=3V 140 180 220 K ohm R up2Pull up 100K ohm, VDD=5V 60 90 120 K ohmPA3 pull up Res. R up3Pull up 60K ohm ,VDD=2V~5V40 60 80 K ohmLVR V LVR1Temp. = 25¢J 1.6 1.8 2.0 V V LVR2Temp.= -40¢J~+85¢J 1.4 1.8 2.2 VALL RIGHTS STRICTLY RESERVED, ANY PORTION IN THIS PAPER SHALL NOT BE REPRODUCED, COPIED WITHOUT PERMISSION.AC characteristics ( TA = 25¢J, VDD = 3V, unless otherwise noted )PARAMETER SYMBOL TEST CONDITIONSLIMITUNIT Min Typ MaxInternal HRCOSC FrequencyF HRCOSC VDD = 2.0V~5.5VTemp = -40¢J~+85¢J31.3632 ¡2% 32.64MHzInternal LRCOSC Frequency F LRCOSC1VDD = 2.0V~5.5VTemp. = 25¢J458.752 ¡12% KHz F LRCOSC2VDD = 2.0V~5.5VTemp = -40¢J~+85¢J458.752 ¡20% KHzExternal X’tal EXTOSC F XTOSC VDD = 2.0V~5.5V1~16 MHzMCU operating frequency ( clock source from F HRCOSC or F XTOSC F MCk11.in NORMAL mode2.Clock source : F HRCOSC3.VDD = 2.0V~5.5V4.Temp. -40¢J~+85¢J8 ¡2%, 4 ¡2%2 ¡2%, 1 ¡2%(F HRCOSC/4, F HRCOSC /8,F HRCOSC /16, F HRCOSC /32 )MIPSF MCk21.in NORMAL mode2.Clock source : F XTOSC3.VDD = 2.0V~5.5V4 Temp. -40¢J~+85¢J5.If F XTOSC = 16Mhz8 , 4, 2, 1( F XTOSC/2, F XTOSC/4,F XTOSC/8, F XTOSC/16 )MIPSMCU operating frequency ( clock source F LRCOSC ) F MCk31.in GREEN mode2.VDD = 2.0V~5.5V3.Temp. = 25¢J114.69¡12%,57.34¡12%28.67¡12%,14.33¡12%KIPSPA1 38KHz output( clock source F HRCOSC or F XTOSC)F38K11.in NORMAL mode2.PA1 IR38K option enabled3.Register F38K=14.Temp. = 25¢J38.09 ¡2%(F HRCOSC /840)KHz38.09(F XTOSC=16Mhz)/420PA1 38KHz output ( clock source F LRCOSC ) F38K21.in GREEN mode2.PA1 IR38K option enabled3.Register F38K=14.Temp. = 25¢J38.23 ¡12%(F LRCOSC/12) KHzRTC period T RTC1VDD = 2.0V~5.5VTemp. = 25¢Jclock source F LRCOSCSPUP option enabled0.125¡12%, 0.25¡12%0.5¡12%, 1.0¡12%Sec T RTC2VDD = 2.0V~5.5VTemp. = 25¢Jclock source F LRCOSCSPUP option disabled15.625¡12%,31.25¡12%62.5¡12%, 125¡12%msWDT period TWDT VDD = 2.0V~5.5VTemp. = 25¢Jclock source F LRCOSC0.125¡12%, 0.25¡12%0.5¡12% , 1.0¡12%SecStable clock delayafter power on or system reset CKstable1System oscillator --HRCOSC( Note 1 )160us + 1024 x (1/ F MCK1)( Note 5 ) us CKstable2System oscillator --EXTOSC( Note 2 )160us + 1024 x (1/ F MCK2)( Note 5 ) usStable clock delay after wake up CKstable3System oscillator --HRCOSC( Note 3 )64 x (1/ F MCK1) ( Note 5 )us CKstable4System oscillator --EXTOSC( Note 4 )1024 x (1/ F MCK2) ( Note 5 )usALL RIGHTS STRICTLY RESERVED, ANY PORTION IN THIS PAPER SHALL NOT BE REPRODUCED, COPIED WITHOUT PERMISSION.ALL RIGHTS STRICTLY RESERVED, ANY PORTION IN THIS PAPER SHALL NOT BE REPRODUCED, COPIED WITHOUT PERMISSION.Note1: The stable clock delay (CKstable1) is a delay between HRCOSC-started and 1st instruction-execution.This delay will ensure stable system clock after power on or reset.Note2: The stable clock delay (CKstable2) is a delay between clock output of EXTOSC and 1st instruction. Thisdelay will ensure stable system clock after power on or reset.Note3: The stable clock delay (CKstable3) is a delay between HRCOSC-started and 1st instruction-execution ofwakeup. This delay will ensure stable system clock after wake up.Note4: The stable clock delay (CKstable4) is a delay between EXTOSC-started and 1st instruction-execution ofwakeup. This delay will ensure stable system clock after wake up.Note5: F MCK1 and F MCK2 are MCU operating clock.AC Characteristics of OP ( TA = 25¢J , VDD = 2V~5.5V, unless otherwise noted )PARAMETERSYMBOLTEST CONDITIONSLIMITUNITMinTypMaxQuiescent current I QUI VDD = 2V~5.5V305070uA Input voltage range V IN 0 VDD V Output voltage range V OUT 0.1 VDD-0.1V Offset voltage V OS 10 100 mV Output sink current I SINK 15 30 uA Output source current I SOU150 300 uA Output resistor load R L100KOhmAC Characteristics of Comparator ( TA = 25¢J , VDD = 2V~5.5V, unless otherwise noted )PARAMETERSYMBOLTEST CONDITIONSLIMITUNITMinTypMaxQuiescent current I QUI VDD = 2V~5.5V12uA Input voltage range V IN 0 VDD V Offset voltageV OS10100mVThe LRCOSC frequency VS. temperature, VDD=2.0V~5.5V380400420440460480-5050100L R C O S C (K H z )Temperature(C)ALL RIGHTS STRICTLY RESERVED, ANY PORTION IN THIS PAPER SHALL NOT BE REPRODUCED, COPIED WITHOUT PERMISSION.The HRCOSC frequency VS. temperature, VDD=2.0V~5.5V5. FUNCTIONAL DESCRIPTIONThis MCU inside TR4P153BT/BF is a high performance processor. The operation speed can be range from 0.5 MIPS to 8 MIPS depending on different applications.5.1 Program ROM (OTP ROM)TR4P153B series support two kind of OTP ROM arrangement. They are TR4P153BT and TR4P153BF. The OTP ROM memory plan is shown below:Address TR4P153BT ( 1.6 K OTP ROM ) TR4P153BF ( 2 K OTP ROM )000h ~ 0FFhUser area 1.5K ( 1536 X12 ) User area 1.5K ( 1536 X12 ) 100h ~ 1FFh 200h ~ 2FFh…..500h ~ 5FFh600h ~ 63FhReserved area Reserved area 640h ~ 66Fh User Information block (48X12). For datastore only, can't be used to store program. User area 0.5K( 448X12 ) 670h ~ 7FFh Reserved area Note: 1. For TR4P153BT and TR4P153BF, the content of OTP ROM address $640h~$66Fh can beread by program. Address $600h~$63Fh and $670h~$7FFh can’t be read by program.2. To read registers DMDL, DMDM and DMDH, only LD A,(n) instruction can be used. Otherinstructions are not allowed. ( n= DMDL, DMDM or DMDH )3. If DMA2~DMA0 pointed address is located at invalid address 600h~61Fh or 700h~7FFh, DMA2.2, DMA2.1, DMA2.0 will be regarded as 0 by hardware automatically, DMA0 and DMA1 will not be affected. 32.232.2532.332.3532.432.4532.5-5050100H R C O S C (M h z )Temperature(C)ALL RIGHTS STRICTLY RESERVED, ANY PORTION IN THIS PAPER SHALL NOT BE REPRODUCED, COPIED WITHOUT PERMISSION.TR4P153BT supports 1.6 K words OTP ROM which is located on $000h ~ $5FFh and $640h ~ $66Fh. The first area $000h ~ $5FFh stores user program area. The second area $640h ~ $66Fh that named user information block stores serial number, lot number or user optional codes…etc. The reserved area are $600h ~ $63Fh and $670h ~ $7FFh, they can’t be read by software.TR4P153BF supports 2 K words OTP ROM which is located on $000h ~ $5FFh and $640h ~ $7FFh.These two areas store user program. Although $640h~$7FFh is user area, but data in $670h~$7FFh can’t be read by software. The reserved area, $600h ~ $63Fh, can’t be read by program also.To read OTP ROM data, use DMA2~DMA0 registers as address pointer. The address range is located in $000H ~ $5FFH and $640H~$66FH. After these registers (DMA0~2) are specified by software, the 12bits data of ROM can be moved to A register by three instructions, they are “LD A, (DMDL)”, “LD A, (DMDM)” and “LD A, (DMDH)”. The three instructions mentioned above are two cycle instruction, all others instructions are single cycle instruction.Symbol Addr R/W Reset D3 D2D1D0DescriptionDMA0 18H R/W xxxxDMA0.3 DMA0.2DMA0.1 DMA0.0 DMA0~DMA2(exclude DMA2.3) build a 11bit addressing space for read ROM data. DMA0 is the lowest nibble address, DMA2 is the highest nibble address.DMA2.3: It’s a user usable register only, it's useless for address setting.DMA1 19H R/W xxxxDMA1.3 DMA1.2DMA1.1 DMA1.0 DMA2 1AH R/W xxxxDMA2.3 DMA2.2DMA2.1 DMA2.0 DMDL 1CH R xxxxDMDL.3 DMDL.2DMDL.1DMDL.0DMDL is used to read low nibble data from ROM that addressed by DMA0 ~ DMA2.DMDM 1DH R/W xxxxDMDM.3 DMDM.2DMDM.1DMDM.0(1) DMDM is used to read middle nibble data from ROM that addressed by DMA0 ~ DMA2.(2) Write this register with data 05h willclear watch dog timer (WDT)(3) Write this register with data 0Ah willclear RTC counter.DMDH 1EH Rxxxx DMDH.3 DMDH.2DMDH.1DMDH.0DMDH is used to read high nibble datafrom ROM that addressed by DMA0 ~ DMA2.For example, assume the data of address 356H is 587H.LD A, #3LD (DMA2), A LD A, #5LD (DMA1), A LD A, #6LD (DMA0), A ; ROM address = 356HLD A, (DMDL) ; A register = 7H ; low nibble data of ROM address 356H LD A, (DMDM) ; A register = 8H; middle nibble data of ROM address 356H LD A, (DMDH) ; A register = 5H; high nibble data of ROM address 356H…….5.2 SRAM and I/O Memory MapTR4P153BT/BF provides 256 nibbles SRAM. SRAM is separated into 8 pages (MAH0~7). Every page has 32 nibbles (with same address, $20H~$3FH). This addressing space of SRAM is different from ROM’s address.ALL RIGHTS STRICTLY RESERVED, ANY PORTION IN THIS PAPER SHALL NOT BE REPRODUCED, COPIED WITHOUT PERMISSION.Direct Addressing (use MAH )Real SRAM AddressSRAM MAPMAH=XH ( MAH no effect ) 00H~1FHCommon I/O port and SFR(special function register) register MAH=0H 20H~3FH 00H~1FHUSER SRAM (256x4) MAH=1H 20H~3FH 20H~3FH| | |MAH=6H 20H~3FH C0H~DFHMAH=7H 20H~3FH E0H~FFHThe addressing space is separated into several pages. Software can select working pages by setting MAH register. Each page contains two blocks and each block contains 32 nibbles. The lower block ( 00H ~1FH ) is used for IO registers and special registers, it's named “common I/O block”. This block will not affected by MAH setting. In any MAH setting, software can access register of this block directly. The higher block( 20H~3FH ) is used for user SRAM access. MAH register determines current access page of SRAM. The 20H~3FH address (in instructions) determines 32 nibble address in the current page.The working space shown as below:High 32 nibbles address space (20 ~ 3F H), MAH pointed SRAM spaceLow 32 nibbles address space (0 ~ 1F H), I/O and special register, “common I/O block”, MAH has no effect on this blockMAH = 0 selects 1st 32 nibbles SRAM MAH = 1 selects 2nd 32 nibbles SRAMMAH = 2 selects 3rd 32 nibbles SRAM ...etc.MAH can be written by a special instruction "LDMAH" with direct data.MAH can not be read by MCU. When interrupt happened, MAH data will be stored by hardware and restored by "RETI" command.5.3 I/O Memory MapThe I/O memory map consists of common I/O, control registers and extended I/O space. Detailed operations are as follows:5.4 Common I/O and control registerThe "common IO block" contains 32 addresses. All registers in this block can be accessed directly by these instructions : LD/ADC/SBC/OR/AND/XOR/INC/DEC/RLC/RRC/CMP/ADR. SET, CLR ( bit set/clear ) can only operate on the address range from 00H to 0FH.Read common I/O instruction: LD/ADC/SBC/CMP/OR/AND/XOR ( Ex. LD A,(n) ) Write data to common I/O instruction: LD (n),ARead and write common I/O instruction : DEC/INC/ADR/RRC/RLC ( Ex. DEC (n) )U: unchanged X: unknown value R/W: readable & writeable R: readable only W: writeable onlySymbol Addr R/W Reset D3D2D1D0DescriptionSTATUS 00H R/W 00xx TM2IFG TM1IFG CF ZFZF : Zero status register CF : Carry status registerTM1IFG: Timer 1 interrupt flag 0: no Timer1 interrupt occurred.1: Timer1 interrupt occurred, it can be cleared by software.ALL RIGHTS STRICTLY RESERVED, ANY PORTION IN THIS PAPER SHALL NOT BE REPRODUCED, COPIED WITHOUT PERMISSION.TM2IFG: Timer 2 interrupt flag 0: no Timer 2 interrupt occurred.1: Timer2 interrupt occurred, it can be cleared by software.RTC 01H R/W 0000RTCFG F38K RTCS1 RTCS0 RTC will cause an interrupt ($008h) when in NORMAL mode or GREEN mode. In HALT mode, RTC can wakeup MCU and program will go to wake up vector ($004h).RTCS1, RTCS0: RTC interrupt period detailed description in Real Time Clock Interrupt section.F38K is valid only when IREN is enabled.F38K = 1, PA1 output 38k clockF38K = 0, PA1 PIN 38K output signaldisabled. PA1 keeps low if (option) IRNOR0 disabled. PA1 keeps high when IRNOR0 enabled.RTCFG: RTC overflow flag 0: RTC overflow not occurred.1: RTC overflow occurred, it can be cleared by software.IOC_PA 02H R/W 0000X IOCA2 IOCA1 IOCA0 Port PA0~PA2 input/output direction : 1: set port as output port individually 0: set port as input port individually PA3 is input only.DATA_PA 03H R/W xxxxDPA3 (Read only ) DPA2 DPA1 DPA0 Read data from PA0~PA3 PIN or write data to PA0~PA2 PIN ( I/O direction is selected by IOC_PA register) Reserved 04H x xxxxx x x x reserved IOC_PB 05H R/W 0000IOCB3 IOCB2 IOCB1 IOCB0 Port PB0~PB3 input/output direction : 1: set port as output port individually 0: set port as input port individuallyDATA_PB 06H R/W xxxxDPB3 DPB2 DPB1 DPB0 Read data from PB0~PB3 port or write data to PB0~PB3 ( I/O direction is defined by IOC_PB register)USER1 07H R/W xxxxUSER1.3 USER1.2USER1.1USER1.0General purpose user RAM TMCTL 08H R/W 0000TM2EN TM1EN TM1SCK TM1ALD TM1ALD: Timer 1 auto load control 0 : Timer 1 auto load function turned off 1 : Timer 1 auto load function turned onTM1SCK:Timer1 clock source selection 0: internal clock ( frequency selected by SCALER1 register )1: external clock ( from PA2 pin ) IOCA2 must be set to 0.TM1EN: Timer 1 enable control bit 0 : Timer 1 disabled 1 : Timer 1 enabledTM2EN: Timer 2 enable control bit 0 : Timer 2 disabled 1 : Timer 2 enabledSYS0 09H R/W 0000 TM2MSK TM1MSK ENINT PWMO Notice: The PWMO, ENINT, TM1MSKand TM2MSK will be cleared by HALTinstructionPWMO: PWM signal output to PA2 pin0 : PA2 pin is I/O pin1 : PA2 pin is PWM output pin( The frequency of PWM is controlled byTM1OUT and TM1ALD if PWMO=1)ENINT: Global interrupt enable0 : global interrupt disabled1 : global interrupt enabled, (ENINTcontrol the interrupt enable of Timer1, Timer 2 and RTC )TM1MSK : Timer 1 interrupt mask0 : Timer 1 interrupt masked (Timer1interrupt disabled).1 : Timer 1 interrupt unmasked (Timer1interrupt enabled).TM2MSK : Timer 2 interrupt mask0 : Timer 2 interrupt masked (Timer2interrupt disabled).1 : Timer2 interrupt un-masked (Timer2interrupt enabled).TIM1 0AH R/W 0000 TIM1.3(TIM1.7) TIM1.2(TIM1.6)TIM1.1(TIM1.5)TIM1.0(TIM1.4)TIM1.7~TIM1.0: 8 bit TIMER 1 countervalue, read or write must follow fixedsequence as shown below:(1) Write: write low nibble first, and thenwrite high nibble.(2) Read: read low nibble first, and thenread high nibble.TIM2 0BH R/W 0000 TIM2.3(TIM2.7) TIM2.2(TIM2.6)TIM2.1(TIM2.5)TIM2.0(TIM2.4)TIM2.7~TIM2.0: 8 bit TIMER 2 countervalue, read or write must follow fixedsequence as shown below:(1) Write: write low nibble first, and thenwrite high nibble.(2) Read: read low nibble first, and thenread high nibble.IOC_PD 0CH R/W 0000 IOCD3 IOCD2 IOCD1 IOCD0 Port D input/output direction select1: set port as output port individually0: set port as input port individuallyDATA_PD 0DH R/W xxxx DPD3 DPD2 DPD1 DPD0 Read port D data from PD0~PD3 port orwrite data to PD0~PD3 ( I/O direction isdefined by IOC_PD register)SCALER1 0EH R/W 0000 TM1OUT T1DIV2T1DIV1T1DIV0T1DIV2~0: The pre-scaler of Timer 1.Timer 1 clock source definition table:(F MCK = MCU operating clock )T1DIV2T1DIV1 T1DIV0 TM1CK0 0 0 F MCK/2560 0 1 F MCK /1280 1 0 F MCK /640 1 1 F MCK /321 0 0 F MCK /161 0 1 F MCK /81 1 0 F MCK /41 1 1 F MCK /2TM1OUT: Select PA2 as "Timer 1 togglesignal output" (PWMO must be 0 toenable this function).0 : Disabled, PA2 port is I/O function1 : Enable PA2 as Timer 1 toggle output(BZ).ALL RIGHTS STRICTLY RESERVED, ANY PORTION IN THIS PAPER SHALL NOT BE REPRODUCED, COPIED WITHOUT PERMISSION.ALL RIGHTS STRICTLY RESERVED, ANY PORTION IN THIS PAPER SHALL NOT BE REPRODUCED, COPIED WITHOUT PERMISSION.USER2 0FH R/W xxxx USER2.3 USER2.2USER2.1USER2.0General purpose user RAMMDCTL10H W 1100MD1 MD0 X X MCU operation mode selection table MD1MD0MCU MODE 0 0 Into HALT mode (or useHALT instruction)0 1 Enters NORMAL mode 1 0 Enters GREEN mode 1 1 reserved, do not set thisvalue.Reserved 11H~ 17HReserved DMA0 18H R/W xxxxDMA0.3 DMA0.2DMA0.1 DMA0.0 DMA0~DMA2(exclude DMA2.3) build a 11bit addressing space for read ROM data. DMA0 is the lowest nibble address,DMA2 is the highest nibble address.DMA2.3: It’s a user usable register only, it's useless for address setting.DMA1 19H R/W xxxxDMA1.3 DMA1.2DMA1.1 DMA1.0 DMA2 1AH R/W xxxx DMA2.3 DMA2.2DMA2.1 DMA2.0Reserved 1BH x xxxxx x x x Reserved DMDL 1CH R xxxxDMDL.3 DMDL.2DMDL.1DMDL.0DMDL is used to read low nibble data from ROM that addressed by DMA0 ~ DMA2.DMDM 1DH R/W xxxx DMDM.3 DMDM.2DMDM.1DMDM.0(1) DMDM is used to read middle nibbledata from ROM that addressed by DMA0 ~ DMA2.(2) Write this register with data 05h willclear watch dog timer (WDT)(3) Write this register with data 0Ah willclear RTC counter.DMDH 1EH Rxxxx DMDH.3 DMDH.2DMDH.1DMDH.0DMDH is used to read high nibble datafrom ROM that addressed by DMA0 ~ DMA2.SCALER2 1FH R/W 0000TM2ALD T2DIV2T2DIV1T2DIV0T2DIV2~0: The pre-scaler of Timer 2 ( F MCK = MCU operating clock ) T2DIV2T2DIV1 T2DIV0 TM2CK 0 0 0 F MCK /256 0 0 1 F MCK /128 0 1 0 F MCK /64 0 1 1 F MCK /32 1 0 0 F MCK /16 1 0 1 F MCK /8 1 1 0 F MCK /4 11 1 F MCK /2TM2ALD: Timer 2 auto load control0 : Timer 2 auto load function turned off 1 : Timer 2 auto load function turned onUSERSRAM256 nibbles20H~ 3FHR/W XXXXSRAM.3 SRAM.2SRAM.1SRAM.0User SRAM, MAH = 0~7H, use MAH to change SRAM page. 5.5 Extended I/OTR4P153BT/BF is provided one special instruction “LD EXIO (n), A”, where n = 00H ~ 0FH” to obtain the16 extra I/O registers. These registers are used for the I/O port pull up or down resistors control and can be accessed by two “LD” data transfer instruction only.For example, to enable the pull up resistor of port A, the program should be as below: LD A, #FH LD EXIO (00H), ARTCEN OPTION TM1ENTM2EN Wake up ( JMP $04H )U: unchanged X: unknown value R/W: readable & writeable R: readable only W: writeable only Symbol Addr R/W Reset D3 D2D1D0DescriptionPAPU 00H W 0000 PAPU.3 PAPU.2PAPU.1PAPU.0PA2~PA0 pull up 100K ohm resistorPA3 pull up 60K ohm resistor0: Port A pull up resistor disabled1: Port A pull up resistor enabledPAPL 01H W 0000 PAPL.3 PAPL.2PAPL.1PAPL.0Port A pull down 100K ohm resistor0: Port A pull down resistor disabled1: Port A pull down resistor enabledPBPU 02H W 0000 PBPU.3 PBPU.2PBPU.1PBPU.0Port B pull up 100K ohm resistor0: Port B pull up resistor disabled1: Port B pull up resistor enabledPBPL 03H W 0000 PBPL.3 PBPL.2PBPL.1PBPL.0Port B pull down 100K ohm resistor0: Port B pull down resistor disabled1: Port B pull down resistor enabledPDPU 04H W 0000 PDPU.3 PDPU.2PDPU.1PDPU.0Port D pull up 100K ohm resistor0: Port D pull up resistor disabled1: Port D pull up resistor enabledPDPL 05H W 0000 PDPL.3 PDPL.2PDPL.1PDPL.0Port D pull down 100K ohm resistor0: Port D pull down resistor disabled1: Port D pull down resistor enabledPAWK 06H W 0000 PAWK.3 PAWK.2PAWK.1PAWK.0Port A wake up enable control0: Port A wake up disabled1: Port A wake up enabledPBWK 07H W 0000 PBWK.3 PBWK.2PBWK.1PBWK.0Port B wake up enable control0: Port B wake up disabled1: Port B wake up enabledPDWK 08H W 0000 PDWK.3 PDWK.2PDWK.1PDWK.0Port D wake up enable control0: Port D wake up disabled1: Port D wake up enabledReserved 09H~0FHReserved5.6 Interrupt ProcessingInterrupt vector address definitionEvent Vector AddressRESET 00HSystem reserved 02HWAKE UP 04HSystem reserved 06HTimer1(PWM)/Timer2/RTC 08HWhen any interrupt requestflag ( RTCFG, TM1IFG,TM2IFG ) is set to “1”.Interrupt would happen or not.It depends on the interruptmask (TM1MSK, TM2MSK)and global interrupt enable(ENINT) setting. If interruptmask set to “1” and globalinterrupt enable set to “1”,Interrupt will be accepted onthe next clock after theseinterrupt request flag set to“1”. The following fourprocedures are done in one clock cycle by hardware as shown below:ALL RIGHTS STRICTLY RESERVED, ANY PORTION IN THIS PAPER SHALL NOT BE REPRODUCED, COPIED WITHOUT PERMISSION.1. Program Counter, MAH, PCDH and C/Z will be stored in special hardware registers.2. Program counter will be changed to the corresponding interrupt vector address.3. The global interrupt enable register ENINT is automatically stored in special hardware register byhardware.4. ENINT is cleared to “0”, so interrupt control circuit will be disabled by hardware to avoid unwantedinterrupt in interrupt handling routine.When interrupt service routine was finished, an RETI instruction will perform the procedures by hardware as shown below:1. Restore the Program Counter, MAH, PCDH and C/Z, which were stored when interrupt happened.2. The global interrupt enable register ENINT is restore from special register which is stored beforeinterrupt by hardware automatically. This will allow subsequent Interrupt to happen.The corresponding interrupt request flag must be cleared to “0” by software, before executing RETI instruction. Otherwise, the interrupt procedure will be executed again.In normal case, if the interrupt accepted by this chip and program jumps into interrupt service routing,the register ENINT must be “1”. It will not accept the interrupt when register ENINT is equal to “0”.But when clearing ENINT instruction (disable interrupt) is executed, and interrupt happened at next cycle, then the interrupt may still be accepted. This will sometimes causes fault. To avoid this, one "NOP" instruction right after "ENINT clear" is needed.Notice: Be very careful on the next instruction right after interrupt disabled ( ENINT = 0 ) or timer interrupt mask(TM1MSK=0 or TM2MSK=0). If this instruction contains global variable that is used in both main program and interrupt routine, then it may not work properly (as described above). To ensure the correct operation, one “NOP” instruction right after clearing register ENINT orTM1MSK,TM2MSK (set to zero) is needed.Example: (1) before modified…….CLR #1, (SYS0) ; clear ENINT to zero ( or TM1MSK=0 or TM2MSK=0 )SET #1,(XXX) ; XXX is global variable, interrupt may be accepted at this line and jump to; interrupt service routing after this instruction (SET #1(xx) ) executed; successfully. This will be incorrect.(2) after modified…….CLR #1, (SYS0) ; clear ENINT to zero ( or TM1MSK=0 or TM2MSK=0 )NOP ; inserted one “NOP” instruction, and ensure next instruction; SET #1,(XX) is executed after interrupt disabled ( ENINT=0 )SET #1,(XXX) ; XXX is global variable.5.7 Operation modeTR4P153BT/BF is provided 3 different modes for low power consumption management by switching around NORMAL mode, GREEN mode and HALT mode.Commom I/O control registerSymbol Addr R/W Reset D3 D2 D1 D0 DescriptionMDCTL 10H W 1100 MD1 MD0 X X MCU operation mode control register. Notice: After reset MD1, MD0 = 11, it’s meaningless. Don’t write MD1,MD0=11 to this register. There are three operation modes which are defined at the following table. It can be changed from NORMAL mode to HALT mode or GREEN mode for power saving by setting MD [1:0] of register MDCTL.ALL RIGHTS STRICTLY RESERVED, ANY PORTION IN THIS PAPER SHALL NOT BE REPRODUCED, COPIED WITHOUT PERMISSION.。

相关文档
最新文档