中考实数专项训练题及答案,关于实数的经典例题及答案解析
专题01实数(共43题)【解析版】
专题01实数(共43题)一、单选题1.(2022年云南省中考数学真题)中国是最早采用正负数表示相反意义的量,并进行负数运算的国家.若零上10℃记作+10℃,则零下10℃可记作()A.10℃B.0℃C.-10 ℃D.-20℃【答案】C【解析】【分析】零上温度记为正,则零下温度就记为负,则可得出结论.【详解】解:若零上10°C记作+10°C,则零下10°C可记作:―10°C.故选:C.【点睛】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.2.(2022年四川省凉山州中考数学真题)―2022的相反数是()A.2022B.―2022C.―12022D.12022【答案】A【解析】【分析】根据相反数的意义即只有符号不同的两个数互为相反数,即可解答.【详解】解:﹣2022的相反数是2022,故选:A.【点睛】本题考查了相反数,熟练掌握相反数的意义是解题的关键.3.(2022年浙江省舟山市中考数学真题)若收入3元记为+3,则支出2元记为()A.1B.-1C.2D.-2【答案】D【解析】【分析】根据正负数的意义可得收入为正,收入多少就记多少即可.【详解】解:∵收入3元记为+3,∴支出2元记为-2.故选:D【点睛】本题考查正、负数的意义;在用正负数表示向指定方向变化的量时,通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变化的量规定为负数.4.(2022年安徽省中考数学真题)下列为负数的是()A.|―2|B.3C.0D.―5【答案】D【解析】【分析】根据正负数的意义分析即可;【详解】解:A、|―2|=2B、3是正数,故该选项不符合题意;C、0不是负数,故该选项不符合题意;D、-5<0是负数,故该选项符合题意.故选D.【点睛】本题考查正负数的概念和意义,熟练掌握绝对值、算术平方根和正负数的意义是解决本题的关键.5.(2022年四川省南充市中考数学试卷)下列计算结果为5的是()A.―(+5)B.+(―5)C.―(―5)D.―|―5|【答案】C【解析】【分析】根据去括号法则及绝对值化简依次计算判断即可.【详解】解:A、-(+5)=-5,不符合题意;B、+(-5)=-5,不符合题意;C、-(-5)=5,符合题意;D、―|―5|=―5,不符合题意;故选:C.【点睛】题目主要考查去括号法则及化简绝对值,熟练掌握去括号法则是解题关键.6.(2022年甘肃省中考第三次数学模拟测试题)2的相反数是()A.―12B.12C.2D.―2【答案】D【解析】【分析】直接根据相反数的定义解答即可.【详解】解:2的相反数是﹣2.故选:D【点睛】此题考查的是相反数,熟练掌握相反数的定义是解题的关键.7.(2022年云南省中考数学真题)赤道长约为40 000 000m,用科学记数法可以把数字40 000 000表示为()A.4×107B.40×106C.400×105D.4000×103【答案】A【解析】【分析】根据科学记数法“把一个大于10的数表示成a×10n的形式(其中a是整数数位只有一位的数,即a大于或等于1且小于10,n是正整数)”进行解答即可得.【详解】故选:A.【点睛】本题考查了科学记数法,解题的关键是掌握科学记数法表示形式中a与n的确定.8.(2022年浙江省舟山市中考数学真题)根据有关部门测算,2022年春节假期7天,全国国内旅游出游251000000人次.数据251000000用科学记数法表示为()A.2.51×108B.2.51×107C.25.1×107D.0.251×109【答案】A【解析】【分析】绝对值大于1的数可以用科学记数法表示,一般形式为a×10n,n为正整数,且比原数的整数位数少1,据此可以解答.【详解】解:251000000=2.51×108.故选:A【点睛】本题考查用科学记数法表示较大的数,熟练掌握科学记数法表示较大的数一般形式为a×10n,其中1≤|a|<10,n是正整数,正确确定a n的值是解题的关键.9.(2022年江苏省连云港市中考数学真题)2021年12月9日,“天宫课堂”正式开课,我国航天员在中国空间站首次进行太空授课,本次授课结束时,网络在线观看人数累计超过14600000人次.把“14600000”用科学记数法表示为()A.0.146×108B.1.46×107C.14.6×106D.146×105【答案】B【解析】【分析】科学记数法的表现形式为a×10n的形式,其中1≤|a|<10,n为整数,确定n的值时,要看把原数变成a 时,小数点移动了多少位,n的绝对值与小数点移动的位数相同,当原数绝对值大于等于10时,n是正数,当原数绝对值小于1时n是负数;由此进行求解即可得到答案.【详解】故选:B.【点睛】本题主要考查了科学记数法,解题的关键在于能够熟练掌握科学记数法的具体要求.10.(2022年四川省达州市中考数学真题)2022年5月19日,达州金垭机场正式通航.金亚机场位于达州高新区,占地总面积2940亩,概算投资约为26.62亿元.数据26.62亿元用科学记数法表示为()A.2.662×108元B.0.2662×109元C.2.662×109元D.26.62×1010元【答案】C【解析】【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数.【详解】解:26.62亿=2662000000=2.662×109.故选C.【点睛】本题考查了科学记数法,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原来的数,变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n<1时,n是负数,确定a与n的值是解题的关键.11.(2022年浙江省金华市中考数学真题)体现我国先进核电技术的“华龙一号”,年发电能力相当于减少二氧化碳排放16320000吨,数16320000用科学记数法表示为()A.1632×104B.1.632×107C.1.632×106D.16.32×105【答案】B【解析】【分析】在用科学记数法表示的大于10的数时,a×10n的形式中a的取值范围必须是1≤|a|<10,10的指数比原来的整数位数少1.【详解】解:数16320000用科学记数法表示为1.632×107.故选:B.本题考查科学记数法,对于一个写成用科学记数法写出的数,则看数的最末一位在原数中所在数位,其中a 是整数数位只有一位的数,10的指数比原来的整数位数少1.12.(2022年安徽省中考数学真题)据统计,2021年我省出版期刊杂志总印数3400万册,其中3400万用科学记数法表示为()A.3.4×108B.0.34×108C.3.4×107D.34×106【答案】C【解析】【分析】将3400万写成34000000,保留1位整数,写成a×10n(1≤a<10)的形式即可,n为正整数.【详解】解:3400万=34000000,保留1位整数为3.4,小数点向左移动7位,因此34000000=3.4×107,故选:C.【点睛】本题考查科学记数法的表示方法,熟练掌握a×10n(1≤|a|<10)中a的取值范围和n的取值方法是解题的关键.13.(2022我州今年报名参加初中学业水平暨高中阶段学校招生考试的总人数为80917人,将这个数用科学记数法表示为()A.8.0917×106B.8.0917×105C.8.0917×104D.8.0917×103【答案】C【解析】【分析】根据科学记数法的定义即可得.【详解】解:科学记数法:将一个数表示成a×10n的形式,其中1≤|a|<10,n为整数,这种记数的方法叫做科学记数法,则80917=8.0917×104,故选:C.本题考查了科学记数法,熟记科学记数法的定义(将一个数表示成a×10n的形式,其中1≤|a|<10,n为整数,这种记数的方法叫做科学记数法)是解题关键.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.14.(2022年四川省成都市中考数学真题)2022年5月17日,工业和信息化部负责人在“2022世界电信和信息社会日”大会上宣布,我国目前已建成5G基站近160万个,成为全球首个基于独立组网模式规模建设5G网络的国家.将数据160万用科学记数法表示为()A.1.6×102B.1.6×105C.1.6×106D.1.6×107【答案】C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是非负数;当原数的绝对值<1时,n是负数.【详解】解答:解:160万=1600000=1.6×106,故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.15.(2022年四川省泸州市中考数学真题)2022年5月,四川省发展和改革委员会下达了保障性安居工程2022年第一批中央预算内投资计划,泸州市获得75500000元中央预算内资金支持,将75500000用科学记数法表示为()A.7.55×106B.75.5×106C.7.55×107D.75.5×107【答案】C【解析】【分析】科学记数法表示较大的数形式为a×10n的形式,其中1≤|a|<10,n为整数,10的指数n比原来的整数位数【详解】75500000=7.55×107故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.16.(2022年山东省滨州市中考数学真题)某市冬季中的一天,中午12时的气温是―3℃,经过6小时气温下降了7℃,那么当天18时的气温是()A.10℃B.―10℃C.4℃D.―4℃【答案】B【解析】【分析】根据有理数减法计算―3―7=―10℃即可.【详解】解: ∵中午12时的气温是―3℃,经过6小时气温下降了7℃,∴当天18时的气温是―3―7=―10℃.故选B.【点睛】本题考查有理数的减法,掌握有理数的减法法则是解题关键.17.(2022年四川省遂宁市中考数学真题)2022年4月16日,神舟十三号飞船脱离天宫空间站后成功返回地面,总共飞行里程约198000公里.数据198000用科学计数法表示为()A.198×103B.1.98×104C.1.98×105D.1.98×106【答案】C【解析】【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数.【详解】解:198000=1.98×105.故选:C.【点睛】本题考查了科学记数法,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原来的数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数,确定a与n的值是解题的关键.18.(2022年浙江省衢州市柯城区九年级第二次模拟考试数学试题)-3的倒数是()A.3B.-3C.13D.―13【答案】D【解析】【分析】根据倒数的定义,即可计算出结果.【详解】解:-3的倒数是―13;故选:D【点睛】本题考查了倒数的定义:乘积是1的两数互为倒数.19.(2022年四川省自贡市中考数学试题)自贡市江姐故里红色教育基地自去年底开放以来,截止今年5月,共接待游客180000余人;人数180000用科学记数法表示为()A.1.8×104B.18×104C.1.8×105D.1.8×106【答案】C【解析】【分析】用移动小数点的方法确定a值,根据整数位数减一原则确定n值,最后写成a×10n的形式即可.【详解】∵180000=1.8×105,故选C.【点睛】本题考查了科学记数法表示大数,熟练掌握把小数点在左边第一个非零数字的后面确定a,运用整数位数减去1确定n值是解题的关键.20.(2022年四川省自贡市中考数学试题)下列运算正确的是()A.(―1)2=―2B=1C.a6÷a3=a2D.=0【答案】B【解析】【分析】根据乘方运算,平方差公式,同底数幂的除法法则,零指数幂的运算法则进行运算即可.【详解】A.(―1)2=1,故A错误;―=―=1,故B正确;C.a6÷a3=a3,故C错误;D.―=1,故D错误.故选:B.【点睛】本题主要考查了整式的运算和实数的运算,熟练掌握平方差公式,同底数幂的除法法则,零指数幂的运算法则,是解题的关键.21.(2022年山东省淄博市高青县中考二模数学试题)―2的倒数是()A.2B.12C.―2D.―12【答案】D【解析】【分析】根据倒数的定义求解即可.【详解】解:-2的倒数是―12,故D正确.故选:D.【点睛】本题主要考查了倒数的定义,熟练掌握乘积为1的两个数互为倒数,是解题的关键.22.(2022年四川省达州市中考数学真题)下列四个数中,最小的数是()A.0B.-2C.1D.2【答案】B【解析】【分析】根据实数的大小比较即可求解.【详解】解:∵―2<0<1<2,∴最小的数是―2,故选B.【点睛】本题考查了实数的大小比较,掌握实数的大小比较是解题的关键.23.(2022年浙江省舟山市中考数学真题)估计6的值在()A.4和5之间B.3和4之间C.2和3之间D.1和2之间【答案】C【解析】【分析】根据无理数的估算方法估算即可.【详解】∵4<6<9∴2<6<3故选:C.【点睛】本题主要考查了无理数的估算能力,要求掌握无理数的基本估算技能,灵活应用.“夹逼法”是估算的一般方法,也是常用方法.24.(2022年浙江省金华市中考数学真题)在―2,1,3,2中,是无理数的是()2A.―2B.1C.3D.22【答案】C【解析】【分析】根据无理数的定义判断即可;【详解】,2是有理数,3是无理数,解:∵-2,12故选:C.【点睛】本题考查了无理数的定义:无限不循环小数叫做无理数,如开方开不尽的数的方根、π.25.(2022年四川省凉山州中考数学真题)化简:(―2)2=()A.±2B.-2C.4D.2【答案】D【解析】【分析】先计算(-2)2=4,再求算术平方根即可.【详解】解:(―2)2=4=2,故选:D.【点睛】本题考查算术平方根,熟练掌握算术平方根的定义是解题的关键.26.(2022年山东省滨州市中考数学真题)下列计算结果,正确的是()A.(a2)3=a5B.8=32C.38=2D.cos30°=12【答案】C【解析】【分析】根据幂的乘方、算术平方根的计算、立方根的化简和特殊角的三角函数值逐一进行计算即可.【详解】解:A、(a2)3=a2×3=a6,该选项错误;B、8=2×2×2=22,该选项错误;C、38=32×2×2=2,该选项正确;D、cos30°=32,该选项错误;故选:C.【点睛】本题考查了幂的乘方、算术平方根的计算、立方根的化简和特殊角的三角函数值,熟练掌握运算法则是解题的关键.27.(2022年四川省泸州市中考数学真题)与2+15最接近的整数是()A.4B.5C.6D.7【答案】C【解析】【分析】估算无理数的大小即可得出答案.【详解】解:∵12.25<15<16,∴3.5<15<4,∴5.5<2+15<6,∴最接近的整数是6,故选:C.【点睛】本题考查了估算无理数的大小,无理数的估算常用夹逼法,用有理数夹逼无理数是解题的关键.28.(2022年四川省泸州市中考数学真题)―4=()A.―2B.―12C.12D.2【答案】A【解析】【分析】根据算术平方根的定义可求.【详解】解:―4=-2,故选A.【点睛】本题考查了算术平方根的定义,要注意正确区分平方根与算术平方根,解题的关键是掌握算术平方根的定义.29.(2022年重庆市中考数学试卷A卷)估计3×(23+5)的值应在()A.10和11之间B.9和10之间C.8和9之间D.7和8之间【答案】B【解析】【分析】先化简3×(23+5)=6+15,利用9<15<16,从而判定即可.【详解】3×(23+5)=6+15,∵9<15<16,∴3<15<4,∴9<6+15<10,故选:B.【点睛】本题考查了二次根式混合运算及无理数的估算,熟练掌握无理数估算方法是解题的关键.30.(2022年重庆市中考数学真题(B卷))估计54―4的值在()A.6到7之间B.5到6之间C.4到5之间D.3到4之间【答案】D【解析】【分析】根据49<54<64,得到7<54<8,进而得到3<54―4<4,即可得到答案.【详解】解:∵49<54<64,∴7<54<8,∴3<54―4<4,即54―4的值在3到4之间,【点睛】此题考查了无理数的估算,正确掌握无理数的估算方法是解题的关键.二、填空题31.(2022年重庆市中考数学试卷A卷)计算:|―4|+(3―π)0=_________.【答案】5【解析】【分析】根据绝对值和零指数幂进行计算即可.【详解】解:|―4|+(3―π)0=4+1=5,故答案为:5.【点睛】本题考查了绝对值和零指数幂的计算,熟练掌握定义是解题的关键.32.(2022年四川省南充市中考数学试卷)比较大小:2―2_______________30.(选填>,=,<)【答案】<【解析】【分析】先计算2―2=1,30=1,然后比较大小即可.4【详解】解:2―2=1,30=1,4<1,∵14∴2―2<30,故答案为:<.【点睛】本题主要考查有理数的大小比较,负整数指数幂的运算,零次幂的运算,熟练掌握运算法则是解题关键.33.(2022年重庆市中考数学真题(B卷))|―2|+(3―5)0=_________.【答案】3【分析】先计算绝对值和零指数幂,再进行计算即可求解.【详解】解:|―2|+(3―5)0=2+1=3故答案为:3.【点睛】本题考查了实数的运算,解答此题的关键是要掌握负数的绝对值等于它的相反数,任何不为0的数的0次幂都等于1.34.(2022年四川省凉山州中考数学真题)计算:-12+|-2023|=_______.【答案】2022【解析】【分析】先计算有理数的乘方、化简绝对值,再计算加法即可得.【详解】解:原式=―1+2023=2022,故答案为:2022.【点睛】本题考查了含乘方的有理数混合运算,熟练掌握有理数的运算法则是解题关键.三、解答题35.(2022+2―1+2cos45°―|―12|.【答案】2【解析】【分析】根据零指数幂、负整数指数幂、特殊角三角函数、绝对值的性质化简即可.【详解】原式=1+12+2×22―12=2.【点睛】本题考查了实数的运算,熟练掌握运算法则是解题的关键.36.(2022年浙江省丽水市中考数学真题)计算:9―(―2022)0+2―1.【答案】52【解析】【分析】根据求一个数的算术平方根、零指数和负整数指数幂的运算法则进行运算,即可求得.【详解】解:9―(―2022)0+2―1=3―1+12=5.2【点睛】本题考查了求一个数的算术平方根、零指数和负整数指数幂的运算法则,熟练掌握和运用各运算法则是解决本题的关键.37.(2022年江苏省连云港市中考数学真题)计算:(―10)×―16+20220.【答案】2【解析】【分析】根据有理数的乘法,二次根式的性质,零指数的计算法则求解即可.【详解】解:原式=5―4+1=2.【点睛】本题主要考查了有理数的乘法,二次根式的性质,零指数,熟知相关计算法则是解题的关键.38.(2022年四川省达州市中考数学真题)计算:(―1)2022+|―2|――2tan45°.【答案】0【解析】【分析】先计算乘方和去绝对值符号,并把特殊角三角函数值代入,再计算乘法,最后计算加减即可求解.【详解】解:原式=1+2-1-2×1=1+2-1-2=0.【点睛】本题考查实数的混合运算,熟练掌握零指数幂的运算、熟记特殊角的三角函数值是解题的关键.39.(2022年浙江省金华市中考数学真题)计算:(―2022)0―2tan45°+|―2|+9.【答案】4【解析】【分析】根据零指数幂,正切三角函数值,绝对值的化简,算术平方根的定义计算求值即可;【详解】解:原式=1―2×1+2+3=1―2+2+3=4;【点睛】本题考查了实数的混合运算,掌握特殊角的三角函数值是解题关键.40.(2022―16+(―2)2.【答案】1【解析】【分析】原式运用零指数幂,二次根式的化简,乘方的意义分别计算即可得到结果.【详解】―16+(―2)2=1―4+4=1故答案为:1【点睛】本题主要考查了实数的运算,熟练掌握零指数幂,二次根式的化简和乘方的意义是解本题的关键.41.(20221―9+3tan30°+|3―2|.(2)解不等式组:3(x+2)≥2x+5 ①x2―1<x―23 ②.【答案】(1)1;(2)―1≤x<2【解析】【分析】(1)本题涉及负整数指数幂、特殊角的三角函数值、绝对值、二次根式化简4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.(2)分别解出两个不等式的解集再求其公共解.【详解】解:(11―9+3tan30°+|3―2|=2―3+3×33+2―3 =―1+3+2―3=1.(2)3(x+2)≥2x+5 ①x2―1<x―23 ②不等式①的解集是x≥-1;不等式②的解集是x<2;所以原不等式组的解集是-1≤x<2.【点睛】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型,解决此类题目的关键是熟练掌握负整数指数幂、特殊角的三角函数值、绝对值、二次根式等考点的运算.求不等式组的解集应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.42.(2022年四川省德阳市中考数学真题)计算:12+(3.14―π)0―3tan60°+|1―3|+(―2)―2.【答案】14【解析】【分析】根据二次根式的化简,零指数幂的定义,特殊角的三角函数值,绝对值的性质以及负整数指数幂的运算法则分别化简后再进行实数的加减法运算.【详解】解:12+(3.14―π)0―3tan60°+|1―3|+(―2)―2=23+1―33+3―1+1 4=14.【点睛】此题考查实数的运算法则,正确掌握二次根式的化简,零指数幂的定义,特殊角的三角函数值,绝对值的性质以及负整数指数幂的运算法则是解题的关键.43.(2022年重庆市中考数学真题(B卷))对于一个各数位上的数字均不为0的三位自然数N,若N能被它的各数位上的数字之和m整除,则称N是m的“和倍数”.例如:∵247÷(2+4+7)=247÷13=19,∴247是13的“和倍数”.又如:∵214÷(2+1+4)=214=30⋯⋯4,∴214不是“和倍数”.(1)判断357,441是否是“和倍数”?说明理由;(2)三位数A是12的“和倍数”,a,b,c分别是数A其中一个数位上的数字,且a>b>c.在a,b,c中任选两个组成两位数,其中最大的两位数记为F(A),最小的两位数记为G(A),若F(A)+G(A)16为整数,求出满足条件的所有数A.【答案】(1)357不是15“和倍数”,441是9的“和倍数”;理由见解析(2)数A可能为732或372或516或156【解析】【分析】(1)根据题目中给出的“和倍数”定义进行判断即可;(2)先根据三位数A是12的“和倍数”得出a+b+c=12,根据a>b>c,F(A)是最大的两位数,G(A)是=k(k为整数),结合a+b+c=12得出b 最小的两位数,得出F(A)+G(A)=10a+2b+10c,F(A)+G(A)16=15―2k,根据已知条件得出1<b<6,从而得出b=3或b=5,然后进行分类讨论即可得出答案.(1)解:∵357÷(3+5+7)=357÷15=23⋅⋅⋅⋅⋅⋅12,∴357不是15“和倍数”;∵441÷(4+4+1)=441÷9=49,∴441是9的“和倍数”.(2)∵三位数A是12的“和倍数”,∴a+b+c=12,∵a>b>c,∴在a,b,c中任选两个组成两位数,其中最大的两位数F(A)=10a+b,最小的两位数G(A)=10c+b,∴F(A)+G(A)=10a+b+10c+b=10a+2b+10c,∵F(A)+G(A)为整数,16=k(k为整数),设F(A)+G(A)16=k,则10a+2b+10c16整理得:5a+5c+b=8k,根据a+b+c=12得:a+c=12―b,∵a>b>c,∴12―b>b,解得b<6,∵“和倍数”是各数位上的数字均不为0的三位自然数,∴a>b>c>0,∴b>1,∴1<b<6,把a+c=12―b代入5a+5c+b=8k得:5(12―b)+b=8k,整理得:b=15―2k,∵1<b<6,k为整数,∴b=3或b=5,当b=3时,a+c=12―3=9,∵a>b>c>0,∴a>3,0<c<3,∴a=7,b=3,c=2,或a=8,b=3,c=1,要使三位数A是12的“和倍数”,数A必须是一个偶数,当a=7,b=3,c=2时,组成的三位数为732或372,∵732÷12=61,∴732是12的“和倍数”,∵372÷12=31,∴372是12的“和倍数”;当a=8,b=3,c=1时,组成的三位数为318或138,∵318÷12=26⋅⋅⋅⋅⋅⋅6,∴318不是12的“和倍数”,∵138÷12=11⋅⋅⋅⋅⋅⋅6,∴138不是12的“和倍数”;当b=5时,a+c=12―5=7,∵a>b>c>0,∴5<a<7,∴a=6,b=5,c=1,组成的三位数为516或156,∵516÷12=43,∴516是12的“和倍数”,∵156÷12=13,∴156是12的“和倍数”;综上分析可知,数A可能为732或372或516或156.【点睛】本题主要考查了新定义类问题,数的整除性,列代数式,利用数位上的数字特征和数据的整除性,是解题的关键,分类讨论是解答本题的重要方法,本题有一定的难度.。
中考数学复习《实数》专项测试卷(带答案)
中考数学复习《实数》专项测试卷(带答案)学校:___________班级:___________姓名:___________考号:___________一、单选题 1.与2(9)-结果相同的是( )A.3±B.|3|C.23D.方程281x =的解2.下列说法正确的是( )A.81-平方根是-B.81的平方根是9C.平方根等于它本身的数是1和0D.21a +一定是正数3.一个正方体的棱长为a ,体积为b ,则下列说法正确的是( )A.b 的立方根是a ±B.a 是b 的立方根C.a b =D.b a =4.下列关于5说法错误的是( ) A.5是无理数 B.数轴上可以找到表示5的点C.5相反数是5-D.53>5.估计11832的运算结果介于( )A.2与3之间B.3与4之间C.4与5之间D.5与6之间6.若实数a ,b 满足13a b +=( )A.a ,b 都是有理数B.a b -的结果必定为无理数C.a ,b 都是无理数D.a b -的结果可能为有理数7.如图,在ABC △中90ACB ∠=︒,AC=3,BC=1,AC 在数轴上,点A 所表示的数为1,以点A 为圆心,AB 长为半径画弧,在点A 左侧交数轴于点D ,则点D 表示的数是( )10 B.10- C.110-1018.若1014M -=,12N =则M ,N 的大小关系是( )A.M N <B.M N =C.M N >D.无法比较9.已知实数tan30sin 45cos60a b c =︒=︒=︒,,,则下列说法正确的是( )A.b a c >>B.a b c >>C.b c a >>D.a c b >>10.定义运算:若,则,例如328=,则2log 83=.运用以上定义,计算:53log 125log 81-=( )A.1-B.2C.1D.411.在下列计算中,正确的是( )A.()56+-=-B.122=C.()26⨯-=D.3sin 30︒= 12.式子52的倒数是( ) A.52 B.52- C.25+ D.52213.对于实数a 、b ,定义22()*2()a b ab a b a b ab a b a b +-≥⎧=⎨--<⎩,则结论正确的有( )①5*31=;②22272(1)*(21)451(1)m m m m m m m m ⎧-+-<-=⎨-+≥⎩; ③若1x ,2x 是方程2560x x --=的两个根,则12*16x x =或17-;④若1x ,2x 是方程210x mx m +--=的两个根12*4x x =,则m 的值为3-或.A.1个B.2个C.3个D.4个二、填空题14.在实数: 中无理数有______个.15a 是一个无理数,且13a <<,请写出一个满足条件的a 值_____.16.011|3|(3π)()tan 45162--+-+-+︒+=______. 17.若m 为7的整数部分,n 为7的小数部分,则)7m n =______. 18.实数a ,b ,c 在数轴上的点如图所示,化简222()()a a b b c +-=____________.三、解答题19.计算m a b =log (0)a b m a =>6-(1)11233- (2)12632322⨯- (3)2245tan 30cos60︒+⋅︒︒20.计算:)102cos6031(16)27--︒-+-. 21.设5a 是一个两位数,其中a 是十位上的数字(9a ≤≤).例如,当a =时5a 表示的两位数是45.尝试:①当1a =时2152251210025=⨯⨯+=;①当2a =时2256252310025==⨯⨯+;①当3a =时2351225==______;…… 归纳:()25a 与()100125a a ++有怎样的大小关系? 验证:请论证“归纳”中的结论正确.22.若正整数a 是4的倍数,则称a 为“四倍数”,例如:8是4的倍数,所以8是“四倍数”.(1)已知p 是任意三个连续偶数的平方和,设中间的数为2n (n 为整数),判断p 是不是“四倍数”,并说明理由;(2)已知正整数k 是一个两位数,且10k x y =+(19x y ≤<≤,其中x ,y 为整数),将其个位上的数字与十位上的数字交换,得到新数m .若m 与k 的差是“四倍数”,求出所有符合条件的正整数k . 参考答案1.答案:C 解析:2(9)819-==33=239=方程281x =的解为9x =±. 故选C.2.答案:D解析:A 、81-是负数,负数没有平方根,不符合题意;B 、819= 9的平方根是3±,不符合题意;C 、平方根等于它本身的数是0,1的平方根是1±,不符合题意;D 、21>0a + 正数的算术平方根大于0,符合题意.故选:D.3.答案:B 解析:一个正方体的棱长为a ,体积为b∴3b a =,即:3a b =∴a 是b 的立方根故选:B.4.答案:D 解析:①5 2.2365857......≈属于无限不循环小数 ①5是无理数,故A 选项正确;①数轴上可以表示任意实数 ①数轴上可以找到表示5的点,故B 选项正确;①5相反数是5,故C 选项正确; ①5 2.2365857......≈①53<,故D 选项错误,符合题意故选:D.5.答案:C 解析:1183232223=+33=+; 132<<4335∴<<;故选:C.6.答案:D解析:A 、当2a =时13213b ==--a 是有理数,b 是无理数,故A 错误;B 、当1322a b ==-,那么0a b -=,所以B 错误; C 、当2a =时13b =-,a 是有理数,故选项C 错误;D 、当1322a b ==-,那么0a b -=,所以选项正确,D 正确. 故选:D.7.答案:C 解析:在Rt ABC △中3AC =,BC=1 22223110AB AC BC ∴=++=∴点D 表示的数为:110故选:C.8.答案:C 解析:1014M -=12= 1011103424M N ∴-=-=103> 0M N ∴->M N ∴>.故选C.9.答案:A 解析:321tan 30sin 45cos 602a b c =︒==︒==︒= 132232<< ∴b a c >> 故选:A.10.答案:A解析:35125= 4381=5log 1253∴= 3log 814=53log 125log 81∴-34=-1=-.故选:A.11.答案:A解析:A 、5(6)561+-=-=-正确,符合题意; B 、1222=原计算错误,不符合题意; C 、3(2)6⨯-=-原计算错误,不符合题意;D 、1sin 302=︒原计算错误,不符合题意. 故选: A.12.答案:A 解析:()()1521 52525252⨯==--+式子5的倒数是52式子5的倒数是52,故选:A.13.答案:C 解析:①5*32523531=⨯+⨯-⨯=,故①正确;②当21m m ≥-时即1m ≤时()()()22*212221212422272m m m m m m m m m m m m -=+---=+--+=-+-当21m m <-时即1m >时 ()()()22*21221214221451m m m m m m m m m m m m -=----=---+=-+()()222721*21451(1)m m m m m m m m ⎧-+-≤∴-=⎨-+>⎩,故②错误; ③1x ,2x 是方程2560x x --=的两个根 125x x ∴+= 126x x =-当12x x ≥时()()121212*225616x x x x x x =+-=⨯--= 当12x x <时()()121212*226517x x x x x x =-+=⨯--=-,故③正确;④1x ,2x 是方程210x mx m +--=的两个根12x x m ∴+=- 121x x m =--当12x x ≥时()()121212*22114x x x x x x m m m =+-=----=-+= 解得:3m =-当12x x <时()()121212*221()24x x x x x x m m m =-+=⨯----=--=解得:6m =-综上可知:①③④正确 故选:C.14.答案:4 解析:3644= 其中8 ⋯ π -2是无理数,共4个 故答案为:4.15.答案:2解析:2123<< 2a ∴=.故答案:2(答案不唯一).16.答案:7 解析:0113(3π)()tan 45162-+-+-+︒+31(2)14=++-++7=.17.答案:3 解析:479<<273∴<2m ∴= 72n = )7(72)(72)743m n ==-=∴故答案为3.18.答案:0解析:由数轴可知0b c a <<<则0a b +< 0b c -<222()||()a a b c b c +---()()a a b c b c =-+++-a abc b c =--++-0=.故答案为:0.19.答案:(1)1(2)5 (3)76解析:(1)(133********===; (2)12632322⨯- 22126322⨯=+632=-+5=;(3)2245tan 30cos60︒+⋅︒︒2312222=+⨯⎝⎭ 21113=+⨯ 76=. 20.答案:532 解析:)102cos6031(16)27--︒-+- 1113133222=-+=53.21.答案:尝试3410025⨯⨯+ 归纳()()25100125a a a =++ 验证:见解析解析:尝试:当3a =时2351225==3410025⨯⨯+; 归纳:()()25100125a a a =++; 验证:等号左边222(5)(105)10010025a a a a =+=++ 等号右边2100(1)2510010025a a a a ++=++ 所以,等号左边=等号右边,等式成立,即证.22.答案:(1)p 是“四倍数”;理由见解析(2)15,19,26,37,48,59解析:(1)p 是“四倍数”,理由如下:①()()()22222222p n n n ++=+-()22128432n n =+=+①p 是“四倍数”;(2)由题意得10m y x =+,则()()10109m k y x x y y x -=+-+=-. ①19x y ≤<≤,其中x ,y 为整数①18y x ≤-≤.若()9y x -.是4的倍数,则4y x -=或8y x -=.当4y x -=时符合条件的k 是15,26,37,48,59; 当8y x -=时符合条件的k 是19.①所有符合条件的正整数k 是15,19,26,37,48,59.。
中考数学模拟题《实数的概念及运算》专项测试卷(附答案)
中考数学模拟题《实数的概念及运算》专项测试卷(附答案)学校:___________班级:___________姓名:___________考号:___________(50题)一 单选题1.(2023·四川德阳·统考中考真题)下列各数中 是无理数的是( ) A .2023-B 2023C .0D .120232.(2023·山东·统考中考真题)实数10 1.53π-,,,中无理数是( ) A .πB .0C .13-D .1.53.(2023·贵州·统考中考真题)5的绝对值是( ) A .5±B .5C .5-D 54.(2023·湖北荆州·统考中考真题)在实数1- 3 123.14中 无理数是( )A .1-B 3C .12D .3.145.(2023·江苏无锡·统考中考真题)实数9的算术平方根是( ) A .3B .3±C .19D .9-6.(2023·湖北恩施·统考中考真题)下列实数:1- 0 2 12- 其中最小的是( )A .1-B .0C 2D .12-7.(2023·江苏徐州·2023 ) A .25与30之间 B .30与35之间C .35与40之间D .40与45之间8.(2023·湖南·统考中考真题)下列各数中 是无理数的是( ) A .17B .πC .1-D .09.(2023·湖南·统考中考真题)2023的倒数是( ) A .2023-B .2023C .12023D .12023-10.(2023·浙江杭州·统考中考真题)22(2)2-+=( )A .0B .2C .4D .811.(2023·湖南常德·统考中考真题)下面算法正确的是( )A .()()5995-+=--B .()710710--=-C .()505-+=-D .()()8484-+-=+ 12.(2023·山西·统考中考真题)计算()()13-⨯-的结果为( ).A .3B .13C .3-D .4-13.(2023·山东临沂·统考中考真题)计算(7)(5)---的结果是( )A .12-B .12C .2-D .214.(2023·湖北鄂州·统考中考真题)10的相反数是( )A .-10B .10C .110-D .11015.(2023·宁夏·统考中考真题)23-的绝对值是( ) A .32-B .32C .23D .23-16.(2023·山东东营·统考中考真题)2-的相反数是( )A .2B .2-C .12D .12-17.(2023·湖南常德·统考中考真题)实数3的相反数是( )A .3B .13C .13-D .3-18.(2023·湖南张家界·统考中考真题)12023的相反数是( ) A .12023B .12023-C .2023D .2023-19.(2023·辽宁·统考中考真题)2的绝对值是( )A .12-B .12C .2-D .220.(2023·江苏苏州·统考中考真题)有理数23的相反数是( )A .23-B .32C .32-D .2321.(2023·湖北·统考中考真题)32-的绝对值是( )A .23-B .32-C .23D .3222.(2023·湖北恩施·统考中考真题)如图 数轴上点A 所表示的数的相反数是( )A .9B .19-C .19D .9-23.(2023·内蒙古通辽·统考中考真题)2023的相反数是( )A .12023B .2023-C .2023D .12023-24.(2023·四川雅安·统考中考真题)在0123- 2四个数中 负数是( ) A .0B .12C .3-D .225.(2023·吉林长春·统考中考真题)实数a b c d 伍数轴上对应点位置如图所示 这四个数中绝对值最小的是( )A .aB .bC .cD .d26.(2023·四川巴中·统考中考真题)下列各数为无理数的是( )A .0.618B .227C 5D 327-27.(2023·内蒙古赤峰·统考中考真题)如图 7的点可能是( )A .点PB .点QC .点RD .点S28.(2023·山东临沂·统考中考真题)在实数, , a b c 中 若0,0a b b c c a +=->->,则下列结论:①|a |>|b| ①0a > ①0b < ①0c < 正确的个数有( )A .1个B .2个C .3个D .4个29.(2023·山东·统考中考真题)面积为9的正方形 其边长等于( )A .9的平方根B .9的算术平方根C .9的立方根D .5的算术平方根30.(2023·湖南永州·统考中考真题)下列各式计算结果正确的是( )A .2325x x x +=B 93=±C .()2222x x =D .1122-=31.(2023·宁夏·23 )A .3.5和4之间B .4和4.5之间C .4.5和5之间D .5和5.5之间32.(2023·湖北宜昌·统考中考真题)下列运算正确的个数是( ).①|2023|2023= ①20231︒= ①1203232120-=2023=. A .4B .3C .2D .133.(2023·内蒙古赤峰·统考中考真题)化简()20--的结果是( )A .120-B .20C .120D .20-34.(2023·黑龙江绥化·统考中考真题)计算052-+的结果是( )A .3-B .7C .4-D .635.(2023·江苏徐州·统考中考真题)如图 数轴上点,,,A B C D 分别对应实数a b c d ,,, 下列各式的值最小的是( )A .aB .bC .cD .d36.(2023·山东·统考中考真题)ABC 的三边长a b c 满足2()|0a b c --=,则ABC 是( )A .等腰三角形B .直角三角形C .锐角三角形D .等腰直角三角形37.(2023·山东·统考中考真题)实数a b c 在数轴上对应点的位置如图所示 下列式子正确的是( )A .()0c b a -<B .()0b c a -<C .()0a b c ->D .()0a c b +>38.(2023·浙江杭州·统考中考真题)已知数轴上的点,A B 分别表示数,a b 其中10a -<< 01b <<.若a b c ⨯= 数c 在数轴上用点C 表示,则点,,A B C 在数轴上的位置可能是( )A .B .C .D .二 填空题39.(2023·湖北武汉·统考中考真题)写出一个小于4的正无理数是 .40.(2023·山东滨州·统考中考真题)一块面积为25m 的正方形桌布 其边长为 .41.(2023·湖北黄冈·统考中考真题)计算 ()02113⎛⎫-+= ⎪⎝⎭.42.(2023·四川巴中·统考中考真题)在210,,π,23⎛⎫--- ⎪⎝⎭四个数中 最小的实数是 . 43.(2023·内蒙古·统考中考真题)若,a b 为两个连续整数 且3a b <,则a b += .44.(2023·湖南·5的点所表示的整数有 .(写出一个即可)45.(2023·山东滨州·统考中考真题)计算23--的结果为 . 46.(2023·湖南永州·统考中考真题)0.5- 3 2-三个数中最小的数为 .47.(2023·湖北荆州·统考中考真题)若21(3)0a b -+-=a b + .48.(2023·湖南·统考中考真题)已知实数a b 满足()2210a b -++=,则b a = .49.(2023·四川内江·统考中考真题)若a b 互为相反数 c 为8的立方根,则22a b c +-= . 50.(2023·山东烟台·统考中考真题)如图 利用课本上的计算器进行计算 其按键顺序及结果如下:①按键的结果为4①按键的结果为8①按键的结果为0.5①按键的结果为25.以上说法正确的序号是 .参考答案一 单选题1.(2023·四川德阳·统考中考真题)下列各数中 是无理数的是( ) A .2023- BC .0D .12023【答案】B【分析】根据无理数的定义判断即可. 【详解】解:0 2023- 12023为有理数 故选:B .【点睛】本题考查了无理数的概念即无限不循环小数为无理数 掌握其概念是解题的关键.初中范围内学习的无理数有:π 2π等 开方开不尽的数 以及像0.1010010001…… 等有这样规律的数. 2.(2023·山东·统考中考真题)实数10 1.53π-,,,中无理数是( ) A .π B .0C .13-D .1.5【答案】A【分析】根据无理数的概念求解.【详解】解:实数1,0,,1.53π-中 π是无理数 而10,,1.53-是有理数故选A .【点睛】本题主要考查无理数 熟练掌握无理数的概念是解题的关键. 3.(2023·贵州·统考中考真题)5的绝对值是( )A .5±B .5C .5-D 【答案】B【分析】正数的绝对值是它本身 由此可解. 【详解】解:5的绝对值是5 故选B .【点睛】本题考查绝对值 解题的关键是掌握正数的绝对值是它本身.4.(2023·湖北荆州·统考中考真题)在实数1-3123.14中无理数是()A.1-B3C.12D.3.14【答案】B【分析】根据无理数的特征即可解答.【详解】解:在实数1-3123.14中3故选:B.【点睛】本题考查了无理数的特征即为无限不循环小数熟知该概念是解题的关键.5.(2023·江苏无锡·统考中考真题)实数9的算术平方根是()A.3B.3±C.19D.9-【答案】A【分析】根据算术平方根的定义即可求出结果.93=故选:A.【点睛】本题考查了平方根和算术平方根的定义.注意一个正数有两个平方根它们互为相反数0的平方根是0 负数没有平方根.6.(2023·湖北恩施·统考中考真题)下列实数:1-0 212-其中最小的是()A.1-B.0C2D.1 2 -【答案】A【分析】根据实数大小比较的法则解答.【详解】解:①11022-<-<<①最小的数是1-故选:A.【点睛】此题考查了实数的大小比较:正数大于零零大于负数两个负数绝对值大的反而小熟练掌握实数的大小比较法则是解题的关键.7.(2023·江苏徐州·2023)A.25与30之间B.30与35之间C.35与40之间D.40与45之间【答案】D【详解】解①①160020232025<<.4045<40与45之间. 故选D .【点睛】本题主要考查了估算无理数的大小 正确估算无理数的取值范围是解题关键. 8.(2023·湖南·统考中考真题)下列各数中 是无理数的是( ) A .17B .πC .1-D .0【答案】B【分析】根据无理数的定义解答即可.【详解】解:A .17是分数 属于有理数 故本选项不符合题意B .π是无限不循环小数是无理数 故本选项符合题意C .1-是整数 属于有理数 故本选项不符合题意D .0是整数 属于有理数 故本选项不符合题意. 故选:B .【点睛】本题考查的是无理数 熟知无限不循环小数叫做无理数是解题的关键. 9.(2023·湖南·统考中考真题)2023的倒数是( ) A .2023- B .2023C .12023D .12023-【答案】C【分析】直接利用倒数的定义 即若两个不为零的数的积为1,则这两个数互为倒数 即可一一判定. 【详解】解:2023的倒数为12023. 故选C .【点睛】此题主要考查了倒数的定义 熟练掌握和运用倒数的求法是解决本题的关键. 10.(2023·浙江杭州·统考中考真题)22(2)2-+=( )A .0B .2C .4D .8【答案】D【分析】先计算乘方 再计算加法即可求解.【详解】解:22(2)2448-+=+= 故选:D .【点睛】本题考查有理数度混合运算 熟练掌握有理数乘方运算法则是解题的关键. 11.(2023·湖南常德·统考中考真题)下面算法正确的是( )A .()()5995-+=--B .()710710--=-C .()505-+=-D .()()8484-+-=+ 【答案】C【分析】根据有理数的加减法则计算即可. 【详解】A ()5995-+=- 故A 不符合题意 B ()710710--=+ 故B 不符合题意 C ()505-+=- 故C 符合题意D ()()()8484-+-=-+ 故D 不符合题意 故选:C .【点睛】本题主要考查有理数的加减法 解答的关键是对相应的运算法则的掌握. 12.(2023·山西·统考中考真题)计算()()13-⨯-的结果为( ).A .3B .13C .3-D .4-【答案】A【分析】根据有理数乘法运算法则计算即可. 【详解】解:()()133-⨯-=. 故选A .【点睛】本题主要考查了有理数乘法 掌握“同号得正 异号得负”的规律是解答本题的关键. 13.(2023·山东临沂·统考中考真题)计算(7)(5)---的结果是( )A .12-B .12C .2-D .2【答案】C【分析】直接利用有理数的减法法则进行计算即可. 【详解】解:2(7)(5)()57=----+=-故选C.【点睛】本题考查有理数的减法熟练掌握减一个负数等于加上它的相反数是解题的关键.14.(2023·湖北鄂州·统考中考真题)10的相反数是()A.-10B.10C.110-D.110【答案】A【分析】根据相反数的定义直接求解.【详解】解:10的相反数是-10.故选:A.【点睛】本题主要考查了相反数的定义熟练掌握相反数的定义是解答本题的关键.15.(2023·宁夏·统考中考真题)23-的绝对值是()A.32-B.32C.23D.23-【答案】C【分析】根据绝对值的性质解答即可.【详解】22 33 -=故选:C.【点睛】本题考查了绝对值掌握绝对值的性质是解答本题的关键.16.(2023·山东东营·统考中考真题)2-的相反数是()A.2B.2-C.12D.12-【答案】A【分析】利用相反数的定义判断即可.【详解】解:2-的相反数是2故选:A.【点睛】此题考查了相反数的定义熟练掌握相反数的定义是解本题的关键.17.(2023·湖南常德·统考中考真题)实数3的相反数是()A.3B.13C.13-D.3-【答案】D【分析】根据相反数的定义进行判断即可.【详解】解:实数3的相反数3-故D正确.故选:D.【点睛】本题考查了相反数的定义熟练掌握知识点只有符号不同的两个数互为相反数是解题关键.18.(2023·湖南张家界·统考中考真题)12023的相反数是()A.12023B.12023-C.2023D.2023-【答案】B【分析】根据相反数的定义求解即可只有符号不同的两个数互为相反数.【详解】解:12023的相反数是12023-.故选:B.【点睛】本题考查了相反数的定义掌握相反数的定义是解题的关键.19.(2023·辽宁·统考中考真题)2的绝对值是()A.12-B.12C.2-D.2【答案】D【分析】根据绝对值的意义即可求解.【详解】解:2的绝对值是是2故选:D.【点睛】本题考查了绝对值的计算掌握正数的绝对值是它本身零的绝对值是零负数的绝对值是它的相反数是解题的关键.20.(2023·江苏苏州·统考中考真题)有理数23的相反数是()A.23-B.32C.32-D.23【答案】A【分析】根据互为相反数的定义进行解答即可.【详解】解:有理数23的相反数是23-故选A【点睛】本题考查的是相反数仅仅只有符号不同的两个数互为相反数熟记定义是解本题的关键.21.(2023·湖北·统考中考真题)32-的绝对值是()A.23-B.32-C.23D.32【答案】D【分析】根据绝对值的性质即可求出答案.【详解】解:33 22 -=.故选:D.【点睛】本题考查了绝对值解题的关键在于熟练掌握绝对值的性质负数的绝对值等于这个负数的相反数.22.(2023·湖北恩施·统考中考真题)如图数轴上点A所表示的数的相反数是()A.9B.19-C.19D.9-【答案】D【分析】先根据数轴得到A表示的数再求其相反数即可.【详解】解:由数轴可知点A表示的数是9 相反数为9-故选:D.【点睛】本题考查数轴和相反数掌握相反数的定义是解题的关键.23.(2023·内蒙古通辽·统考中考真题)2023的相反数是()A.12023B.2023-C.2023D.12023-【答案】B【分析】根据只有符号不同的两个数互为相反数进行解答即可得.【详解】解:2023的相反数是2023-故选:B.【点睛】本题考查了相反数的定义熟练掌握相反数的定义是解题的关键.24.(2023·四川雅安·统考中考真题)在0 122四个数中负数是()A.0B.12C.D.2【答案】C【分析】根据负数的定义① 比0小的数叫做负数即可得出答案.【详解】解:0既不是正数也不是负数12和2是正数故选:C.【点睛】本题考查了正数和负数掌握在正数前面加负号是负数是解题的关键.25.(2023·吉林长春·统考中考真题)实数a b c d 伍数轴上对应点位置如图所示 这四个数中绝对值最小的是( )A .aB .bC .cD .d【答案】B【分析】根据绝对值的意义即可判断出绝对值最小的数.【详解】解:由图可知 3a > 01b << 01c << 23d <<比较四个数的绝对值排除a 和d根据绝对值的意义观察图形可知 c 离原点的距离大于b 离原点的距离 <b c ∴∴这四个数中绝对值最小的是b .故选:B.【点睛】本题考查了绝对值的意义 解题的关键在于熟练掌握绝对值的意义 绝对值是指一个数在数轴上所对应点到原点的距离 离原点越近说明绝对值越小.26.(2023·四川巴中·统考中考真题)下列各数为无理数的是( )A .0.618B .227C 5D 327- 【答案】C【分析】根据无理数是无限不循环小数进行判断即可.【详解】解:由题意知 0.618227 3273-=- 均为有理数5 故选:C .【点睛】本题考查了无理数 立方根.解题的关键在于熟练掌握无理数是无限不循环小数.27.(2023·内蒙古赤峰·统考中考真题)如图 7的点可能是( )A .点PB .点QC .点RD .点S【答案】B看它介于哪两个整数之间 从而得解.【详解】解:①479<<< 即23<①Q故选:B .【点睛】本题考查无理数的大小估算28.(2023·山东临沂·统考中考真题)在实数, , a b c 中 若0,0a b b c c a +=->->,则下列结论:①|a |>|b| ①0a > ①0b < ①0c < 正确的个数有( )A .1个B .2个C .3个D .4个【答案】A【分析】根据相反数的性质即可判断① 根据已知条件得出b c a >> 即可判断①① 根据=-b a 代入已知条件得出0c < 即可判断① 即可求解.【详解】解:①0a b += ①a b = 故①错误①0,0a b b c c a +=->->①b c a >>又0a b +=①0,0a b <> 故①①错误①0a b +=①=-b a①0b c c a ->->①a c c a -->-①c c ->①0c < 故①正确或借助数轴 如图所示故选:A .【点睛】本题考查了不等式的性质 实数的大小比较 借助数轴比较是解题的关键.29.(2023·山东·统考中考真题)面积为9的正方形 其边长等于( )A .9的平方根B .9的算术平方根C .9的立方根D .5的算术平方根 【答案】B【分析】根据算术平方根的定义解答即可.【详解】解:①面积等于边长的平方①面积为9的正方形 其边长等于9的算术平方根.故选B .【点睛】本题考查了算术平方根的意义 一般地 如果一个正数x 的平方等于a 即2x a = 那么这个正数x 叫做a 的算术平方根.30.(2023·湖南永州·统考中考真题)下列各式计算结果正确的是( )A .2325x x x +=B 93=±C .()2222x x =D .1122-= 【答案】D【分析】根据合并同类项的运算法则 二次根式的运算 积的乘方运算法则 以及负整数幂运算法则 逐个进行计算即可.【详解】解:A 325x x x += 故A 不正确 不符合题意B 93= 故B 不正确 不符合题意C ()2224x x = 故C 不正确 不符合题意D 1122-= 故D 正确 符合题意 故选:D .【点睛】本题主要考查了合并同类项的运算法则 二次根式的运算 积的乘方运算法则 以及负整数幂运算法则 解题的关键是熟练掌握相关运算法则并熟练运用.31.(2023·宁夏·23 )A .3.5和4之间B .4和4.5之间C .4.5和5之间D .5和5.5之间【答案】C【分析】先找到所求的无理数在哪两个和它接近的有理数之间 然后判断出所求的无理数的范围.【详解】①1625<23<①45< 排除A 和D又①23更接近2554.5和5之间故选:C .【点睛】此题主要考查了无理数的大小估算 现实生活中经常需要估算 估算应是我们具备的数学能力 “夹逼法”是估算的一般方法 也是常用方法.32.(2023·湖北宜昌·统考中考真题)下列运算正确的个数是( ).①|2023|2023= ①20231︒= ①1203232120-=2023=. A .4B .3C .2D .1 【答案】A 【分析】根据()()()0000a a a a a a ⎧>⎪==⎨⎪-<⎩ ()010a a =≠ ()10p p a a a -=≠a 进行逐一计算即可.【详解】解:①20230> 20232023∴= 故此项正确①20230≠ ∴20231︒= 故此项正确 ①1203232120-= 此项正确20232023== 故此项正确∴正确的个数是4个.故选:A .【点睛】本题考查了实数的运算 掌握相关的公式是解题的关键.33.(2023·内蒙古赤峰·统考中考真题)化简()20--的结果是( )A .120-B .20C .120D .20-【答案】B【分析】()20--表示20-的相反数 据此解答即可.【详解】解:()2020--=故选:B【点睛】此题考查了相反数 熟练掌握相反数的定义是解题的关键.34.(2023·黑龙江绥化·统考中考真题)计算052-+的结果是( )A .3-B .7C .4-D .6【答案】D 【分析】根据求一个数的绝对值 零指数幂进行计算即可求解. 【详解】解:052-+516=+=故选:D .【点睛】本题考查了求一个数的绝对值 零指数幂 熟练掌握求一个数的绝对值 零指数幂是解题的关键.35.(2023·江苏徐州·统考中考真题)如图 数轴上点,,,A B C D 分别对应实数a b c d ,,, 下列各式的值最小的是( )A .aB .bC .cD .d【答案】C【分析】根据数轴可直接进行求解.【详解】解:由数轴可知点C 离原点最近 所以在a b c d 中最小的是c故选C .【点睛】本题主要考查数轴上实数的表示 有理数的大小比较及绝对值 熟练掌握数轴上有理数的表示 有理数的大小比较及绝对值是解题的关键.36.(2023·山东·统考中考真题)ABC 的三边长a b c 满足2()23|320a b a b c ---+-=,则ABC 是( )A .等腰三角形B .直角三角形C .锐角三角形D .等腰直角三角形 【答案】D【分析】由等式可分别得到关于a b c 的等式 从而分别计算得到a b c 的值 再由222+=a b c 的关系 可推导得到ABC 为直角三角形.【详解】解①2()23|320a b a b c ---+-=又①()2000a b c ⎧-≥-≥⎪⎩①()2000a b c ⎧-=-=⎪⎩①02300a b a b c ⎧-=⎪--=⎨⎪-⎩解得33a b c ⎧=⎪=⎨⎪=⎩ ①222+=a b c 且a b =①ABC 为等腰直角三角形故选:D .【点睛】本题考查了非负性和勾股定理逆定理的知识 求解的关键是熟练掌握非负数的和为0 每一个非负数均为0 和勾股定理逆定理.37.(2023·山东·统考中考真题)实数a b c 在数轴上对应点的位置如图所示 下列式子正确的是( )A .()0c b a -<B .()0b c a -<C .()0a b c ->D .()0a c b +> 【答案】C【分析】根据数轴可得 0a b c <<< 再根据0a b c <<<逐项判定即可.【详解】由数轴可知0a b c <<<①()0c b a -> 故A 选项错误①()0b c a -> 故B 选项错误①()0a b c -> 故C 选项正确①()0a c b +< 故D 选项错误故选:C .【点睛】本题考查实数与数轴 根据0a b c <<<进行判断是解题关键.38.(2023·浙江杭州·统考中考真题)已知数轴上的点,A B 分别表示数,a b 其中10a -<< 01b <<.若a b c ⨯= 数c 在数轴上用点C 表示,则点,,A B C 在数轴上的位置可能是( )A .B .C .D .【答案】B 【分析】先由10a -<< 01b << a b c ⨯= 根据不等式性质得出0a c << 再分别判定即可.【详解】解:①10a -<< 01b <<①0a ab <<①a b c ⨯=①0a c <<A 01b c <<< 故此选项不符合题意B 0a c << 故此选项符合题意C 1c > 故此选项不符合题意D 1c <- 故此选项不符合题意故选:B .【点睛】本题考查用数轴上的点表示数 不等式性质 由10a -<< 01b << a b c ⨯=得出0a c <<是解题的关键.二 填空题39.(2023·湖北武汉·统考中考真题)写出一个小于4的正无理数是 . 2(答案不唯一)【分析】根据无理数估算的方法求解即可.【详解】解:216< 24. 2.【点睛】本题主要考查了无理数的估算 准确计算是解题的关键.40.(2023·山东滨州·统考中考真题)一块面积为25m 的正方形桌布 其边长为 .【分析】由正方形的边长是其面积的算术平方根可得答案.【详解】解:一块面积为25m 的正方形桌布【点睛】本题考查的是算术平方根的含义 理解题意 利用算术平方根的含义表示正方形的边长是解本题的关键.41.(2023·湖北黄冈·统考中考真题)计算 ()02113⎛⎫-+= ⎪⎝⎭ . 【答案】2【分析】1-的偶数次方为1 任何不等于0的数的零次幂都等于1 由此可解.【详解】解:()02111123⎛⎫-+=+= ⎪⎝⎭ 故答案为:2.【点睛】本题考查有理数的乘方 零次幂 解题的关键是掌握:1-的偶数次方为1 奇数次方为1- 任何不等于0的数的零次幂都等于1.42.(2023·四川巴中·统考中考真题)在210,,π,23⎛⎫--- ⎪⎝⎭四个数中 最小的实数是 . 【答案】π- 【分析】先计算出21319-=⎛⎫ ⎪⎝⎭ 再根据比较实数的大小法则即可. 【详解】解:21319-=⎛⎫ ⎪⎝⎭π 3.14-≈- 故21π203⎛⎫-<-<<- ⎪⎝⎭ 故答案为:π-.【点睛】本题考查了平方的定义及比较实数的大小法则 熟练运用比较实数的大小法则是解题的关键.43.(2023·内蒙古·统考中考真题)若,a b 为两个连续整数 且3a b <,则a b += .【答案】3【分析】根据夹逼法求解即可.【详解】解:①2132<< 即222132<< ①132<①1,2a b ==①3a b +=.故答案为:3.【点睛】题目主要考查无理数的估算 熟练掌握估算方法是解题关键.44.(2023·湖南·5的点所表示的整数有 .(写出一个即可)【答案】2(答案不唯一)【分析】根据实数与数轴的对应关系 5 且为整数 再利用无理数的估算即可求解.【详解】解:设所求数为a 55a < 且为整数 则55a -< 459 即253<<①a 可以是2±或1±或0.故答案为:2(答案不唯一).【点睛】本题考查了实数与数轴 无理数的估算 掌握数轴上的点到原点距离的意义是解题的关键. 45.(2023·山东滨州·统考中考真题)计算23--的结果为 .【答案】1-【分析】化简绝对值 根据有理数的运算法则进行计算即可. 【详解】23231--=-=-故答案为:1-.【点睛】本题考查有理数的加减法则 熟练掌握有理数的加减法则是解题的关键.46.(2023·湖南永州·统考中考真题)0.5- 3 2-三个数中最小的数为 .【答案】2-【分析】根据有理数比较大小的法则即可求出答案. 【详解】解:0.5- 2- 3三个数中 只有3是正数∴3最大. 0.50.5-= 22-=0.5<2∴0.5>-2∴-.2∴-最小.故答案为:2-.【点睛】本题考查了有理数比较大小 解题的关键在于熟练掌握有理数比较大小的方法:正数始终大于负数 两个负数比较 绝对值大的反而小.47.(2023·湖北荆州·统考中考真题)若21(3)0a b -+-=.【答案】2【分析】根据绝对值的非负性 平方的非负性求得,a b 的值进而求得a b +的算术平方根即可求解.【详解】解:①21(3)0a b -+-=①10,30a b -=-=解得:1,3a b ==2故答案为:2.【点睛】本题考查了求一个数的算术平方根 熟练掌握绝对值的非负性 平方的非负性求得,a b 的值是解题的关键.48.(2023·湖南·统考中考真题)已知实数a b 满足()2210a b -++=,则b a = .【答案】12【分析】由非负数的性质可得20a -=且10b += 求解a b 的值 再代入计算即可. 【详解】解:①()2210a b -++=①20a -=且10b +=解得:2a = 1b①1122b a -== 故答案为:12.【点睛】本题考查的是绝对值的非负性 偶次方的非负性的应用 负整数指数幂的含义 理解非负数的性质 熟记负整数指数幂的含义是解本题的关键.49.(2023·四川内江·统考中考真题)若a b 互为相反数 c 为8的立方根,则22a b c +-= .【答案】2-【分析】利用相反数 立方根的性质求出a b +及c 的值 代入原式计算即可得到结果.【详解】解:根据题意得:02a b c +==,22022a b c ∴+-=-=-故答案为:2-【点睛】此题考查了代数式求值 相反数 立方根的性质 熟练掌握运算法则是解本题的关键. 50.(2023·山东烟台·统考中考真题)如图 利用课本上的计算器进行计算 其按键顺序及结果如下:①按键的结果为4 ①按键的结果为8 ①按键的结果为0.5 ①按键的结果为25.以上说法正确的序号是 .【答案】①①【分析】根据计算器按键 写出式子 进行计算即可.【详解】解:①按键的结果为3644= 故①正确 符合题意 ①按键的结果为()3424+-=- 故①不正确 不符合题意 ①按键的结果为()sin 4515sin300.5︒-︒=︒= 故①正确 符合题意 ①按键的结果为2132102⎛⎫-⨯= ⎪⎝⎭ 故①不正确 不符合题意综上:正确的有①①.故答案为:①①.【点睛】本题主要考查了科学计算器是使用解题的关键是熟练掌握和了解科学计算器各个按键的含义.。
专题02 实数的运算(三大题型,50题)(解析版)
专题02实数的运算(三大题型,50题)(解析版)学校:___________姓名:___________班级:___________考号:___________一、用数轴上的点表示实数,中档题20题,难度三星1.如图,若5x =,则表示2211(1)x x x x -+÷-的值的点落在()A .段①B .段②C .段③D .段④【答案】C 【分析】首先对原式进行化简,然后代入x 的值,最后根据5 2.236≈即可判断.【详解】原式=2211()x x x x x-+-÷=()211x xx x -- =1x -当5x =时,原式=51-∵5 2.236≈∴51 1.236-≈故选C .【点睛】本题考查了分式的乘除法化简,无理数的估算,无理数的估算是难点,关键是要熟记一些常用的完全平方数,和一些常用无理数的近似值.2.若实数p ,q ,m ,n 在数轴上的对应点的位置如图所示,且满足0p q m n +++=,则绝对值最小的数是()A .pB .qC .mD .n【答案】C 【分析】根据0p q m n +++=,并结合数轴可知原点在q 和m 之间,且离m 点最近,即可求解.A.a b>B.π+A.πB.1【答案】B【分析】根据数轴与实数的一一对应关系解答即可.A .a b-+B .a b +C .a 【答案】21π--【分析】求出圆的周长,再根据实数与数轴上的点的对应关系解答即可.【答案】﹣2a﹣b【分析】直接利用数轴结合绝对值以及平方根的性质化简得出答案.【答案】32-或32+【分析】分顺时针旋转和逆时针旋转,两种情况讨论求解即可.【详解】解:∵点A 表示的数为3,点B 表示的数为4,∴1AB =,此时C '表示的数为:32-;当正方形ABCD 绕点A 逆时针旋转,使得点C 落在数轴上的点C '处时,如图:此时C '表示的数为:32+;【答案】2π2+【分析】先求出圆的周长为2π,再利用数轴的性质求解即可得.【详解】解:由题意可知,将圆沿数轴向右转动一周,转动的距离为∴点A 向右移动了2π个单位长度,【答案】280905--+/809052【分析】本题考查的是数轴的一个知识,解题的关键是找到规律:第移动25个单位,从第2次落在数轴上开始,比上一次又向右多移动了(1)图1中的阴影部分为正方形,它的面积是_________;(2)请利用(1)的解答,在图1的数轴上画出表示10的点;并简洁地说明理由.(3)如图2,请你利用正方形网格,设计一个面积方案,在数轴上画出表示理由.【答案】(1)10(3)解:如图,阴影部分为正方形,面积为所以,其边长为5,在数轴上截取5==,CDOC OK则点K表示的数为5,点D表示的数【点睛】本题主要考查正方形的性质以及网格,熟练掌握正方形的性质是解题的关键.20.阅读下面的文字,解答问题.大家知道,2是无理数,而无理数是无限不循环小数,因此【点睛】此题考查的是估算无理数及求代数式的值,能够得到一个无理数的整数部分与小数部分是解决此题的关键.二、实数的大小比较,中档题15题,难度三星π-<-<根据数轴上点的特点可得: 1.5333.在数轴上表示数0,π-303π-<-<<.2【点睛】本题考查了实数与数轴,实数的大小比较,能利用数轴比较实数的大小是解此题的关键,注意:。
人教版数学中考专题训练《实数》(Word版附答案)
人教版数学中考专题训练《实数》(Word版附答案)第一章数与式课题1实数1.(2020济宁)-72的相反数是()A.-72B.-27C.27D.722.(2020郴州)如图,表示互为相反数的两个点是()A.点A与点B B.点A与点DC.点C与点B D.点C与点D3.(2020南京)3的平方根是()A.9 B. 3C.- 3 D.±34.(2020锦州)近年来,我国5G发展取得明显成效,截至2020年2月底,全国建设开通5G基站达16.4万个,将数据16.4万用科学记数法表示为() A.164×103B.16.4×104C.1.64×105D.0.164×1065.(2020济宁)用四舍五入法将数3.14159精确到千分位的结果是()A.3.1 B.3.14C.3.142 D.3.1416.(2020大连)下列四个数中,比-1小的数是()A.-2 B.-1 2C.0 D.17.(2020赤峰)实数|-5|,-3,0,4中,最小的数是() A.|-5| B.-3C.0 D.48.(2020株洲)一实验室检测A、B、C、D四个元件的质量(单位:克),超过标准质量的克数记为正数,不足标准质量的克数记为负数,结果如图所示,其中最接近标准质量的元件是()A.B.C.D.9.(2020咸宁)早在两千多年前,中国人就已经开始使用负数,并运用到生产和生活中,比西方早一千多年.下列各式计算结果为负数的是() A.3+(-2) B.3-(-2)C.3×(-2) D.(-3)÷(-2)10.(2020周口模拟)新冠状病毒疫情发生以来,截止2月5日全国红十字会共接收社会捐赠款物约6.5993×109元.数据6.5993×109可以表示为() A.0.65993亿B.6.5993亿C.65.993亿D.659.93亿11.下列关于0的说法正确的是()A.0是正数B.0是负数C.0是有理数D.0是无理数12.如果a的倒数是-1,则a2020的值是()A.2020 B.-2020C.1 D.-113.若2n+2n+2n+2n=2,则n=()A.-1 B.-2C.0 D.1 414.(2020大庆)若|x+2|+(y-3)2=0,则x-y的值为()A.-5 B.5C.1 D.-115.(2020青岛)2020年6月23日,中国第55颗北斗导航卫星成功发射,顺利完成全球组网.其中支持北斗三号新信号的22纳米工艺射频基带一体化导航定位芯片,已实现规模化应用.22纳米=0.000000022米,将0.000000022用科学记数法表示为( )A .2.2×108B .2.2×10-8C .0.22×10-7D .22×10-916.(2020平顶山二模)实数a ,b ,c 在数轴上的对应点的位置如图所示,则正确的结论是( )A .|b |>|a |B .a +c >0C .ac >0D .b -c >017.(2020福建)2020年6月9日,我国全海深自主遥控潜水器“海斗一号”在马里亚纳海沟刷新了我国潜水器下潜深度的纪录,最大下潜深度达10907米.假设以马里亚纳海沟所在海域的海平面为基准,记为0米,高于马里亚纳海沟所在海域的海平面100米的某地的高度记为+100米,根据题意,“海斗一号”下潜至最大深度10907米处,该处的高度可记为 米.18.(2020遂宁)下列各数3.1415926,9,1.212212221…,17,2-π,-2020,34中,无理数的个数有 个.19.(2020恩施州)9的算术平方根是 .20.(2020南京)写出一个负数,使这个数的绝对值小于3: .(答案不唯一)21.(2020连云港)我市某天的最高气温是4℃,最低气温是-1℃,则这天的日温差是 ℃.22. (2020郑州八中一模)计算:|-5|-3-8= .23.(2020平顶山二模)16+⎝ ⎛⎭⎪⎫14-1= . 24.计算:(-1)2+(6)2-(-9)+(-6)÷2.25.(2020沈阳)计算:2sin60°+⎝ ⎛⎭⎪⎫-13-2+(π-2020)0+|2-3|.26.(2020郑州一中模拟)夸克是组成质子和中子(及其他许多粒子)的粒子,1夸克长度约为1×10-18m,一根头发丝的横截面约为0.06mm,则一根头发丝等于个夸克并排放在一起的宽度()A.6×1016B.6×1015C.6×1014D.6×101327.(2020郑州一中模拟)如图所示,点A、B、C在数轴上的位置如图所示,O为原点,C表示的数为m,BC=3,AO=3OB, 则A表示的数为()A.3m-9 B.9-3mC.2m-6 D.m-328.若|x-3|=3-x,则x的取值范围是.29.一个正数的平方根分别是x+1和x-5,则这个正数是.30.数轴上有两个实数a,b,且a>0,b<0,a+b<0,则四个数a,b,-a,-b的大小关系为.(用“<”号连接)31.已知|a|=1,b是2的相反数,则a+b的值为()A.-3 B.-1C.-1或-3 D.1或-332.(2020包头)点A在数轴上,点A所对应的数用2a+1表示,且点A到原点的距离等于3,则a的值为()A.-2或1 B.-2或2C.-2 D.133.写出一个数,使这个数的绝对值等于它的相反数:.(答案不唯一)34.(2020达州)中国奇书《易经》中记载,远古时期,人们通过在绳子上打结来计数,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满5进1,用来记录孩子自出生后的天数.由图可知,孩子自出生后的天数是()A.10 B.89C.165 D.294第一部分考点透析第一章数与式课题1实数1.(2020济宁)-72的相反数是(D)A.-72B.-27C.27D.722.(2020郴州)如图,表示互为相反数的两个点是(B)A.点A与点B B.点A与点DC.点C与点B D.点C与点D3.(2020南京)3的平方根是(D)A.9 B. 3C.- 3 D.±34.(2020锦州)近年来,我国5G发展取得明显成效,截至2020年2月底,全国建设开通5G基站达16.4万个,将数据16.4万用科学记数法表示为(C) A.164×103B.16.4×104C.1.64×105D.0.164×1065.(2020济宁)用四舍五入法将数3.14159精确到千分位的结果是(C) A.3.1 B.3.14C.3.142 D.3.141 6.(2020大连)下列四个数中,比-1小的数是(A)A.-2 B.-1 2C.0 D.17.(2020赤峰)实数|-5|,-3,0,4中,最小的数是(B)A.|-5| B.-3C.0 D.48.(2020株洲)一实验室检测A、B、C、D四个元件的质量(单位:克),超过标准质量的克数记为正数,不足标准质量的克数记为负数,结果如图所示,其中最接近标准质量的元件是(D)A.B.C.D.9.(2020咸宁)早在两千多年前,中国人就已经开始使用负数,并运用到生产和生活中,比西方早一千多年.下列各式计算结果为负数的是(C) A.3+(-2) B.3-(-2)C.3×(-2) D.(-3)÷(-2)10.(2020周口模拟)新冠状病毒疫情发生以来,截止2月5日全国红十字会共接收社会捐赠款物约6.5993×109元.数据6.5993×109可以表示为(C) A.0.65993亿B.6.5993亿C.65.993亿D.659.93亿11.下列关于0的说法正确的是(C)A.0是正数B.0是负数C.0是有理数D.0是无理数12.如果a的倒数是-1,则a2020的值是(C)A.2020 B.-2020C.1 D.-113.若2n+2n+2n+2n=2,则n=(A)A .-1B .-2C .0D .1414.(2020大庆)若|x +2|+(y -3)2=0,则x -y 的值为( A )A .-5B .5C .1D .-115.(2020青岛)2020年6月23日,中国第55颗北斗导航卫星成功发射,顺利完成全球组网.其中支持北斗三号新信号的22纳米工艺射频基带一体化导航定位芯片,已实现规模化应用.22纳米=0.000000022米,将0.000000022用科学记数法表示为( B) A .2.2×108B .2.2×10-8C .0.22×10-7D .22×10-916.(2020平顶山二模)实数a ,b ,c 在数轴上的对应点的位置如图所示,则正确的结论是( D )A .|b |>|a |B .a +c >0C .ac >0D .b -c >017.(2020福建)2020年6月9日,我国全海深自主遥控潜水器“海斗一号”在马里亚纳海沟刷新了我国潜水器下潜深度的纪录,最大下潜深度达10907米.假设以马里亚纳海沟所在海域的海平面为基准,记为0米,高于马里亚纳海沟所在海域的海平面100米的某地的高度记为+100米,根据题意,“海斗一号”下潜至最大深度10907米处,该处的高度可记为 -10907 米.18.(2020遂宁)下列各数3.1415926,9,1.212212221 (17)2-π,-2020,34中,无理数的个数有 3 个.19.(2020恩施州)9的算术平方根是 3 .20.(2020南京)写出一个负数,使这个数的绝对值小于3: -1 .(答案不唯一)21.(2020连云港)我市某天的最高气温是4℃,最低气温是-1℃,则这天的日温差是 5 ℃.22. (2020郑州八中一模)计算:|-5|-3-8= 7 . 23.(2020平顶山二模)16+⎝ ⎛⎭⎪⎫14-1= 8 . 24.计算:(-1)2+(6)2-(-9)+(-6)÷2.1325.(2020沈阳)计算:2sin60°+⎝ ⎛⎭⎪⎫-13-2+(π-2020)0+|2-3|. 1226.(2020郑州一中模拟)夸克是组成质子和中子(及其他许多粒子)的粒子,1夸克长度约为1×10-18m ,一根头发丝的横截面约为0.06mm ,则一根头发丝等于 个夸克并排放在一起的宽度( D )A .6×1016B .6×1015C .6×1014D .6×1013 27.(2020郑州一中模拟)如图所示,点A 、B 、C 在数轴上的位置如图所示,O 为原点,C 表示的数为m ,BC =3,AO =3OB, 则A 表示的数为( B )A .3m -9B .9-3mC .2m -6D .m -328.若|x -3|=3-x ,则x 的取值范围是 x ≤3 .29.一个正数的平方根分别是x +1和x -5,则这个正数是 9 .30.数轴上有两个实数a ,b ,且a >0,b <0,a +b <0,则四个数a ,b ,-a ,-b 的大小关系为 b <-a <a <-b .(用“<”号连接)31.已知|a |=1,b 是2的相反数,则a +b 的值为( C )A .-3B .-1C .-1或-3D .1或-332.(2020包头)点A 在数轴上,点A 所对应的数用2a +1表示,且点A 到原点的距离等于3,则a的值为(A)A.-2或1 B.-2或2C.-2 D.133.写出一个数,使这个数的绝对值等于它的相反数:-1 .(答案不唯一)34.(2020达州)中国奇书《易经》中记载,远古时期,人们通过在绳子上打结来计数,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满5进1,用来记录孩子自出生后的天数.由图可知,孩子自出生后的天数是(D)A.10 B.89C.165 D.294。
实数计算题专题训练题(含答案)
专题实数计算题训练一.计算题 _ _1. |-2|-( 1+ ~) 0+ ;20PP 22. - 1 +4X(- 3) + (- 6) -(- 2)3 1 一「. 一;j-匚5. 「| 】o 26. (1) ■;;7「•"8. 「■:(精确到0.01).9 . ■- I . :■■- ■- -■■- ■■- _ _■.3 2 210. (- 2) + (- 3)H (- 4) +2] -(- 3) r-2);11|二-灵亍一斤12. - 12+ X :-213((-引* - 昭(-2)彳-听-4|+ (-1)°.214. 求G 的值:9G =121.15. 已知. ,求G P的值.16•比较大小:-2,- (要求写过程说明)217. 求G 的值:(G+10 ) =1618. . _ . — | - 4 : . . - ' - L i19. 已知m v n,求j (m [门)2 + —忌的值;20. 已知a v 0,求■+,「的值.专题一计算题训练参考答案与试题解析一.解答题(共13小题)1 计算题:2|-( 1+ 匚)0+ :解答:解:原式=2 - 1+2 ,=3.20PP 2 2.计算题:-1 +4 X (- 3) + (-6) +(- 2)解答: 解:-120PP +4 X (- 3) 2+ (- 6) - (- 2),=-1+4 X 9+3,=38.3•丁- .E | -- j-匚原式=14 - 11+2=5 ;(2)原式=逅-!+V2= - 1.点评:此题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型•解决此类题目的关键是熟练掌握 二次根式、绝对值等考点的运算. 5 .计算题: 一 •丁一 ▼匚 ,一 一]考点:有理数的混合运算。
分析:首先进行乘方运算、然后根据乘法分配原则进行乘法运算、同时进行除法运算,最后进行加减法运算即可. 解答:解:原式=-4+8-( - 8)-( - 1)=-17=「点评:本题主要考查有理数的混合运算,乘方运算,关键在于正确的去括号,认真的进行计算即可.6.打 7. 考点:实数的运算;立方根;零指数幕;二次根式的性质与化简。
历年中考中实数的有关概念和性质真题答案及解析
一、选择题1.(2019湖南怀化,1,4分)下列实数中,哪个数是负数( )D.-1 【答案】D.【解析】解:由于-1<0,所以-1为负数.故选D. 【知识点】实数2.(2019湖南岳阳,1,3分)-2019的绝对值是( ) A .2019 B .-2019 C .12019 D .12019-【答案】A【解析】根据一个负数的绝对值等于它的相反数,得:|-2019|=2019,故选A . 【知识点】有理数,绝对值3.(2019江苏无锡,1,3分)5的相反数是( ) A. -5 B . 5 C .15D .15【答案】A【解析】本题考查了相反数的定义,5相反数为-5 ,故选A. 【知识点】相反数4.(2019山东滨州,1,3分)下列各数中,负数是( ) A .-(-2) B .2--C .(-2)2D .(-2)0【答案】B【解析】∵-(-2)=2,2--=-2,(-2)2=4,(-2)0=1,∴负数是2--.故选B .【知识点】相反数;绝对值;有理数的乘方;零次幂5.(2019山东济宁,1,3分)下列四个实数中,最小的是( ) A .-2 B .-5 C .1 D .4 【答案】B【解析】:根据有理数的大小比较法则可知:-5<-2<1<4. 【知识点】实数的大小比较.6.(2019山东聊城,1,3分) )A. C. 【答案】D(),故选D. 【知识点】相反数7. (2019山东泰安,1,4分) 在实数|-3.14|,-3,π中,最小的数是( )A.-3B.-3C.|-3.14|D.π【答案】B【解析】四个数中,有2个正数:|-3.14|=3.14,π,两个负数:-3,-3,而|-3|=3,|-3|=3≈1.732,∵3>1.732,∴-3<-3,故选B. 【知识点】绝对值,实数比较大小8.(2019山东潍坊,1,3分) 2019的倒数的相反数是( ) A .-2019 B .12019- C .12019D .2019【答案】B【解析】2019的倒数为12019,而12019的相反数为12019-,故选B . 【知识点】有理数,相反数,倒数9.(2019山东潍坊,5,3分)利用教材中的计算器依次按键如下:则计算器显示的结果与下列各数中最接近的一个是( ) A .2.5 B .2.6 C .2.8 D .2.9 【答案】B【解析】由计算器按键可知本题是计算7的近似值,分别计算四个数的平方可得:2.52=6.25,2.62=6.76,2.82=7.84,2.92=8.41,根据计算结果可知最接近于7的数为6.76,所以7≈2.6,故选B .【知识点】计算器的使用,估算10. (2019山东枣庄,11,3分)点O,A,B,C 在数轴上的位置如图所示,O 为原点,AC =1,OA =OB,若点C 所表示的数为a,则点B 所表示的数为( )A.-(a+1)B.-(a -1)C.a+1D.a -1【答案】B【解析】∵点C 所表示的数为a,AC =1,点A 在点C 的左边,∴点A 所表示的数为(a -1),∵OA=OB,∴点A 和点B 所表示的数互为相反数,故点B 所表示的数为-(a -1),故选B 【知识点】数轴表示数,相反数11.(2019山东淄博,6,4分)与下面科学计数器的按键顺序: 对应的任务是( )4y x 21+6ab /c5×6·A.460.6125⨯+ B.450.6126⨯+ C.120.6564⨯÷+ D.1250.646⨯+ 【答案】B【解析】由计算器中输入顺序,对应的任务是450.6126⨯+,故选B.【知识点】用科学计算器计算12.(2019山东淄博,1,4分)比-2小1的实数是( ) A.-3 B.3C.-1D.1【答案】A.【解析】由题意可列出:-2-1=-(2+1)=-3. 即比-2小1的数为-3. 故选A .【知识点】实数的运算,有理数的减法13.(2019四川达州,1,3分) -2019的绝对值是( ) A .2019 B. -2019 C. 20191 D.20191-【答案】A【解析】负数的绝对值是它的相反数,所以-2019的绝对值是-(-2019)=2019 【知识点】绝对值14.(2019四川乐山,1,3分)3-的绝对值是( ) A .3 B .-3C .13D .31-【答案】A【解析】本题考查了有理数的绝对值求法,()333-=--=,故选A. 【知识点】有理数的绝对值15.(2019四川乐山,4,3分)a -一定是( )A .正数B .负数C .0D .以上选项都不正确 【答案】D【解析】本题考查了有理数相反数的求法,a -的符号由字母a 的符号确定:当a 为正数,则a -一定是负数;当a 为0,则a -一定是0;当a 为负数,则a -一定是正数. 【知识点】有理数的相反数16.(2019四川凉山,1,4分)1.-2的相反数是( ) A.2 B.-2 C.21D.21- 【答案】A【解析】-2的相反数是2,故选A. 【知识点】相反数17.(2019四川眉山,1,3分)下列四个数中,是负数的是( )A .|-3|B .-(-3)C .(-3)2D .【答案】D【解析】解:A 、|-3|=3,是正数,故A 不合题意;B 、-(-3)=3,是正数,故B 不合题意;C 、(-3)2=9,是正-是负数,故D符合题意,故选D.数,故C不合题意;D、3【知识点】绝对值;相反数,有理数的乘方,18.(2019四川攀枝花,1,3分)(-1)2等于()A.-1 B.1 C.-2 D.2【答案】B.【解析】负数的隅次方是正数,所以(-1)2=1,故选B.【知识点】乘方的性质19.(2019四川攀枝花,2,3分)在0,-1,2,-3这四个数中,绝对值最小的数是()A.0 B.-1 C.2 D.-3【答案】A.【解析】绝对值最小的数是0,故选A.【知识点】绝对值20.(2019四川省自贡市,1,4分)- 2019的倒数是()A.-2019B.C.D.2019【答案】B.【解析】解:∵a的倒数是,∴-2009的倒数是.故选B.【知识点】倒数.21. (2019四川自贡,7,4分)实数m,n在数轴上对应点的位置如图所示,则下列判断正确的是()A.|m|<1B.1-m>1C.mn>0D.m+1>0【答案】B.【解析】解:由数轴可知,m<-1<0,n>1>0.∴|m|>1,mn<0,m+1<0,-m>0,∴1-m>1.∴选项A,C,D错误,正确的是选项B.故选B.【知识点】数轴,有理数的加法法则,有理数的乘法法则,绝对值3-⨯的结果等于 ( )22. (2019天津,1,3分)计算()9(A) -27 (B)-6 (C) 27 (D)6【答案】A【解析】一正一负相乘,先确定积的符号为负,再把绝对值相乘,绝对值为27.所以答案为 A【知识点】有理数的乘法运算.23. (2019天津,6,3分)估计33的值在( )(A) 2和3之间 (B) 3和4之间 (C) 4和5之间 (D) 5和6之间 【答案】D 【解析】6335363325<<∴<<所以选D【知识点】算术平方根的估算.24.(2019浙江湖州,1,3分)数2的倒数是( )A .-2B .2C .-12D .12 【答案】D .【解析】利用“乘积为1的两个数互为倒数”的概念进行判断,∵2×12=1,∴2的倒数是12,故选D . 【知识点】实数的概念;倒数25.(2019浙江省金华市,1,3分)实数4的相反数是( )A.14-B.-4C.14D.4【答案】B .【解析】由a 的相反数是-a ,得实数4的相反数是-4,故选B . 【知识点】相反数26.(2019浙江金华,4,3分)某地一周前四天每天的最高气温与最低气温如下表,则这四天中温差最大的是( ) A. 星期一 B.星期二 C.星期三 D.星期四【答案】C .【解析】温差=最高气温-最低气温.故选C . 【知识点】温差27. (2019浙江宁波,1,4分) -2的绝对值为( ) A.-12B.2C.12D.-2【答案】B【解析】负数的绝对值是它的相反数,|-2|=2,故选B. 【知识点】绝对值28.(2019浙江衢州,1,3分)在12,0,1,一9四个数中,负数是( )A.12B.0C.1D.-9【答案】D【解析】本题考查负数的概念,不含多重符号的数,含有负号的数是负数,在这四个数中,只有-9带有负号,所以负数是-9,故选D 。
中考数学专题复习《实数》检测题真题(含答案)
中考专题复习实 数1、有理数:像3、53-、119……这样的 或 。
2、数轴:规定了 、 和 的直线叫做数轴(画数轴时,要注意上述规定的 三要素缺一不可)。
3、相反数:只有 不同的两个数,如a 的相反数是 ,0的相反数仍是 。
若a 与b 互为相反数,则 .4、绝对值:正数的绝对值是它 ,负数的绝对值是它的 ,0的绝对值是0.任何实数的绝对值都是 ,a ≧0.互为相反数的两个数的绝对值相等,a =a -。
5、倒数: 没有倒数。
正数的倒数是正数,负数的倒数是负数。
若a 与b 互为倒数,则 .6、有理数的四则混合运算:(1)先乘方,再乘除,最后加减; (2)同级运算,从左到右进行;(4)如有括号,先做括号内的运算,按 ,中括号, 依次进行。
7、乘方:求n 个 的积的运算,叫做乘方,乘方的结果叫做 。
在a n中,a 叫做 ,n 叫做 。
8、科学记数法:把一个数写做 的形式,其中101<≤a ,n 是整数,这种记数法叫做科学记数法。
9、平方根:如果一个数的平方等a ,那么这个数叫做a 的 或 ,0的平方根是0,负数 平方根。
a 的平方根记为a ±(a ≧0),读作“正负根号a ”,a 叫做被开方数。
10、算术平方根:如果一个正数的平方等于a ,那么这个正数叫做a 的 ,0的算术平方根为0。
a 的算术平方根记为a (a ≧0),读作“根号a ”,a 叫做被开方数。
11、立方根:如果一个数的立方等于a ,那么这个数叫做a 的 或 ,0的立方 根是0,正数的立方根是正数,负数的立方根是负数。
3a -=3a ,a 的立方根记为3a ,读作“三次根号a ”,a 叫做 ,3是 。
知识回顾12、无理数:像2、33、……这样的 。
13、实数: 和 统称为实数。
实数与数轴上的点 。
1.(2017湖南长沙,1)下列实数中,为有理数的是( ) A .B .C .D .12.(2017广东广州,1)如图1,数轴上两点表示的数互为相反数,则点表示的( )A . -6B .6C . 0D .无法确定3.(2017湖南长沙,3)据国家旅游局统计,2017年端午小长假全国各大景点共接待游客约为82600000人次,数据82600000用科学记数法表示为( ) A .B .C .D .4.(2017山东临沂,1)的相反数是( ) A .B .C .2017D .5.(2017浙江宁波,4)实数的立方根是 .6.(2017重庆A 卷,13)“渝新欧”国际铁路联运大通道全长11000千米,成为服务“一带一路”的大动脉之一,将数11000用科学记数法表示为 . 7.(2017重庆A 卷,14)计算:|﹣3|+(﹣1)2= . 8.(2017江苏徐州,9)的算术平方根是 . 9.(2017浙江嘉兴,17(1))计算:.10.(2017浙江台州,17)计算:.基础检测考点精讲1.有理数概念【例题1】(2017河南,1)下列各数中比1大的数是()A.2 B.0 C.-1 D.-3【答案】A,【解析】根据正数大于0,0大于负数,两个负数,绝对值大的反而小可得题目选项中的各数中比1大的数是2,故选A.【考点】有理数的大小比较.【变式】(2017重庆A卷,14)计算:|﹣3|+(﹣1)2= .【答案】4.【解析】|﹣3|+(﹣1)2=4【考点】有理数的混合运算.【例题2】(2017天津,1)计算的结果等于()A.2 B. C.8 D.【答案】A.【解析】根据有理数的加法法则即可得原式-2,故选A.【变式】(2017山东滨州,1)计算-(-1)+|-1|,结果为()A.-2 B.2 C.0 D.-1【答案】B.【解析】原式=1+1=2,故选B.【例题3】(2017山东日照,3)铁路部门消息:2017年“端午节”小长假期间,全国铁路客流量达到4640万人次.4640万用科学记数法表示为()A.4.64×105B.4.64×106C.4.64×107D.4.64×108【答案】C.【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于4640万有8位,所以可以确定n=8﹣1=7.4640万=4.64×107.故选:C.【考点】科学记数法—表示较大的数.【变式】(2017辽宁沈阳,3)“弘扬雷锋精神,共建幸福沈阳”幸福沈阳需要830万沈阳人共同缔造。
中考数学总复习《实数》专项测试卷-附参考答案
中考数学总复习《实数》专项测试卷-附参考答案(测试时间60分钟满分100分)学校:___________姓名:___________班级:___________考号:___________一、选择题(共8题,共40分)1.在π,√1121,√3,0.303003,−227中,无理数的个数是( )A.1个B.2个C.3个D.4个2.不小于−√8的最小整数是( )A.−3B.−2C.−4D.−13.一个数的立方根等于它本身,这个数是( )A.0B.1C.0或1D.0或±14.下列说法正确的是( )A.4的平方根是±2B.8的立方根是±2C.√4=±2D.√(−2)2=−25.在下列语句中:①无理数的相反数是无理数;②一个实数的绝对值一定是非负数;③有理数比无理数小;④无限小数不一定是无理数.其中正确的是( )A.②③B.②③④C.①②④D.②④6.计算∣2−√5∣+∣3−√5∣的值是( )A.1B.−1C.5−2√5D.2√5−5 7.下列四个数中,大于1而又小于2的无理数是( )A . 32B . √2+12C . √3−13D . √3+138.比较下列各组数的大小,正确的是 ( )A . √24>5B . √10>3C . −√6>−2D . √5+1>3√52二、填空题(共5题,共15分)9.已知 m <2√7<m +1,m 为整数,则 m 的值为 .10.已知 x ,y 是两个连续整数,z 是面积为 15 的正方形的边长,且 x <z <y ,则 y x = .11.如图是一个简单的数值运算程序,当输入 x 的值为 16 时,输出的数值为 .(用科学计算器计算或笔算)12.已知实数 a ,b ,c ,d ,e ,f 且 a ,b 互为倒数c ,d 互为相反数,e 的绝对值为 √2,f 的算术平方根是 8,则 12ab +c+d 5+e 2+√f 3 的值是 .13.一个正数的平方根分别是 x +1 和 x +5,则 x = .三、解答题(共3题,共45分)14.利用平方根及立方根的定义解决下列问题:(1) 计算:√9−√0.36+√1−37643(最后一个是 3 次根号).(2) 求满足 2x 3+250=0 的 x 的值.15.解答下列问题.(1) 一个长方形纸片的长减少 3 cm ,宽增加 2 cm ,就成为一个正方形纸片,并且长方形纸片周长的 3 倍比正方形纸片周长的 2 倍多 30 cm .这个长方形纸片的长、宽各是多少?(2) 小明同学想用(1)中得到的正方形纸片,沿着边的方向裁出一块面积为 30 cm 2 的长方形纸片,使它的长宽之比为 3:2.请问小明能用这块纸片裁出符合要求的纸片吗?请说明理由.16.已如 A =√n −m +3m−n 是 n −m +3 的算术平方根,B =√m +2n m−2n+3 是 m +2n 的立方根,求 B +A 的平方根.参考答案1. 【答案】B2. 【答案】B3. 【答案】D4. 【答案】A5. 【答案】C6. 【答案】A7. 【答案】B8. 【答案】B9. 【答案】510. 【答案】6411. 【答案】312. 【答案】61213. 【答案】−314. 【答案】(1) 3.15.(2) x=5.15. 【答案】(1) 设这个长方形的长为x cm,宽为y cm根据题意可得:{x−3=y+2,3×2(x+y)=2×4(x−3)+30.解得{x=9,y=4.故这个长方形的长为9cm,宽为4cm.(2) 由(1)可知正方形的边长为9−3=6(cm)设裁出的长方形的长为(3m)cm,宽为(2m)cm根据题意可得3m⋅2m=30.解得m=√5或−√5(舍去).∴这个长方形的长为3√5cm,宽为2√5cm∵4<5<9∴2<√5<3∴6<3√5<9∴ 小明使用这块纸片不能裁出符合要求的纸片.16. 【答案】由题意可得 {m −n =2,m −2n +3=3,∴{m =4,n =2,∴A =√n −m +3m−n=√2−4+3=√1=1B =√m +2n m−2n+3=√4+2×23=√83=2 ∴B +A 的平方根为 ±√2+1=±√3.。
中考数学总复习《实数》专项测试卷-附含参考答案
中考数学总复习《实数》专项测试卷-附含参考答案(测试时间60分钟满分100分)学校:___________姓名:___________班级:___________考号:___________一、选择题(共8题,共40分)1.下列说法中,正确的是( )A.有理数是有限小数B.无理数都是无限小数C.无限小数是无理数D.无理数是带根号的数2.下列各数中,是无理数的为( )3D.πA.2019B.√4C.√−273.无理数√10在( )A.2和3之间B.3和4之间C.4和5之间D.5和6之间4. 8的立方根与16的算术平方根的积为( )A.6B.−6C.8D.−8 5.下列无理数中,与3最接近的是( )A.√6B.√8C.√11D.√136.下列判断正确的有( )①一个数的平方根等于它本身,这个数是0和1;②实数包括无理数和有理数;3是3的立方根;③ √3④无理数是带根号的数;⑤ 2的算术平方根是√2.A.2个B.3个C.4个D.5个7.如图,数轴上点A表示的数可能是( )A.3的算术平方根B.4的算术平方根C.7的算术平方根D.9的算术平方根8若a,b为实数,且满足∣a−2∣+√3−b=0,则b−a的值为( ) A.1B.0C.−1D.以上都不对二、填空题(共5题,共15分)9.若x+3是4的平方根,则x=10.在数轴上,如果点A、点B所对应的数分别为−√7,2√7,那么A,B两点的距离AB=.11.绝对值小于√10的整数有个.12. √81的平方根是;√5−2的相反数是;∣∣√2−3∣∣=.]=0,[3.14]=3按此规定,13.规定用符号[m]表示一个实数m的整数部分,例如:[23则[√3+√5]的值为.三、解答题(共3题,共45分)14.已知实数x,y满足关系式√x−2+∣y2−1∣=0.(1) 求x,y的值;x是有理数还是无理数?并说明理由.(2) 判断√y+515.小丽手中有块长方形的硬纸片,其中长BC比宽AB多10cm,长方形的周长是100cm.(1) 求长方形的长和宽;(2) 小丽想用这块长方形的硬纸片,沿着边的方向裁出一块长与宽的比为5:4,面积为520cm2的新纸片作为他用,试判断小丽能否成功,并说明理由.16.某小区为了促进全民健身活动的开展,决定在一块面积约为1000m2的正方形空地上建一个篮球场.已知篮球场的面积为420m2,其中长是宽的28倍,篮球场的四周必须留出15不少于1m宽的空地,请你通过计算说明能否按规定在这块空地上建一个篮球场?参考答案1. 【答案】B2. 【答案】D3. 【答案】B4. 【答案】C5. 【答案】B6. 【答案】B7. 【答案】C8. 【答案】B9. 【答案】−1或−5.10. 【答案】3√711. 【答案】712. 【答案】±32−√53−√213. 【答案】314. 【答案】(1) x=2y=±1.x=√6是无理数;(2) 若x=2,y=1时,√y+5x=√4=2是有理数.若x=2,y=−1时,√y+5x可能是有理数,也可能是无理数.∴√y+515. 【答案】(1) AB=20cm BC=30cm.(2) 设宽为4x cm,则长为5x cm.所以5x⋅4x=520.解得x=√26.因为4x=4√26>20所以小丽不能成功.x m.16. 【答案】设篮球场的宽为x m,那么长为2815x2=420由题意知2815所以x2=225因为x为正数所以x=15.又因为(2815x+2)2=900<1000所以能按规定在这块空地上建一个篮球场.。
中考数学专题练习实数含解析含答案
实数一、选择题1.某年哈尔滨市一月份的平均气温为﹣18℃,三月份的平均气温为2℃,则三月份的平均气温比一月份的平均气温高()A.16℃ B.20℃ C.﹣16℃D.﹣20℃2.下列计算正确的是()A.B.(a+b)2=a2+b2C.(﹣2a)3=﹣6a3D.﹣(x﹣2)=2﹣x3.下列计算正确的是()A.(﹣1)﹣1=1 B.(﹣3)2=﹣6 C.π0=1 D.(﹣2)6÷(﹣2)3=(﹣2)24.数字,,π,,cos45°,中是无理数的个数有()个.A.1 B.2 C.3 D.45.据报道,2010年苏州市政府有关部门将在市区完成130万平方米老住宅小区综合整治工作.130万(即1300000)这个数用科学记数法可表示为()A.1.3×104B.1.3×105C.1.3×106D.1.3×1076.数轴上的点A表示的数是﹣1,点B表示的数是﹣,则点B关于点A的对称点B′点表示的数为()A.﹣2 B.﹣﹣2 C.﹣﹣1 D.07.下列计算结果正确的是()A.(﹣a3)2=a9B.a2•a3=a6C.D.(sin60°﹣)0=08.28cm接近于()A.珠穆朗玛峰的高度 B.三层楼的高度C.姚明的身高D.一张纸的厚度9.实数a、b在数轴上的位置如图所示,下列式子错误的是()A.a<b B.|a|>|b| C.﹣a<﹣b D.b﹣a>0二.填空题10.地球与太阳之间的距离约为149 600 000千米,用科学记数法表示(保留2个有效数字)约为千米.11.化简: = .12.若将三个数表示在数轴上,其中能被如图所示的墨迹覆盖的数是.13.已知a、b为两个连续的整数,且,则a+b= .14.已知互为相反数,则a:b= .15.若的值在x与x+1之间,则x= .16.,则x y= .17.计算: = .18.化简二次根式: = .19.一个自然数的算术平方根是a,则相邻的下一个自然数的算术平方根是.三.计算题20.计算:﹣+|1﹣|+()﹣1.21.计算:﹣2sin30°﹣(﹣)﹣2+(﹣π)0﹣+(﹣1)2012.22..23.计算:.24.若x是不等于1的实数,我们把称为x的差倒数,如3的差倒数为,﹣5的差倒数为.现已知x1=﹣,x1的差倒数是x2,x2的差倒数是x3,…,以此类推,x2013的值是多少?实数参考答案与试题解析一、选择题1.某年哈尔滨市一月份的平均气温为﹣18℃,三月份的平均气温为2℃,则三月份的平均气温比一月份的平均气温高()A.16℃ B.20℃ C.﹣16℃D.﹣20℃【考点】有理数的减法.【专题】应用题.【分析】根据题意用三月份的平均气温气温减去一月份的平均气温气温,再根据有理数的减法运算法则“减去一个数等于加上这个数的相反数”计算求解.【解答】解:2﹣(﹣18)=2+18=20℃.故选B.【点评】本题考查有理数的减法运算法则.2.下列计算正确的是()A.B.(a+b)2=a2+b2C.(﹣2a)3=﹣6a3D.﹣(x﹣2)=2﹣x【考点】完全平方公式;去括号与添括号;幂的乘方与积的乘方;二次根式的加减法.【分析】利用完全平方公式、去括号与添括号法则、幂的乘方与积的乘方及二次根式的加减法等性质进行计算后即可确定答案.【解答】解:A、不是同类二次根式,因此不能进行运算,故本答案错误;B、(a+b)2=a2+b2+2ab,故本答案错误;C、(﹣2a)3=﹣8a3,故本答案错误;D、﹣(x﹣2)=﹣x+2=2﹣x,故本答案正确;故选D.【点评】本题考查了完全平方公式、去括号与添括号法则、幂的乘方与积的乘方及二次根式的加减法等性质,属于基本运算,要求学生必须掌握.3.下列计算正确的是()A.(﹣1)﹣1=1 B.(﹣3)2=﹣6 C.π0=1 D.(﹣2)6÷(﹣2)3=(﹣2)2【考点】负整数指数幂;同底数幂的除法;零指数幂.【专题】计算题.【分析】根据平方根,负指数幂的意义,同底数的幂的除法的意义,分别计算出各个式子的值即可判断.【解答】解:A、(﹣1)﹣1=﹣1,故A错误;B、(﹣3)2=9,故B错误;C、任何非0实数的零次幂等于1,故C正确;D、(﹣2)6÷(﹣2)3=(﹣2)3,故D错误.故选C.【点评】解决此题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、同底数的幂的除法等考点的运算.4.数字,,π,,cos45°,中是无理数的个数有()个.A.1 B.2 C.3 D.4【考点】无理数;特殊角的三角函数值.【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,结合所给的数据判断即可.【解答】解: =2,cos45°=,所以数字,,π,,cos45°,中无理数的有:,π,cos45°,共3个.故选C.【点评】此题考查了无理数的定义,属于基础题,关键是掌握无理数的三种形式.5.据报道,2010年苏州市政府有关部门将在市区完成130万平方米老住宅小区综合整治工作.130万(即1300000)这个数用科学记数法可表示为()A.1.3×104B.1.3×105C.1.3×106D.1.3×107【考点】科学记数法—表示较大的数.【专题】应用题.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:130万=1 300 000=1.3×106.故选C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.数轴上的点A表示的数是﹣1,点B表示的数是﹣,则点B关于点A的对称点B′点表示的数为()A.﹣2 B.﹣﹣2 C.﹣﹣1 D.0【考点】实数与数轴.【分析】先求出A、B之间的距离,然后根据对称的性质得出A、B′之间的距离,再设点B′表示的数为x,列出关于x的方程,解方程即可.【解答】解:∵数轴上的点A表示的数是﹣1,点B表示的数是﹣,∴AB=﹣1,∵点B和点B′关于点A对称,∴AB′=AB=﹣1.设点B′表示的数为x,则x+1=﹣1,x=﹣2.∴B′点表示的数为﹣2.故选A.【点评】本题考查了实数与数轴上的点的对应关系,以及对称的有关性质.7.下列计算结果正确的是()A.(﹣a3)2=a9B.a2•a3=a6C.D.(sin60°﹣)0=0【考点】负整数指数幂;同底数幂的乘法;幂的乘方与积的乘方;零指数幂.【分析】根据有理数的幂的乘方和同底数幂的乘法及负指数幂的运算法则计算.【解答】解:A、平方取正值,指数相乘,应为a6,故A错误;B、a2•a3=a5,故B错误;C、,故C正确;D、(sin60°﹣)0=1≠0,故D错误.故选C.【点评】本题主要考查了有理数的有关运算法则,解答此题时要注意任何非0数的0次幂等于1.8.28cm接近于()A.珠穆朗玛峰的高度 B.三层楼的高度C.姚明的身高D.一张纸的厚度【考点】有理数的乘方.【分析】根据有理数的乘方运算法则,计算出结果,然后根据生活实际来确定答案.【解答】解:28=24×24=16×16=256(cm)=2.56(m).A、珠穆朗玛峰峰的高度约8848米,错误;B、三层楼的高度20米左右,错误;C、姚明的身高是2.23米,接近2.56米,正确;D、一张纸的厚度只有几毫米,错误.故选C.【点评】解答这样的题目有两个要点需要注意,一是有理数的乘方运算法则要记牢;二是根据生活实际情况来做出选择.9.实数a、b在数轴上的位置如图所示,下列式子错误的是()A.a<b B.|a|>|b| C.﹣a<﹣b D.b﹣a>0【考点】实数与数轴.【分析】根据数轴表示数的方法得到a<0<b,数a表示的点比数b表示点离原点远,则a<b;﹣a >﹣b;b﹣a>0,|a|>|b|.【解答】解:根据题意得,a<0<b,∴a<b;﹣a>﹣b;b﹣a>0,∵数a表示的点比数b表示点离原点远,∴|a|>|b|,∴选项A、B、D正确,选项C不正确.故选C.【点评】本题考查了实数与数轴:数轴上的点与实数一一对应;数轴上原点左边的点表示负数,右边的点表示正数;右边的点表示的数比左边的点表示的数要大.二.填空题10.地球与太阳之间的距离约为149 600 000千米,用科学记数法表示(保留2个有效数字)约为1.5×108千米.【考点】科学记数法与有效数字.【专题】计算题.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于1 048 576有7位,所以可以确定n=7﹣1=6.有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字.用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关.【解答】解:149 600 000=1.496×108≈1.5×108.故答案为1.5×108.【点评】此题考查科学记数法的表示方法,以及用科学记数法表示的数的有效数字的确定方法.11.化简: = .【考点】算术平方根.【分析】根据开平方的意义,可得答案.【解答】解:原式==,故答案为:.【点评】本题考查了算术平方根,先化成分数,再开方运算.12.若将三个数表示在数轴上,其中能被如图所示的墨迹覆盖的数是.【考点】实数与数轴.【专题】图表型.【分析】首先利用估算的方法分别得到﹣,,前后的整数(即它们分别在那两个整数之间),从而可判断出被覆盖的数.【解答】解:∵﹣2<﹣<﹣1,2<<3,3<<4,且墨迹覆盖的范围是1﹣3,∴能被墨迹覆盖的数是.【点评】本题考查了实数与数轴的对应关系,以及估算无理数大小的能力.13.已知a、b为两个连续的整数,且,则a+b= 11 .【考点】估算无理数的大小.【分析】根据无理数的性质,得出接近无理数的整数,即可得出a,b的值,即可得出答案.【解答】解:∵,a、b为两个连续的整数,∴<<,∴a=5,b=6,∴a+b=11.故答案为:11.【点评】此题主要考查了无理数的大小,得出比较无理数的方法是解决问题的关键.14.已知互为相反数,则a:b= .【考点】立方根.【分析】根据立方根互为相反数,可得被开方数互为相反数,根据互为相反数的两数的和为0,可得答案.【解答】解:互为相反数,∴(3a﹣1)+(1﹣2b)=0,3a=2b,故答案为:.【点评】本题考查了立方根,先由立方根互为相反数得出被开方数互为相反数,再求出的值.15.若的值在x与x+1之间,则x= 2 .【考点】估算无理数的大小.【分析】先估算的整数部分是多少,即可求出x的取值.【解答】解:∵2<<3,∴x=2.故答案为:2.【点评】此题主要考查了估算无理数的大小,确定无理数的整数部分即可解决问题.16.,则x y= ﹣1 .【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【分析】首先根据非负数的性质,两个非负数的和是0,这两个数都是0求得x,y的值,代入即可求解.【解答】解:根据题意得:,解得:,∴x y=(﹣1)2011=﹣1.故答案是:﹣1.【点评】本题主要考查了非负数的性质,以及负指数幂的意义,正确求得x,y的值是解题的关键.17.计算: = .【考点】实数的运算;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】根据负指数幂、二次根式化简、特殊角的三角函数3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=3+0.5﹣6×=,故答案为.【点评】本题是基础题,考查了实数的有关运算,还涉及了零指数幂、负指数幂、二次根式化简、绝对值等考点.18.化简二次根式: = ﹣2 .【考点】二次根式的混合运算.【分析】首先进行各项的化简,然后合并同类项即可.【解答】解: =3﹣()﹣2=﹣2,故答案为﹣2.【点评】本题主要考查二次根式的化简、二次根式的混合运算,解题的关键在于对二次根式进行化简,然后合并同类项.19.一个自然数的算术平方根是a,则相邻的下一个自然数的算术平方根是.【考点】算术平方根.【分析】首先利用算术平方根求出这个自然数,然后即可求出相邻的下一个自然数的算术平方根.【解答】解:∵一个自然数的算术平方根是a,∴这个自然数是a2,∴相邻的下一个自然数为:a2+1,∴相邻的下一个自然数的算术平方根是:,故答案为:.【点评】此题主要考查算术平方根的定义及其应用,比较简单.三.计算题20.计算:﹣+|1﹣|+()﹣1.【考点】实数的运算;负整数指数幂.【专题】计算题.【分析】原式第一项化为最简二次根式,第二项分母有理化,第三项利用绝对值的代数意义化简,最后一项利用负指数幂法则计算即可得到结果.【解答】解:原式=3﹣+﹣1+2=3+1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.21.计算:﹣2sin30°﹣(﹣)﹣2+(﹣π)0﹣+(﹣1)2012.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】本题涉及零指数幂、乘方、特殊角的三角函数值、立方根等考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=﹣2×﹣+1﹣(﹣2)+1=﹣1﹣9+1+2+1=﹣6.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是掌握零指数幂、乘方、特殊角的三角函数值、立方根等考点的运算.22..【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】根据零指数幂、负整数指数幂和特殊角的三角函数值得到原式=4+(1﹣)﹣1+2×+,再去括号和进行乘法运算,然后合并即可.【解答】解:原式=4+(1﹣)﹣1+2×+=4+1﹣﹣1++=4+.【点评】本题考查了实数的运算:先算乘方或开方,再算乘除,然后进行加减运算;有括号先算括号.也考查了零指数幂、负整数指数幂和特殊角的三角函数值.23.计算:.【考点】实数的运算;零指数幂;特殊角的三角函数值.【专题】计算题.【分析】本题涉及零指数幂、特殊角的三角函数值、二次根式化简、去绝对值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=2+×﹣(﹣1)﹣1,=2+1﹣+1﹣1,=+1.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握特殊角的三角函数值、零指数幂、二次根式、绝对值等考点的运算.24.若x是不等于1的实数,我们把称为x的差倒数,如3的差倒数为,﹣5的差倒数为.现已知x1=﹣,x1的差倒数是x2,x2的差倒数是x3,…,以此类推,x2013的值是多少?【考点】规律型:数字的变化类.【分析】根据差倒数的定义分别计算出x1=﹣,x2=;x3=4,x4=﹣,则得到从x1开始每3个值就循环,而2013÷3=671,即可得出答案.【解答】解:∵x1=﹣,∴x2==;x3==4;x4==﹣;…,∴三个数一个循环,∵2013÷3=671,∴x2013=x3=4.【点评】此题考查了数字的变化类,是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.。
初中数学实数专项训练解析附答案(1)
初中数学实数专项训练解析附答案(1)一、选择题1.下列说法中,正确的是( )A .-(-3)2=9B .|-3|=-3C .9=±3D .364-=364-【答案】D【解析】【分析】根据绝对值的意义,乘方、平方根、立方根的概念逐项进行计算即可得.【详解】A. -(-3)2=-9,故A 选项错误;B. |-3|=3,故B 选项错误;C. 9=3,故C 选项错误;D. 因为364-=-4,364-=-4,所以364-=364-,故D 选项正确,故选D.【点睛】本题考查了绝对值的意义,乘方运算、平方根、立方根的运算,熟练掌握各运算的运算法则是解题的关键.2.如图,M 、N 、P 、Q 是数轴上的四个点,这四个点中最适合表示15﹣1的点是( )A .点MB .点NC .点PD .点Q【答案】D【解析】【分析】15151的范围,即可得出答案.【详解】解:∵3.5154<<,∴2.51513<<,151的点是Q 点,故选D .【点睛】本题考查估算无理数的大小,实数与数轴.一般用夹逼法估算无理数.3.-2的绝对值是( ) A .B .C .D .1 【答案】A【解析】【分析】根据差的绝对值是大数减小数,可得答案.【详解】-2的绝对值是2-. 故选A .【点睛】本题考查了实数的性质,差的绝对值是大数减小数.4.51-是一个很奇妙的数,大量应用于艺术、建筑和统计决策等方面,请51的值( ) A .在1.1和1.2之间 B .在1.2和1.3之间C .在1.3和1.4之间D .在1.4和1.5之间 【答案】B【解析】【分析】根据4.84<5<5.29,可得答案.【详解】∵4.84<5<5.29,∴5,∴5,故选B .【点睛】 5是解题关键.5.下列各式中,正确的是( )A ()233-=-B 42=±C 164=D 393=【答案】C【解析】【分析】对每个选项进行计算,即可得出答案.【详解】 A. ()233-=,原选项错误,不符合题意;B. 42=,原选项错误,不符合题意;C. 164=,原选项正确,符合题意;D. 393≠,原选项错误,不符合题意.故选:C【点睛】本题考查平方根、算术平方根、立方根的计算,重点是掌握平方根、算术平方根、立方根的性质.6.下列说法:①任何数都有算术平方根;②一个数的算术平方根一定是正数;③2a 的算术平方根是a ;④算术平方根不可能是负数;⑤()24π-的算术平方根是4π-,其中不正确的个数是( )A .2个B .3个C .4个D .5个【答案】B【解析】【分析】根据算术平方根的定义判断即可.【详解】负数没有算术平方根,①错误;0的算术平方根是0,②错误;2a 的算术平方根是a ,③错误;算术平方根不可能是负数,④正确;()24π-的算术平方根是4-π,⑤正确.所以不正确的个数为3个,选B .【点睛】掌握算术平方根的定义.注意:0的算术平方根是0、负数没有算术平方根.7.如图,数轴上的点P 表示的数可能是( )A 5B .5C .-3.8D .10-【答案】B【解析】【分析】【详解】5 2.2≈,所以P 点表示的数是5-8.在实数范围内,下列判断正确的是( )A.若2t ,则m=n B.若22a b>,则a>bC2=,则a=b D=a=b【答案】D【解析】【分析】根据实数的基本性质,逐个分析即可.【详解】A、根据绝对值的性质可知:两个数的绝对值相等,则这两个数相等或互为相反数,故选项错误;B、平方大的,即这个数的绝对值大,不一定这个数大,如两个负数,故说法错误;C、两个数可能互为相反数,如a=-3,b=3,故选项错误;D、根据立方根的定义,显然这两个数相等,故选项正确.故选:D.【点睛】考核知识点:实数的性质.理解算术平方根和立方根性质是关键.9.一个自然数的算术平方根是x,则它后面一个自然数的算术平方根是().A.x+1 B.x2+1 C1D【答案】D【解析】一个自然数的算术平方根是x,则这个自然数是2,x则它后面一个数的算术平方根是.故选D.10.下列各组数中互为相反数的是()A.5B.-和(-C.D.﹣5和1 5【答案】B【解析】【分析】直接利用相反数以及绝对值、立方根的定义分别分析得出答案.【详解】解:A、5,两数相等,故此选项错误;B、和-()互为相反数,故此选项正确;C、-38=-2和38-=-2,两数相等,故此选项错误;D、-5和15,不互为相反数,故此选项错误.故选B.【点睛】本题考查了相反数以及绝对值、立方根的定义,正确把握相关定义是解题关键.11.25的算数平方根是A.5B.±5 C.5±D.5【答案】D【解析】【分析】一个正数的平方根有2个,且这两个互为相反数,而算数平方根只有一个且必须是正数,特别地,我们规定0的算术平方根是0 负数没有算术平方根,但i的平方是-1,i是一个虚数,是复数的基本单位.【详解】255=,∴25的算术平方根是:5.故答案为:5.【点睛】本题考查了算术平方根,熟练掌握该知识点是本题解题的关键.12.如图,数轴上表示实数3的点可能是( )A.点P B.点Q C.点R D.点S【答案】A【解析】【分析】33的点可能是哪个.【详解】∵132,3的点可能是点P.故选A.【点睛】此题主要考查了在数轴上表示数的方法,以及数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大,要熟练掌握.13.下列运算正确的是( )A =-2B .|﹣3|=3C =± 2D 【答案】B【解析】【分析】A 、根据算术平方根的定义即可判定;B 、根据绝对值的定义即可判定;C 、根据算术平方根的定义即可判定;D 、根据立方根的定义即可判定.【详解】解:A 、C 2=,故选项错误;B 、|﹣3|=3,故选项正确;D 、9开三次方不等于3,故选项错误.故选B .【点睛】此题主要考查了实数的运算,注意,正数的算术平方根是正数.14.已知3y =,则yx 的值为()n nA .43B .43-C .34D .34- 【答案】C【解析】由题意得,4−x ⩾0,x−4⩾0,解得x=4,则y=3,则y x =34,故选:C.15.下列说法正确的是( )A .无限小数都是无理数B .1125-没有立方根C .正数的两个平方根互为相反数D .(13)--没有平方根【答案】C【解析】【分析】根据无理数、立方根、平方根的定义解答即可.【详解】A、无限循环小数是有理数,故不符合题意;B、1125-有立方根是15-,故不符合题意;C、正数的两个平方根互为相反数,正确,故符合题意;D、﹣(﹣13)=13有平方根,故不符合题意,故选:C.【点睛】本题考查了无理数、立方根、平方根,掌握无理数、立方根、平方根的定义是解题的关键.16.估计值应在()A.3到4之间B.4到5之间C.5到6之间D.6到7之间【答案】A【解析】【分析】先根据二次根式乘法法则进行计算,得到一个二次根式后再利用夹逼法对二次根式进行估算即可得解.【详解】解:2=∵91216<<<<∴34<<∴估计值应在3到4之间.故选:A【点睛】本题考查了二次根式的乘法、无理数的估算,熟练掌握相关知识点是解决问题的关键.17.1是0.01的算术平方根,③错误;在同一平面内,过定点有且只有一条直线与已知直线垂直,④错误故选:A【点睛】本题考查概念的理解,解题关键是注意概念的限定性,如④中,必须有限定条件:在同一平面内,过定点,才有且只有一条直线与已知直线垂直.18.14的算术平方根为( ) A .116 B .12± C .12- D .12【答案】D【解析】【分析】根据算术平方根的定义求解即可.【详解】∵21()2=14, ∴14的算术平方根是12, 故选:D .【点睛】本题考查了算术平方根的定义,熟记概念是解题的关键.19.如图,表示8的点在数轴上表示时,所在哪两个字母之间( )A .C 与DB .A 与BC .A 与CD .B 与C【答案】A【解析】【分析】确定出88的范围,即可得到结果.【详解】解:∵6.25<8<9,∴2.583<<8的点在数轴上表示时,所在C 和D 两个字母之间.故选:A .【点睛】此题考查了估算无理数的大小,以及实数与数轴,解题关键是确定无理数的整数部分即可解决问题.20.如图所示,数轴上表示313C 、B ,点C 是AB 的中点,则点A 表示的数是 ( )A.13B.13C.13D13【答案】C【解析】=-,解得:13C.点C是AB的中点,设A表示的数是c1333c点睛:本题考查了实数与数轴的对应关系,注意利用“数形结合”的数学思想解决问题.。