5.5应用二元一次方程组——里程碑上的数-2020秋八年级北师大版数学上册作业课件

合集下载

应用二元一次方程组——里程碑上的数-2020秋八年级北师大版数学上册作业课件

应用二元一次方程组——里程碑上的数-2020秋八年级北师大版数学上册作业课件
一口吃不成胖子,但胖子却是一口一口吃来的。 山涧的泉水经过一路曲折,才唱出一支美妙的歌。 所谓成功,就是在平凡中做出不平凡的坚持。 在所阅读的书本中找出可以把自己引到深处的东西,把其他一切统统抛掉,就是抛掉使头脑负担过重和会把自己诱离要点的一切。 如果你很聪明,为什么不富有呢? 你热爱生命吗?那么别浪费时间,因为时间是组成生命的材料。——富兰克林 发展是硬道理,但硬发展是没道理。 自己活着,就是为了使别人过得更美好。——雷锋 相信自己,你能作茧自缚,就能破茧成蝶。 仁远乎哉?我欲仁,斯仁至矣——《论语·述而》 要生活得漂亮,需要付出极大忍耐。一不抱怨,二不解释。
学习进步! 你可以像猪一样的生活,但你永远都不能像猪那样快乐!
人生如一杯茶,不能苦一辈子,但是数时候,都只能靠自己。
不洗澡的人,硬擦香水是不会香的。名声与尊贵,是来自于真才实学的。有德自然香。 你生命的前半辈子或许属于别人,活在别人的认为里。那把后半辈子还给你自己,去追随你内在的声音。 当你快乐时,你要想,这快乐不是永恒的。当你痛苦时你要想这痛苦也不是永恒的。
从长远利益考虑,让孩子从小适度地知道一点忧愁,品尝一点磨难,并非坏事,这对培养孩子的承受力和意志,对孩子的健康成长或许更有好 处。——东方 善良的人永远是受苦的,那忧苦的重担似乎是与生俱来的,因此只有忍耐。 在所阅读的书本中找出可以把自己引到深处的东西,把其他一切统统抛掉,就是抛掉使头脑负担过重和会把自己诱离要点的一切。

096.北师大版八年级数学上册5.5 应用二元一次方程组——里程碑上的数(教案)

096.北师大版八年级数学上册5.5  应用二元一次方程组——里程碑上的数(教案)

5.5应用二元一次方程组——里程碑上的数教学目标1.利用二元一次方程组解决数字问题和行程问题;(重点)2.进一步经历和体验列方程组解决实际问题的过程.课前准备教材,课件,电脑(视频播放器)教学过程第一环节知识回顾1.一个两位数的十位数字是x,个位数字是y,则这个两位数可表示为:10x+y.2.一个三位数,若百位数字为a,十位数字为b,个位数字为c,则这个三位数为:100a+10b+c.3.一个两位数,十位数字为a,个位数字为b,若在这两位数中间加一个0,得到一个三位数,则这个三位数可表示为:100a+b.4.a为两位数,b是一个三位数,若把a放在b的左边得到一个五位数,则这个五位数可表示为:1000a+b.设计意图:通过复习,为本节课的继续学习做好铺垫.实际效果:提问学生,教师加以点评,这样经过知识的回顾,学生基本能熟练地用代数式表示有关数字问题.第二环节情境引入1.Flash动画,情景展示.小明星期天开车出去兜风,他在公路上匀速行驶,根据动画中的情景,你能确定他在12:00看到的里程碑上的数吗?12:00是一个两位数,它的两个数字之和为7;13:00十位与个位数字与12:00所看到的正好颠倒了;14:00比12:00时看到的两位数中间多了个0.分析:设小明在12:00看到的数十位数字是x,个位数字是y,那么相等关系:1.12:00看到的数,两个数字之和是7:x+y=7.2.路程差:12:00-13:00:(10y+x)-(10x+y),13:00-14:00:(100x+y)-(10y+x),路程差相等:(10y+x)-(10x+y)=(100x+y)-(10y+x).根据以上分析,得方程组x+y=7,(10y+x)-(10x+y)=(100x+y)-(10y+x).解方程组x+y=7,(10y+x)-(10x+y)=(100x+y)-(10y+x).整理得x+y=7,x = 1,因此,小明在12:00时看到的里程碑上的数是16.提示:要学会在图表中用含未知数的代数式表示出要分析的量;然后利用相等关系列方程.2.Flash动画,情景再现.3.学法小结:(1)对较复杂的问题可以通过列表格的方法理清题中的未知量、已知量以及等量关系,这样,条理比较清楚.(2)借助方程组解决实际问题.设计意图:生动的情景引入,意在激发学生的学习兴趣;利用图表帮助分析使条理清楚,降低思维难度,并使列方程解决问题的过程更加清晰;学法小结,着重强调分析方法,养成归纳小结的良好习惯.实际效果:动画引入,使数字问题变的更有趣,确实有效地激发了学生的兴趣,学生参与热情很高;借助图表分析,有效地克服了难点,学生基本都能借助图表分析,在老师的引导下列出方程组.4.变式训练师生共同研究下题:有一个三位数,现将最左边的数字移到最右边,则比原来的数小45;又知百位数字的9倍比由十位数字和个位数字组成的两位数小3,试求原来的3位数.分析:数字问题中,设未知数也很有技巧,此问题中由十位数字和个位数字组成的两位数是一个“整体”,可设为一个未知数y,百位数设为x:百位数字十位数字个位数字表达式原数x y100 x + y新数y x10 y + x相等关系:1.原三位数-45=新三位数2.9 百位数字=两位数-3解:设百位数字为x,由十位数字与个位数字组成的两位数为y,根据题意的得:100x+y=10y+x,9x=y-3.解得x=4,y=39.答:原来的三位数是439.设计意图:设计本题,意在让学生了解,在具体解决问题时,不一定直接设未知数,设间接未知数是复杂问题简单化的解决途径之一,是转化思想的应用手段.实际效果:首先由学生思考,说出设未知数的方法,教师再给予点评、引导,然后共同完成问题的解决.本例中,要求一个三位数,学生习惯设三个未知数,可是只有两个等量关系,学生发现不太好解答,思维陷入僵局,这时通过教师的引导,发现这里十位数字与个位数字组成的两位数在问题中一直连在一起,因此可以将它们看成一个整体,这时学生一下子豁然开朗,然后列出了方程组并解出该题.第三环节 练习提高1.李刚骑摩托车在公路上高速行驶,早晨7:00时看到里程碑上的数是一个两位数,它的数字之和是9;8:00时看里程碑上的两位数与7:00时看到的个位数和十位数颠倒了;9:00时看到里程碑上的数是7:00时看到的数的8倍,李刚在7:00时看到的数字是18 . 分析:设李刚在7:00看到的数十位数字是x ,个位数字是y ,那么设计意图:练习2是教材上“里程碑上的数”例题的变式,活学活用,强化图表分析法,使学生知识过手.(如果此例改为其他例题,未尝不可,但实践中我们发现,对同一问题的变式运用更有利于学生掌握图表分析法). 实际效果:本例的解答学生比较得心应手,最重要的是学生基本上都学会了用图表来帮助分析数字问题.2.选一选小颖家离学校4800米,其中有一段为上坡路 ,另一段为下坡路.她跑步去学校共用了30分.已知小颖在上坡时的平均速度是6千米/时,下坡时的平均速度是12千米/时.问小颖上、下坡各多少千米? A.1.2,3.6; B.1.8,3; C.1.6,3.2.分析:本题间接设未知数更简洁.解:设上坡x 时,下坡y 时,据题意得:6x+12y=4.8 ,x +y =0.5. 解之得 x =0.2, y =0.3.选A.设计意图:在解应用题时只考虑题目要求什么就设什么为未知数,有时关系式难寻求,方程也难解.因此,可以根据题目条件选择与要求的未知量有关的某个量为未知数,以便找出符合题意的相等关系,从而达到解题的目的.当然,这两个练习,也遵从了由易到难的原则. 实际效果:多数学生都解答本题目,都易考虑用间接设未知数,降低思维和计算难度.3.列方程 CIN 公司第二季度进出口总额是980万元,第二季度进口额比一季度增长了39%,出口额增长了41%,进出口总额增长了40%,第二季度的进,出口额分别是多少?6.3123.0,2.162.0=⨯=⨯分析:设第二季度的进口额为x 万元,出口额为y 万元: 进口额出口额进出口总额一季度 %391+x %411+y %401980+二季度xy980%391++%411+=%401+,x + y =980.若设第一季度的进口额为x 万元,出口额为y 万元,则:x +y = 980÷(1+40%),(1+39%)x +(1+41%)y =980.根据学生设不同未知数出现不同的方程组,若没有考虑到另一种设法,教师给予补充.设计意图:练习3的设置,着重于直接设未知数和间接设未知数列出方程的对照比较,使学生在设未知数时,以简洁和降低计算难度为优.实际效果:学生在直接设未知数时表示已知量未知量有部分学生出错,并且计算难度较大;转化为间接设未知数的学生表达量更准确,计算难度更低;由此对比,学生更易发现设间接未知数有时更利于方程组的建立和解答,从而把间接设未知数作为列方程组解应用题的重要方面来考虑.第四环节 合作学习现实生活和数学学习中,有许多问题可以借助二元一次方程组解决.试编制一个可以用下面的二元一次方程组解决的应用题.x +y =2, 5x -y =10.学生分组进行编题和互评,然后每组请一个同学将本组评选出的编的最好的应用题向全班同学汇报.(评选方法:切合实际、联系生活、有想象力并且正确无误)设计意图:着重于逆向思维训练,体会自己编题,从编题人的高度审视列方程组解决实际应用题,同时培养学生的合作意识,通过合作,让学生互相评价、修正,使学生思维跳出固定进口额出口额进出口总额一季度 xy980÷(1+40%) 二季度 (1+39%) x(1+41%) y98050100150200250300350400450500第一季度第二季度进口出口单一的生活圈,更关注与现实世界的交融,开阔视野.实际效果:有部分学生缺乏想象力,视野狭窄,经过同学互评纠正和互相学习对现实问题与数学结合有了更深的体会.大多数学生对这种编题形式很感兴趣,课堂气氛轻松活跃.第五环节学习反思:1.在很多实际问题中,都存在着一些等量关系,因此我们往往可以借助列方程或方程组的方法来处理这些问题.2.这种处理问题的过程可以进一步概括为:分析求解问题解答抽象检验3.要注意的是,处理实际问题的方法是多种多样的,图表分析是一种直观简洁的方法,设间接未知数可帮助转化问题,还可运用化归等数学思想方法,应根据具体问题灵活选用.设计意图:对学习内容作回顾整理,提炼方法思想.第六环节布置作业1.甲、乙两个两位数,若把甲数放在乙数的左边,组成的四位数是乙数的201倍;若把乙数放在甲数的左边,组成的四位数比上面的四位数小1188,求这两个数.2.某车间每天能生产甲种零件600个,或者乙种零300个,或丙种零件500个,甲、乙、丙三种零件各1个就可以配成一套,要在63天内生产中,使生产的零件全部成套,问甲、乙、丙三种零件各应生产几天?3.请你寻找一个利用化归的思想方法解决数学问题的实例.教学反思1.突破难点的策略列方程解应用题的分析方法多种多样,本课继上一节增收节支继续介绍分析数字等问题的一种比较有效的方法——图表分析法.本节课除了要解决数字问题外,在设元的技巧上加以引导,如变式练习中设三个未知数无法解决的问题,可以转化为通过视为整体设两个未知数解决;同时在练习2,3中选择直接未知数和间接未知数列方程,比较设未知数的思维难度和计算难度,然后进行优化选择,这样可以培养学生多种思维方式,突破难点.2.关注数学思想方法的揭示数学思想方法是数学学习的灵魂.教学中注意关注蕴含其中的数学思想方法(如化归方法)的揭示,如果教学时间允许,可以专门介绍化归思想及其运用,这样既可提高学生的学习兴趣,开阔视野,同时也提高学生对数学思想的认识,提升解题经验.初中数学公式大全1过两点有且只有一条直线2两点之间线段最短3同角或等角的补角相等4同角或等角的余角相等5过一点有且只有一条直线和已知直线垂直6直线外一点与直线上各点连接的所有线段中,垂线段最短7平行公理经过直线外一点,有且只有一条直线与这条直线平行8如果两条直线都和第三条直线平行,这两条直线也互相平行9同位角相等,两直线平行10内错角相等,两直线平行11同旁内角互补,两直线平行12两直线平行,同位角相等13两直线平行,内错角相等14两直线平行,同旁内角互补15定理三角形两边的和大于第三边16推论三角形两边的差小于第三边17三角形内角和定理三角形三个内角的和等于180 °18推论1直角三角形的两个锐角互余19推论2三角形的一个外角等于和它不相邻的两个内角的和20平行四边形判定定理1两组对角分别相等的四边形是平行四边形21平行四边形判定定理2两组对边分别相等的四边形是平行四边形22平行四边形判定定理3对角线互相平分的四边形是平行四边形23平行四边形判定定理4一组对边平行相等的四边形是平行四边形24矩形性质定理1矩形的四个角都是直角25矩形性质定理2矩形的对角线相等26矩形判定定理1有三个角是直角的四边形是矩形27矩形判定定理2对角线相等的平行四边形是矩形28菱形性质定理1菱形的四条边都相等29菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角30菱形面积= 对角线乘积的一半,即S= (a×b )÷231菱形判定定理1四边都相等的四边形是菱形32菱形判定定理2对角线互相垂直的平行四边形是菱形33正方形性质定理1正方形的四个角都是直角,四条边都相等34正方形性质定理2 正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角35定理1关于中心对称的两个图形是全等的36定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分37逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称38等腰梯形性质定理等腰梯形在同一底上的两个角相等。

5.5 应用二元一次方程组——里程碑上的数(课件)北师大版数学八年级上册

5.5 应用二元一次方程组——里程碑上的数(课件)北师大版数学八年级上册

知1-练
解题秘方:设出数位上的数字,利用数位上的数
字表示出数,根据题目中的等量关系
列出方程组.
解决数字问题一定要明确多位数 的书写形式,灵活设未知数.正确用代 数式表示多位数是解题的关键 .
感悟新知
知1-练
解:设原百位数字为x,原三位数去掉百位数字后的两位
数为y,由题意,得ቊ190xy=+yx-=31,00x+y-45,解得ቊxy==349,. 则4×100+39=439. 答:原三位数为439.
解得ቊxy==115200,.
答: 平路和坡路分别有 150 km 和 120 km.
知3-练
3-1.从 A 地 到 B 地,先下坡然后走平路,某人骑自行车 以 12 km/h的速度下坡,然后以9 km/h 的速 度通 过 平路,到 达 B 地共用 55min. 回来时以 8 km/h的 速 度通 过平路,以 4km/h 的速度上坡,回到A 地 共 用 1.5 h,从 A地到 B 地有多少千米?
感悟新知
特别提醒 年龄问题解题口诀:
岁差不会变,同时相加减. 岁数若改变,倍数也改变.
知2-讲
感悟新知
知2-练
例2 父亲给儿子出了一道题,要儿子猜出答案:有一对母
女,5 年前母亲的年龄是女儿年龄的15 倍,15 年后,
母亲的年龄比女儿年龄的2 倍还多6 岁. 那么现在这对
母女的年龄分别是多少?
感悟新知
知3-练
解:设从 A 地到 B 地坡路为 x km,平路为 y km, 根据题意,得18yx2++x49=y=156.550,,解得xy==63., 所以 x+y=9,答:从 A 地到 B 地有 9 km.
课堂小结
应用二元一次方程组 ——里程碑上的数

北师大版八年级数学上册5.5: 应用二元一次方程组——里程碑上的数

北师大版八年级数学上册5.5: 应用二元一次方程组——里程碑上的数
12:00~13:00间摩托车行驶的路程是 _(1_0_y_+__x_)-_(_1_0_x_+_y_).
探究1 14:00 比12:00时看到的两位数中间多了个0
如果设小明在12:00看到的数的十位数字是x,个 位数字是y,那么:
(3)14:00时小明看到的数可表示为__1_0__0_x_+_y____,
1.如果一个两位数的十位数字与个位数字之和为6,
那么这样的两位数的个数是( B)
A.3 B.6
C.5
D.4
2. 一个两位数,十位数字与个位数字的和是7,如果
这个两位数加上45,则恰好成为个位数字与十位数字
对调后组成的两位数,设十位数字为x,个位数字为y, x+y=7
列出方程__1_0x_+_y_+_4_5_=_1_0y+x
探究2
两个两位数的和是68,在较大的两位数的右边 接着写较小的两位数,得到一个四位数;在较大的 两位数的左边写上较小的两位数,也得到一个四位 数.已知前一个四位数比后一个四位数大2178,求 这两个两位数.
两个两位数的和是68,在较大的两位数的右边接着写较小 的两位数,得到一个四位数;在较大的两位数的左边写上较小 的两位数,也得到一个四位数.已知前一个四位数比后一个四 位数大2178,求这两个两位数.
5.5应用二元一次方程组
——里程碑上的数
授课人:王梓锋
知识回顾
64 (1)一个两位数,十位上的数是6,个位上的数是4,这个两位数是______.
(2)10一b+个a 两位数,个位数字是a,十位数字是b,则这个两位数用代数式表示为

若交1换0a个+b位和十位上的数字,得到一个新的两位数用代数式表示为

北师大版八年级数学上册《应用二元一次方程组——里程碑上的数》精品教案

北师大版八年级数学上册《应用二元一次方程组——里程碑上的数》精品教案

将实际问题转化成二元一次方程组的数学模型;设间接未知数转化解决实际问题列方程式要注意哪些点?列出方程;(2)13:00时小明看到的数可表示为,12:00~13:00间摩托车行驶的路程是;(3)14:00时小明看到的数可表示为,13:00~14:00间摩托车行驶的路程是;[归纳总结]在求两位数或三位数时,一般是不能直接设这个两位数或三位数的,而是把它各个数位上的数字设为未知数。

解题的关键是弄清题意,根据题意找出合适的等量关系,列出方程组,再进行求解。

活动探究二:想一想,回答下面的问题(小组讨论,3min)例两个两位数的和是68,在较大的两位数的右边接着写较小的两位数,得到一个四位数;在较大的两位数的左边写上较小的两位数,也得到一个四位数.已知前一个四位数比后一个四位数大2178,求这两个两位数.活动探究三:想一想,回答下面的问题(小组讨论,3min)列二元一次方程组解决实际问题的一般步骤是怎样的?与同伴交流一下.列二元一次方程组解决实际问题的一般步骤:审清题意,找出等量关系;(鸡兔同笼、增收开支、里程碑上的数)设未知数x,y;列出二元一次方程组解方程组;检验;答题.变式1:一个两位数,减去它的各位数字之和的3倍,结果是23;这个两位数除以它的各位数字之和,商是5,余数是1.这个两位数是多少?变式2:小亮和小明做加法游戏,小明在第一个加首先由学生思考,说出设未知数的方法,教师再给予点评、引导,然后共同完成问题的解决。

学生通过练习检验自己对本节知识的掌握情况.动画引入,使数字问题变的更有趣,确实有效地激发了学生的兴趣,学生参与热情很高;借助图表分析,有效地克服了难点设计本题,意在让学生了解,在具体解决问题时,不一定直接设未知数,设间接未知数是复杂问题简单化的解决途径之一,是转化思想的应用手段。

本例中,要求一个三位数,学生习惯设三个未知数,可是只有两个等量关系,学生发现不太好解答,思维陷入僵局,这时通过教师的引导,发现这里十位数字与个位数字组成的两位数在问题中一直连在一起,因此可以将它们看成一个整体,这时学生一下子豁然开朗,然后列出了方程组并解出该题。

北师大版初中数学八年级(上)备课资料5-5 应用二元一次方程组——里程碑上的数

北师大版初中数学八年级(上)备课资料5-5 应用二元一次方程组——里程碑上的数

5应用二元一次方程组——里程碑上的数典型例题题型一列二元一次方程组解决数字问题例1有一个两位数,个位上的数字比十位上的数字大5,如果把这两个数字的位置对换,那么所得的新数与原数的和是143,求这个两位数.分析:如果一个两位数十位上的数字为a,个位上的数字为b,这个两位数就表示为10a+b;如果一个三位数百位上的数字为a,十位上的数字为b,个位上的数字为c,这个三位数就表示为100a+10b+c.本题中的相等关系:①个位上的数字-十位上的数字=5,②原数+新数=143.解:设原来的两位数中,个位上的数字为x,十位上的数字为y,则原数为10y+x,把这两个数字的位置对换后,所得的新数为10x+y.根据题意,得5, 1010143, x yy x x y-=⎧⎨+++=⎩解得9,4. xy=⎧⎨=⎩所以这个两位数为10y+x=10×4+9=49.答:这个两位数为49.点拨:利用方程组解决数字问题时,一般不直接设这个数,而是设这个数的各数位上的数字,再利用数的表示方法表示出这个数.例2有一个三位数,现将最左边的数字移到最右边,则比原来的数小45,又知百位数字的9倍比十位和个位数字组成的两位数小3,求原三位数.分析:根据两个条件,可知不必设成三个未知数,只需把它看成一个百位数字x和一个由十位与个位数字组成的两位数y,则这个三位数就可看成100x+y;若将最左边的数字移到最右边,则x就变成了个位数字,y就扩大了10倍,新三位数可表示为10y+x.因此相等关系为:(1)百位数字×9=由十位与个位数字组成的两位数-3;(2)新三位数=原三位数-45.解:设原三位数的百位数字为x,由十位与个位数字组成的两位数为y.根据题意,得93, 1010045, x yy x x y=-⎧⎨+=+-⎩解得4,39.xy=⎧⎨=⎩则4×100+39=439.答:原三位数为439.点拨:此题通过灵活选设未知数,将一个三元问题转化成了二元问题.题型二列二元一次方程组解决行程问题例3某中学新建的塑胶操场环形跑道一圈长400 m,甲、乙两名同学从同一起点同时出发,相背而跑,40 s后首次相遇;若从同一起点同时同向而跑,200 s后甲首次追上乙,求甲、乙两名同学的速度.分析:在环形跑道上,同时同地出发,相背而跑,为相遇问题,首次相遇时,相等关系为:甲跑的路程+乙跑的路程=跑道一圈的长;若从同一地点同时同向而跑,甲首次追上乙为追及问题,相等关系为:甲跑的路程-乙跑的路程=跑道一圈的长.解:设甲同学的速度为x m/s,乙同学的速度为y m/s.根据题意,得()40400, 200200400, x yx y+⨯=⎧⎨-=⎩整理,得10,2,x yx y+=⎧⎨-=⎩解得6,4.xy=⎧⎨=⎩答:甲同学的速度为6 m/s,乙同学的速度为4 m/s.点拨:相遇问题中,(甲速+乙速)×时间=总路程;追及问题中,(甲速-乙速)×时间=甲、乙相距的路程.例4甲、乙两地相距160 km,一辆汽车和一辆拖拉机同时由甲、乙两地出发,相向而行,43h 相遇.相遇后,拖拉机继续前进,汽车在相遇处停留1 h 后调转车头原速返回,在汽车再次出发12h 时追上了拖拉机.这时,汽车、拖拉机各自行驶了多少千米? 分析:画直线型示意图理解题意(如图1所示).图1这里有两个未知数:(1)汽车的行程;(2)拖拉机的行程.有两个相等关系:(1)相向而行:汽车43h 行驶的路程+拖拉机43h 行驶的路程=160 km ; (2)同向而行:汽车12h 行驶的路程=拖拉机112⎛⎫+ ⎪⎝⎭h 行驶的路程. 解:设汽车每小时行驶x km ,拖拉机每小时行驶y km. 根据题意,得4()160,3111,22x y x y ⎧⨯+=⎪⎪⎨⎛⎫⎪=+ ⎪⎪⎝⎭⎩解得90,30.x y =⎧⎨=⎩ 90×4132⎛⎫+ ⎪⎝⎭=165(km),30×4332⎛⎫+ ⎪⎝⎭=85(km). 答:汽车行驶了165 km ,拖拉机行驶了85 km.题型三 列二元一次方程组解决航速问题例5 一轮船从甲地到乙地顺流航行需4 h ,从乙地到甲地逆流航行需6 h ,那么一木筏从甲地漂流到乙地需多长时间?分析:对于航速问题,主要有如下两个公式:①顺速=静速+水(风)速;②逆速=静速-水(风)速.显然本题中所求的木筏由甲地漂流到乙地所需的时间,实际上就是水从甲地流到乙地需要的时间,木筏漂流的速度就是水流的速度,如果本题采用直接设法,则难以解决,故选用间接设法,设出轮船在静水中的速度和水流速度,为了解题更简单,可增设一个未知数,即甲、乙两地间的路程.解:设轮船在静水中的速度为x km/h ,水流速度为y km/h ,甲、乙两地间的路程为a km.根据题意,得4(),6(),x y a x y a +=⎧⎨-=⎩解这个方程组,得x =5y .把x =5y 代入①,得a =4×(5y +y )=24y . 所以木筏从甲地漂流到乙地所需时间为a y =24y y=24(h). 答:木筏从甲地漂流到乙地需24 h.点拨:本题中有三个未知数,但是却只有两个方程,所以在解题后是得不到具体数据的,不过我们可以把其中的一个未知数看作一个常数,如上面的y ,其他的未知数就可以用这个未知数来表示.a 的参与增加了方程组的可理解性,更能提供操作的可能性,便于解题.题型四列二元一次方程组解决年龄问题例6一名学生问老师:“您今年多大?”老师风趣地说:“我像你这样大时,你才出生;你到我这么大时,我已经36岁了.”请求出老师、学生今年的年龄.分析:本题的相等关系:①老师的年龄-学生的年龄=相差年龄(学生今年年龄);②增长的年龄+老师的年龄=36.解:设老师今年x岁,学生今年y岁.根据题意,得,36,x y yx y x-=⎧⎨-+=⎩解得24,12.xy=⎧⎨=⎩答:老师今年24岁,学生今年12岁.注意:人与人的年龄是同时增长的,所以老师与学生的年龄差是不变的.题型四开放拓展题例7如图2所示,在3×3的方格内,填写了一些代数式和数.图2(1)在图①中,各行、各列及对角线上三个数之和都相等,请求出x,y的值.(2)把满足(1)的其他6个数填入图2②中的方格中.分析:依题意可知图2①中有两个等式:2x+3+2=2+(-3)+4y,2x+3+2=2x+y+4y,由此可以列出二元一次方程组求解.解:(1)由已知条件可列出方程组2322(3)4, 23224,x yx x y y++=+-+⎧⎨++=++⎩整理,得2343,55,x yy+=-⎧⎨=⎩解得1,1.xy=-⎧⎨=⎩(2)由(1)可得如图3所示的方格.图3说明:本题列方程组时有不同的列法,具有一定的开放性,虽然所列的方程组可能不同,但结果是一样的.拓展资源经典有趣的行程问题1甲、乙两人分别从相距100 米的A、B两地出发,相向而行,其中甲的速度是2米/秒,乙的速度是3 米/秒.一只狗从A地出发,先以6米/秒的速度奔向乙,碰到乙后再掉头冲向甲,碰到甲之后再跑向乙,如此反复,直到甲、乙两人相遇.问在此过程中狗一共跑了多少米?这可以说是最经典的行程问题了.不用分析小狗具体跑过哪些路程,只需要注意到甲、乙两人从出发到相遇需要20 秒,在这20 秒的时间里小狗一直在跑,因此它跑过的路程就是120 米.2假设你站在甲、乙两地之间的某个位置,想乘坐出租车到乙地去.你看见一辆空车远远地从甲地驶来,而此时整条路上并没有别人与你争抢空车.我们假定车的行驶速度和人的步行速度都是固定不变的,并且车速大于人速.为了更快地到达目的地,你应该迎着车走过去,还是顺着车的方向往前走一点?在各种人多的场合下提出这个问题,此时大家的观点往往会立即分为鲜明的两派,并且各有各的道理.有人说,由于车速大于人速,我应该尽可能早地上车,充分利用汽车的速度优势,因此应该迎着空车走上去,提前与车相遇.另一派人则说,为了尽早到达目的地,我应该充分利用时间,马不停蹄地赶往目的地.因此,我应该自己先朝目的地走一段路,再让出租车载我走完剩下的路程.其实答案出人意料的简单,两种方案花费的时间显然是一样的.只要站在出租车的角度上想一想,问题就变得很显然了:不管人在哪儿上车,出租车反正都要驶完甲地到乙地的全部路程,因此你到达乙地的时间总等于出租车驶完全程的时间,加上途中接人上车可能耽误的时间.从省事儿的角度来讲,站在原地不动是最好的方案!不过不少人都找到了这个题的一个缺陷,那就是在某些极端情况下,顺着车的方向往前走可能会更好一些,因为你或许会直接走到终点,而此时出租车根本还没追上你!。

5.5 应用二元一次方程组——里程碑上的数

5.5 应用二元一次方程组——里程碑上的数

速度分别保持和去上学时一致,那么他从学校到家需要的时间是
( D) A.14分钟
B.17分钟
C.18分钟
D.20分钟
11.有两个两位数的和为88,把较小的两位数写在较大的两位数的 右边,得到一个四位数,把较小的两位数写在较大的两位数的左边, 得到另一个四位数,这两个四位数的差为3 564,则较小的两位数为 __2_6___.
7.(4 分)小颖家离学校 1 200 m,其中有一段为上坡路,另一段为下
坡路.她去学校共用了 16 分钟.假设小颖上坡路的平均速度是 3 km/h,
下坡路的平均速度是 5 km/h.若设小颖上坡用了 x 分钟,下坡用了 y 分钟,
根据题意可列方程组为( B )
3x+5y=1 200 A.x+y=16
B.xy
C.100x+10y
D.100x+y
3.(4 分)一个两位数的十位数字与个位数字的和是 8,把这个两位数
加上 18,结果恰好成为数字对调后组成的两位数,求这个两位数.设个位
数字为 x,十位数字为 y,所列方程组正确的是( B )
x+y=8 A.xy+18=yx
x+y=8 C.10x+y+18=yx
3x+5y=1.2 C.x+y=16
B.630x+650y=1.2 x+y=16
D.630x+650y=1 200 x+y=16
8.(8 分)学校组织学生乘汽车去自然保护区野营,先以 60 km/h 的速
度走平路,后又以 30 km/h 的速度爬坡,共用了 6.5 h;回校时汽车以 40
km/h 的速度下坡,又以 50 km/h 的速度走平路,共用了 6 h,问平路和坡
6 余 2,则这个两位数是___5_6___.
6.(8 分)有一个三位数,现将左边的数字移到最右边,则比原数小 45,又 已知百位数字的 9 倍比十位和个位组成的两位数小 3,试求原来的三位数.

5.5应用二元一次方程组-里程碑上的数-八年级上册初二数学(北师大版)

5.5应用二元一次方程组-里程碑上的数-八年级上册初二数学(北师大版)
3.引导学生运用所学的二元一次方程组知识分析问题,培养数据分析、问题解决的核心素养。
4.在合作交流中,提升学生的团队合作意识和表达能力,培养数学交流的核心素养。
5.激发学生对数学学科的兴趣,形成正确的数学观念,培养数学情感和审美观念的核心素养。
本节课将重点关注学生在解决实际问题中体现出的核心素养,使学生在掌握知识的同时,提高综合运用数学知识的能力。
5.5应用二元一次方程组-里程碑上的数-八年级上册初二数学(北师大版)
一、教学内容
本节课选自北师大版八年级上册初二数学第5章“一元一次方程组”的5.5节“应用二元一次方程组——里程碑上的数”。教学内容主要包括以下方面:
1.里程碑问题的引入,让学生了解二元一次方程组在实际问题中的应用。
2.利用二元一次方程组解决里程碑问题,掌握解题步骤和方法。
3.重点难点解析:在讲授过程中,我会特别强调如何从实际问题中抽象出二元一次方程组和求解方程组这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与二元一次方程组相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示如何从实际问题中抽象出二元一次方程组。
五、教学反思
在今天的教学中,我尝试通过引入生活中的实际问题,让学生感受二元一次方程组的应用价值。从课堂反馈来看,大部分学生能够积极参与,对新知识表现出浓厚的兴趣。但在教学过程中,我也发现了一些值得思考的问题。
首先,对于如何从实际问题中抽象出二元一次方程组这一环节,部分学生仍然感到困惑。在今后的教学中,我需要更加注重引导学生学会分析问题,提炼关键信息,以便能够准确地建立方程组。

北师大八上数学5.5应用二元一次方程组——里程碑上的数

北师大八上数学5.5应用二元一次方程组——里程碑上的数

解这个方程组得
x
y
1, 6.
答:小明在12:00时看到的里程碑上的数是16.
自学互研 生成能力
知识模块 用二元一次方程组解决数字问题 自主探究:
根据上面的方法,你能解决下面的问题吗? 例如:两个两位数的和是68,在较大的两位数的 右边接着写较小的两位数,得到一个四位数;在较大 的两位数的左边写上较小的两位数,也得到一个四位 数.已知前一个四位数比后一个四位数大2178,求这 两个两位数.
第5章 二元一次方程组
5.5 应用二元一次方程组 ——里程碑上的数
学习目标 1.会应用二元一次方程组解决数学问题. 2.能归纳应用二元一次方程组解决实际问题的一般步骤.
【学习重点】
用二元一次方程组解决数字问题.
【学习难点】
将实际问题转化成二元一次方程组的数学模型.
情景导入 生成问题
小明爸爸骑着摩托车带着小明在马路上匀速行驶, 下面是小明每隔1h看到的里程情况,你能确定小明在 12:00时看到里程碑上的数吗?
12:00 是一个两位数,它的两个数字 之和为7. 13:00 十位与个位数数字与12:00时 所看到的正好互换了. 14:00 比12:00时看到的两位数中间 多了个0.
如果设小明在12:00时看到的数的十位数字是x, 个位数字是y. 那么 (1)12:00时小明看到的数可以表示为___1_0_x_+_y_____ (2)13:00时小明看到的数可以表示为___1_0_y_+_x_____ (3)14:00时小明看到的数可以表示为___1_0_0_x_+_y____ (4)12:00~13:00与13:00~14:00两段时间内内摩托车 的行驶的路程有什么关系?你能列出相应的方程吗?

5.5应用二元一次方程组里程碑上的数 课件北师大版数学八年级上册

5.5应用二元一次方程组里程碑上的数 课件北师大版数学八年级上册

思考
你能归纳列方程组解决实际问题的一般步骤吗?
1. 审题,找 等量关系
2. 设未知数
3. 列方程组
4. 解方程组
5. 检验
任务三:波浪公路之旅
一段波浪公路开始离结束 2.7千米,其中有几段为上坡路,剩下为下坡 路,开完全程共用 5分钟. 已知汽车上坡时的平均速度是 30 千米/时, 下坡时的平均速度是 60千米/时.问这段波浪公路上、下坡各多少千米?
解方程 组
检验
随堂练习
1. 李刚骑摩托车在公路上匀速行驶,早晨 7:00 时看到里程碑上的数是 一个两位数,它的数字之和为 9;8:00 时看到里程碑上的两位数与 7:00 时看到的个位数字和十位数字互换了;9:00 时看到里程碑上的数是 7:00 时看到的数的 8 倍,李刚在 7:00 时看到的数字为多少?
x
y
新三位数
y
x
表达式 100x + y 10y + x
解:设原三位数百位数字为 x,后两位数字为 y. 得方程组:9x = y - 3 100x + y - 45 = 10y + x
9x = y - 3 化简得,
11x - y= 45
解得: x = 4 y = 39
答:原三位数为 439.
3. 汽车在上坡时速度为 28 km/h,下坡时速度 42 km/h,从甲地到乙
解:设乙队每分钟作业长度为 x m,甲每分钟作业长度为 y m.
据题意得: y=x+50
6x 4( x
50)
,
化简得,
y=x+50 x 100
,
解得:
x=100
y
150
,
因此乙队每分钟作业长度为 100 m,甲每分钟作业长度为150 m.

北师大版八年级上册数学:5 应用二元一次方程组里程碑上的数》 (1)

北师大版八年级上册数学:5 应用二元一次方程组里程碑上的数》 (1)
前一个三位数
(两位数放在一位数 前面)
x
y
y
10x+y
100y+x
后一个三位数
(一位数放在两位数 前面)
x
议一议:
列二元一次方程组 解决实际问题的一般步 骤是怎样的?与你的同 伴进行交流.
【规律方法】利用二元一次方程组解决实际问题的一般步 骤
★ 审 清题意,找出等量关系; ★ 设 未知数;(直接设或间接设) ★ 列 出二元一次方程组;(注意方程两边的单位要一致) ★ 解 方程组; ★ 检 验;
★ 答 题.
①12:00看到的数,两个数字之和是6 ②12:00~13:00间汽车行驶的路程×5 =12:00~17:00间汽车行驶的路程
17:00
x
12:00
x y
13:00
y x
9
y
100x+90+3;y -(10x+y) 10y+x -(10x+y)
10y+x
百位 十位 个位 表达式 数字 数字 数字
北师大版八年级数学上册
5.5 应用二元一次方程组——
里程碑上的数
榆林市第一中学分校 张旭
上周末,张老师开车匀速行驶在公路上, 12:00时看到里程碑上的数字是10(km), 17:00时看到里程碑上的数字是210(km), 你能获得哪些信息?
10
210
12:00~17:00间汽车行驶的
路程=17:00时看到的碑数字-

5.5应用二元一次方程组——里程碑上的数-2020秋八年级北师大版数学上册作业课件

5.5应用二元一次方程组——里程碑上的数-2020秋八年级北师大版数学上册作业课件
70.在我们现实生活中,都会经历不少的挫折,一个人的一生中,绝对不会是一帆风顺,人生的路就如小河一样弯弯曲曲。这个时候,我们应 该怎么办呢?是逃避?或投降?还是视而不见?这样都不行,我们需要的是——勇敢的奋斗。 45.很多时候,生活不会是一副完美的样子,能完美的不是人生,想完美的是人心。但平凡的人有平凡的心,拥有平凡的渴望和平凡的心情, 用平凡淡然拼凑永恒的日子。真实而简单的活着,才是最真,最美,最快乐的事情。
34.远离悲观,人将少一份忧愁;学会乐观,你将多一份快乐;学会达观,你会多一份冷静和智慧。选择一种好的心态,获得一种成功的人生 。
75.你看着天空,才发现从七岁起陪着你的那个天空,一直都在你的头顶。然后,你最后一次的想,会不会云层的上头,真的有那一个城堡。 却又突然间觉得自己的这个想法很可笑。你终于是明白,原来生活比你想象的是艰难很多。
7.成功的速度一定要超过父母老去的速度。 86.如果有天我们淹没在人潮中,庸碌一生,那是因为我们没有努力要活得丰盛。 83.年轻时躺在玫瑰上,年老时就会躺在荆棘上。 28.任何一个想提升人生质量的人,最重要的一点就是要具备积极的态度。你的态度在很大程度上决定了你会如何度过人生,决定了你的人生 道路能走多远。
6.成功的人做别人不愿做的事,做别人敢做的事,做别人做不到的事。 3.有希望的地方,痛苦也成快乐。 21、生命永远是尘土中。彼此的疏忽是不必要的。你能理解的是你的身高,你无法理解的是你的真理。您可以感受到他人的辛勤工作,这是 您的道德。您不会感到别人的悲伤,也不会感到自己的责任。
44.信心毅力勇气三者具备,则天下没有做不成的事。 81.当你被失败拥抱时,成功可能正在一边等着吻你。 5、愉快只是幸福的伴随现象,愉快如果不伴随以劳动,那么它不仅会迅速地失去价值,而且也会迅速地使人们的心灵堕落下来。——乌申斯 基

5.5应用二元一次方程组——里程碑上的数例题与讲解

5.5应用二元一次方程组——里程碑上的数例题与讲解

5 应用二元一次方程组——里程碑上的数1.数字问题(1)多位数字表示问题两位数=十位数字×10+个位数字.三位数=百位数字×100+十位数字×10+个位数字.如:一个两位数,个位数字是a ,十位数字是b ,所以这个两位数是b 个10和a 个1的和,那么这个数可表示为10b +a ;如果交换个位和十位上的数字,得到一个新的两位数可表示为10a +b .(2)数位变换后多位数的表示两位数x 放在两位数y 的左边,组成一个四位数,这时,x 的个位数就变成了百位,十位数就变成了千位,因此这个四位数里含有x 个100,而两位数y 在四位数中数位没有变化,因此这个四位数中还含有y 个1.因此用x ,y 表示这个四位数为100x +y .同理,如果将x 放在y 的右边,得到一个新的四位数为100y +x .一个两位数,个位上的数是m ,十位上的数是n ,如果在它们之间添上零,十位上的n 便成了百位上的数.因此这个三位数是由n 个100,0个10,m 个1组成的,用代数式表示这个三位数即为100n +m .【例1】 一个两位数的十位数字与个位数字的和是7,如果这个两位数加上45,则恰好成为个位数字与十位数字对调后组成的两位数,求这个两位数.分析:用下表表示(这个两位数的十位数字为x ,个位数字为y ) 十位数字 个位数字 两位数原两位数 x y 10x +y新两位数 y x 10y +x相等关系:(1)个位数字+十位数字=7;(2)原来的两位数+45=对调后组成的两位数.解:设这个两位数的十位数字为x ,个位数字为y ,由题意,得⎩⎪⎨⎪⎧ x +y =7,10x +y +45=10y +x .解得⎩⎪⎨⎪⎧x =1,y =6.所以原两位数是16.析规律 数字与数位的关系 解决此类问题,关键是从实际问题中确定相等关系,根据相等关系的个数确定列方程还是列方程组,当问题中涉及两个相等关系时,列方程组解决问题比较简单.2.行程问题(1)行程问题:路程=速度×时间①追击问题:一般特征:同地、同向、不同时,抓路程之间的关系建立等量关系. ②相遇问题:一般特征:同时、相向、不同地,常用的关系:路程和=全程. ③航行问题:顺水航行的速度=船在静水中的速度+水速;逆水航行的速度=船在静水中的速度-水速.(2)行程问题的应用:借助图示解答【例2】 已知某一铁路桥长1 000 m ,现有一列火车从桥上通过,测得火车从开始上桥到完全过桥共用1 min ,整列火车完全在桥上的时间为40 s ,求火车的长度和速度. 分析:解此类问题的关键是分析好火车“开始上桥到完全过桥”与“整列火车完全在桥上”的含义,可根据“路程”与“速度”找等式.解:设火车的长度为x m ,火车的速度为y m/s ,则根据题意,得⎩⎪⎨⎪⎧ 1 000+x =60y ,1 000-x =40y .解得⎩⎪⎨⎪⎧ x =200,y =20.所以火车的长度为200 m ,火车的速度为20 m/s.3.怎么解答图形信息题在近几年的中考试题中,出现了一类有趣的图形信息题,即根据日常生活和生产中的实际应用问题绘出图形,让同学们看图分析,捕捉图中提供的数学信息,然后求解.这类问题,大多可用列二元一次方程组的方法求解.图形信息题作为一种新型的中考试题,越来越受到命题者青睐,一类和二元一次方程组有关的图形信息题,不仅考查了同学们从图形中获取信息的能力,而且还考查了根据所得信息列出方程组的能力.图形信息题就是根据文字、图表、图形、图象等给出的数据信息,通过整理、加工、处理等手段去解决实际问题的一类题.解答信息题时,首先要仔细阅读题目所提供的材料,从中捕捉有关信息(如数据间的关系与规律图象的形状特点、变化趋势等),然后对这些信息进行加工处理,并联系相关数学知识,从而实现信息的转换,使问题顺利获解.【例3】 根据图中提供的信息,可知一个杯子的价格是( ).A .51元B .35元C .8元D .7.5元 解析:本题以实物图形给出信息,从图中可以知道,一个水壶和一个杯子共43元,两个水壶和三个杯子共94元,因此可设杯子的单价为x 元,水壶的单价为y 元,根据图形信息,得⎩⎪⎨⎪⎧ x +y =43,3x +2y =94.解得⎩⎪⎨⎪⎧ x =8,y =35.所以一个杯子的价格是8元,选C.答案:C谈重点 审清题意列方程组列二元一次方程组解实际问题,重点在于正确找出实际问题中的两个等量关系,并把它们表示成两个方程.难点是一些难度较大的题目,有迷惑人的因素存在,等量关系隐蔽,往往不易找到或容易找错.解题时必须弄懂题中奥妙,突破解题瓶颈,理清数量之间的内在联系.4.用方程组解决与图形有关的问题用二元一次方程组解图形中的问题,是一种重要的解题方法,这种解题思想就是重要的数形结合思想.利用数形结合思想解决问题,需要认真观察,分析图形性质中隐含的相等关系.列二元一次方程组解决图形问题,需要从图形中找出数量关系,设出恰当的未知数,列出方程.这类问题的相等关系一般隐含在图形中,掌握图形的特征,从隐含条件中发现相等关系是解决问题的关键.【例4】 用8块相同的矩形地砖拼成一块大的矩形地面,地砖的拼放方式及相关数据如图所示,求每块地砖的长与宽.分析:列二元一次方程组解决图形问题,需要从图形中找出数量关系,设出恰当的未知数,列出方程.解:设每块地砖的长为x cm ,宽为y cm ,根据题意,得⎩⎪⎨⎪⎧ x +y =60,2x =x +3y . 解得⎩⎪⎨⎪⎧ x =45,y =15.所以每块地砖的长为45 cm ,宽为15 cm.。

5.5 应用二元一次方程组——里程碑上的数 八年级上册北师大版

5.5 应用二元一次方程组——里程碑上的数  八年级上册北师大版

.
探究新知
是一个两位数, 它的两个数字
之和为7.
十位与个位数字 与12:00时所看到 的正好互换了.
比12:00时看到 的两位数中间
多了个0.
如果设小明在12:00时看到的数的十位数字是x,个位数字
是y,那么
(2)13:00时小明看到的数可表示为
10y + x
,
12:00~13:00间摩托车行驶的路程是 (10y +x)- (10x +y) .
探究新知
知识点 2 列二元一次方程组解答复杂行程问题 小华从家里到学校的路是一段平路和一段下坡路. 假设他 始终保持平路每分钟走60m,下坡路每分钟走80m,上坡路每 分钟走40m,则他从家里到学校需10min,从学校到家里需 15min.问小华家离学校多远?
探究新知 分析:小华到学校的路分成两段,一段为平路,一段为 下坡路. 平路:60 m/min
探究新知
是一个两位数, 它的两个数字
之和为7.
十位与个位数字 与12:00时所看到 的正好互换了.
比12:00时看 到的两位数中 间多了个0.
解:如果设小明在12:00时看到的数的十位数字是x,个位数字是y, 那么根据以上分析,得方程组:
x+y=7 (100x+y)-(10y+x)=(10y+x)-(10x+y) 答:小解明这在个1方2:程00组时,看得到的 xy里程16,碑上的数是16.
巩固练习
变式训练
巴广高速公路在5月10日正式通车,从巴中到广元全长约126
km,一辆小汽车、一辆货车同时从巴中、广元两地相向开出,
经过45分钟相遇,相遇时小汽车比货车多行6 km,设小汽车
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档