2017 2018高二上学期文科期末考试卷及答案word文档良心出品

合集下载

2017-2018学年高二上期末数学文科试卷(1)含答案解析

2017-2018学年高二上期末数学文科试卷(1)含答案解析

2017-2018学年高二(上)期末数学试卷(文科)一、选择题:(每小题5分,共60分)1.(5分)圆O1:x2+y2﹣2x=0和圆O2:x2+y2﹣4y=0的位置关系是()A.相离B.相交C.外切D.内切2.(5分)已知直线l、m,平面α、β且l⊥α,m⊂β,给出下列四个命题:①若α∥β,则l⊥m;②若l⊥m,则α∥β;③若α⊥β,则l∥m;④若l∥m,则α⊥β.其中正确的命题个数为()A.1 B.2 C.3 D.43.(5分)已知条件p:k=;条件q:直线y=kx+2与圆x2+y2=1相切,则¬p 是¬q的()A.充分必要条件B.必要不充分条件C.必要不充分条件 D.既不充分也不必要条件4.(5分)设A为圆周上一点,在圆周上等可能取点,与A连结,则弦长不超过半径的概率为()A.B.C.D.5.(5分)在对两个变量x,y进行线性回归分析时,有下列步骤:①对所求出的回归直线方程作出解释;②收集数据(x i,y i),i=1,2,…,n;③求线性回归方程;④求相关系数;⑤根据所搜集的数据绘制散点图.如果根据可形性要求能够作出变量x,y具有线性相关结论,则在下列操作顺序中正确的是()A.①②⑤③④B.③②④⑤①C.②④③①⑤D.②⑤④③①6.(5分)若直线3x+y+a=0过圆x2+y2+2x﹣4y=0的圆心,则a的值为()A.﹣1 B.1 C.3 D.﹣37.(5分)设m∈R,命题“若m>0,则方程x2+x﹣m=0 有实根”的逆否命题是()A.若方程x2+x﹣m=0 有实根,则m>0B.若方程x2+x﹣m=0有实根,则m≤0C.若方程x2+x﹣m=0 没有实根,则m>0D.若方程x2+x﹣m=0 没有实根,则m≤08.(5分)命题“存在x0∈R,2x0≤0”的否定是()A.不存在x0∈R,2x0>0 B.存在x0∈R,2x0≥0C.对任意的x∈R,2x≤0 D.对任意的x∈R,2x>09.(5分)若直线x﹣y+1=0与圆(x﹣a)2+y2=2有公共点,则实数a取值范围是()A.[﹣3,﹣1]B.[﹣1,3]C.[﹣3,1]D.(﹣∞,﹣3]∪[1,+∞)10.(5分)若椭圆的对称轴为坐标轴,长轴长与短轴长的和为18,一个焦点的坐标是(3,0),则椭圆的标准方程为()A.=1 B.=1C.=1 D.=111.(5分)已知过点P(2,2)的直线与圆(x﹣1)2+y2=5相切,且与直线ax ﹣y+1=0垂直,则a=()A.B.1 C.2 D.12.(5分)对一个作直线运动的质点的运动过程观测了8次,第i次观测得到的数据为a i,具体如下表所示:在对上述统计数据的分析中,一部分计算见如图所示的算法流程图(其中是这8个数据的平均数),则输出的S的值是()A.6 B.7 C.8 D.9二、填空题:(每小题5分,共20分)13.(5分)程所表示的曲线是.(椭圆的一部分,圆的一部分,椭圆,直线的)14.(5分)直线x﹣2y+5=0与圆x2+y2=8相交于A、B两点,则|AB|=.15.(5分)命题“∃x∈R,2x2﹣3ax+9<0”为假命题,则实数a的取值范围为.16.(5分)已知P为椭圆上一点,F1,F2是椭圆的两个焦点,∠F1PF2=60°,则△F1PF2的面积S=.三、解答题:17.(10分)给定两个命题,P:对任意的实数x都有ax2+ax+1>0恒成立;Q:关于x的方程x2﹣x+a=0有实数根;如果p∨q为真,p∧q为假,求实数a的取值范围.18.(12分)某校高二年级有男生105人,女生126人,教师42人,用分层抽样的方法从中抽取13人,进行问卷调查,设其中某项问题的选择支为“同意”,“不同意”两种,且每人都做了一种选择,下面表格中提供了被调查人答卷情况的部分信息.(1)请完成此统计表;(2)试估计高二年级学生“同意”的人数;(3)从被调查的女生中选取2人进行访谈,求选到的两名学生中,恰有一人“同意”一人“不同意”的概率.19.(12分)设锐角三角形的内角A、B、C的对边分别为a、b、c,且a=2bsinA.(1)求B的大小;(2)求cosA+sinC的取值范围.20.(12分)设p:实数x满足x2﹣4ax+3a2<0,其中a>0,命题q:实数x满足.(1)若a=1,且p∧q为真,求实数x的取值范围;(2)若p是q的必要不充分条件,求实数a的取值范围.21.(12分)如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,且四棱锥P﹣ABCD的体积为,求该四棱锥的侧面积.22.(12分)已知直线l:(2m+1)x+(m+1)y﹣7m﹣4=0,m∈R,圆C:(x﹣1)2+(y﹣2)2=25.(Ⅰ)证明:直线l恒过一定点P;(Ⅱ)证明:直线l与圆C相交;(Ⅲ)当直线l被圆C截得的弦长最短时,求m的值.参考答案与试题解析一、选择题:(每小题5分,共60分)1.(5分)圆O1:x2+y2﹣2x=0和圆O2:x2+y2﹣4y=0的位置关系是()A.相离B.相交C.外切D.内切【解答】解:圆O1:x2+y2﹣2x=0,即(x﹣1)2+y2=1,圆心是O1(1,0),半径是r1=1圆O2:x2+y2﹣4y=0,即x2+(y﹣2)2=4,圆心是O2(0,2),半径是r2=2∵|O1O2|=,故|r1﹣r2|<|O1O2|<|r1+r2|∴两圆的位置关系是相交.故选B2.(5分)已知直线l、m,平面α、β且l⊥α,m⊂β,给出下列四个命题:①若α∥β,则l⊥m;②若l⊥m,则α∥β;③若α⊥β,则l∥m;④若l∥m,则α⊥β.其中正确的命题个数为()A.1 B.2 C.3 D.4【解答】解;①∵l⊥α,α∥β,∴l⊥β,又∵m⊂β,∴l⊥m,①正确.②由l⊥m推不出l⊥β,②错误.③当l⊥α,α⊥β时,l可能平行β,也可能在β内,∴l与m的位置关系不能判断,③错误.④∵l⊥α,l∥m,∴m∥α,又∵m⊂β,∴α⊥β,正确;故选:B.3.(5分)已知条件p:k=;条件q:直线y=kx+2与圆x2+y2=1相切,则¬p 是¬q的()A.充分必要条件B.必要不充分条件C.必要不充分条件 D.既不充分也不必要条件【解答】解:条件q:直线y=kx+2与圆x2+y2=1相切,可得:=1,解得k=.∴p是q的充分不必要条件.则¬p是¬q的必要不充分条件.故选:B.4.(5分)设A为圆周上一点,在圆周上等可能取点,与A连结,则弦长不超过半径的概率为()A.B.C.D.【解答】解:在圆上其他位置任取一点B,设圆半径为R,则B点位置所有情况对应的弧长为圆的周长2πR,其中满足条件AB的长度不超过半径长度的对应的弧长为•2πR,则AB弦的长度不超过半径长度的概率P=.故选:C.5.(5分)在对两个变量x,y进行线性回归分析时,有下列步骤:①对所求出的回归直线方程作出解释;②收集数据(x i,y i),i=1,2,…,n;③求线性回归方程;④求相关系数;⑤根据所搜集的数据绘制散点图.如果根据可形性要求能够作出变量x,y具有线性相关结论,则在下列操作顺序中正确的是()A.①②⑤③④B.③②④⑤①C.②④③①⑤D.②⑤④③①【解答】解:对两个变量进行回归分析时,首先收集数据(x i,y i),i=1,2,…,n;根据所搜集的数据绘制散点图.观察散点图的形状,判断线性关系的强弱,求相关系数,写出线性回归方程,最后对所求出的回归直线方程作出解释;故正确顺序是②⑤④③①故选D.6.(5分)若直线3x+y+a=0过圆x2+y2+2x﹣4y=0的圆心,则a的值为()A.﹣1 B.1 C.3 D.﹣3【解答】解:圆x2+y2+2x﹣4y=0的圆心为(﹣1,2),代入直线3x+y+a=0得:﹣3+2+a=0,∴a=1,故选B.7.(5分)设m∈R,命题“若m>0,则方程x2+x﹣m=0 有实根”的逆否命题是()A.若方程x2+x﹣m=0 有实根,则m>0B.若方程x2+x﹣m=0有实根,则m≤0C.若方程x2+x﹣m=0 没有实根,则m>0D.若方程x2+x﹣m=0 没有实根,则m≤0【解答】解:命题的逆否命题为,若方程x2+x﹣m=0 没有实根,则m≤0,故选:D.8.(5分)命题“存在x0∈R,2x0≤0”的否定是()A.不存在x0∈R,2x0>0 B.存在x0∈R,2x0≥0C.对任意的x∈R,2x≤0 D.对任意的x∈R,2x>0【解答】解:命题“存在x0∈R,2x0≤0”的否定是对任意的x∈R,2x>0,故选:D.9.(5分)若直线x﹣y+1=0与圆(x﹣a)2+y2=2有公共点,则实数a取值范围是()A.[﹣3,﹣1]B.[﹣1,3]C.[﹣3,1]D.(﹣∞,﹣3]∪[1,+∞)【解答】解:∵直线x﹣y+1=0与圆(x﹣a)2+y2=2有公共点∴圆心到直线x﹣y+1=0的距离为∴|a+1|≤2∴﹣3≤a≤1故选C.10.(5分)若椭圆的对称轴为坐标轴,长轴长与短轴长的和为18,一个焦点的坐标是(3,0),则椭圆的标准方程为()A.=1 B.=1C.=1 D.=1【解答】解:设椭圆的短轴为2b(b>0),长轴为2a,则2a+2b=18又∵个焦点的坐标是(3,0),∴椭圆在x轴上,c=3∵c2=a2﹣b2∴a2=25 b2=16所以椭圆的标准方程为故选B.11.(5分)已知过点P(2,2)的直线与圆(x﹣1)2+y2=5相切,且与直线ax ﹣y+1=0垂直,则a=()A.B.1 C.2 D.【解答】解:因为点P(2,2)满足圆(x﹣1)2+y2=5的方程,所以P在圆上,又过点P(2,2)的直线与圆(x﹣1)2+y2=5相切,且与直线ax﹣y+1=0垂直,所以切点与圆心连线与直线ax﹣y+1=0平行,所以直线ax﹣y+1=0的斜率为:a==2.故选C.12.(5分)对一个作直线运动的质点的运动过程观测了8次,第i次观测得到的数据为a i,具体如下表所示:在对上述统计数据的分析中,一部分计算见如图所示的算法流程图(其中是这8个数据的平均数),则输出的S的值是()A.6 B.7 C.8 D.9【解答】解:本题在算法与统计的交汇处命题,考查了同学们的识图能力以及计算能力.本题计算的是这8个数的方差,因为所以故选B二、填空题:(每小题5分,共20分)13.(5分)程所表示的曲线是椭圆的一部分.(椭圆的一部分,圆的一部分,椭圆,直线的)【解答】解:方程,可得x≥0,方程化为:x2+4y2=1,(x≥0),方程表示焦点坐标在x轴,y轴右侧的一部分.故答案为:椭圆的一部分;14.(5分)直线x﹣2y+5=0与圆x2+y2=8相交于A、B两点,则|AB|=2.【解答】解:圆心为(0,0),半径为2,圆心到直线x﹣2y+5=0的距离为d=,故,得|AB|=2.故答案为:2.15.(5分)命题“∃x∈R,2x2﹣3ax+9<0”为假命题,则实数a的取值范围为[﹣2,2] .【解答】解:原命题的否定为“∀x∈R,2x2﹣3ax+9≥0”,且为真命题,则开口向上的二次函数值要想大于等于0恒成立,只需△=9a2﹣4×2×9≤0,解得:﹣2≤a≤2.故答案为:[﹣2,2]16.(5分)已知P为椭圆上一点,F1,F2是椭圆的两个焦点,∠F1PF2=60°,则△F1PF2的面积S=.【解答】解:由椭圆的标准方程可得:a=5,b=3,∴c=4,设|PF1|=t1,|PF2|=t2,所以根据椭圆的定义可得:t1+t2=10①,在△F1PF2中,∠F1PF2=60°,所以根据余弦定理可得:|PF1|2+|PF2|2﹣2|PF1||PF2|cos60°=|F1F2|2=(2c)2=64,整理可得:t12+t22﹣t1t2=64,②把①两边平方得t12+t22+2t1•t2=100,③所以③﹣②得t1t2=12,∴∠F1PF2=3.故答案为:3.三、解答题:17.(10分)给定两个命题,P:对任意的实数x都有ax2+ax+1>0恒成立;Q:关于x的方程x2﹣x+a=0有实数根;如果p∨q为真,p∧q为假,求实数a的取值范围.【解答】解:当P为真时,a=0,或,解得:a∈[0,4)﹣﹣(3分)当Q为真时,△=1﹣4a≥0.解得:a∈(﹣∞,]﹣﹣(6分)如果p∨q为真,p∧q为假,即p和q有且仅有一个为真,﹣﹣(8分)当p真q假时,a∈(,4)当p假q真时,a∈(﹣∞,0)a的取值范围即为:(﹣∞,0)∪(,4)﹣﹣(12分)18.(12分)某校高二年级有男生105人,女生126人,教师42人,用分层抽样的方法从中抽取13人,进行问卷调查,设其中某项问题的选择支为“同意”,“不同意”两种,且每人都做了一种选择,下面表格中提供了被调查人答卷情况的部分信息.(1)请完成此统计表;(2)试估计高二年级学生“同意”的人数;(3)从被调查的女生中选取2人进行访谈,求选到的两名学生中,恰有一人“同意”一人“不同意”的概率.【解答】解:(1)根据题意,填写被调查人答卷情况统计表如下:男生105人,女生126人,教师42人,用分层抽样的方法从中抽取13人,进行问卷调查,设其中某项问题的选择支为“同意”,“不同意”两种,且每人都做了一种选择,下面表格中提供了被调查人答卷情况的部分信息.(2)由表格可以看出女生同意的概率是,男生同意的概率是;用男女生同意的概率乘以人数,得到同意的结果数为105×+126×=105,估计高二年级学生“同意”的人数为105人;(3)设“同意”的两名学生编号为1,2,“不同意”的四名学生分别编号为3,4,5,6,选出两人则有(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)共15种方法;其中(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),共8种满足题意;则恰有一人“同意”一人“不同意”的概率为P=.19.(12分)设锐角三角形的内角A、B、C的对边分别为a、b、c,且a=2bsinA.(1)求B的大小;(2)求cosA+sinC的取值范围.【解答】解:(1)由a=2bsinA.根据正弦定理,得sinA=2sinBsinA,sinA≠0.故sinB=.因△ABC为锐角三角形,故B=.(2)cosA+sinC=cosA+sin=cosA+sin=cosA+cosA+sinA=sin.由△ABC为锐角三角形,知=﹣B<A<,∴<A+<,故<sin<,<<.故cosA+sinC的取值范围是.20.(12分)设p:实数x满足x2﹣4ax+3a2<0,其中a>0,命题q:实数x满足.(1)若a=1,且p∧q为真,求实数x的取值范围;(2)若p是q的必要不充分条件,求实数a的取值范围.【解答】解:p:实数x满足x2﹣4ax+3a2<0,其中a>0,解得a<x<3a.命题q:实数x满足.化为,解得,即2<x≤3.(1)a=1时,p:1<x<3.p∧q为真,可得p与q都为真命题,则,解得2<x<3.实数x的取值范围是(2,3).(2)∵p是q的必要不充分条件,∴,a>0,解得1<a≤2.∴实数a的取值范围是(1,2].21.(12分)如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,且四棱锥P﹣ABCD的体积为,求该四棱锥的侧面积.【解答】证明:(1)∵在四棱锥P﹣ABCD中,∠BAP=∠CDP=90°,∴AB⊥PA,CD⊥PD,又AB∥CD,∴AB⊥PD,∵PA∩PD=P,∴AB⊥平面PAD,∵AB⊂平面PAB,∴平面PAB⊥平面PAD.解:(2)设PA=PD=AB=DC=a,取AD中点O,连结PO,∵PA=PD=AB=DC,∠APD=90°,平面PAB⊥平面PAD,∴PO⊥底面ABCD,且AD==,PO=,∵四棱锥P﹣ABCD的体积为,由AB⊥平面PAD,得AB⊥AD,=∴V P﹣ABCD====,解得a=2,∴PA=PD=AB=DC=2,AD=BC=2,PO=,∴PB=PC==2,∴该四棱锥的侧面积:S侧=S△PAD+S△PAB+S△PDC+S△PBC=+++==6+2.22.(12分)已知直线l:(2m+1)x+(m+1)y﹣7m﹣4=0,m∈R,圆C:(x﹣1)2+(y﹣2)2=25.(Ⅰ)证明:直线l恒过一定点P;(Ⅱ)证明:直线l与圆C相交;(Ⅲ)当直线l被圆C截得的弦长最短时,求m的值.【解答】(本题满分12分)解:证明:(Ⅰ)直线l方程变形为(2x+y﹣7)m+(x+y﹣4)=0,由,得,∴直线l恒过定点P(3,1).…(4分)(Ⅱ)∵P(3,1),圆C:(x﹣1)2+(y﹣2)2=25的圆心C(1,2),半径r=5,∴,∴P点在圆C内部,∴直线l与圆C相交.…(8分)解:(Ⅲ)当l⊥PC时,所截得的弦长最短,此时有k l•k PC=﹣1,而,k PC=﹣,∴=﹣1,解得m=﹣.…(12分)。

2017-2018学年高二语文第一学期期末测试卷及答案

2017-2018学年高二语文第一学期期末测试卷及答案

2017—2018学年第一学期期末统一检测题高二语文本试卷共8页,18小题,满分150分。

考试用时150分钟。

注意事项:1. 答卷前,考生务必用黑色字迹的钢笔或签字笔,将自己所在县(市、区)、姓名、试室号、座位号填写在答题卷上对应位置,再用2B铅笔将准考证号涂黑.2. 选择题每小题选出答案后,用2B铅笔把答题卷上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案,答案不能写在试卷或草稿纸上.3. 非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卷各题目指定区域内相应的位置上;如需改动,先划掉原来的答案,然后再在答题区内写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效一、默写(15分)(1)外无期功强近之亲,。

(李密《陈情表》)(2)袅袅兮秋风,。

(屈原《湘夫人》)(3),两朝开济老臣心。

(杜甫《蜀相》)(4)楼船夜雪瓜州渡,。

(陆游《书愤》)(5)熊咆龙吟殷岩泉,。

(李白《梦游天姥吟留别》)(6),渔粱渡头争渡喧。

(孟浩然《夜归鹿门歌》)(7)春水碧于天,。

(韦庄《菩萨蛮(其二)》)(8),乾坤日夜浮。

(杜甫《登岳阳楼》)(9)心非木石岂无感?。

(鲍照《拟行路难·其四》)(10)引壶觞以自酌,。

(陶渊明《归去来兮辞》)(11)渔舟唱晚,。

(王勃《滕王阁序》)(12)使六国各爱其人,则足以拒秦;使秦复爱六国之人,,谁得而族灭也?(杜牧《阿房宫赋》)(13)况阳春召我以烟景,。

(李白《春夜宴从弟桃花源序》)(14),芙蓉泣露香兰笑。

(李贺《李凭箜篌引》)(15)小楼昨夜又东风,。

(李煜《虞美人》)二、文言文阅读(29分)阅读下面的文言文,完成2-7题。

(一)伶官传序欧阳修呜呼!盛衰之理,虽曰天命,岂非人事哉!原庄宗之所以得天下,与其所以失之者,可以知之矣。

世言晋王之将终也,以三矢赐庄宗而告之曰:“梁,吾仇也;燕王,吾所立;契丹与吾约为兄弟;而皆背晋以归梁。

17—18学年上学期高二期末考试语文试题(附答案)(2)

17—18学年上学期高二期末考试语文试题(附答案)(2)

2017——2018学年度第一学期高二期末检测语文试卷考试时间:150分钟第一卷阅读题一、现代文阅读(35分)(一)论述类文本阅读(本题共3小题,9分)阅读下面的文字,完成1—3题。

围棋与国家林建超围棋起源于中国,是黄河文明的产物,其形制弈法等都饱含着文明母体的基因和特征。

围棋极可能源自上古时期的结绳而治、河图洛书和周易八卦,因为其形制、内涵与中华文明的源头相符。

围棋的产生和发展,始终与弈者对自然、社会和人生的思考感悟联系在一起。

围棋不仅对个人修身养性,而且对民族社会的群体心理产生深刻影响。

围棋是中华五千年文明的象征、民族文化的瑰宝、高度智慧的结晶,这种地位不是任何人封赐的,也不是带有感情色彩的主观结论,而是人们在反复实践和比较中认识到的,是随着社会和文明的进步而不断深化和升华的。

围棋的价值和地位是在与各种掷彩博累活动的比较中确立起来的。

最早有文献记载的围棋活动是在春秋时期。

从春秋到西汉,社会风气浮躁、趋利,具有运气性和刺激性、宜于赌博的博累棋流行甚广,围棋处于受挤压的位置,但始终保持着顽强的生命力。

东汉中期后,社会风气转变,文明程度提高,思想更为自由,人们不满足于掷彩行棋的非公平的竞智斗巧,围棋更加受到人们的喜爱和重视,而曾经盛极一时的博累棋逐步走向衰弱,到唐代时完全消亡了。

博累棋消亡的原因从根本上说是它们不符合我们民族的思想特征,不能满足人们精神生活的真正需求,而围棋在与它们的比较中表现出了本质上的优势。

围棋的价值和地位是在与传统礼教观念斗争中确立起来的。

围棋作为反映和体现人们心灵自由的智力博弈活动,在很长一段时间里,被认为不符合传统伦理观念。

后来,人们逐步认识到这些观念都是不对的。

从东汉中后期到魏晋时期,人们开始从生命意义上认识围棋的价值,就把围棋作为自觉的艺术追求和精神宣寄的工具,并把它纳入儒士必备的艺技。

围棋的价值和地位是从正反两方面的社会实践对比中确立起来的。

人们在围棋活动的实践中逐渐认识到,围棋本身具有娱乐、教育、竞技、交际等功能。

2017-2018学年高二(上)期末数学试卷(文科)(解析版)

2017-2018学年高二(上)期末数学试卷(文科)(解析版)

2017-2018学年高二(上)期末数学试卷(文科)一、选择题(本题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.101(9)化为十进制数为()A.9 B.11 C.82 D.101【解答】解:由题意,101(9)=1×92+0×91+1×90=82,故选:C.2.随机事件A发生的概率的范围是()A.P(A)>0 B.P(A)<1 C.0<P(A)<1 D.0≤P(A)≤1【解答】解:∵随机事件是指在一定条件下可能发生,也有可能不发生的事件∴随机事件A发生的概率的范围0<P(A)<1当A是必然事件时,p(A)=1,当A是不可能事件时,P(A)=0故选C.3.如果一组数x1,x2,…,xn的平均数是,方差是s2,则另一组数的平均数和方差分别是()A.B.C.D.【解答】解:∵x1,x2,…,xn的平均数是,方差是s2,∴的平均数为,的方差为3s2故选C4.“﹣3<m<5”是“方程+=1表示椭圆”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】利用充分条件和必要条件的定义判断.【解答】解:若方程+=1表示椭圆,则,所以,即﹣3<m<5且m≠1.所以“﹣3<m<5”是“方程+=1表示椭圆”的必要不充分条件.故选B.5.某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是()A.B.C.D.【解答】解:设小明到达时间为y,当y在7:50至8:00,或8:20至8:30时,小明等车时间不超过10分钟,故P==,故选:B6.执行如图所示的程序框图,若输出k的值为8,则判断框内可填入的条件是()A.s≤B.s≤C.s≤D.s≤【解答】解:模拟执行程序框图,k的值依次为0,2,4,6,8,因此S=++=(此时k=6),因此可填:S≤.故选:C.7.若直线l经过A(2,1),B(1,﹣m2)(m∈R)两点,则直线l的倾斜角α的取值范围是()A.0≤α≤B.<α<πC.≤α<D.<α≤【解答】解:根据题意,直线l经过A(2,1),B(1,﹣m2),则直线l的斜率k==1+m2,又由m∈R,则k=1+m2≥1,则有tanα=k≥1,又由0≤α<π,则≤α<;故选:C.8.从1,2,3,4,5中任取两个不同的数字,构成一个两位数,则这个数字大于40的概率是()A.B.C.D.【解答】解:从1,2,3,4,5中任取两个不同的数字,构成一个两位数有=5×4=20,这个数字大于40的有=8,∴这个数字大于40的概率是=,故选:A9.已知点P(x,y)在直线2x+y+5=0上,那么x2+y2的最小值为()A.B.2C.5 D.2【解答】解:x2+y2的最小值可看成直线2x+y+5=0上的点与原点连线长度的平方最小值,即为原点到该直线的距离平方d2,由点到直线的距离公式易得d==.∴x2+y2的最小值为5,故选:C10.已知圆M:x2+y2﹣2ay=0(a>0)截直线x+y=0所得线段的长度是2,则圆M与圆N:(x﹣1)2+(y﹣1)2=1的位置关系是()A.内切 B.相交 C.外切 D.相离【解答】解:圆的标准方程为M:x2+(y﹣a)2=a2 (a>0),则圆心为(0,a),半径R=a,圆心到直线x+y=0的距离d=,∵圆M:x2+y2﹣2ay=0(a>0)截直线x+y=0所得线段的长度是2,∴2=2=2=2,即=,即a2=4,a=2,则圆心为M(0,2),半径R=2,圆N:(x﹣1)2+(y﹣1)2=1的圆心为N(1,1),半径r=1,则MN==,∵R+r=3,R﹣r=1,∴R﹣r<MN<R+r,即两个圆相交.故选:B11.一条光线沿直线2x﹣y+2=0入射到直线x+y﹣5=0后反射,则反射光线所在的直线方程为()A.2x+y﹣6=0 B.x+2y﹣9=0 C.x﹣y+3=0 D.x﹣2y+7=0【解答】解:由得,故入射光线与反射轴的交点为A(1,4),在入射光线上再取一点B(0,2),则点B关于反射轴x+y﹣5=0的对称点C(3,5)在反射光线上.根据A、C两点的坐标,用两点式求得反射光线的方程为,即x﹣2y+7=0.故选D.12.已知F1,F2是双曲线E:﹣=1的左、右焦点,点M在E上,MF1与x轴垂直,sin∠MF2F1=,则E的离心率为()A.B.C.D.2【解答】解:设|MF1|=x,则|MF2|=2a+x,∵MF1与x轴垂直,∴(2a+x)2=x2+4c2,∴x=∵sin∠MF2F1=,∴3x=2a+x,∴x=a,∴=a,∴a=b,∴c=a,∴e==.故选:A.二、填空题(本大题共4小题,每小题5分,共20分)13.双曲线8kx2﹣ky2=8的一个焦点为(0,3),则k的值为﹣1.【解答】解:根据题意可知双曲线8kx2﹣ky2=8在y轴上,即,∵焦点坐标为(0,3),c2=9,∴,∴k=﹣1,故答案为:﹣1.14.椭圆+y2=1的弦被点(,)平分,则这条弦所在的直线方程是2x+4y﹣3=0.【解答】解:设这条弦的两端点为A(x1,y1),B(x2,y2),斜率为k,则,两式相减再变形得,又弦中点为(,),故k=﹣,故这条弦所在的直线方程y﹣=﹣(x﹣),整理得2x+4y﹣3=0.故答案为:2x+4y﹣3=0.15.已知命题p:|x﹣1|+|x+1|≥3a恒成立,命题q:y=(2a﹣1)x为减函数,若p且q为真命题,则a的取值范围是(.【解答】解:∵p且q为真命题,∴命题p与命题q均为真命题.当命题p为真命题时:∵|x﹣1|+|x+1|≥3a恒成立,∴只须|x﹣1|+|x+1|的最小值≥3a即可,而有绝对值的几何意义得|x﹣1|+|x+1|≥2,即|x﹣1|+|x+1|的最小值为2,∴应有:3a≤2,解得:a≤,①.当命题q为真命题时:∵y=(2a﹣1)x为减函数,∴应有:0<2a﹣1<1,解得:,②.综上①②得,a的取值范围为:即:(].故答案为:(].16.已知椭圆+=1,当椭圆上存在不同的两点关于直线y=4x+m对称时,则实数m的范围为:﹣<m<.【解答】解:∵+=1,故3x2+4y2﹣12=0,设椭圆上两点A(x1,y1)、B(x2,y2)关于直线y=4x+m对称,AB中点为M(x0,y0),则3x12+4y12﹣12=0,①3x22+4y22﹣12=0,②①﹣②得:3(x1+x2)(x1﹣x2)+4(y1+y2)(y1﹣y2)=0,即3•2x0•(x1﹣x2)+4•2y0•(y1﹣y2)=0,∴=﹣•=﹣.∴y0=3x0,代入直线方程y=4x+m得x0=﹣m,y0=﹣3m;因为(x0,y0)在椭圆内部,∴3m2+4•(﹣3m)2<12,即3m2+36m2<12,解得﹣<m<.故答案为:﹣<m<三、解答题(本大题共6小题,70分)17.为了了解某地高一学生的体能状况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图),图中从左到右各小长方形的面积之比为2:4:17:15:9:3,第二小组频数为12.(1)第二小组的频率是多少?样本容量是多少?(2)若次数在110以上为达标,试估计全体高一学生的达标率为多少?(3)通过该统计图,可以估计该地学生跳绳次数的众数是115,中位数是121.3.【解答】解:(1)∵从左到右各小长方形的面积之比为2:4:17:15:9:3,第二小组频数为12.∴样本容量是=150,∴第二小组的频率是=0.08.(2)∵次数在110以上为达标,∴在这组数据中达标的个体数一共有17+15+9+3,∴全体学生的达标率估计是=0.88 …6分(3)在频率分布直方图中最高的小长方形的底边的中点就是这组数据的众数,即=115,…7分处在把频率分布直方图所有的小长方形的面积分成两部分的一条垂直与横轴的线对应的横标就是中位数121.3 …8分18.设命题p:实数x满足x2﹣4ax+3a2<0,其中a>0,命题q:实数x满足.(1)若a=1,且p∧q为真,求实数x的取值范围;(2)若¬p是¬q的充分不必要条件,求实数a的取值范围.【解答】解:(1)当a=1时,p:{x|1<x<3},q:{x|2<x≤3},又p∧q为真,所以p真且q真,由得2<x<3,所以实数x的取值范围为(2,3)(2)因为¬p是¬q的充分不必要条件,所以q是p的充分不必要条件,又p:{x|a<x<3a}(a>0),q:{x|2<x≤3},所以解得1<a≤2,所以实数a的取值范围是(1,2]19.已知直线l:y=kx+1,圆C:(x﹣1)2+(y+1)2=12.(1)试证明:不论k为何实数,直线l和圆C总有两个交点;(2)求直线l被圆C截得的最短弦长.【解答】解:(1)由,消去y得到(k2+1)x2﹣(2﹣4k)x﹣7=0,∵△=(2﹣4k)2+28k2+28>0,∴不论k为何实数,直线l和圆C总有两个交点;(2)设直线与圆相交于A(x1,y1),B(x2,y2),则直线l被圆C截得的弦长|AB|=|x1﹣x2|=2=2,令t=,则有tk2﹣4k+(t﹣3)=0,当t=0时,k=﹣;当t≠0时,由k∈R,得到△=16﹣4t(t﹣3)≥0,解得:﹣1≤t≤4,且t≠0,则t=的最大值为4,此时|AB|最小值为2,则直线l被圆C截得的最短弦长为2.20.已知回归直线方程是:=bx+a,其中=,a=﹣b.假设学生在高中时数学成绩和物理成绩是线性相关的,若10个学生在高一下学期某次考试中数学成绩x(总分150分)和物理成绩y(总分100分)如下:X 122 131 126 111 125 136 118 113 115 112Y 87 94 92 87 90 96 83 84 79 84(1)试求这次高一数学成绩和物理成绩间的线性回归方程(系数精确到0.001)(2)若小红这次考试的物理成绩是93分,你估计她的数学成绩是多少分呢?【解答】解:(1)由题意,==120.9,==87.6,=146825,=102812,∴===0.538,a=﹣b≈22.521∴=0.538x﹣22.521,(2)由(1)=0.538x﹣22.521,当y=93时,93=0.538x﹣22.521,x≈131.21.已知椭圆C:+=1(a>b>0)的左焦点为F(﹣2,0),离心率为.(Ⅰ)求椭圆C的标准方程;(Ⅱ)设O为坐标原点,T为直线x=﹣3上一点,过F作TF的垂线交椭圆于P、Q,当四边形OPTQ是平行四边形时,求四边形OPTQ的面积.【解答】解:(Ⅰ)由题意可得,解得c=2,a=,b=.∴椭圆C的标准方程为;(Ⅱ)由(Ⅰ)可得F(﹣2,0),设T(﹣3,m),则直线TF的斜率,∵TF⊥PQ,可得直线PQ的方程为x=my﹣2.设P(x1,y1),Q(x2,y2).联立,化为(m2+3)y2﹣4my﹣2=0,△>0,∴y1+y2=,y1y2=.∴x1+x2=m(y1+y2)﹣4=.∵四边形OPTQ是平行四边形,∴,∴(x1,y1)=(﹣3﹣x2,m﹣y2),∴,解得m=±1.此时四边形OPTQ的面积S=═=.22.已知H(﹣3,0),点P在y轴上,点Q在x轴的正半轴上,点M在直线PQ上,且满足.(1)当点P在y轴上移动时,求点M的轨迹C;(2)过点T(﹣1,0)作直线l与轨迹C交于A、B两点,若在x轴上存在一点E(x0,0),使得△ABE是等边三角形,求x0的值.【解答】解(1)设点M的坐标为(x,y),由.得,由,得,所以y2=4x由点Q在x轴的正半轴上,得x>0,所以,动点M的轨迹C是以(0,0)为顶点,以(1,0)为焦点的抛物线,除去原点.(2)设直线l:y=k(x+1),其中k≠0代入y2=4x,得k2x2+2(k2﹣2)x+k2=0①设A(x1,y1),B(x2,y2),则x1,x2是方程①的两个实数根,由韦达定理得所以,线段AB的中点坐标为,线段AB的垂直平分线方程为,令,所以,点E的坐标为.因为△ABE为正三角形,所以,点E到直线AB的距离等于|AB|,而|AB|=.所以,解得,所以.。

(审核版)2017-2018学年高二语文上学期期末考试试题(含解析)(新人教版 第6套)

(审核版)2017-2018学年高二语文上学期期末考试试题(含解析)(新人教版 第6套)

2017——2018学年度第一学期期末考试高二年级语文学科试卷2018年1月20日第Ⅰ卷阅读题一、现代文阅读(9分,每小题3分)阅读下面的文字,完成1-3题中国民间剪纸艺术就是一种融物质文明和精神文明为一体,深深植根于民族土壤,广泛表现在民间信仰和生活习俗之中,鲜明地反映出我国民间广大民众最基本的心理特征和审美情趣、价值观念的民俗文化之一。

因此,它是我国传统文化不可忽视的一部分。

民间剪纸是劳动人民为满足精神生活的需要而创造,并在他们自己当中应用和流传的一种艺术样式。

从艺术的角度看民间剪纸艺术是属于精神文化的范畴,它是劳动人民集体创造出来,反映了我们民族的集体表象的一种文化模式。

民间剪纸的作者们在创造时,从来没有任何政治功利,但有生活方面的功利意识潜入在其中。

他们在创造时,往往让人(包括创造者自己)从中感受到一种审美情趣。

这是由于它们适合于人的审美经验的审美心理而形成的美感。

所以,自中国民间产生剪纸以来,人们一直将其作为一种象征性装饰物,尽管历代在造型样式和利用形式上不断发生更新和变化,可民间大众所赋予它的造型思维方式和特定的深层寓意内涵,却一直不变地流传至今。

因此,可以说民间剪纸是一种大众艺术。

从客观上说,中国民间剪纸是一种物承文化现象。

它不仅有它的造型形式的传承,而且还有着它自身深层独有的特定内涵。

从中国民间剪纸的纹饰寓意中,我们可以看到从中反映出来的中国民间图腾崇拜和宗教信仰的传承,以及当地民众的心理特征、生活追求和审美情趣。

它是我们探寻本民族的民族渊源和原始文化的活证。

例如“蛙”这一形象在民间剪纸中屡见不鲜,民间常将它视为一种威力的象征,看作是生活中最可靠的保护神,并将“蛙”这一自然中丑陋的动物形态,运用民间美术中的互渗造型手法,将其变为神圣、稚拙、亲切、动人、给人美感的剪纸花样,缝绣在孩童的枕头、围涎、肚兜、香包等衣物上,以希望孩子在“蛙”的保护下,茁壮成长,美满幸福。

需要指出的是,“蛙”这一图腾物产生以来,因为囿于民间文化而没有上升到中国的上层文化之中,所以也就得不到龙凤那样由皇权所推崇的中华文化象征的地位。

2017-2018学年高二上学期期末数学试卷(文科) word版含解析

2017-2018学年高二上学期期末数学试卷(文科) word版含解析

2017-2018学年高二(上)期末数学试卷(文科)一、选择题(每小题5分,共60分.在所给的四个选项中,只有一项是符合题目要求的)1.cos600°=()A.B.﹣C.D.﹣【解答】解:cos600°=cos=cos240°=cos=﹣cos60°=﹣,故选:B.2.设集合A={x|x2﹣5x+6<0},B={x|2x﹣5>0},则A∩B=()A.B. C. D.【解答】解:由A中不等式变形得:(x﹣2)(x﹣3)<0,解得:2<x<3,即A=(2,3),由B中不等式解得:x>,即B=(,+∞),则A∩B=(,3),故选:C.3.复数(i是虚数单位)的共轭复数在复平面内对应的点是()A.(2,﹣2)B.(2,2) C.(﹣2,﹣2) D.(﹣2,2)【解答】解:==2﹣2i(i是虚数单位)的共轭复数2+2i在复平面内对应的点(2,2).故选:B.4.已知数列,则a2016=()A.1 B.4 C.﹣4 D.5【解答】解:数列,∴a3=a2﹣a1=4,同理可得:a4=﹣1,a5=﹣5,a6=﹣4,a7=1,a8=5,…,21·世纪*教育网可得an+6=an.则a2016=a335×6+6=a6=﹣4.故选:C.5.取一根长度为4m的绳子,拉直后在任意位置剪断,则剪得的两段长度都不小于1.5m的概率是()A.B.C.D.【解答】解:记“两段的长都不小于1.5m”为事件A,则只能在中间1m的绳子上剪断,剪得两段的长都不小于1.5,所以事件A发生的概率P(A)=.6.已知==2,且它们的夹角为,则=()A. B. C.1 D.2【解答】解:根据条件:==12;∴.故选A.7.给出下列命题:①a>b⇒ac2>bc2;②a>|b|⇒a2>b2;③|a|>b⇒a2>b2;④a>b⇒a3>b3其中正确的命题是()A.①② B.②③ C.③④ D.②④【解答】解:①a>b⇒ac2>bc2在c=0时不成立,故①错误;②a>|b|⇒|a|>|b|⇒a2>b2,故②正确;③a=﹣2,b=1时,|a|>b成立,但a2>b2不成立,故③错误;④y=x3在R上为增函数,故a>b⇒a3>b3,故④正确;故选:D8.如图所示的程序的输出结果为S=1320,则判断框中应填()A.i≥9 B.i≤9 C.i≤10 D.i≥10【解答】解:首先给循环变量i和累积变量S赋值12和1,判断12≥10,执行S=1×12=12,i=12﹣1=11;判断11≥10,执行S=12×11=132,i=11﹣1=10;判断10≥10,执行S=132×10=1320,i=10﹣1=9;判断9<10,输出S的值为1320.故判断框中应填i≥10.故选:D.9.定义在R上的函数f(x)在(6,+∞)上为增函数,且函数y=f(x+6)为偶函数,则A .f (4)<f (7)B .f (4)>f (7)C .f (5)>f (7)D .f (5)<f (7) 【解答】解:根据题意,y=f (x+6)为偶函数,则函数f (x )的图象关于x=6对称, f (4)=f (8),f (5)=f (7); 故C 、D 错误;又由函数在(6,+∞)上为增函数,则有f (8)>f (7); 又由f (4)=f (8), 故有f (4)>f (7); 故选:B .10.已知一个几何体的三视图如图所示,则该几何体的体积是( )A .B .C .D .【解答】解:由已知中的三视图可得:该几何体是一个以侧视图为底面的四棱锥, 其底面面积S=2×2=4,高h=×2=,故体积V==,故选:C .11.气象意义上的春季进入夏季的标志为:“连续五天每天日平均温度不低于22℃”,现在甲、乙、丙三地连续五天的日平均温度的记录数据(记录数据都是正整数,单位℃):21教育名师原创作品甲地:五个数据的中位数是24,众数为22; 乙地:五个数据的中位数是27,平均数为24;丙地:五个数据中有一个数据是30,平均数是24,方差为10. 则肯定进入夏季的地区有( ) A .0个 B .1个 C .2个 D .3个【解答】解:气象意义上的春季进入夏季的标志为:“连续五天每天日平均温度不低于22℃”, 由此得到:甲地肯定进入夏季,∵五个数据的中位数是24,众数为22,∴22℃至少出现两次,若有一天低于22℃,中位数就不是24℃,故甲地进入夏季; 乙地不一定进处夏季,如13,23,27,28,29,故乙地不一定进入夏季; 丙地不一定进入夏季,10×5﹣(30﹣24)2≥(24﹣x )2, ∴(24﹣x )2≤14,x=21时,成立,故丙地不一定进入夏季. 故选:B .12.已知圆O 的半径为2,PA 、PB 为圆O 的两条切线,A 、B 为切点(A 与B 不重合),则的最小值为( )2·1·c ·n ·j ·yA .﹣12+4B .﹣16+4C .﹣12+8D .﹣16+8【解答】解:设PA 与PO 的夹角为α,则|PA|=|PB|=,y=•=||||cos2α=•cos2α=•cos2α=4记cos2α=μ.则y=4=4[(﹣μ﹣2)+]=﹣12+4(1﹣μ)+≥﹣12+8.当且仅当μ=1﹣时,y 取得最小值:8.即•的最小值为8﹣12.故选:C .二.填空题:本大题共4小题,每小题5分.13.若函数f (x )=x2﹣|x+a|为偶函数,则实数a= 0 . 【解答】解:∵f (x )为偶函数 ∴f (﹣x )=f (x )恒成立 即x2﹣|x+a|=x2﹣|x ﹣a|恒成立 即|x+a|=|x ﹣a|恒成立 所以a=0故答案为:0.14.某程序框图如图所示,则该程序运行后输出的k 的值是 5 .【解答】解:程序在运行过程中各变量的值如下表示:第一圈k=3 a=43 b=34第二圈k=4 a=44 b=44第三圈k=5 a=45 b=54此时a>b,退出循环,k值为5故答案为:5.15.若平面向量,满足||≤1,||≤1,且以向量,为邻边的平行四边形的面积为,则与的夹角θ的取值范围是.【解答】解:∵以向量,为邻边的平行四边形的面积为,∴.∵平面向量,满足||≤1,||≤1,∴,∵θ∈(0,π),∴.∴与的夹角θ的取值范围是.故答案为:.16.某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历,假定该毕业生得到甲公司面试的概率为,得到乙、丙公司面试的概率均为p,且三个公司是否让其面试是相互独立的.记X为该毕业生得到面试的公司个数.若P(X=0)=,则随机变量X的数学期望E(X)=.【解答】解:由题意知X为该毕业生得到面试的公司个数,则X的可能取值是0,1,2,3,∵P(X=0)=,∴,∴p=,P(X=1)=+=P(X=2)==,P(X=3)=1﹣=,∴E(X)==,故答案为:三、解答题17.在△ABC中,内角A,B,C所对边长分别为a,b,c,,∠BA C=θ,a=4.(1)求bc的最大值;(2)求函数的值域.【解答】解:(1)∵=bc•cosθ=8,由余弦定理可得16=b2+c2﹣2bc•cosθ=b2+c2﹣16,∴b2+c2=32,又b2+c2≥2bc,∴bc≤16,即bc的最大值为16,当且仅当b=c=4,θ=时取得最大值;(2)结合(1)得,=bc≤16,∴cosθ≥,又0<θ<π,∴0<θ≤,∴=2sin(2θ+)﹣1∵0<θ≤,∴<2θ+≤,∴sin(2θ+)≤1,当2θ+=,即θ=时,f(θ)min=2×,当2θ+=,即θ=时,f (θ)max=2×1﹣1=1,∴函数f (θ)的值域为[0,1]18.已知函数的图象关于直线x=π对称,其中ω,λ为常数,且ω∈(,1). (1)求函数f (x )的最小正周期;(2)若存在,使f (x0)=0,求λ的取值范围.【解答】(本题满分为12分)解:(1)=sin2ωx ﹣cos2ωx ﹣λ=2sin (2ωx ﹣)﹣λ,∵函数f (x )的图象关于直线x=π对称,∴解得:2ωx ﹣=kπ+,可得:ω=+(k ∈Z ),∵ω∈(,1).可得k=1时,ω=,∴函数f (x )的最小正周期T==…6分(2)令f (x0)=0,则λ=2sin (﹣),由0≤x0≤,可得:﹣≤﹣≤,则﹣≤sin (﹣)≤1,根据题意,方程λ=2sin (﹣)在[0,]内有解,∴λ的取值范围为:[﹣1,2]…12分19.向量与的夹角为θ,||=2,||=1,=t,=(1﹣t ),||在t0时取得最小值,当0<t0<时,夹角θ的取值范围是 .【解答】解:由题意可得=2×1×co sθ=2cosθ,=﹣=(1﹣t )﹣t,∴||2==(1﹣t )2+t2﹣2t (1﹣t )=(1﹣t )2+4t2﹣4t (1﹣t )cosθ =(5+4cosθ)t2+(﹣2﹣4cosθ)t+1由二次函数知当上式取最小值时,t0=,由题意可得0<<,解得﹣<cosθ<0,∴<θ<故答案为:20.在四棱锥P ﹣ABCD 中,AD ⊥平面PDC ,PD ⊥DC ,底面ABCD 是梯形,AB ∥DC ,AB=AD=PD=1,CD= (1)求证:平面PBC ⊥平面PBD ;(2)设Q 为棱PC 上一点,=λ,试确定 λ的值使得二面角Q ﹣BD ﹣P 为60°.【解答】(1)证明:∵AD ⊥平面PDC ,PD ⊂平面PCD ,DC ⊂平面PDC ,图1所示.∴AD ⊥PD ,AD ⊥DC ,在梯形ABCD 中,过点作B 作BH ⊥CD 于H , 在△BCH 中,BH=CH=1,∴∠BCH=45°, 又在△DAB 中,AD=AB=1,∴∠ADB=45°, ∴∠BDC=45°,∴∠DBC=90°,∴BC ⊥BD . ∵PD ⊥AD ,PD ⊥DC ,AD ∩DC=D . AD ⊂平面ABCD ,DC ⊂平面ABCD , ∴PD ⊥平面ABCD ,∵BC ⊂平面ABCD ,∴PD ⊥BC ,∵BD ∩PD=D ,BD ⊂平面PBD ,PD ⊂平面PBD . ∴BC ⊥平面PBD ,∵BC ⊂平面PBC ,∴平面PBC ⊥平面PBD ;(2)解:过点Q 作QM ∥BC 交PB 于点M ,过点M 作MN ⊥BD 于点N ,连QN . 由(1)可知BC ⊥平面PDB ,∴QM ⊥平面PDB ,∴QM ⊥BD , ∵QM ∩MN=M ,∴BD ⊥平面MNQ ,∴BD ⊥QN ,图2所示. ∴∠QNM 是二面角Q ﹣BD ﹣P 的平面角,∴∠QNM=60°,∵,∴,∵QM∥BC,∴,∴QM=λBC,由(1)知,∴,又∵PD=1,MN∥PD,∴,∴MN===1﹣λ,∵tan∠MNQ=,∴,∴.21.已知椭圆C:+=1(a>b>0)过点A(﹣,),离心率为,点F1,F2分别为其左右焦点.21教育网(1)求椭圆C的标准方程;(2)若y2=4x上存在两个点M,N,椭圆上有两个点P,Q满足,M,N,F2三点共线,P,Q,F2三点共线,且PQ⊥MN.求四边形PMQN面积的最小值.【考点】直线与圆锥曲线的综合问题.【分析】(1)由椭圆的离心率公式和点满足椭圆方程及a,b,c的关系,解方程,即可得到椭圆方程;(2)讨论直线MN的斜率不存在,求得弦长,求得四边形的面积;当直线MN斜率存在时,设直线方程为:y=k(x﹣1)(k≠0)联立抛物线方程和椭圆方程,运用韦达定理和弦长公式,以及四边形的面积公式,计算即可得到最小值.【解答】解:(1)由题意得:,a2﹣b2=c2,得b=c,因为椭圆过点A(﹣,),则+=1,解得c=1,所以a2=2,所以椭圆C方程为.(2)当直线MN斜率不存在时,直线PQ的斜率为0,易得,.当直线MN斜率存在时,设直线方程为:y=k(x﹣1)(k≠0)与y2=4x联立得k2x2﹣(2k2+4)x+k2=0,令M(x1,y1),N(x2,y2),则,x1x2=1,|MN|=•.即有,∵PQ⊥MN,∴直线PQ的方程为:y=﹣(x﹣1),将直线与椭圆联立得,(k2+2)x2﹣4x+2﹣2k2=0,令P(x3,y3),Q(x4,y4),x3+x4=,x3x4=,由弦长公式|PQ|=•,代入计算可得,∴四边形PMQN的面积S=|MN|•|PQ|=,令1+k2=t,(t>1),上式=,所以.最小值为.22.设函数f(x)=lnx,g(x)=(m>0).(1)当m=1时,函数y=f(x)与y=g(x)在x=1处的切线互相垂直,求n的值;(2)若函数y=f(x)﹣g(x)在定义域内不单调,求m﹣n的取值范围;(3)是否存在实数a,使得f()•f(eax)+f()≤0对任意正实数x恒成立?若存在,求出满足条件的实数a;若不存在,请说明理由.【考点】导数在最大值、最小值问题中的应用;利用导数研究曲线上某点切线方程.【分析】(1)分别求出f(x)、g(x)的导数,求得在x=1处切线的斜率,由两直线垂直的条件,解方程即可得到n;(2)求出y=f(x)﹣g(x)的导数,可得,得的最小值为负,运用基本不等式即可求得m﹣n的范围;(3)假设存在实数a,运用构造函数,求出导数,求得单调区间和最值,结合不等式恒成立思想即有三种解法.【解答】解:(1)当m=1时,,∴y=g(x)在x=1处的切线斜率,由,∴y=f(x)在x=1处的切线斜率k=1,∴,∴n=5.(2)易知函数y=f(x)﹣g(x)的定义域为(0,+∞),又,由题意,得的最小值为负,∴m(1﹣n)>4,由m>0,1﹣n>0,∴,∴m+(1﹣n)>4或m+1﹣n<﹣4(舍去),∴m﹣n>3;(3)解法一、假设存在实数a,使得f()•f(eax)+f()≤0对任意正实数x恒成立.令θ(x)=,其中x>0,a>0,则θ'(x)=,设,∴δ(x)在(0,+∞)单调递减,δ(x)=0在区间(0,+∞)必存在实根,不妨设δ(x0)=0,即,可得(*)θ(x)在区间(0,x0)上单调递增,在(x0,+∞)上单调递减,所以θ(x)max=θ(x0),θ(x0)=(ax0﹣1)•ln2a﹣(ax0﹣1)•lnx0,代入(*)式得,根据题意恒成立.又根据基本不等式,,当且仅当时,等式成立即有,即ax0=1,即.代入(*)式得,,即,解得.解法二、假设存在实数a,使得f()•f(eax)+f()≤0对任意正实数x恒成立.令θ(x)=ax•ln2a﹣ax•lnx+lnx﹣ln2a=(ax﹣1)(ln2a﹣lnx),其中x>0,a>0根据条件对任意正数x恒成立,即(ax﹣1)(ln2a﹣lnx)≤0对任意正数x恒成立,∴且,解得且,即时上述条件成立,此时.解法三、假设存在实数a,使得f()•f(eax)+f()≤0对任意正实数x恒成立.令θ(x)=ax•ln2a﹣ax•lnx+lnx﹣ln2a=(ax﹣1)(ln2a﹣lnx),其中x>0,a>0要使得(ax﹣1)(ln2a﹣lnx)≤0对任意正数x恒成立,等价于(ax﹣1)(2a﹣x)≤0对任意正数x恒成立,即对任意正数x恒成立,设函数,则φ(x)的函数图象为开口向上,与x正半轴至少有一个交点的抛物线,因此,根据题意,抛物线只能与x轴有一个交点,即,所以.。

2017-2018学年高二上学期期末试卷语文试题 Word版含答案(17)

2017-2018学年高二上学期期末试卷语文试题 Word版含答案(17)

高二语文上学期期末质量检测试题语文试题考试时间:150 分钟试卷分数:150 分,一、现代文阅读(9 分,每小题3 分)阅读下面的文字,完成1-3如果承认唐诗是中国诗的高峰,就不能不进而承认盛唐诗乃是这座高峰的顶点。

从玄宗即位到代宗登基,这半个世纪通常称为盛唐。

但在公元755年安史乱前和乱后,诗坛的面貌是并不一样的。

在这次战乱以前,诗人们在其创作中都发散着强烈的浪漫气息。

或者表现为希企隐逸,爱好自然,诗中的代表人物形象是隐士;或者表现为追求功名,向往边塞,诗中的代表人物形象是侠少。

这,实质上也就反映了他们由于生活道路的千差万别而形成的得意与失意、出世与入世两种互相矛盾的思想情感。

不同的生活道路与不同的生活态度,使他们或者成为高蹈的退守者,或者成为热情的进取者,或者因时变化,两者兼之。

前人所谓“盛唐气象”,在很大的程度上,指的就是这种富于浪漫气息的精神面貌。

孟浩然、王维、常建、储光羲等的许多作品,都极为成功地描绘了幽静的景色,借以反映其宁谧的心境。

这种诗使人脱离现实斗争,但对于热衷奔竞、趋炎附势者流,也具有清凉剂的作用,而其所提供的自然美的享受则是不可替代的。

这些人是以写田园山水诗得名的陶渊明、谢灵运、谢朓的后继者,气象的浑穆或有不及,而措语的精深华妙则有过之。

其后的韦应物、柳宗元在这方面是他们的追随者。

但王维却在描摹自然、歌颂隐逸之外,还曾将其诗笔扩展到更广阔的生活领域。

在另外许多同样成功的篇章中,他反映了当时人们的进取精神和悲壮情怀。

王维在高蹈者孟浩然等和进取者高适、岑参、李颀、王昌龄等之间,恰好是一座桥梁。

所以有些评论家就一方面将其与孟浩然相提并论,合称王孟;而另一方面,又将其与高适等相提并论,合称王、李、高、岑。

当然,这种提法也包含有对诗歌样式的考虑在内。

王维是兼有五七言古今体之长的,而王孟并提,偏指五律;王、李、高、岑并提,则偏指七古。

集中反映了盛唐时代积极进取精神的,是出自王、李、高、岑等人之手的边塞诗。

2017-2018学年高二语文上学期期末考试试题

2017-2018学年高二语文上学期期末考试试题

2017——2018学年度第一学期期末考试高二语文试题满分150分,考试时间120分钟注意事项:1.答题前,考生务必先将自己的姓名、准考证号填写在答题纸上。

2.考生作答时,请将答案涂写在答题纸上,在本试卷上答题无效.按照题号在各题的答题区域内作答,答题区域错误或超出答题区域书写的答案无效。

3.答案使用0.5毫米的黑色中性(签字)笔书写,字体工整、笔迹清楚.4.保持答题纸纸面清洁、不破损、不折叠.考试结束后,将本试卷自行保存,答题纸交回。

一、现代文阅读(26分)(一)论述类文本阅读(本题共3小题,9分)阅读下面的文字,完成1~3题.有人说到“经”,便有意无意地把它等同于“经典”,而提起“中国经典",就转换成“儒家经典”,这种观念有些偏狭。

中国经典绝不是儒家一家经典可以独占的,也应包括其他经典,就像中国传统是“复数的”传统一样.首先,中国经典应当包括佛教经典,也应当包括道教经典。

要知道,“三教合一”实在是东方的中国与西方的欧洲在文化领域中最不同的地方之一,也是古代中国政治世界的一大特色。

即使是古代中国的皇帝,不仅知道“王霸道杂之”,也知道要“儒家治世,佛教治心,道教治身”,绝不只用一种武器。

因此,回顾中国文化传统时,仅仅关注儒家的思想和经典,恐怕是过于狭窄了。

即便是儒家,也包含了相当复杂的内容,有偏重“道德自觉”的孟子和偏重“礼法治世”的荀子,有重视宇宙天地秩序的早期儒家和重视心性理气的新儒家。

应当说,在古代中国,关注政治秩序和社会伦理的儒家,关注超越世界和精神救赎的佛教,关注生命永恒和幸福健康的道教,分别承担着传统中国的不同责任,共同构成中国复数的文化。

其次,中国经典不必限于圣贤、宗教和学派的思想著作,它是否可以包括得更广泛些?比如历史著作《史记》《资治通鉴》,比如文字学著作《说文解字》,甚至唐诗、宋词、元曲里面的那些名著佳篇.经典并非天然就是经典,它们都经历了从普通著述变成神圣经典的过程,这在学术史上叫“经典化”。

2017-2018学年高二上学期期末试卷语文试题 Word版含答案(39)

2017-2018学年高二上学期期末试卷语文试题 Word版含答案(39)

高二语文上学期期末质量检测试题语文期末考试试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(表达题)两部分。

分值150分,时间为150分钟。

一、现代文阅读(9分,每小题3分)阅读下面的文字,完成5~7题。

“好声音”的精神追求最近,“中国好声音”的出现既获得了诸多好评,也引发了对于选手经历等方面的争议。

好评和争议交错,热播和分歧共存,这其实是近年来中国选秀文化变化和发展的一个新的状况的投射,也是中国电视文化的新的变化的投影。

这些都值得我们认真思考。

中国的选秀文化经过了2005年以后的第一波的高潮之后,在相当程度上进入了某种困局。

一是造就超级明星的功能业已减退。

通过选秀为公众所认识好像越来越难。

这既是由于这些年唱片业在互联网时代的转型的问题复杂,也是由于歌手的形象风格都相当接近,难以脱颖而出。

一开始通过选秀的梦想舞台选出青春偶像的情况已经不再出现,反而是许多参加各电视台选秀的选手都差不多,观众的印象模糊。

二是观众的新鲜感消退之后,对于选秀的形式已相当熟悉,各个电视台的选秀节目也都有重复之嫌,使得观众产生了疲劳感,觉得没有什么新意了。

这几年选秀一直处在瓶颈之中。

当下引发观看热潮和争议的“中国好声音”一出现就引发了轰动效应。

它力求超越粉丝和明星的关系,从音乐专业方面着力,从“好声音”中寻求新的可能性。

让刘欢、那英等这样最有声望的音乐会人来指点新人,让迷人的好声音得以展现。

通过这些华语歌坛的最重量级人物收徒,而选手也可以选择导师的做法,使普通人能够成为音乐人,进入这一专业领域得到更多的培养和深造,从而能够为未来的职业生涯打下坚实的基础。

这其实是从普通人中选择真正的“好声音”,让他们得以进放专业领域。

这个构思另辟蹊径,让选秀不再一下子就能实现梦想,也不仅仅展现梦想;而是让梦想通过一个专业的路径,通过较为严谨的程序得以延伸,最终成为一个职业生涯的选择。

这是将梦想的实现转换为实实在在的修业和学习的长期的努力的过程,节目正是在这一点上赢得了公众。

2017-2018学年高二上学期期末试卷语文试题 Word版含答案(40)

2017-2018学年高二上学期期末试卷语文试题 Word版含答案(40)

高二语文上学期期末质量检测试题语文试卷(满分:150分)一、基础知识(每题3分,共18分)1.下列词语字音字形无误的是 ( )A.梁椽(chuán)欢谑(nùe) 萦迂剡溪B.衰鬓(bìn)凝睇锱铢肯綮.(qìng)C.渌.水(lǜ) 鼙.鼓(pí) 砉然馔玉D.披靡.(mí)玉扃嗔目鼎铛(chēng)2.下列句子中,加点词的意义与现代汉语一致的是( )A.依乎天理..见之。

..,批大郤,导大窾。

B.我何面目C.各抱地势,钩心斗角..孤危,战败而亡,诚不得已。

....。

D.可谓智力3.下列叙述不正确的的是( )A.《李凭箜篌引》中诗人运用了大量丰富奇特的想象和比喻,充满浪漫主义色彩,令人惊叹。

此诗是李贺诗歌的代表作之一,是唐诗中描写音乐的名篇。

B.《史记》是西汉著名史学家司马迁撰写的一部纪传体史书,是中国历史上第一部纪传体通史,被列为"二十四史"之首,记载了上至上古传说中的黄帝时代,下至汉武帝元狩元年间共3000多年的历史。

C.《长恨歌》是一首叙事成份很浓的抒情诗。

诗人在叙述故事和人物塑造上,采用了我国传统诗歌擅长的抒写手法,将叙事、写景和抒情和谐地结合在一起,形成诗歌抒情上回环往复的特点。

而《阿房宫赋》是唐代文学家杜牧创作的一篇借古讽今的赋体散文。

D.《庖丁解牛》选自《庄子•养生主》,《庄子》是庄周和他的门人以及后学者的著作,是道家学派的重要作品。

4.下列各句中,没有语病的一句是 ( )A.刁亦男执导的《白日焰火》获得第64 届柏林国际电影节最佳影片金熊奖,而该片主演廖凡也成功摘取最佳男演员的桂冠,成为历史上第一个柏林电影节华人“影帝”。

B.法国学者奈尔撰文说,美国之所以从战略和政治上如此倚重监听,原因是美国目前在经济和财政上陷入危机,以及面对新兴大国崛起和德国重返世界权力中心的挑战造成的。

C.数字化时代,文字记录方式发生了重大变化,致使很多人提笔忘字,长此以往,将影响到汉字文化能否很好地传承。

2017—2018学年上学期期末考试 高中二年级 语文答案

2017—2018学年上学期期末考试 高中二年级 语文答案

2017—2018学年上学期期末考试高中二年级语文参考答案一、现代文阅读(35分)(一)论述类文本阅读(本题共3小题,9分)1.C(C项颠倒因果,原文第三段第一句说“‘道’之不可名,乃是由于它的无形”,“道”之无形是因,“不可名”才是果。

)2.D(D项理解有误,文章第四段比较“道”与“存有”的异同,是为了证明老子的“道”是不断运动着的变动体。

)3.A(A项曲解文意,根据文意,老子用“道”来称呼那个浑然一体的东西,只是为了方便起见,实际上它“不可名”。

)(二)文学类文本阅读(本题共3小题,14分)4. B(村民提着东西来陪父亲喝酒并不能说明乡亲们的虚伪、自私。

)5. ①一语双关。

春子家的“传家宝”,表面上指蓑衣、竹篙及渡船,实际上指春子家世代知恩感恩的精神。

②“传家宝”是小说的线索。

整篇小说围绕着父亲期待儿子继承“传家宝”、儿子如何继承“传家宝”展开。

③“传家宝”暗合了小说的主旨。

春子虽然没有像父辈那样义务摆渡,但却用自己的智慧传承了家族的感恩精神,而这正是春子家的“传家宝”。

(答出一点给2分,答出两点给4分,答出三点给5分;如答“引起读者兴趣”给1分;如有其他观点,言之成理,也可酌情给分。

)6.①这样安排结尾,既在意料之外,又在情理之中。

小说前半部分写春子“无端的怨恨”“隐隐的不满”以及与父亲的“争吵”,使得小说的结尾出人意料;但另一方面,这样的结尾又照应了上文“春子摆渡收费”,面对村民的假意关心春子淡淡一笑、毫无失落等情节,给这些情节一个合理的解释,使这个结尾又在情理之中。

②丰富了人物形象。

春子出资建桥,既不负父亲的期待,报了乡亲们的恩情,又可一劳永逸,方便了乡亲们渡河。

小说塑造了一个孝顺感恩、智慧多能的新时代青年形象。

③深化了小说主旨。

小说结尾通过交代出“春子出资建桥”的事实,不仅赞颂了代代相传的感恩精神,也褒扬了在新的时代、用新的方式解决问题的智慧。

④照应开头与题目,使小说结构更加圆合。

春子出资建桥,使父亲自豪、满意,正呼应了开头父亲眼光中的期待,春子达成了这期待;同时也照应了题目“传家宝”,使得“传家宝”的内涵更加丰富。

2017-2018高二上学期文科数学答案

2017-2018高二上学期文科数学答案

2017—2018学年上学期期末考试 模拟卷(1)高二文科数学·参考答案1 2 3 4 5 67 8 9 10 11 12 CDBCDCBCDADC13.{|5x x ≥或1}x ≤-14.15,12,2n n n a n -=⎧=⎨≥⎩15.3128000cm16.3217.(本小题满分10分)【解析】由“p q ∧”是真命题,知p 为真命题,q 也为真命题. (2分)若p 为真命题,则2a x ≥恒成立,∵[0,1]x ∈,∴2[0,1]x ∈,∴1a ≥. (5分)若q 为真命题,则有102aa >->,即12a <<.(8分) 所以所求实数a 的取值范围为(1,2).(10分) 18.(本小题满分12分)【解析】(1)由题意知2213b b b =,又等差数列的公差,11b a =,24b a =,313b a =,所以24113a a a =⋅,即2111(6)(24)a a a +=+,解得,(2分)所以,(4分) 设等比数列的公比为,则,所以.(6分) (2)由(1)得(321)(2)2n n nS n n ++==+,所以,(8分) 因此1111111111[(1)()()()()]232435112n T n n n n =⨯-+-+-+⋅⋅⋅+-+--++ {}n a 2d =13a =3(1)221n a n n =+-⨯=+{}n b q 24113b a q b a ===3n n b =11111()(2)22n S n n n n ==-++.(12分) 19.(本小题满分12分)【解析】(1)由2cos cos c a bA B-=,得2cos cos cos c B a B b A -=,即2cos cos cos c B a B b A=+,根据正弦定理得,2sin cos sin cos sin cos sin()sin C B A B B A A B C =+=+=,(2分)因为sin 0C ≠,所以2cos 2B =,(4分) 又0180B ︒<<︒,所以45B =︒.(6分)(2)在ADC △中,7AC =,5AD =,3DC =,由余弦定理得222cos 2AD DC AC ADC AD DC +-∠=⋅22253712532+-==-⨯⨯, 所以120ADC =∠︒,60ADB ∠=︒, (8分) 在ABD △中,5AD =,45B =︒,60ADB ∠=︒, 由正弦定理得sin sin AB AD ADB B=∠, 所以35sin 5sin 60562sin sin 45222AD AB ADB B ⨯⋅∠︒===︒=. (12分)20.(本小题满分12分)【解析】(1)由题意得:12(500)(10.5%)12500x x -+≥⨯.整理得:23000x x -≤,又0x >, 故0300x <≤.(4分)(2)由题意知,生产B 产品创造的利润为1312()1000a x x -万元, 设备升级后,生产A 产品创造的利润为12(500)(10.5%)x x -+万元,(5分)1111(1)2212n n =⨯+--++32342(1)(2)n n n +=-++则1213()12(500)(10.5%)1000a x x x x -≤-+恒成立,(6分) ∴235001252x ax x ≤++,且0x >,∴50031252x a x ≤++.(8分) ∵50050024125125x xx x+≥-50024125x x ⋅=,当且仅当500125x x =,即250x =时等号成立, ∴0 5.5a <≤,∴a 的最大值为5.5.(12分) 21.(本小题满分12分)【解析】(1)由题意得1b =,由22631c a a c ⎧=⎪⎨⎪=+⎩,得32a c ⎧=⎪⎨=⎪⎩,(3分) ∴椭圆E 的标准方程为2213x y +=.(4分) (2)依题意可设直线l 的方程为1x my =-,由22131x y x my ⎧+=⎪⎨⎪=-⎩,得22(3)220m y my +--=,(6分) 2248(3)0m m ∆=++>,设1122(,)(,)A x y B x y 、,则1221222323m y y m y y m ⎧+=⎪⎪+⎨⎪=-⎪+⎩,(8分)221212122211361()422(3)OABm S y y y y y y m +=⨯⨯-=+-=+△, 设23(3)m t t +=≥,则22233131133()3()24OAB t S t t t t -==-+=--+△,(10分) ∵3t ≥,∴1103t <≤, ∴当113t =,即3t =时,OAB △的面积取得最大值63,此时0m =.(12分)22.(本小题满分12分)【解析】(1)2212()1a af x x x -'=+-,(1分) 依题意有(2)0f '=,即21104a a -+-=,解得32a =.(3分)检验:当32a =时,22222332(1)(2)()1x x x x f x x x x x -+--'=+-==. 此时,函数()f x 在(1,2)上单调递减,在(2,)+∞上单调递增,满足在2x =时取得极值.(4分) 综上可知32a =.(5分) (2)依题意可得:()0f x ≥对任意[1,)x ∈+∞恒成立等价转化为min ()0f x ≥在[1,)x ∈+∞上恒成立.(6分)因为22222122(21)[(21)](1)()1a a x ax a x a x f x x x x x --+----'=+-==, 令()0f x '=得:121x a =-,21x =.(8分)①当211a -≤,即1a ≤时,函数()0f x '≥在[1,)+∞上恒成立,则()f x 在[1,)+∞上单调递增,于是min ()(1)220f x f a ==-≥,解得1a ≤,此时1a ≤;(10分)②当211a ->,即1a >时,[1,21)x a ∈-时,()0f x '≤;(21,)x a ∈-+∞时,()0f x '>,所以函数()f x 在[1,21)a -上单调递减,在(21,)a -+∞上单调递增,于是min ()(21)(1)220f x f a f a =-<=-<,不合题意,此时a ∈∅. 综上所述,实数a 的取值范围是(,1]-∞.(12分)。

2017-2018学年高二上学期期末考试文科数学试卷(word版附答案)

2017-2018学年高二上学期期末考试文科数学试卷(word版附答案)

2017-2018学年高二上学期期末考试文科数学试卷1、考试时间:120分钟2、 满分:150分3、考试范围:导数,命题,圆锥曲线一、选择题(本题共12小题,每小题5分,共60分,每小题只有一个....选项符合题意) 1.抛物线y =14x 2的焦点到准线的距离是( )A. 14B. 12 C .2 D .4 2.对∀k ∈R ,则方程221+=x ky 所表示的曲线不可能是( )A .两条直线B .圆C .椭圆或双曲线D .抛物线 3. 不可能以直线b x y +=23作为切线的曲线是( ) A .x y 1-=B .x y sin =C . x y ln =D . x e y =4.已知)0,1(1-F ,)0,1(2F 是椭圆的两焦点,过1F 的直线l 交椭圆于N M ,,若N MF 2∆的周长为8,则椭圆方程为A.13422=+y xB.13422=+x yC.1151622=+y xD.1151622=+x y 5.“双曲线方程为622=-y x ”是“双曲线离心率2=e ”的( )A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件 6.下列四个命题中,真命题是 ( )A. 若1>m ,则220-+>x x m ;B. “正方形是矩形”的否命题;C. “若21,1则==x x ”的逆命题; D. “若0,00则且+===x y x y ”的逆否命题.7.过点(0,1)作直线,使它与抛物线24=y x 仅有一个公共点,这样的直线有( )A .1条B .2条C .3条D .4条8.直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( )A. 13B. 12C. 23D. 349.函数f (x )=x 2+2x f ′(1),则f (-1)与f (1)的大小关系为( )A .f (-1)=f (1)B .f (-1)<f (1)C .f (-1)>f (1)D .无法确定10.已知双曲线22221(0,0)-=>>x y a b a b的两条渐近线均和圆C :22650+-+=x y x 相切,且双曲线的右焦点为圆C 的圆心,则该双曲线的方程为( )A.22154-=x yB.22145-=x yC. 22136-=x yD.22163-=x y 11、如图是甲、乙两人的位移s 与时间t 关系图象,以下说法错误的是( )A .甲、乙两人在[0,0t ]内的平均速度相同B .甲、乙两人在0t t =时刻的瞬时速度相同C .甲做匀速运动,乙做变速运动D .当0t t >时,在[0,t t ]内任一时刻乙的瞬时速度 大于甲的瞬时速度12. 若椭圆)0(12222>>=+b a by a x 和圆c c b y x (,)2(222+=+为椭圆的半焦距),有四个不同的交点,则椭圆的离心率e 的取值范围是( ) A. )53,55(B. )55,52(C. )53,52(D. )55,0( 二、填空题(本题共4小题,每小题5分,共20分)13.已知p (x ):x 2+2x -m >0,如果p (1)是假命题,p (2)是真命题,则实数m 的取值范围是________.14.抛物线ax y =2的焦点恰好为双曲线222x y -=的右焦点,则=a . 15.曲线y =x +1x 2(x >0)在点)2,1(处的切线的一般方程为_________________. 16. 已知F 是抛物线24x y =的焦点,P 为抛物线上的动点,且A 的坐标为()0,1-,则PF PA的最小值是 .三、解答题(本题共6小题,共70分.解答时应写出文字说明、证明过程或演算步骤)17.已知命题p :方程13122=-++ty t x 所表示的曲线为焦点在y 轴上的椭圆;命题q :实数t 满足不等式210()t a t a ---<.(1)若命题p 为真,求实数t 的取值范围;(2)若命题p 是命题q 的充分不必要条件,求实数a 的取值范围.18.已知命题:p x ∀∈R ,2sin 1≤+a x ,命题0:q x ∃∈R ,使得()200110x a x +-+<.若“p 或q 为真”,“p 且q 为假”,求实数a 的取值范围.19.(1)已知函数()xf x e =,过原点作曲线()y f x =的切线,求切线方程;(2)已知函数32()=+++f x x bx cx d 的图象过点P (0,2),且在点(1,(1))--M f 处的切线方程为076=+-y x .求函数()=y f x 的解析式;20.已知定点()0,4A -,点P 是圆224x y +=上的动点。

2017-2018高二上学期语文期末考试试卷

2017-2018高二上学期语文期末考试试卷

2017—2018学年上学期期末考试模拟卷(1)高二语文(考试时间:150分钟试卷满分:150分)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上。

2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试卷和答题卡一并上交。

5.考试范围:必修5+中国古代诗歌散文欣赏。

第I卷阅读题一、现代文阅读(35分)(一)论述文阅读(9分,每小题3分)阅读下面的文字,完成1~3题。

我国历史上的茶马贸易之始,向来有“定论”,即始于中唐以后。

封演《封氏闻见记》卷六《饮茶》云:“回鹘入朝,大驱名马,市茶而归。

”封演随心所欲的十二字小说家言,被欧阳修抄入《新唐书•陆羽传》,遂不胫而走。

安史之乱后,回鹘大驱名马入唐,确为史实,但唐政府为之支付的是绢帛而不是茶。

因为安史之乱前后,茶还只是一种奢侈消费品,尚未普及到民间,绝无可能用相对而言较昂贵而又稀缺的茶去交换西马。

安史之乱后,大唐昔日水草丰美的牧马胜地陇右等沦失殆尽,吐蕃乘虚而入,“苑牧蓄马皆没”“马政一蹶不振,国马唯银州河东是依”。

为了维护国防,须保持一支相当规模的骑兵,除了国内括马外,唐政府就只有向回纥、吐蕃等市马一策。

绢马互市就在这样的历史条件下产生了。

“马价绢”对唐王朝是一项十分沉重的财政负担。

明确记载茶马互市的史料始见于南宋李焘的《续资治通鉴长编》,而茶马贸易真正形成制度则在宋真宗咸平元年,《长编》有载:应杨允恭之请,正式置估马司,主管市马。

又重申:“以布帛、茶、他物准其直”,岁市五千余匹。

又在边境设招马之处,遣牙吏入蕃招募,给路券,至估马司定价。

这是历史上最早出现的有比较完备机构、制度和具体规定的茶马贸易资料,作为一代典制的要素均已具备。

2017-2018学年高二(上)期末数学 试卷(文科)(解析版)

2017-2018学年高二(上)期末数学 试卷(文科)(解析版)

2017-2018学年高二(上)期末数学试卷(文科)一、选择题(本大题共12小题,每小题5分,共60分)1.命题“∃x0≤0,使得x02≥0”的否定是()A.∀x≤0,x2<0 B.∀x≤0,x2≥0 C.∃x0>0,x02>0 D.∃x0<0,x02≤0 【解答】解:因为特称命题的否定是全称命题,所以,命题“∃x0≤0,使得x02≥0”的否定是∀x≤0,x2<0.故选:A.2.已知集合A={x|x2﹣2x﹣3≤0},B={x|y=ln(2﹣x)},则A∩B=()A.(1,3) B.(1,3] C.[﹣1,2)D.(﹣1,2)【解答】解:∵集合A={x|x2﹣2x﹣3≤0}={x|﹣1≤x≤3}=[﹣1,3],B={x|y=ln(2﹣x)}={x|2﹣x>0}={x|x<2}=(﹣∞,2);∴A∩B=[﹣1,2).故选:C.3.已知圆(x+2)2+(y﹣2)2=a截直线x+y+2=0所得弦的长度为6,则实数a的值为()A.8 B.11 C.14 D.17【解答】解:圆(x+2)2+(y﹣2)2=a,圆心(﹣2,2),半径.故弦心距d==.再由弦长公式可得a=2+9,∴a=11;故选:B.4.函数y=的图象大致是()A.B.C.D.【解答】解:函数y=是奇函数,所以选项A,B不正确;当x=e时,y=>0,图象的对应点在第一象限,D正确;C错误.故选:D.5.将函数y=(sinx+cosx)的图象上各点的横坐标伸长到原来的2倍,再向左平移个单位,所得函数图象的解析式是()A.y=cos B.y=sin()C.y=﹣sin(2x+)D.y=sin(2x+)【解答】解:将函数y=(sinx+cosx)=sin(x+)的图象上各点的横坐标伸长到原来的2倍,可得函数y=sin(x+)的图象;再向左平移个单位,所得函数图象的解析式为y=sin[(x+)+]=cos x,故选:A.6.函数f(x)=,若f(a)=1,则a的值是()A.1或2 B.1 C.2 D.1或﹣2【解答】解:由题意得,f(x)=,当a<2时,f(a)=3a﹣2=1,则a=2,舍去;当a≥2时,f(a)==1,解得a=2或a=﹣2(舍去),综上可得,a的值是2,故选C.7.执行如图的程序框图,则输出S的值为()A.2 B.﹣3 C. D.【解答】解:模拟执行程序,可得S=2,k=1,S=﹣3,不满足条件k≥2016,k=2,S=﹣,不满足条件k≥2016,k=3,S=,不满足条件k≥2016,k=4,S=2,不满足条件k≥2016,k=5,S=﹣3,…观察规律可知,S的取值周期为4,由于2016=504×4,可得不满足条件k≥2016,k=2016,S=2,满足条件k≥2016,满足退出循环的条件,故输出的S值为2.故选:A.8.已知a=,b=log2,c=,则()A.a>b>c B.a>c>b C.c>a>b D.c>b>a【解答】解:a=∈(0,1),b=log2<0,c=log>1.∴c>a>b.故选:C.9.设a>0,b>0,若是4a与2b的等比中项,则的最小值为()A.2B.8 C.9 D.10【解答】解:因为4a•2b=2,所以2a+b=1,,当且仅当即时“=”成立,故选C.10.已知A,B,P是双曲线上的不同三点,且AB连线经过坐标原点,若直线PA,PB的斜率乘积,则该双曲线的离心率e=()A.B. C. D.【解答】解:由题意,设A(x1,y1),P(x2,y2),则B(﹣x1,﹣y1)∴kPA•k PB=,A,B代入两式相减可得=,∵,∴=,∴e2=1+=,∴e=.故选:B.11.如图,网格纸上小正方形的边长为1,粗实线及粗虚线画出的是某多面体的三视图,则该多面体外接球的表面积为()A.8πB.π C.12πD.π【解答】解:根据三视图得出:该几何体是镶嵌在正方体中的四棱锥O﹣ABCD,正方体的棱长为2,A,D为棱的中点根据几何体可以判断:球心应该在过A,D的平行于底面的中截面上,设球心到截面BCO的距离为x,则到AD的距离为:2﹣x,∴R2=x2+()2,R2=12+(2﹣x)2,解得出:x=,R=,该多面体外接球的表面积为:4πR2=π,故选D.12.定义在区间(0,+∞)上的函数f(x)使不等式2f(x)<xf′(x)<3f(x)恒成立,其中f′(x)为f(x)的导数,则()A.8<<16 B.4<<8 C.3<<4 D.2<<3【解答】解:令g(x)=,则g′(x)==,∵xf′(x)<3f(x),即xf′(x)﹣3f(x)<0,∴g′(x)<0在(0,+∞)恒成立,即有g(x)在(0,+∞)递减,可得g(2)<g(1),即<,由2f(x)<3f(x),可得f(x)>0,则<8;令h(x)=,h′(x)==,∵xf′(x)>2f(x),即xf′(x)﹣2f(x)>0,∴h′(x)>0在(0,+∞)恒成立,即有h(x)在(0,+∞)递增,可得h(2)>h(1),即>f(1),则>4.即有4<<8.故选:B.二、填空题(本小题共4小题,每小题5分,共20分)13.已知点P(﹣1,1)在曲线y=上,则曲线在点P处的切线方程为y=﹣3x﹣2.【解答】解:点P(﹣1,1)在曲线上,可得a﹣1=1,即a=2,函数f(x)=的导数为f′(x)=,曲线在点P处的切线斜率为k=﹣3,则曲线在点P处的切线方程为y﹣1=﹣3(x+1),即为y=﹣3x﹣2.故答案为:y=﹣3x﹣2.14.在Rt△ABC中,∠A=90°,AB=AC=2,点D为AC中点,点E满足,则=﹣2.【解答】解:如图,∵,∴=,又D为AC中点,∴,则===.故答案为:﹣2.15.已知抛物线y2=4x与经过该抛物线焦点的直线l在第一象限的交点为A,A在y轴和准线上的投影分别为点B,C,=2,则直线l的斜率为2.【解答】解:设A的横坐标为x,则∵=2,BC=1,∴AB=2,∴A(2,2),∵F(1,0),∴直线l的斜率为=2,故答案为:2.16.已知定义在R上的偶函数f(x)满足f(x+4)=﹣f(x),且在区间[0,4]上市减函数,则f(10)、f(13)、f(15)这三个函数值从小到大排列为f(13)<f(10)<f(15).【解答】解:∵f(x+4)=﹣f(x),∴f(x+8)=﹣f(x+4)=﹣[﹣f(x)]=f(x),∴周期T=8,∵f(x)为定义在R上的偶函数,∴f(﹣x)=f(x),∴f(10)=f(2+8)=f(2),f(13)=f(5+8)=f(5)=f(﹣5)=f(﹣5+8)=f(3),f(15)=f(7+8)=f(7)=f(﹣7)=f(﹣7+8)=f(1),∵f(x)在区间[0,4]上是减函数,∴f(3)<f(2)<f(1),即f(13)<f(10)<f(15).故答案为:f(13)<f(10)<f(15).三、解答题(本题共70分)17.某地区有小学21所,中学14所,大学7所,现采用分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查.(1)求应从小学、中学、大学中分别抽取的学校数目;(2)若从抽取的6所学校中随机抽取2所学校做进一步数据分析.(ⅰ)列出所有可能的抽取结果;(ⅱ)求抽取的2所学校均为小学的概率.【解答】解:(I)抽样比为=,故应从小学、中学、大学中分别抽取的学校数目分别为21×=3,14×=2,7×=1 (II)(i)在抽取到的6所学校中,3所小学分别记为1、2、3,两所中学分别记为a、b,大学记为A则抽取2所学校的所有可能结果为{1,2},{1,3},{1,a},{1,b},{1,A},{2,3},{2,a},{2,b},{2,A},{3,a},{3,b},{3,A},{a,b},{a,A},{b,A},共15种(ii)设B={抽取的2所学校均为小学},事件B的所有可能结果为{1,2},{1,3},{2,3}共3种,∴P(B)==18.已知a,b,c分别为△ABC三个内角A,B,C的对边,c=asinC﹣ccosA.(1)求A;(2)若a=2,△ABC的面积为,求b,c.【解答】解:(1)c=asinC﹣ccosA,由正弦定理有:sinAsinC﹣sinCcosA﹣sinC=0,即sinC•(sinA﹣cosA﹣1)=0,又,sinC≠0,所以sinA﹣cosA﹣1=0,即2sin(A﹣)=1,所以A=;(2)S△ABC=bcsinA=,所以bc=4,a=2,由余弦定理得:a2=b2+c2﹣2bccosA,即4=b2+c2﹣bc,即有,解得b=c=2.19.已知数列{an}满足(an+1﹣1)(an﹣1)=3(an﹣an+1),a1=2,令bn=.(1)求数列{bn}的通项公式;(2)求数列{bn•3n}的前n项和Sn.【解答】解:(1)∵(an+1﹣1)(an﹣1)=3(an﹣an+1)=3[(an﹣1)﹣(an+1﹣1)],2·1·c·n·j·y∴=,即bn+1﹣bn=.∴数列{bn}是等差数列,首项为1,公差为.∴bn=1+(n﹣1)=.(2)=(n+2)•3n﹣1.∴数列{bn•3n}的前n项和Sn=3+4×3+5×32+…+(n+2)•3n﹣1.∴3Sn=3×3+4×32+…+(n+1)×3n﹣1+(n+2)•3n,∴﹣2Sn=3+3+32+…+3n﹣1﹣+(n+2)•3n=2+﹣(n+2)•3n=2+,∴Sn=.20.如图,四棱锥P﹣ABCD中,∠ABC=∠BAD=90°,BC=2AD,△PAB与△PAD都是边长为2的等边三角形.(Ⅰ)证明:PB⊥CD;(Ⅱ)求点A到平面PCD的距离.【解答】(I)证明:取BC的中点E,连接DE,则ABED为正方形,过P作PO⊥平面ABCD,垂足为O,连接OA,OB,OD,OE由△PAB和△PAD都是等边三角形知PA=PB=PD∴OA=OB=OD,即O为正方形ABED对角线的交点∴OE⊥BD,∴PB⊥OE∵O是BD的中点,E是BC的中点,∴OE∥CD∴PB⊥CD;(II)取PD的中点F,连接OF,则OF∥PB由(I)知PB⊥CD,∴OF⊥CD,∵,=∴△POD为等腰三角形,∴OF⊥PD∵PD∩CD=D,∴OF⊥平面PCD∵AE∥CD,CD⊂平面PCD,AE⊈平面PCD,∴AE∥平面PCD∴O到平面PCD的距离OF就是A到平面PCD的距离∵OF=∴点A到平面PCD的距离为1.21.已知A为椭圆=1(a>b>0)上的一个动点,弦AB,AC分别过左右焦点F1,F2,且当线段AF1的中点在y轴上时,cos∠F1AF2=.(Ⅰ)求该椭圆的离心率;(Ⅱ)设,试判断λ1+λ2是否为定值?若是定值,求出该定值,并给出证明;若不是定值,请说明理由.【考点】椭圆的简单性质.【分析】(Ⅰ)当线段AF1的中点在y轴上时,AC垂直于x轴,△AF1F2为直角三角形.运用余弦函数的定义可得|AF1|=3|AF2|,易知|AF2|=,再由椭圆的定义,结合离心率公式即可得到所求值;(Ⅱ)由(Ⅰ)得椭圆方程为x2+2y2=2b2,焦点坐标为F1(﹣b,0),F2(b,0),(1)当AB,AC的斜率都存在时,设A(x0,y0),B(x1,y1),C(x2,y2),求得直线AC 的方程,代入椭圆方程,运用韦达定理,再由向量共线定理,可得λ1+λ2为定值6;若AC ⊥x轴,若AB⊥x轴,计算即可得到所求定值.【解答】解:(Ⅰ)当线段AF1的中点在y轴上时,AC垂直于x轴,△AF1F2为直角三角形.因为cos∠F1AF2=,所以|AF1|=3|AF2|,易知|AF2|=,由椭圆的定义可得|AF1|+|AF2|=2a,则4•=2a,即a2=2b2=2(a2﹣c2),即a2=2c2,即有e==;(Ⅱ)由(Ⅰ)得椭圆方程为x2+2y2=2b2,焦点坐标为F1(﹣b,0),F2(b,0),(1)当AB,AC的斜率都存在时,设A(x0,y0),B(x1,y1),C(x2,y2),则直线AC的方程为y=(x﹣b),代入椭圆方程得(3b2﹣2bx0)y2+2by0(x0﹣b)y﹣b2y02=0,可得y0y2=﹣,又λ2===,同理λ1=,可得λ1+λ2=6;(2)若AC⊥x轴,则λ2=1,λ1==5,这时λ1+λ2=6;若AB⊥x轴,则λ1=1,λ2=5,这时也有λ1+λ2=6;综上所述,λ1+λ2是定值6.22.已知函数f(x)=(1)若m∈(﹣2,2),求函数y=f(x)的单调区间;(2)若m∈(0,],则当x∈[0,m+1]时,函数y=f(x)的图象是否总在直线y=x上方,请写出判断过程.【考点】函数单调性的判断与证明;函数的值域.【分析】(Ⅰ)求出函数的导数,通过讨论m的范围,求出函数的单调区间即可;(Ⅱ)令g(x)=x,讨论m的范围,根据函数的单调性求出g(x)的最大值和f(x)的最小值,结合函数恒成立分别判断即可证明结论.【解答】解:(Ⅰ)函数定义域为R,f′(x)=①当m+1=1,即m=0时,f′(x)≥0,此时f(x)在R递增,②当1<m+1<3即0<m<2x∈(﹣∞,1)时,f′(x)>0,f(x)递增,x∈(1,m+1)时,f′(x)<0,f(x)递减,x∈(m+1,+∞)时,f′(x)>0,f(x)递增;③0<m+1<1,即﹣1<m<0时,x∈(﹣∞,m+1)和(1,+∞),f′(x)>0,f(x)递增,x∈(m+1,1)时,f′(x)<0,f(x)递减;综上所述,①m=0时,f(x)在R递增,②0<m<2时,f(x)在(﹣∞,1),(m+1,+∞)递增,在(1,m+1)递减,③﹣2<m<0时,f(x)在(﹣∞,m+1),(1,+∞)递增,在(m+1,1)递减;(Ⅱ)当m∈(0,]时,由(1)知f(x)在(0,1)递增,在(1,m+1)递减,令g(x)=x,①当x∈[0,1]时,f(x)min=f(0)=1,g(x)max=1,所以函数f(x)图象在g(x)图象上方;②当x∈[1,m+1]时,函数f(x)单调递减,所以其最小值为f(m+1)=,g(x)最大值为m+1,所以下面判断f(m+1)与m+1的大小,即判断ex与(1+x)x的大小,其中x=m+1∈(1,],令m(x)=ex﹣(1+x)x,m′(x)=ex﹣2x﹣1,令h(x)=m′(x),则h′(x)=ex﹣2,因x=m+1∈(1,],所以h′(x)=ex﹣2>0,m′(x)单调递增;所以m′(1)=e﹣3<0,m′()=﹣4>0,故存在x0∈(1,]使得m′(x0)=ex0﹣2x0﹣1=0,所以m(x)在(1,x0)上单调递减,在(x0,)单调递增所以m(x)≥m(x0)=ex0﹣x02﹣x0=2x0+1﹣﹣x0=﹣+x0+1,所以x0∈(1,]时,m(x0)=﹣+x0+1>0,即ex>(1+x)x也即f(m+1)>m+1,所以函数f(x)的图象总在直线y=x上方.。

2017-2018高二上学期文科期末考试卷及答案(word文档良心出品)

2017-2018高二上学期文科期末考试卷及答案(word文档良心出品)

昆明市第二十四中学2017~2018学年上学期期末考文科数学试卷考试时间120分钟,试卷满分150分命题人:云付泽 审题人:注意事项:1.答题前请在答题卡上填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中只有一项是符合题目要求的)1.设集合}23{<<-∈=m Z m M ,}31{≤≤-∈=n Z n N ,则=N M ( )A .}10{,B .}101-{,,C .}210{,,D .}2101-{,,,2.试从四个图中点在散点图上的分布状态,直观上初步判断两个量之间有线性相关关系的是 ( )3.命题“对任意的x ∈R ,x 3-x 2+1≤0”的否定是 ( )A .不存在x ∈R ,x 3-x 2+1≤0;B .存在x ∈R ,x 3-x 2+1≤0C .对任意的x ∈R ,x 3-x 2+1>0;D .存在x ∈R ,x 3-x 2+1>0 4.已知2tan =α,则ααααcos 2sin cos sin 2+-的值是 ( )A .4 B .4- C .3 D .3-C . 向左平移12个单位长度 D. 向右平移12个单位长度6.设变量y x 、满足约束条件:⎪⎩⎪⎨⎧-≥≤+≥222x y x x y ,则y x z 3-=的最小值 ( )A .8-B .4-C .6-D .2- 7.下表是某工厂1~4月份用电量(单位:万度)的一组数据:a x yˆ7.0ˆ+-=,则=a ˆ( ) A .10.5 B .5.25 C .5.2 D .5.15 8.已知等差数列}{n a 中,84=a ,则8431a a a a +++的值是 (A .24B .16C .32D .8 9.根据下列程序框图,可知输出的结果i 为 ( ) A .8 B .9 C .10 D .1110.在区间][ππ,-随机取两个数分别记为a ,b ,则使得函数2222)(π+-+=b ax x x f 有零点的概率为 ( )A .81π-B .41π-C .21π-D .431π-11.双曲线12222=-by a x (a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点,且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为 ( )A .(1,3]B . (1,3)C .(3,+∞)D .[3,+∞)12.若函数)(x f y =满足)()(x f x f x ->'在R 上恒成立,且b a >,则 ( ) A .)()(a bf b af > B .)()(b bf a af > C .)()(b bf a af <D .)()(a bf b af <第Ⅱ卷(非选择题)二、填空题(本题共四小题,每题5分,共20分)13.已知平面向量)21(-=,、)2(m ,=,且//,若23=++,则= . 14.若k 进制数132(k )与二进制数11110(2)相等,则k = .15.已知)1-3(,A 、)(y x B ,、)10(,C 三点共线,且x 、y 均为正数,则yx 23+的最小值是 .16.某几何体的三视图如图,该几何体的顶点都 在球O 的球面上,球O 的表面积是 .三、解答题(共70分,解答题应写出文字说明、证明过程或演算步骤)17.(本题满分12分)在ABC ∆中,角A 、B 、C 、所对的彼岸分别为a 、b 、c ,且B a b AC a c sin )()sin )(sin (-=-+.(Ⅰ) 求角C 的大小; (Ⅱ) 若54sin =A , 3=c , 求ABC ∆的面积 .18. (本题满分12分)某高校在2016年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组,得(Ⅰ) 请先求出频率分布表中①,②位置相应的数据,再完成下列频率分布直方图;(Ⅱ) 为了能选拔出最优秀的学生,高校决定在笔试成绩高的第3、4、5组中用分层抽样抽取6名学生进入第二轮面试,求第3,4,5组每组各抽取多少名学生进入第二轮面试?(Ⅲ) 在(2)的前提下,学校决定在6名学生中随机抽取2名学生接受考官A 的面试,求:第4组至少有一名学生被考官A 面试的概率.19. (本题满分12分)如图,在直三棱柱ABC C B A -111中,AB ⊥AC ,AB =AC =2,A 1A =4,点D 是BC 的中点.(Ⅰ) 求证:A 1B ∥平面1ADC ;(Ⅱ) 求证:平面1ADC ⊥平面11B BCC ; (Ⅲ) 求点C 到平面1ADC 与距离.20. (本题满分12分)设椭圆2222:1(0)x y C a b a b +=>>的离心率12e =,且椭圆过点)231(,P .(Ⅰ)求椭圆C 的方程;(Ⅱ)过原点O 作两条互相垂直的射线,与椭圆C 分别交于A 、B 两点,证明点O 到直线AB 的距离为定值 .21. (本题满分12分) 已知函数x x x f ln )(= .(Ⅰ) 求函数)(x f 的单调区间和最小值;(Ⅱ)若对于任意),∞+∈1[x 都有1)(-≥ax x f ,求实数a 的取值范围 .22. (本题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,已知直线l 过)211(,P ,倾斜角3πα=,在以原点O 为极点,x轴的正半轴的极坐标系中,曲线C 的极坐标方程为θρ2sin 213+=.(Ⅰ)写出直线l 的参数方程,并把曲线C 的极坐标方程化为直角坐标方程; (Ⅱ)设直线l 与曲线C 相交于A ,B 两点,求PB PA ⋅B 1A 1 BC 1DCA参考答案。

(完整版)高二语文试卷及答案,推荐文档

(完整版)高二语文试卷及答案,推荐文档

2017--2018学年度第一学期高二级语文期末试卷说明:本卷满分为70分,考试时间为60分钟。

一、知识积累和运用(每题3分,共21分)1.下列词语中加点字的读音全都正确的一项是()A.不可估量.(liàng)给.(gěi)予嫉.(jí)恨豁.(huò)然开朗B.妲.(dá)己苑囿.(yòu)攒.(zǎn)射夔.(kuí)门C.长歌当.(dàng)哭桀.(jié)骜浸渍.(zì)菲.(fěi)薄D.绯.(fěi)红诅.(zǔ)咒洗涤.(tāo)啃噬.(shì)2、下列词语中有错别字的一项是()A、真知灼见气势汹汹不可思议言不由衷B、义无返顾意气用事书生意气责无旁待C、别具一格变幻莫测漠不关心开诚布公D、讳莫如深讳疾忌医一筹莫展天伦之乐3、依次填入下列各句横线处的词语,最恰当的一组是()①上级既然下达了任务,虽然时间紧,我们也只能____为之。

②老先生深有感触地说:“叶落要归根,那____他乡的滋味实在不好受呀!”③民族区域____是我国的基本民族政策,也是我国的一项重要政治制度。

④家长教育孩子要注意方法,不要_______孩子的自尊。

A、勉力作客自治伤害 B.、勉励作客自制损害C、勉力做客自制伤害 D.、勉励做客自治损害4、下列各句中加点的熟语,使用恰当的一句是()A、有人以为中国的茶只是下里巴人....解渴的东西,档次不如那些进口饮料。

B、他俩从小学到高中同窗十二载,一直相敬如宾....,从来没有因琐事而吵架。

C、在国庆节前的全市卫生大扫除中,市直机关干部倾巢而出....,分片参加了集体劳动。

D、头一两天我老在后悔,放着明媚秀丽的桂林不要,偏偏跑到这里来活受罪,真是吃错药...!5、下列各句中,加点的成语使用恰当的一句是()A、巴勒斯坦的斯瓦特被誉为“东方的瑞士”,但“9·11”事件以后,来这里旅游的人几乎是凤毛麟角....。

2017-2018学年 高二(上) 期末数学试卷(文科)(解析版)

2017-2018学年  高二(上) 期末数学试卷(文科)(解析版)

2017-2018学年高二(上)期末数学试卷(文科)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)21教育网1.抛物线x2=8y的焦点坐标是()A.(0,)B.(,0)C.(2,0) D.(0,2)【解答】解:根据题意,抛物线的方程为x2=8y,则其p=4,焦点在y轴的正半轴上,则其焦点坐标为(0,2);故选:D.2.已知直线mx+4y﹣2=0与2x﹣5y+1=0互相垂直,则m的值为()A.10 B.20 C.0 D.﹣4【解答】解:∵直线mx+4y﹣2=0与2x﹣5y+1=0垂直,∴2m﹣20=0,解得m=10,故选:A3.10名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12,设其平均数为a,中位数为b,众数为c,则有()A.a>b>c B.b>c>a C.c>a>b D.c>b>a【解答】解:由已知得:a=(15+17+14+10+15+17+17+16+14+12)=14.7;b==15;c=17,∴c>b>a.故选:D.4.某学校有教职员工150人,其中高级职称15人,中级职称45人,一般职员90人,现在用分层抽样抽取30人,则样本中各职称人数分别为()A.5,10,15 B.3,9,18 C.3,10,17 D.5,9,16【解答】解:由=,所以,高级职称人数为15×=3(人);中级职称人数为45×=9(人);一般职员人数为90×=18(人).所以高级职称人数、中级职称人数及一般职员人数依次为3,9,18.故选B.5.在区间[﹣,]上任取一个数x,则函数f(x)=sin2x的值不小于的概率为()A.B.C.D.【解答】解:∵函数f(x)=sin2x,当x∈[﹣,]时,2x∈[﹣,],函数f(x)=sin2x的值不小于,则≤x≤,区间长度为则所求概率为P==.故选:B.6.设双曲线的﹣个焦点为F,虚轴的一个端点为B,如果直线FB与该双曲线的一条渐近线垂直,那么此双曲线的离心率为()A.B.C.D.【解答】解:设双曲线方程为,则F(c,0),B(0,b)直线FB:bx+cy﹣bc=0与渐近线y=垂直,所以,即b2=ac所以c2﹣a2=ac,即e2﹣e﹣1=0,所以或(舍去)7.某赛季,甲、乙两名篮球运动员都参加了11场比赛,他们每场比赛得分的情况用如图所示的茎叶图表示,则甲、乙两名运动员的中位数分别是()A.19、13 B.13、19 C.20、18 D.18、20【解答】解:由题意知,∵甲运动员的得分按照从小到大排列是7,8,9,15,17,19,23,24,26,32,41共有11 个数字,最中间一个是19,乙运动员得分按照从小到大的顺序排列是5,7,8,11,11,13,20,22,30,31,40,共有11个数据,最中间一个是13,∴甲、乙两名运动员比赛得分的中位数分别是19,13.故选A.8.已知圆C:x2+y2﹣2x﹣15=0,直线l:3x+4y+7=0,则圆C上到直线l距离等于2的点的个数为()A.1 B.2 C.3 D.4【解答】解:圆C:x2+y2﹣2x﹣15=0化为标准式为(x﹣1)2+y2=16,其圆心坐标(1,0),半径r=4,由点到直线的距离公式得圆心到直线l:3x+4y+7=0的距离d==2,∴圆C上到直线l距离等于2的点的个数为3,故选C.9.在区间[0,1]中随机取出两个数,则两数之和不小于的概率是()A.B.C.D.【解答】解:设取出的两个数为x、y;则有0≤x≤1,0≤y≤1,其表示的区域为纵横坐标都在[0,1]之间的正方形区域,其面积为1,而x+y>表示的区域为直线x+y=上方,且在0≤x≤1,0≤y≤1表示区域内部的部分,如图所示,易得其面积为1﹣×=;则两数之和不小于的概率是.故选:D.10.过椭圆+=1(a>b>0)的左焦点F作斜率为1的直线交椭圆于A,B两点.若向量+与向量=(3,﹣1)共线,则该椭圆的离心率为()A.B.C.D.【解答】解:设A(x1,y1),B(x2,y2).F(﹣c,0).直线l的方程为:y=x+c,联立,化为:(a2+b2)x2+2ca2x+a2c2﹣a2b2=0,∴x1+x2=,y1+y2=x1+x2+2c=,∴向量+=(,),∵向量+与向量=(3,﹣1)共线,∴﹣﹣3×=0,∴a2=3b2,∴==.故选:B.11.某著名纺织集团为了减轻生产成本继续走高的压力,计划提高某种产品的价格,为此销售部在10月1日至10月5日连续五天对某个大型批发市场中该产品一天的销售量及其价格进行了调查,其中该产品的价格x(元)与销售量y(万件)之间的数据如表所示:日期10月1日10月2日10月3日10月4日10月5日价格x(元)9 9.5 10 10.5 11销售量y(万件)11 10 8 6 5已知销售量y与价格x之间具有线性相关关系,其回归直线方程为:=﹣3.2x+,若该集团提高价格后该批发市场的日销售量为7.36万件,则该产品的价格约为()2·1·c·n·j·y A.14.2元B.10.8元C.14.8元D.10.2元【解答】解:由题意可知,=(9+9.5+10+10.5+11)=10,=×(11+10+8+6+5)=8,所以8=﹣3.2×10+,即=40,∴回归直线方程为y=﹣3.2x+40,当日销售量为7.36时,y=﹣3.2x+40=7.36.解得:x=10.2,故选:D.12.设直线l与抛物线y2=4x相交于A、B两点,与圆(x﹣5)2+y2=r2(r>0)相切于点M,且M为线段AB的中点,若这样的直线l恰有4条,则r的取值范围是()A.(1,3) B.(1,4) C.(2,3) D.(2,4)【解答】解:设A(x1,y1),B(x2,y2),M(x0,y0),斜率存在时,设斜率为k,则y12=4x1,y22=4x2,则,相减,得(y1+y2)(y1﹣y2)=4(x1﹣x2),当l的斜率存在时,利用点差法可得ky0=2,因为直线与圆相切,所以=﹣,所以x0=3,即M的轨迹是直线x=3.将x=3代入y2=4x,得y2=12,∴,∵M在圆上,∴,∴r2=,∵直线l恰有4条,∴y0≠0,∴4<r2<16,故2<r<4时,直线l有2条;斜率不存在时,直线l有2条;所以直线l恰有4条,2<r<4,故选:D.二、填空题(本大题共4小题,每小题5分,共20分.将答案填在答题卡相应位置上)13.某中学采用系统抽样方法,从该校高一年级全体800名学生中抽80名学生做牙齿健康检查.现将800名学生从1到800进行编号.已知从31~40这10个数中取的数是39,则在第1小组1~10中随机抽到的数是9.【解答】解:样本间隔为800÷80=10,∵在从31~40这10个数中取的数是39,∴从31~40这10个数中取的数是第4个数,∴第1小组1~10中随机抽到的数是39﹣3×10=9,故答案为9.14.从一个正方体的6个面中任取2个,则这2个面恰好互相平行的概率是.【解答】解:从一个正方体的6个面中任取2个,基本事件总数n=,这2个面恰好互相平行包含的基本事件个数m=3,∴这2个面恰好互相平行的概率p===.故答案为:.15.已知下面四个命题:(1)从匀速传递的产品生产流水线上,质检员每15分钟从中抽取一件产品进行某项指标检测,这样的抽样是系统抽样;(2)两个随机变量相关性越强,则相关系数的绝对值越接近于1;(3)对分类变量X和Y的随机变量K2的观测值k来说,k越小,“X与Y有关系”的把握程度越大;(4)在回归直线方程=0.4x+12中,当解释变量x每增加一个单位时,预报变量大约增加0.4个单位.其中所有真命题的序号是(1)(2)(4).【解答】解:(1)从匀速传递的产品生产流水线上,质检员每15分钟从中抽取一件产品进行某项指标检测,这样的抽样是等间隔的,是系统抽样,故(1)正确;(2)两个随机变量相关性越强,则相关系数的绝对值越接近于1,故(2)正确;(3)对分类变量X和Y的随机变量K2的观测值k来说,k越小,“X与Y有关系”的把握程度越小,故(3)错误;(4)在回归直线方程=0.4x+12中,当解释变量x每增加一个单位时,预报变量大约增加0.4个单位,故(4)正确.故答案为:(1)(2)(4)16.在平面直角坐标系中,A、B分别是x轴和y轴上的动点,若以AB为直径的圆C与直线2x+y﹣4=0相切,则圆C面积的最小值为.【解答】解:如图,设AB的中点为C,坐标原点为O,圆半径为r,由已知得|OC|=|CE|=r,过点O作直线2x+y﹣4=0的垂直线段OF,交AB于D,交直线2x+y﹣4=0于F,则当D恰为OF中点时,圆C的半径最小,即面积最小.此时圆的直径为O(0,0)到直线2x+y﹣4=0的距离为:d==,此时r==∴圆C的面积的最小值为:Smin=π×()2=.故答案为.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.一个袋中有4个大小相同的小球,其中红球1个,白球2个,黑球1个,现从袋中取出2球.(Ⅰ)求取出2球都是白球的概率;(Ⅱ)若取1个红球记2分,取1个白球记1分,取1个黑球记0分,求取出两球分数之和为2的概率.【解答】解:(Ⅰ)从袋中取出2球,共有=6种方法,取出2球都是白球,有1种方法,所以取出2球都是白球的概率是…..(Ⅱ)取出两球分数之和为2,包括取1个红球、1个黑球或2个白球,取1个红球、1个黑球的概率均为,∴取出两球分数之和为2的概率…..18.已知椭圆C:+=1(a>b>0)的长轴长是短轴长的倍,直线y=﹣x+1与椭圆C相交于A,B两点,且弦AB的长为,求此椭圆的方程.【解答】解:由题意a2=2b2,则椭圆方程为,即x2+2y2﹣2b2=0联立,得3x2﹣4x+2﹣2b2=0.△=16﹣12(2﹣2b2)=24b2﹣8>0,得.设A(x1,y1),B(x2,y2),则.∴,则.解得b2=2.∴椭圆方程为.19.对一批零件的长度(单位:mm)进行抽样检测,检测结果的频率分布直方图如图所示.根据标准,零件长度在区间[20,25)上的为一等品,在区间[15,20)和区间[25,30)上的为二等品,在区间[10,15)和[30,35)上的为三等品.(Ⅰ)用频率估计概率,现从该批产品中随机抽取一件,求其为二等品的概率;(Ⅱ)已知检测结果为一等品的有6件,现随机从三等品中取两件,求取出的两件产品中恰有1件的长度在区间[30,35)上的概率.【解答】解:(Ⅰ)由频率分布直方图可得产品数量在[10,15)频率为0.1,在[15,20)频率为0.2,[20,25)之间的频率为0.3,在[30,35)频率为0.15,所以在[25,30)上的频率为0.25,所以样本中二等品的频率为0.45,所以该批产品中随机抽取一件,求其为二等品的概率0.45.…..(Ⅱ)因为一等品6件,所以在[10,15)上2件,在[30,35)上3件,令[10,15)上2件为a1,a2,在[30,35)上3件b1,b2,b3,所以一切可能的结果组成的基本事件空间Ω={(a1,a2),(a1,b1),(a1,b2),(a1,b3)…}由15个基本事件组成.恰有1件的长度在区间[30,35)上的基本事件有6个.所以取出的两件产品中恰有1件的长度在区间[30,35)上的概率P=.…..20.气象部门提供了某地区今年六月份(30天)的日最高气温的统计表如表:日最高气温t(单位:℃)t≤22℃22℃<t≤28℃28℃<t≤32℃t>32℃天数 6 12 X Y由于工作疏忽,统计表被墨水污染,Y和X数据不清楚,但气象部门提供的资料显示,六月份的日最高气温不高于32℃的频率为0.8.(Ⅰ)求X,Y的值;(Ⅱ)把日最高气温高于32℃称为本地区的“高温天气”,根据已知条件完成下面2×2列联表,并据此推测是否有95%的把握认为本地区的“高温天气”与冷饮“旺销”有关?说明理由.高温天气 非高温天气 合计 旺销 2 22 24 不旺销 4 2 6 合计 6 24 30 附:K2=P (K2≥k )0.10 0.050 0.025 0.010 0.005 0.001 k 2.706 3.841 5.0246.6357.87910.828【解答】解 (1)由题意,P (t ≤32℃)=0.8, ∴P (t >32℃)=1﹣P (t ≤32℃)=0.2;∴Y=30×0.2=6,X=30﹣(6+12+6)=6;….. 填写列联表,如下;高温天气 非高温天气 合计 旺销 2 22 24 不旺销 4 2 6 合计62430 (2)计算观测值∴K2==≈10.21,∵10.21>3.841,…..∴有95%的把握认为本地区的“高温天气”与冷饮“旺销”有关. …..21.已知抛物线E :y2=4x 的焦点是F ,过点F 的直线l 与抛物线E 相交于A ,B 两点,O 为原点.(Ⅰ)若直线l 的斜率为1,求的值;(Ⅱ)设=t,若t ∈[2,4],求直线l 的斜率的取值范围.【解答】解:(Ⅰ)抛物线E :y2=4x 的焦点是F (1,0), 直线l 的斜率为1,可得直线l 的方程为y=x ﹣1, 代入抛物线的方程可得,x2﹣6x+1=0, 设A (x1,y1),B (x2,y2), 可得x1+x2=6,x1x2=1, 则=x1x2+y1y2=x1x2+(x1﹣1)(x2﹣1)=2x1x2﹣(x1+x2)+1=2﹣6+1=﹣3;(Ⅱ)设直线l :x=my+1,代入y2=4x ,可得y2﹣4my ﹣4=0, 设A (x1,y1),B (x2,y2),可得y1+y2=4m,y1y2=﹣4,由=t,可得y2=t(0﹣y1),解得y1=,y2=﹣,即有﹣4=﹣t•()2,由t∈[2,4],可得2|m|=﹣,令u=(≤u≤2),则y=u﹣在[,2]上递增,即有y∈[,],即|m|∈[,].则直线l的斜率的绝对值范围是[,2],即有直线l的斜率的范围为[﹣2,﹣]∪[,2].22.已知抛物线C:y2=2px(p>0)的焦点为F,P为C上异于原点的任意一点,过点P的直线l交C于另一点Q,交x轴的正半轴于点S,且有|FP|=|FS|.当点P的横坐标为3时,|PF|=|PS|.(Ⅰ)求C的方程;(Ⅱ)若直线l1∥l,l1和C有且只有一个公共点E,(ⅰ)△OPE的面积是否存在最小值?若存在,求出最小值;若不存在,请说明理由;(ⅱ)证明直线PE过定点,并求出定点坐标.【解答】解:(I)由题意知.xP=3,则,则S(3+p,0),或S(﹣3,0)(舍)则FS中点.因为|PF|=|PS|,则解得p=2.所以抛物线C的方程为y2=4x.…..(II)(i)由(I)知F(1,0),设P(x0,y0),(x0y0≠0),S(xS,0)(xS>0),因为|FP|=|FS|,则|xS﹣1|=x0+1,由xS>0得xS=x0+2,故S(x0+2,0).故直线PQ的斜率KPQ=.因为直线l1和直线PQ平行,设直线l1的方程为,代入抛物线方程得,由题意,得.设E(xE,yE),则yk=﹣,xK==,当y02≠4时,kPE==,可得直线PE的方程为,则O到直线PE的距离为,…..所以,△OPE的面积当时,S△OPE=2所以,△OPE的面积有最小值,最小值为2.…..(ii)由(i)知时,直线PE的方程,整理可得,直线PE恒过点F(1,0).当时,直线PE的方程为x=1,过点F(1,0).…..。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

昆明市第二十四中学2017~2018学年上学期期末考
文科数学试卷
考试时间120分钟,试卷满分150分
命题人:云付泽审题人:
注意事项:
1.答题前请在答题卡上填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I卷(选择题)
一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中只有一项是符合题目要求的)
M N?}?3n?Z?1?n2?{m?Z?3?m?}N?M{ (,1,.设集合则)
0,1}{-1,1,2}{-1,0{0,{0,1},1,2}.A.C.B.D 2.试从四个图中点在散点图上的分布状态,直观上初步判断两个量之间有线性相关关系的是
( )
23)
(+1≤0”的否定是.命题“对任意的x∈R,x -x32332 1≤0,x+-x B.存在xxA.不
存在∈R,x∈-xR+1≤0;
23321>0 x,x+-D.存在x∈C.对任意的x∈R,xR-x +1>0;
??cos2sin??2?tan)
,则的值是4.已知(??cossin2?3443??
D.A..B. C 4433?)2x?y?sin(x2?siny)
为了得到函数的图像的图像,可以将函数(5. 6??个单位长度A.向右平移B.向右平移个单位长度36??向右平移个单位长度D.C.向左平移个单位长度
1212y?x??x?2y?2yx、z?x?3y的最小值(满足约束条件:,则6.设变量)
??x??2??8?64??2..C.D B A .
7.下表是某工厂1~4月份用电量(单位:万度)的一组数据:
页6 共页1 第
4 月份x 1 2 3
2.5
4.5 34 y
用电量间有较好的线性相关关系,其线性回归方程由散点图可知,用电量y与月份
x???yx?a??0.7?a) ,则(
5.15 . D B.5.25 C.5.2 A.10.5
aa?aa}a??{8?a) ,则中,8.已知等差数列的值是( 开始81n4348321624 D C..B.A.i=0
S=,i) 9.根据下列程序框图,可知输出的结果为(
8A.
9B.i=i+1 10C.
11 D.S=S+2是??][?,b,则使得函数随机取两个数分别记为10.在区间aS<=1023?
222???)?xb?2axf(x)
有零点的概率为否????11B..A48i
输出??3?11? D..C 42结束
22yx1??,|=2|PF为其上一点,且|PF|>0,b>0)的两个焦点为F、F,11.双曲线若P(a2121
22ba)
则双曲线离心率的取值范围为( ∞)[3,+D.C.(3,+∞) A.(1,3] B.(1,3) ?)xf(x)?xf?()x?f(y ba?) 满足12.若函数,则在R上恒成立,且(
)(ab)?bfaf()(b)?bfaf(a B.. A
)a?bf(af(baf(a)?bf()b).. C D
第Ⅱ卷(非选择题)分)5分,共20二、填空题(本题共四小题,每题
?c?0?2b?ca//b3a.13),mb?a?(1(2,?2),、,,若则. 已知平面向量且
.
k=与二进制数11110相等,则k14.若进制数132(2)k()
23?.15y x)(01,x,-1)B(,y)C3A(的最小值、三点共线,且已知、、均为正数,则yx.

.某几何体的三视图如图,该几何体的顶点都16. 的球面上,球O的表面积是O
在球
页6 共页2 第
,解答题应写出文字说明、证明过程或演算步骤)三、解答题(共70分12分)17.(本题满分ca b?ABCCBA且、,的彼岸在分角中,别、为、、、所对
Bsin?a)??sinA)(b(c?a)(sinC.C ) 求角的大小;(Ⅰ4c?3?sinA?ABC的面积(Ⅱ) 若., 求, 5
18. (本题满分12分)
某高校在2016年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组,得到的频率分布表如图所示.
组分频频
0.050[160,165
0.350 ①[165,170) 2组第②30[170,175) 组第30.200 [175,180)组20第40.100 [180,185] 10 5组第1.00
100 合计
(Ⅰ) 请先求出频率分布表中①,②位置相应的数据,再完成下列频率分布直方图;
(Ⅱ) 为了能选拔出最优秀的学生,高校决定在笔试成绩高的第3、4、5组中用分层抽样抽取6名学生进入第二轮面试,求第3,4,5组每组各抽取多少名学生进入第二轮面试?
(Ⅲ) 在(2)的前提下,学校决定在6名学生中随机抽取2名学生接受考官A的面试,求:第4组至少有一名学生被考官A面试的概率.
页6 共页3 第
分)19. (本题满分12ABC?ABC的中BC4,点D是=AC=2如图,在直三棱柱,AA=AB中,AB⊥AC,1111 A点.1ADC C;(Ⅰ) 求证:AB∥平面B1111BBCCADC;⊥平面(Ⅱ) 求证:平面111ADC与距离.C到平面) (Ⅲ求点1
A
D
C
B
12分)20. (本题满分22yx310)b???1(a?C:?e)1,P(.
的离心率,且椭圆过点设椭圆222ba2C(Ⅰ)求椭圆的方程;COO BA到直线分别交于(Ⅱ)过原点两点,证明点作两条互相垂直的射线,与椭圆、AB. 的距离为定值
分)21. (本题满分12x)?xlnf(x.
已知函数
)f(x (Ⅰ) 求函数的单调区间和最小值;)???x)?ax1,1x?[f(. (Ⅱ)若对于任意,求实数的取值范围都有a
:坐标系与参数方程本题满分22. (10分)选修4-4?1??),P(1xxOy Ol为极点,过,倾斜角在平面直角坐标系中,已知直线,在以原点323??C.
的极坐标方程为轴的正半轴的极坐标系中,曲线2?sin1?2Cl的参数方程,并把曲线(Ⅰ)写
出直线的极坐标方程化为直角坐标方程;PBPA?Cl,B两点,求A(Ⅱ)设直线与曲线相交于
页6 共页4 第
参考答案
页6 共页5 第
页6 共页6 第。

相关文档
最新文档