24.4弧长和扇形面积(第二课时)

合集下载

人教初中数学《弧长和扇形面积 》教案 (公开课获奖)

人教初中数学《弧长和扇形面积   》教案 (公开课获奖)

弧长和扇形面积教学内容24.4弧长和扇形面积〔2〕.教学目标1.了解母线的概念.2.掌握圆锥的侧面积计算公式,并会应用公式解决问题.3.经历探索圆锥侧面积计算公式的过程,开展学生的实践探索能力.教学重点1.经历探索圆锥侧面积计算公式的过程.2.了解圆锥的侧面积计算公式,并会应用公式解决问题.教学难点圆锥侧面积计算公式的推导过程.教学过程一、导入新课师:大家见过圆锥吗?你能举出实例吗?生:见过,如漏斗、蒙古包.师:你们知道圆锥的外表是由哪些面构成的吗?请大家互相交流.生:圆锥的外表是由一个圆面和一个曲面围成的.师:圆锥的曲面展开图是什么形状呢?应怎样计算它的面积呢?本节课我们将解决这些问题.二、新课教学1.圆锥的母线.圆锥是由一个底面和一个侧面围成的几何体,如图,我们把连接圆锥顶点和底面圆周上任意一点的线段叫做圆锥的母线.2.探索圆锥的侧面公式.思考:圆锥的侧面展开图是什么图形?如何计算圆锥的侧面积?如何计算圆锥的全面积?〔1〕如图,沿一条母线将圆锥侧面剪开并展平,容易得到,圆锥的侧面展开图是一个扇形.〔2〕设圆锥的母线长为l,底面圆的半径为r,那么这个扇形的半径为l,扇形的弧长为2πr,因此圆锥的侧面积为πrl,圆锥的全面积为πr(r+l).3.利用圆锥的侧面积公式进行计算.例蒙古包可以近似地看作由圆锥和圆柱组成.如果想用毛毡搭建20个底面积为12 m2,高为3.2 m,外围高1.8 m的蒙古包,至少需要多少平方米的毛毡〔n取3.142,结果取整数〕?解:右图是一个蒙古包的示意图.根据题意,下部圆柱的底面积为12 m 2.高h 2=1.8 m ;上部圆锥的高h 1=-=1.4(m). 圆柱的底面圆的半径r =π12≈1.945(m),侧面积为2π××≈22.10(m 2).圆锥的母线长l =224.1945.1+≈2.404(m),侧面展开扇形的弧长为2π×≈12.28(m),圆锥的侧面积为21××≈14.76(m 2). 因此,搭建20个这样的的蒙古包至少需要毛毡20×+14.76)≈738(m 2). 三、稳固练习教材第114页练习. 四、课堂小结 本节课应该掌握:探索圆锥的侧面展开图的形状,以及面积公式,并能用公式进行计算. 五、布置作业习题24.4 第4、5、7题.15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算. 重点难点1.重点:熟练地进行分式的混合运算. 2.难点:熟练地进行分式的混合运算. 3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-〞号提到分式本身的前面. 教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相照应,也解决了本节引言中所列分式的计算,完整地解决了应用问题. 二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 三、例题讲解〔教科书〕例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.〔教科书〕例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式. 四、随堂练习 计算:(1) x x x x x 22)242(2+÷-+- 〔2〕)11()(ba ab b b a a -÷--- 〔3〕)2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算: (1))1)(1(yx xy x y +--+ (2)22242)44122(aaa a a a a a a a -÷-⋅+----+ (3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案:四、〔1〕2x 〔2〕b a ab- 〔3〕3 五、1.(1)22y x xy - (2)21-a 〔3〕z 1 2.原式=422--a a ,当=a -1时,原式=-31.13.3.1 等腰三角形教学目标〔一〕教学知识点1.等腰三角形的概念.2.等腰三角形的性质.3.等腰三角形的概念及性质的应用.〔二〕能力训练要求1.经历作〔画〕出等腰三角形的过程,•从轴对称的角度去体会等腰三角形的特点.2.探索并掌握等腰三角形的性质.〔三〕情感与价值观要求通过学生的操作和思考,使学生掌握等腰三角形的相关概念,并在探究等腰三角形性质的过程中培养学生认真思考的习惯.重点难点重点:1.等腰三角形的概念及性质.2.等腰三角形性质的应用.难点:等腰三角形三线合一的性质的理解及其应用.教学方法探究归纳法.教具准备师:多媒体课件、投影仪;生:硬纸、剪刀.教学过程Ⅰ.提出问题,创设情境[师]在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,•并且能够作出一个简单平面图形关于某一直线的轴对称图形,•还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?[生]有的三角形是轴对称图形,有的三角形不是.[师]那什么样的三角形是轴对称图形?[生]满足轴对称的条件的三角形就是轴对称图形,•也就是将三角形沿某一条直线对折后两局部能够完全重合的就是轴对称图形.[师]很好,我们这节课就来认识一种成轴对称图形的三角形──等腰三角形.Ⅱ.导入新课[师]同学们通过自己的思考来做一个等腰三角形.AICABI作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连接AB、BC、CA,那么可得到一个等腰三角形.[生乙]在甲同学的做法中,A 点可以取直线L 上的任意一点.[师]对,按这种方法我们可以得到一系列的等腰三角形.现在同学们拿出自己准备的硬纸和剪刀,按自己设计的方法,也可以用课本探究中的方法,•剪出一个等腰三角形. ……[师]按照我们的做法,可以得到等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角. [师]有了上述概念,同学们来想一想. 〔演示课件〕1.等腰三角形是轴对称图形吗?请找出它的对称轴. 2.等腰三角形的两底角有什么关系?3.顶角的平分线所在的直线是等腰三角形的对称轴吗?4.底边上的中线所在的直线是等腰三角形的对称轴吗?•底边上的高所在的直线呢? [生甲]等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.[师]同学们把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系.[生乙]我把自己做的等腰三角形折叠后,发现等腰三角形的两个底角相等.[生丙]我把等腰三角形折叠,使两腰重合,这样顶角平分线两旁的局部就可以重合,所以可以验证等腰三角形的对称轴是顶角的平分线所在的直线.[生丁]我把等腰三角形沿底边上的中线对折,可以看到它两旁的局部互相重合,说明底边上的中线所在的直线是等腰三角形的对称轴.[生戊]老师,我发现底边上的高所在的直线也是等腰三角形的对称轴. [师]你们说的是同一条直线吗?大家来动手折叠、观察. [生齐声]它们是同一条直线.[师]很好.现在同学们来归纳等腰三角形的性质.[生]我沿等腰三角形的顶角的平分线对折,发现它两旁的局部互相重合,由此可知这个等腰三角形的两个底角相等,•而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高.[师]很好,大家看屏幕. 〔演示课件〕等腰三角形的性质:1.等腰三角形的两个底角相等〔简写成“等边对等角〞〕.2.等腰三角形的顶角平分线,底边上的中线、•底边上的高互相重合〔通常称作“三线合一〞〕.[师]由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程〕.〔投影仪演示学生证明过程〕[生甲]如右图,在△ABC 中,AB=AC ,作底边BC 的中线AD ,因为D CA B,,,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩所以△BAD ≌△CAD 〔SSS 〕. 所以∠B=∠C .[生乙]如右图,在△ABC 中,AB=AC ,作顶角∠BAC 的角平分线AD ,因为,,,AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩所以△BAD ≌△CAD .所以BD=CD ,∠BDA=∠CDA=12∠BDC=90°.[师]很好,甲、乙两同学给出了等腰三角形两个性质的证明,过程也写得很条理、很标准.下面我们来看大屏幕.〔演示课件〕[例1]如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD , 求:△ABC 各角的度数.[师]同学们先思考一下,我们再来分析这个题.[生]根据等边对等角的性质,我们可以得到∠A=∠ABD ,∠ABC=∠C=∠BDC ,•再由∠BDC=∠A+∠ABD ,就可得到∠ABC=∠C=∠BDC=2∠A . 再由三角形内角和为180°,•就可求出△ABC 的三个内角.[师]这位同学分析得很好,对我们以前学过的定理也很熟悉.如果我们在解的过程中把∠A 设为x 的话,那么∠ABC 、∠C 都可以用x 来表示,这样过程就更简捷. 〔课件演示〕[例]因为AB=AC ,BD=BC=AD , 所以∠ABC=∠C=∠BDC . ∠A=∠ABD 〔等边对等角〕.设∠A=x ,那么∠BDC=∠A+∠ABD=2x , 从而∠ABC=∠C=∠BDC=2x .于是在△ABC 中,有∠A+∠ABC+∠C=x+2x+2x=180°, 解得x=36°.在△ABC 中,∠A=35°,∠ABC=∠C=72°.[师]下面我们通过练习来稳固这节课所学的知识. Ⅲ.随堂练习〔一〕课本练习 1、2、3. 练习1. 如图,在以下等腰三角形中,分别求出它们的底角的度数.D CABDC A B(2)120︒36︒(1)答案:〔1〕72° 〔2〕30°2.如图,△ABC 是等腰直角三角形〔AB=AC ,∠BAC=90°〕,AD 是底边BC 上的高,标出∠B 、∠C 、∠BAD 、∠DAC 的度数,图中有哪些相等线段?D CAB答案:∠B=∠C=∠BAD=∠DAC=45°;AB=AC ,BD=DC=AD .3.如图,在△ABC 中,AB=AD=DC ,∠BAD=26°,求∠B 和∠C 的度数.答:∠B=77°,∠C=38.5°.〔二〕阅读课本,然后小结.Ⅳ.课时小结这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等〔等边对等角〕,等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们. Ⅴ.课后作业〔一〕习题13.3 第1、3、4、8题. 〔二〕1.预习课本.2.预习提纲:等腰三角形的判定. Ⅵ.活动与探究如图,在△ABC 中,过C 作∠BAC 的平分线AD 的垂线,垂足为D ,DE ∥AB 交AC 于E .求证:AE=CE .EDCAB过程:通过分析、讨论,让学生进一步了解全等三角形的性质和判定,•等腰三角形的D C A B性质. 结果:证明:延长CD 交AB 的延长线于P ,如图,在△ADP 和△ADC 中,12,,,AD AD ADP ADC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADP ≌△ADC .∴∠P=∠ACD . 又∵DE ∥AP , ∴∠4=∠P . ∴∠4=∠ACD . ∴DE=EC .同理可证:AE=DE .∴AE=C E .板书设计一、设计方案作出一个等腰三角形 二、等腰三角形性质 1.等边对等角 2.三线合一 三、例题分析 四、随堂练习 五、课时小结 六、课后作业 备课资料 参考练习1.如果△ABC 是轴对称图形,那么它的对称轴一定是〔 〕 A .某一条边上的高 B .某一条边上的中线 C .平分一角和这个角对边的直线 D .某一个角的平分线 2.等腰三角形的一个外角是100°,它的顶角的度数是〔 〕 A .80° B .20° C .80°和20° D .80°或50° 答案:1.C 2.C3. 等腰三角形的腰长比底边多2 cm ,并且它的周长为16 cm .求这个等腰三角形的边长.解:设三角形的底边长为x cm ,那么其腰长为〔x+2〕cm ,根据题意,得 2〔x+2〕+x=16.解得x=4.所以,等腰三角形的三边长为4 cm 、6 cm 和6 cm .15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算. 重点难点1.重点:熟练地进行分式的混合运算. 2.难点:熟练地进行分式的混合运算.E DC A B P3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-〞号提到分式本身的前面. 教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相照应,也解决了本节引言中所列分式的计算,完整地解决了应用问题. 二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 三、例题讲解〔教科书〕例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.〔教科书〕例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式. 四、随堂练习 计算:(1) x x x x x 22)242(2+÷-+- 〔2〕)11()(ba ab b b a a -÷--- 〔3〕)2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算: (1))1)(1(yx xy x y +--+ (2)22242)44122(aaa a a a a a a a -÷-⋅+----+ (3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案:四、〔1〕2x 〔2〕ba ab- 〔3〕3 五、1.(1)22y x xy - (2)21-a 〔3〕z 12.原式=422--a a ,当=a -1时,原式=-31.。

《24.4弧长和扇形面积》作业设计方案-初中数学人教版12九年级上册

《24.4弧长和扇形面积》作业设计方案-初中数学人教版12九年级上册

《弧长和扇形面积》作业设计方案(第一课时)一、作业目标本作业设计的目标是帮助学生巩固并掌握弧长和扇形面积的基本概念、计算公式及运用方法。

通过本课时的作业练习,学生能够准确计算弧长和扇形面积,并能够解决与之相关的实际问题。

二、作业内容1. 基础练习:(1)理解弧长与圆心角的关系,掌握弧长计算公式。

(2)了解扇形的定义及其与圆的关系,掌握扇形面积的计算公式。

(3)通过几道简单的计算题,巩固对弧长和扇形面积计算公式的理解。

2. 应用拓展:(1)利用弧长和扇形面积公式解决实际生活中的问题,如计算圆弧形花坛的周长或面积。

(2)通过几何图形的组合与分解,理解不同几何图形之间的关联与转化。

(3)设置几道稍具难度的综合题,考查学生对弧长和扇形面积知识的综合运用能力。

3. 自主探究:(1)引导学生通过小组合作或个人探究的方式,自主寻找生活中与弧长和扇形面积相关的实例。

(2)鼓励学生利用所学知识,尝试解决一些与几何图形有关的实际问题,如设计一个扇形花坛的布局等。

三、作业要求1. 学生在完成作业时,应注重公式的理解和公式的应用,不可只求答案的正确性而忽视解题过程。

2. 要求学生按照题目要求进行作答,书写规范、清晰,步骤完整。

3. 鼓励学生在完成基础练习后,积极尝试应用拓展的题目,提高自己的解题能力。

4. 自主探究部分需学生结合生活实际,积极寻找相关实例,并尝试提出自己的设计方案或解决方案。

四、作业评价1. 教师将根据学生作业的准确性和解题过程的规范性进行评价。

2. 对于在应用拓展部分表现出色的学生,教师应给予表扬和鼓励,激发其学习积极性。

3. 对于在自主探究部分提出创新设计方案的学生,教师应给予额外加分或口头表扬。

五、作业反馈1. 教师将在课堂上对作业进行讲解和点评,帮助学生查漏补缺。

2. 对于学生在作业中普遍出现的问题,教师应重点讲解和强调。

3. 鼓励学生之间相互交流学习心得和解题方法,共同进步。

通过以上作业设计,旨在通过多层次、多角度的练习,帮助学生全面掌握弧长和扇形面积的相关知识,提高其解题能力和实际应用能力。

人教版九年级数学上册24.4弧长和扇形面积(教案)

人教版九年级数学上册24.4弧长和扇形面积(教案)
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解弧长和扇形面积的基本概念。弧长是圆上一段弧的长度,而扇形面积则是圆心角所对的区域。这些概念在工程、地理和日常生活中有着广泛的应用。
2.案例分析:接下来,我们来看一个具体的案例。假设我们要计算一个半径为10米的半圆的弧长,我们将学习如何使用弧长公式来求解。
然而,我也注意到在小组讨论环节,有些小组的参与度并不高,可能是因为问题设置不够贴近学生的实际经验,或者是我没有给予足够的引导。在未来的教学中,我需要针对这一点进行改进,设计更具启发性和参与性的讨论主题。
实践活动虽然增加了学生对知识的直观感受,但在时间分配上似乎有些紧张。有些小组没有足够的时间完成讨论和实验操作,导致成果展示不够充分。我考虑在下次课中,适当延长实践活动的时间,确保每个小组都有足够的机会来展示他们的成果。
(3)教学难点中的弧度与角度转换,学生需要记住π弧度等于180°,因此在计算中如遇到角度制,需要先转换为弧度制。例如,一个圆心角为60°的扇形,其对应的弧度为π/3(60° × π/180)。
(4)在实际应用中,学生需要将问题描述转化为数学表达式。例如,如果一个公园的圆形喷泉半径是3米,需要清洁的部分占整个圆的1/6,学生需要计算出这部分扇形的面积(A = 1/2 × 3² × π/3)。这个过程中,学生需要识别出圆心角是π/3弧度,这是解决问题的关键。
人教版九年级数学上册24.4弧长和扇形面积(教案)
一、教学内容
人教版九年级数学上册第24.4节,本节课将重点探讨以下内容:
1.弧长的概念及其计算公式;
2.弧度的概念及其与角度的转换;
3.扇形的定义及扇形面积的计算公式;
4.应用实例:计算给定圆的半径或弧长,求解扇形面积。

2018年秋人教版九年级数学上册24.4弧长和扇形面积(教案)

2018年秋人教版九年级数学上册24.4弧长和扇形面积(教案)
3.重点难点解析:在讲授过程中,我会特别强调弧长计算公式和扇形面积计算公式这两个重点。对于难点部分,如弧度制与角度制的转换,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与弧长和扇形面积相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如使用软尺测量一段弧的长度,并计算对应的扇形面积。
(2)圆心角与弧长之间的关系是教学重点,学生需要理解圆心角越大,对应的弧长也越长这一几何性质。
(3)扇形面积的计算公式是教学重点,学生需掌握扇形面积等于圆的半径平方乘以圆心角所对的圆周角度数的一半,即S = 1/2 * r^2 * θ(θ用弧度表示)。
(4)需要强调在实际问题中如何识别和运用弧长与扇形面积的计算方法,例如计算一段弧的长度或一个扇形的面积。
在学生小组讨论的过程中,我也注意到一些学生较为内向,不愿意主动发表自己的观点。为了鼓励这些学生积极参与,我将在今后的教学中,多关注他们的表现,给予他们更多的鼓励和支持。同时,通过设置一些开放性的问题,引导学生主动思考,提高他们的课堂参与度。
最后,我发现部分学生在总结回顾环节,对今天所学知识点的掌握程度仍有待提高。为了帮助学生巩固知识点,我计划在课后布置一些具有针对性的练习题,让学生们在课后进行巩固。同时,在下次课堂上,我会对学生们进行随堂测试,以检验他们对弧长和扇形面积知识的掌握情况。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了弧长和扇形面积的基本概念、重要性和应用。通过实践活动和小组讨论,我们加深了对弧长和扇形面积的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。

人教版九年级数学上册作业课件 第二十四章 圆 弧长和扇形面积 第2课时 圆锥的侧面积与全面积

人教版九年级数学上册作业课件 第二十四章 圆 弧长和扇形面积 第2课时 圆锥的侧面积与全面积
7.已知圆锥的侧面展开图是一个半径为12 cm,弧长为12π cm的扇形, 求这个圆锥的侧面积及高.
解:侧面积为12 ×12×12π=72π(cm2).设底面半径为 r cm,则有 2πr =12π,∴r=6.由于高、母线、底面圆的半径恰好构成直角三角形, 根据勾股定理可得,高 h= 122-62 =6 3 (cm)
知识点 2:圆锥的全面积 8.圆锥的底面半径为 4 cm,高为 5 cm,则它的表面积为( D ) A.12π cm2 B.26π cm2 C. 41 π cm2 D.(4 41 +16)π cm2
9.已知直角三角形 ABC 的一条直角边 AB=12 cm,另一条直角边 BC =5 cm,则以 AB 为轴旋转一周,所得到的圆锥的表面积是( A ) A.209π cm2 B.155π cm2 C.90π cm2 D.65π cm2
解:l=2π×3=nπ18×0 6 ,∴n=180,∴圆锥侧面展开图是一个半圆,如 图所示,∠BAP=90°,AB=6 m,AP=3 m,∴BP=3 5 m,∴小猫 所经过的最短路程是 3 5 m
人教版
第二十四章 圆
24.4 弧长和扇形面积 第2课时 圆锥的侧面积与全面积
1.圆锥是由一个底面和一个__侧__面围成的几何体,连接圆锥_顶__点__和底面 圆周上任意一点的线段叫做圆锥的母线.
练习1:一圆锥的母线长为5,高为4,则该圆锥底面圆的周长为_6_π__.
2.圆锥的侧面展开图是一个__扇__形,扇形的半径为圆锥的_母__线__长,扇形 的弧长即为圆锥底面圆的_周__长__.圆锥的全面积等于底面积+_侧__面__积__.
则圆锥的侧面积为12 π·AC2=18π(cm2)
17.(2020·广东中考改编)如图,从一块半径为1 m的圆形铁皮上剪出一个 圆周角为120°的扇形ABC,如果将剪下来的扇形围成一个圆锥,求该圆锥 的底面圆的半径r.

人教版九年级数学上册24.4《弧长和扇形面积》优秀教学案例

人教版九年级数学上册24.4《弧长和扇形面积》优秀教学案例
(二)问题导向
1.设计一系列问题,引导学生从已知知识出发,逐步探索和发现弧长和扇形面积的计算方法。
2.通过提问、答疑等方式,引导学生深入思考,激发学生的思维活力。
3.鼓励学生提出问题,培养学生的质疑精神和批判性思维。
(三)小组合作
1.组织学生进行小组合作,让学生在讨论和交流中共同解决问题,提高学生的团队合作能力。
人教版九年级数学上册24.4《弧长和扇形面积》优秀教学案例
一、案例背景
本节课为人教版九年级数学上册24.4《弧长和扇形面积》,是在学生掌握了角的概念、圆周率以及圆的方程等知识的基础上进行学习的。通过学习弧长和扇形面积,使学生能够进一步理解圆的相关概念,提高解决实际问题的能力。
九年级的学生已经具备了一定的逻辑思维能力和空间想象力,对于圆的相关知识也有一定的了解。但是,学生在解决实际问题时,往往不能灵活运用所学知识,对于弧长和扇形面积的计算方法容易混淆。因此,在教学过程中,我将以生活实际为出发点,引导学生通过观察、思考、交流、探究等方式,理解和掌握弧长和扇形面积的计算方法,提高学生的数学素养。
四、教学内容与过程
(一)导入新课
1.利用多媒体展示一些日常生活中常见的圆形物体,如硬币、圆桌、地球等,引导学生观察和思考这些物体与弧长和扇形面积的关系。
2.提出问题:“你们知道硬币的弧长是多少吗?圆桌的面积又是多少呢?”激发学生的求知欲。
3.总结:今天我们将学习弧长和扇形面积的计算方法,帮助大家解决这些问题。
(一)情景创设
1.生活情境:以日常生活中常见的圆形物体为例,如硬币、圆桌、地球等,引导学生观察和思考这些物体与弧长和扇形面积的关系。
2.问题情境:设计一些与弧长和扇形面积相关的问题,如计算硬币的弧长、计算扇形的面积等,激发学生的求知欲。

24.4 弧长和扇形面积 (第2课时)九年级上册数学人教版

24.4 弧长和扇形面积 (第2课时)九年级上册数学人教版

圆锥的侧面积计算公式的推导
1
(l为弧长,R
lR 为扇形的半径)
∵ S侧
2
又∵
1
S侧 2r l.
2

l

展开图
l
o
r
(r表示圆锥底面的半径, l 表示圆锥的母线长 )
圆锥的全面积计算公式

素养考点 1
圆锥有关概念的计算
例1 一个圆锥的侧面展开图是一个圆心角为120°、弧长为
20 的扇形,试求该圆锥底面的半径及它的母线的长.
2
2
是 15πcm ,全面积是 24πcm .
能力提升题
如图,已知圆锥的母线长AB=8cm,轴截面的顶角为60°,求
圆锥全面积.
解:∵AB=AC,∠BAC=60°,
∴△ABC是等边三角形.
∴AB=BC=AC=8cm.
∴S侧=πrl=π×4×8=32π(cm2),
S底=πr2=π×4×4=16π(cm2),
∴=360°×

l
=288°
α
∴S=
πl2=2000π(cm2)
360°
解法二:
1
1
S= ×2πr·l= ×2π×40×50=2000π(cm2).
2
2
解法三:
S=πr·
l= π×40×50=2000π (cm2).
已知一个圆锥的底面半径为12cm,母线长为
20cm,则这个圆锥的侧面积为
2
384
∵∠BAC=90°,AB=AC,
∴AB=AC= 10
∴S扇形=


B
O
2.

90 10 2
360

24.4弧长和扇形面积(第2课时)PPT课件全面版

24.4弧长和扇形面积(第2课时)PPT课件全面版
24.4 弧长和扇形面积
第2课时
1.了解圆锥母线的概念,理解圆锥侧面积计算公式, 理解圆锥全面积的计算方法,并会应用公式解决问题. 2.探索圆锥侧面积和全面积的计算公式并应用它解决 现实生活中的一些实际问题.
认识圆锥:生活中的圆锥
A
圆锥可以看做是一个直角三 角形绕它的一条直角边旋转 一周所成的图形.
跟踪训练
填空:根据下列条件求值(其中r、h、l分别是圆锥的底 面半径、高线、母线长)
(1)l =2,r=1 则 h =____3 ___
(2) h =3, r=4 则 l =___5____
(3) l =10, h = 8 则 r =___6____
圆锥的轴截面
一个圆锥形的零件, 经过轴的剖面是一个等腰三角形,
C
O
B
圆锥知识知多少?
O 母 线
高 h
B
r
A1
底面半径
A2
侧面
A 底面
根据图形,圆锥的底面 半径、母线及其高有什 么数量关系?
A
O
B
设圆锥的底面半径为r,母线长为l,高为h,则有:
l 2=r2+h2. 即:OA2+OB2=AB2
圆锥的侧面积和全面积
圆锥的 侧面展开图是什么图形? 是一个扇形.
如图,设圆锥的母线长为l,底面半径为r, (1)此扇形的半径(R)是 圆锥的母线 , (2)此扇形的弧长(L )是 圆锥底面的周长 , (3)此圆锥的侧面积(S侧)
∴r=5 cm,l=10 cm
B
O
C
答:圆锥的底面半径为5cm,母线长为10cm.
跟踪训练
1.根据圆锥的下面条件,求它的侧面积和全面积: ( 1 ) r=12cm, l=20cm S侧=240π, S全=384π ( 2 ) h=12cm, r=5cm S侧=65π, S全=90π 2.一个圆锥的侧面展开图是半径为18cm,圆心角为 240度的扇形.则这个圆锥的底面半径为__1_2_c_m__.

人教版九年级上册数学24.4弧长和扇形面积(第2课时)课件

人教版九年级上册数学24.4弧长和扇形面积(第2课时)课件
这醉人芬芳的季节,愿你生活像春天一样阳光,心情像桃 3、会当凌绝顶,一览众山小。14:477.5.202014:477.5.202014:4714:47:527.5.202014:477.5.2020 4、纸上得来终觉浅,绝知此事要躬行。7.5.20207.5.202014:4714:4714:47:5214:47:52
高线长, l 表示圆锥的母线长,那么r, h, l 之间
有怎样的数量关系呢?
由勾股定理得:
h ll
r
r2+h2=l 2
填空: 根据下列条件求值(其l中r、h、 分别
是圆锥的底面半径、高线、母线长)
(1)l = 2,r=1 则 h=___3____ (2) h =3, r=4 l 则 =__5_____ (3) l = 10, h = 8 则r=__6_____
四拓展
1.课堂小结
(1)圆锥的侧面展开图是什么形状? (2)如何利用圆锥的侧面展开图求得其侧面积, 进而得到其全面积?
S 侧 =πrl
(r表示圆锥底面的半径, l 表示圆锥的母线长 )
圆锥的侧面积与底面积的和叫做圆锥的全面 积(或表面积).
s全 s侧 s底 rl r2
2.知识延伸:
如图所示是一纸杯,它的母线AC和EF延长后形 成的立体图形是圆锥,该圆锥的侧面展开图是扇 形OAB,经测量,纸杯上开口图的直径为6cm,下 底圆直径是4cm,母线长EF=8cm,求扇形OAB的 圆心角及这个纸杯的表面积。(结果保留π)
r=10;h=20 2
例3 蒙古包可以近似地看作由圆锥和圆柱组成.如 果想用毛毡搭建 20 个底面积为 12 m2,高为 3.2 m ,外 围高1.8 m 的蒙古包,至少需要多少平方米的毛毡(π取 3.142,结果取整数)?

人教版九年级数学上册课件:24.4弧长和扇形面积(共19张PPT)

人教版九年级数学上册课件:24.4弧长和扇形面积(共19张PPT)


1353π6×0 152=375π(cm2).
9
能力提升
11.如图,图1是由若干个相同的图形(图2)组成的美丽图案的一部分.图2中, 图形的相关数据:半径OA=2 cm,∠AOB=120°,则图2的周长为 83π ________cm.(结果保留π)
10
12.如图,在△ABC中,AC=4,将△ABC绕点C逆时针旋 转30°得到△FGC,则图43中π 阴影部分的面积为________.
第二十四章 圆
弧长和扇形面积
第一课时
知识展示
知识点 1 弧长公式 n°的圆心角所对的弧长 l 的计算公式为 l=n1π8R0 ,其中 R 为半径. 核心提示:在弧长公式中,已知 l、n、R 中的任意两个量,都可以求出第三个 量. 知识点 2 扇形的定义 由组成圆心角的两条半径和圆心角所对的弧围成的图形叫做扇形.
分析:先用扇形OAB的面积-三角形OAB的面积求出上面空白部分面积,再用扇形OCD的面积-三角形OCD的面积-上面空白部分的面
积7.,如即图可,求5分出.别阴以影【五部边分黑形的A龙面BC积D江.E的顶哈点尔为圆滨心,中以1考为半】径作一五个个圆,扇则图形中的阴影弧部分长的面是积之1和1为π__c___m___.,半径是18
2
知识点 3 扇形面积公式 (1)n°圆心角的扇形面积公式:S 扇形=n3π6R02 ,其中 R 为半径. (2)弧长为 l 的扇形面积公式:S 扇形=12lR,其中 R 为半径. 【典例】如图,半径为 12 的圆中,两圆心角∠AOB=60°、∠COD=120°,连接 AB、CD,求图中阴影部分的面积.
cm,则此扇形的圆心角是__________度. 71.2.如如图图,,分在别△以AB五C中边,形AACB=CD4E,的将顶△点AB为C圆绕心点,C逆以时11为针1半旋0 径转作30五°得个到圆△,FG则C,图则中图阴中影阴部影分部的分面的积面之积和为为________________.. 一列火车以6每.小时【28 江km的苏速度泰经州过10中秒通考过弯】道.如那么图弯,道所分对的别圆心以角为正___三_____角__度形.(π的取3.3个顶点为圆心, 98..一已段知铁扇边路形弯所长道在成圆为圆半弧 径半形为,4径,圆弧弧画长的为弧半6径π,,是则2三扇km形.段面积弧为_围_____成____.的图形称为莱洛三角形.若正三角 分 积析,:即先 可用 求形扇 出形 阴边影OA部长B的分面为的积面6-积三.c角m形,OAB则的面该积求莱出上洛面三空白角部分形6面π积的,再周用扇长形为OCD_的_面__积_-__三_角c形mOC. D的面积-上面空白部分的面

24.4弧长及扇形面积(第2课时)课件

24.4弧长及扇形面积(第2课时)课件

S
h=20
解:设纸帽的底面半径为rcm,母线长为lcm,所以
由2πr=58得
58 29 r . 2
2
l
O┓ r
1 S圆锥侧 2r l 29 22.03 638 87(cm2 ). . 2
2πr=58 29 2 根据勾股定理 ,圆锥母线 l 20 22.03.
24.4弧长和扇形面积
Байду номын сангаас
圆锥的侧面积和全面积
一、弧长的计算公式
n nr l 2r 360 180
二、扇形面积计算公式
n 2 s r 或s 1 lr 360 2
圆锥
我们把连接圆锥的顶点S和底 面圆上任一点的连线SA,SB 等叫做圆锥的母线
圆锥的高 S
连接顶点S与底面圆的圆心O 的线段叫做圆锥的高
思考:圆锥的母线和圆 锥的高有那些性质?
母线 A O
r
B
如果用r表示圆锥底面的半径, h表示圆锥的高 线长, l 表示圆锥的母线长,那么r,h, l 之间有 怎样的数量关系呢?
由勾股定理得:
h r ll
r2+h2=l 2
填空: 根据下列条件求值(其中r、h、l 分别是圆锥的底面半径、高线、母线长) (1)
例1:如图所示的扇形中,半径R=10,圆心角θ=144° 用这个扇形围成一个圆锥的侧面. (1)求这个圆锥的底面半径r;
(2)求这个圆锥的高(精确到0.1)
A
C
B
O
解:(1)因为此扇形的弧长=它所 围成圆锥的底面圆周长 R 所以有 2 r 180 所以: r
R
360
(2)因为圆锥的母线长=扇形的半径

24.4 弧长和扇形公式(第二课时)(教学设计)九年级数学上册同步备课系列(人教版)

24.4 弧长和扇形公式(第二课时)(教学设计)九年级数学上册同步备课系列(人教版)

24.4 弧长和扇形公式(第二课时)教学设计一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》九年级上册(以下统称“教材”)第二十四章“圆”24.4 弧长和扇形公式(第二课时),内容包括:圆锥的侧面积.2.内容解析圆锥的侧面展开图是平面图形与空间几何体相互转换的教学内容,是培养学生空间想象能力和动手操作能力的重要内容.由于圆锥的侧面展开图是一个扇形,因此,利用弧长和扇形面积公式,可通过计算它的展开图的面积求得圆锥的侧面积,进而可以求出其全面积.结合圆锥侧面积和全面积的学习,有助于培养学生的空间想象能力.基于以上分析,确定本节课的教学重点是:计算圆锥的侧面积和全面积.二、目标和目标解析1.目标1)理解圆锥的相关概念.2)理解圆锥侧面积的计算公式,并会运用公式解决问题.2.目标解析达成目标1)的标志是:理解圆锥、圆锥的高、圆锥的母线、圆锥的侧面积、圆锥的全面积等概念.达成目标2)的标志是:理解圆锥侧面积的计算公式,并会运用公式解决问题.三、教学问题诊断分析本节课学习圆锥的侧面积和全面积,是弧长和扇形面积公式的应用,在研究圆锥侧面展开图时,需要学生具备一定的空间观念,能认识立体图形与平面图形之间的联系,并利用这种关系进行分析,这对学生来说是一个难点.本节课的教学难点是:圆锥侧面积公式的推导.四、教学过程设计(一)探究新知【问题一】观察下面几何体,你发现了什么?师生活动:教师提出问题,学生通过观察图形发现以上几何体都是由一个底面和一个侧面围成的几何体.从而教师给出圆锥、母线、圆锥的高的概念.【设计意图】理解圆锥、母线、圆锥的高的概念【问题二】观察下图,你觉得圆锥的高与底面、底面圆心有什么关系?师生活动:学生通过观察图形发现:圆锥的高通过底面的圆心,并垂直于底面.【问题三】圆锥的母线有多少条?你发现了什么?师生活动:学生通过观察图形发现:圆锥的母线有无数条,它们的长都相等.【问题四】圆锥的底面圆半径r、高h、母线l三者之间有什么关系呢?师生活动:先由学生通过观察图形给出自己的见解,再由教师引导与总结得出:圆锥的母线l、圆锥的高h、圆锥底面圆半径r恰好构成一个直角三角形,所以圆锥可以看做是一个直角三角形绕它的一条直角边旋转一周所构成的图形,满足l2=h2+r2,利用这一关系,已知任意两个量,可以求出第三个量.【设计意图】让学生理解圆锥的母线l、圆锥的高h、圆锥底面圆半径r恰好构成一个直角三角形,满足l2=h2+r2.【问题五】将一个扇形纸片的两条半径重合,所围成的几何体是_____________.师生活动:学生通过动手操作,给出答案(圆锥体).【问题六】圆锥体展开后是什么样子的呢?师生活动:学生根据本节课所学,可以得出:圆锥体展开图由一个扇形(圆锥的侧面)和一个圆(圆锥的底面)组成.【问题七】展开的扇形弧长和底面圆之间有什么关系呢?师生活动:学生根据本节课所学,可以得出:扇形的弧长=底面圆的周长.【问题八】圆锥侧面展开图是扇形,这个扇形的半径与圆锥中的哪一条线段相等?师生活动:学生根据本节课所学,可以得出:扇形的半径与圆锥中的母线相等.【问题九】如何计算圆锥的侧面积?l×2πr= πr l(r表示圆锥底面的半径,l表示圆锥的母线长)师生活动:S扇形= 12【设计意图】让学生理解圆锥侧面积计算公式的推导过程.(二)典例分析与针对训练例1 已知圆锥的底面半径为5 cm,母线长为13 cm,则这个圆锥的侧面积是___________cm2【针对训练】1. 已知圆锥的底面圆半径为3cm,高为4cm,则圆锥的侧面积是________cm2.2. 已知圆锥的母线长为5cm,侧面积为15π cm2,则这个圆锥的底面圆半径为_____cm.3. 圆锥的底面半径是5cm,侧面展开图的圆心角是180°,圆锥的高是()A.5 √3cm B.10cm C.6cm D.5cm4. 若一个圆锥的侧面积是底面积的2倍,则圆锥侧面展开图的扇形的圆心角为()A.120° B.180°C.240°D.300°5. 如图,是某几何体的三视图及相关数据,则该几何体的侧面积是()A.10π B.15πC.20πD.30π6. 如图,聪聪用一张半径为6cm、圆心角为120°的扇形纸片做成一个圆锥,则这个圆锥的高为()A.4√2cm B.2√2cm C.2√3cm D.√3cm7.若把一个半径为12cm,圆心角为120°的扇形做成圆锥的侧面,则这个圆锥的底面圆的半径是_______,圆锥的高是__________,侧面积是____________.【设计意图】利用圆锥侧面积公式进行计算.(三)探究新知【问题十】如何计算圆锥的表面积?师生活动:学生根据本节课所学,可以得出:S表=S扇+S底=πr l+πr2 .【设计意图】让学生掌握圆锥表面积的计算方法.(四)典例分析与针对训练例2 蒙古包可以近似地看成由圆锥和圆柱组成的.如果想用毛毡搭建20个底面积为12m2,高为3.2 m,外围高1.8m的蒙古包,至少需要多少m2的毛毡?(π取3.142,结果取整数).【针对训练】1. 如图,蒙古包可近似看作由圆锥和圆柱组成,若用毛毡搭建一个底面圆面积为25πm2,圆柱高为3m,圆锥高为2m的蒙古包,则需要毛毡的面积是()A.(30+5√29)πm2B.40πm2C.(30+5√21)πm2D.55πm22. 用铁皮制作圆锥形容器盖,其尺寸要求如图所示.(1)求圆锥的高;(2)求所需铁皮的面积S(结果保留π).3. 如图,锚标浮筒是打捞作业中用来标记锚或沉船位置的,它的上下两部分是圆锥,中间是圆柱(单位:mm),电镀时,如果每平方米用锌0.11kg,电镀100个这样的锚标浮筒,需要用多少锌?【设计意图】考查学生对计算圆锥表面积方法的掌握情况.(五)直击中考1.(2023·山东东营中考真题)如果圆锥侧面展开图的面积是15π,母线长是5,则这个圆锥的底面半径是()A.3B.4C.5D.6⏜的长为()2.(2023·湖南中考真题)如图,圆锥底面圆的半径为4,则这个圆锥的侧面展开图中AA′A.4πB.6πC.8πD.16π3.(2023·浙江宁波中考真题)如图,圆锥形烟囱帽的底面半径为30cm,母线长为50cm,则烟囱帽的侧面积为cm2.(结果保留π)4.(2023·四川内江中考真题)如图,用圆心角为120°半径为6的扇形围成一个圆锥的侧面(接缝忽略不计),则这个圆锥的高是.5.(2023·湖南娄底中考真题)如图,在△ABC中,AC=3,AB=4,BC边上的高AD=2,将△ABC绕着BC所在的直线旋转一周得到的几何体的表面积为.【设计意图】通过对最近几年的中考试题的训练,使学生提前感受到中考的内容,进一步了解考点.(六)归纳小结1.通过本节课的学习,你学会了哪些知识?2.简述圆锥的相关概念?3.简述与圆锥面积计算的相关公式?(七)布置作业P114:练习第1题,第2题P115:习题24.4 第5题,第9题五、教学反思。

人教版九年级数学上册作业课件 第二十四章 圆 弧长和扇形面积 圆锥的侧面积和全面积

人教版九年级数学上册作业课件 第二十四章 圆 弧长和扇形面积 圆锥的侧面积和全面积

14.如图,把一个圆锥沿母线 OA 剪开,展开后得到扇形 AOC,已知 圆锥的高 h 为 12 cm,OA=13 cm,则扇形 AOC 中 AC 的长是_1_0_π_ __cm(计算结果保留π).
15.如图,用一个半径为20 cm,面积为150π cm2的扇形铁皮,制作一 个无底的圆锥(不计接头损耗),则圆锥的底面半径r为__7_.5__cm.
为 10-5 2 ,又∵10-5 2 <52 2 ,∴不能从余料③中剪出一个圆
做该圆锥的底面
解:(1)连接 BC,则 BC=20,∵∠BAC=90°,AB=AC,∴AB=AC
=10 2 ,∴S 扇形=90π×(36100 2)2 =50π
(2)设这个圆锥的底面圆的半径 为 r,圆锥侧面展开扇形的弧长为
90π×10 180
2 =2πr,∴r=52
2
(3)延长 AO 交⊙O 于点 F,交扇形于点 E,EF=20-10 2 ,最大半径
5.若一个圆锥的底面半径为2,母线长为6,则该圆锥侧面展开图的圆 心角是_1_2_0_°.
6.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥 的底面圆的半径r=2 cm,扇形的圆心角θ=120°,求该圆锥的高h的长.
解:连接 OA,由题意,得 2πr=120π18×0 AB , 而 r=2,∴AB=6,在 Rt△ADB 中,由勾股定 理,得 AO= AB2-OB2 = 62-22 =4 2 .即 该圆锥的高为 4 2 cm
解:由题意知 20π=1201π80×R ,∴R=30,∵2πr=20π,∴r=10.S 圆锥侧=21 lR=21 ×20π×30=300π.S 圆锥全=S 圆锥侧+S 底=300π+πr2= 400π.∴该圆锥的侧面积和全面积分别为 300π,400π
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

24.4弧长和扇形面积(第二课时)
◆随堂检测
1.如图,两个同心圆中,大圆的半径OA=4cm ,∠AOB=∠BOC=60°,则图中阴影部分的面积是______cm 2
.
2.如图,⊙A 、⊙B 、⊙C 、⊙D
边形ABCD,则图形中四个扇形(空白部分)的面积之和是
3.A .60
4.__________.
5.OB 交⊙O 于点D ,已知6OA OB ==,AB =(1)求⊙O
◆典例分析
如图,从一个边长为2的菱形铁皮中剪下一个圆心角为60°的扇形. (1)求这个扇形的面积(结果保留π).
(2)在剩下的一块余料中,能否从余料中剪出一个圆作为底面与此扇形围成一个圆锥?请说明理由.
A
B
(第3题)
(3)当∠B 为任意值时,(2)中的结论是否仍然成立?请说明理由. 分析:能否从余料中剪出一个圆作为底面与此扇形围成一个圆锥,关键有两点:一是剪出的最大的圆与AD 、CD 和弧AC 都相切,二是弧AC 的长等于
圆的周长.
解:(1)如图,∵AB=AC=2,∴ππ3
2
3602==
R n S . (2)连接AC 、BD ,BD 交弧AC 于E 点,圆心在DE 上, 由勾股定理:BD=2
3,DE=46.1232≈-.弧AC 的长:
32180π
π=
=
R n l , ∴322ππ=
r
,∴67.03
2
2≈=r <1.46=DE . 另一方面,如图:由于∠ADE=30°,过O 作OF ⊥AD, 则OD=2OF=2r ,因此DE ≥3r,
所以能在余料中剪出一个圆作为底面与此扇形围成圆锥.
(3)当∠B=90°时,不能剪出一个圆作为底面与此扇形围成圆锥.理由如下:
弧AC
1=2r,
因此∠B
19cm ,底面圆的直径为10cm ,那么小丽要制作的这个圆锥模型的侧面展开扇形的纸片的圆心角度数是______. 2.如图是一个用来盛爆米花的圆锥形纸杯,纸杯开口圆的直径EF 长为10cm ,母线OE(OF)长为
10cm .在母线
OF 上的点
A 处有一块爆米花残渣,且FA=2cm ,一只蚂蚁从杯口的点E 处沿圆锥表面爬行到A 点,则此蚂蚁爬行
的最短距离是______.
3.如图,半径为2的正三角形ABC 的中心为O ,过O 与两个顶
点画弧,求这
三条弧所围成的阴影部分的周长是______,阴影部分面积是__________.
4.
如图,半圆的直径
10AB =,
P 为AB 上一点,点C
5.如图,在ABC △中,120AB AC A BC =∠=,°,AB AC
、于M N 、两点,求图中阴影部分的面积(保留π).
6.
求:(1BAC 的度数;(3)圆锥的侧面积(结果保留π).
●体验中考
1.(2009年,郴州市)如图已知扇形AOB 的半径为6cm ,圆心角的度数为120°,若将此扇形围成一个圆锥,则围成的圆锥的侧面积为( )
A .24πcm
B .26πcm
C .29πcm
D .2
12πcm
2.(2009年,宁德市)小华为参加毕业晚会演出,准备制一顶圆锥形纸帽,如图所示,纸帽的底面半径为9cm ,母线长为30cm ,制作这个纸帽至少需要纸板的面积至少为________cm 2
.(结果保留π)w w w .x k b 1.c
3.(2009
9042AC BC ===°,,,分别以AC 、BC 为直径画π)
1.
8
3
π. 2.π. 3.D . 4.18π. 5.(1)连结OC ,则OC AB ⊥.∵OA OB =,∴11
22
AC BC AB ===⨯=. 在
Rt AOC △中,3OC ==.∴⊙O 的半径为3.
(2)∵OC =
1
2
OB ,∴∠B =30o ,∠COD =60o .
120︒B
O
A
6cm
∴扇形OCD 的面积为OCD S 扇形=260π3360
⨯⨯=3
2π.
阴影部分的面积为Rt OCB OCD S S S =- 阴影扇形=12OC CB ⋅-3π2
-3
π2.
◆课下作业 ●拓展提高 1.200°. 2
.在侧面展开图上考虑.
3.
,
面积是4
3
π-
4.解:连结OC 、OD 和CD.2605360OCD S S π
==
⨯=阴影
扇形5.解:连结AD ,在ΔABC 中,AB=AC ,A=120∠︒,则AD⊥BC,1122BD BC =
=⨯=1BAD=2∠AD=1,
∴2112011
3
S S π⨯-=⨯⨯=. 6.解:(1AC l =. ∵2ππr =(2)∵
l
r
60BAC ∠=°. (322r =+,即22427r r =+.
解得r =2
2π18π(cm )2
l =. ●体验中考
1.D.
2.270π. 注意正确应用圆锥的侧面积公式.
3.5
π42
- 由图可知阴影部分的面积=半圆AC 的面积+半圆BC 的面积-Rt ABC △的面积,所以S 阴影=221115π2124π42222π+-⨯⨯=- ,故填5π42
-.。

相关文档
最新文档