MAX5923EUP+;MAX5923EUP+T;中文规格书,Datasheet资料
APL5912中文资料
C1 (pF) 27 36 68
Absolute Maximum Ratings
Symbol VCNTL VIN VI/O VPOK PD PPEAK TJ TSTG TSDR VESD Parameter VCNTL Supply Voltage (VCNTL to GND) VIN Supply Voltage (VIN to GND) EN and FB to GND POK to GND Average Power Dissipation Peak Power Dissipation (<20mS) Junction Temperature Storage Temperature Soldering Temperature, 10 Seconds Minimum ESD Rating (Human Body Mode) Rating -0.3 ~ 7 -0.3 ~ 3.3 -0.3 ~ VCNTL+0.3 -0.3 ~ 7 3 20 150 -65 ~ 150 300 ±2 Unit V V V V W W
APL5912 KA :
APL5912 XXXXX
Note: ANPEC lead-free products contain molding compounds/die attach materials and 100% matte tin plate termination finish; which are fully compliant with RoHS and compatible with both SnPb and lead-free soldiering operations. ANPEC lead-free products meet or exceed the lead-free requirements of IPC/JEDEC J STD-020C for MSL classification at lead-free peak reflow temperature.
MAX13085EESA-T中文资料
General DescriptionThe MAX13080E–MAX13089E +5.0V, ±15kV ESD-protect-ed, RS-485/RS-422 transceivers feature one driver and one receiver. These devices include fail-safe circuitry,guaranteeing a logic-high receiver output when receiver inputs are open or shorted. The receiver outputs a logic-high if all transmitters on a terminated bus are disabled (high impedance). The MAX13080E–MAX13089E include a hot-swap capability to eliminate false transitions on the bus during power-up or hot insertion.The MAX13080E/MAX13081E/MAX13082E feature reduced slew-rate drivers that minimize EMI and reduce reflections caused by improperly terminated cables, allowing error-free data transmission up to 250kbps. The MAX13083E/MAX13084E/MAX13085E also feature slew-rate-limited drivers but allow transmit speeds up to 500kbps. The MAX13086E/MAX13087E/MAX13088E driver slew rates are not limited, making transmit speeds up to 16Mbps possible. The MAX13089E slew rate is pin selectable for 250kbps,500kbps, and 16Mbps.The MAX13082E/MAX13085E/MAX13088E are intended for half-duplex communications, and the MAX13080E/MAX13081E/MAX13083E/MAX13084E/MAX13086E/MAX13087E are intended for full-duplex communica-tions. The MAX13089E is selectable for half-duplex or full-duplex operation. It also features independently programmable receiver and transmitter output phase through separate pins.The MAX13080E–MAX13089E transceivers draw 1.2mA of supply current when unloaded or when fully loaded with the drivers disabled. All devices have a 1/8-unit load receiver input impedance, allowing up to 256transceivers on the bus.The MAX13080E/MAX13083E/MAX13086E/MAX13089E are available in 14-pin PDIP and 14-pin SO packages.The MAX13081E/MAX13082E/MAX13084E/MAX13085E/MAX13087E/MAX13088E are available in 8-pin PDIP and 8-pin SO packages. The devices operate over the com-mercial, extended, and automotive temperature ranges.ApplicationsUtility Meters Lighting Systems Industrial Control Telecom Security Systems Instrumentation ProfibusFeatures♦+5.0V Operation♦Extended ESD Protection for RS-485/RS-422 I/O Pins±15kV Human Body Model ♦True Fail-Safe Receiver While Maintaining EIA/TIA-485 Compatibility ♦Hot-Swap Input Structures on DE and RE ♦Enhanced Slew-Rate Limiting Facilitates Error-Free Data Transmission(MAX13080E–MAX13085E/MAX13089E)♦Low-Current Shutdown Mode (Except MAX13081E/MAX13084E/MAX13087E)♦Pin-Selectable Full-/Half-Duplex Operation (MAX13089E)♦Phase Controls to Correct for Twisted-Pair Reversal (MAX13089E)♦Allow Up to 256 Transceivers on the Bus ♦Available in Industry-Standard 8-Pin SO PackageMAX13080E–MAX13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers________________________________________________________________Maxim Integrated Products 1Ordering Information19-3590; Rev 1; 4/05For pricing, delivery, and ordering information,please contact Maxim/Dallas Direct!at 1-888-629-4642, or visit Maxim’s website at .Selector Guide, Pin Configurations, and Typical Operating Circuits appear at end of data sheet.Ordering Information continued at end of data sheet.M A X 13080E –M A X 13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers 2_______________________________________________________________________________________ABSOLUTE MAXIMUM RATINGSDC ELECTRICAL CHARACTERISTICS(V CC = +5.0V ±10%, T A = T MIN to T MAX , unless otherwise noted. Typical values are at V CC = +5.0V and T A = +25°C.) (Note 1)Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.(All Voltages Referenced to GND)Supply Voltage (V CC ).............................................................+6V Control Input Voltage (RE , DE, SLR,H/F , TXP, RXP)......................................................-0.3V to +6V Driver Input Voltage (DI)...........................................-0.3V to +6V Driver Output Voltage (Z, Y, A, B).............................-8V to +13V Receiver Input Voltage (A, B)....................................-8V to +13V Receiver Input VoltageFull Duplex (A, B)..................................................-8V to +13V Receiver Output Voltage (RO)....................-0.3V to (V CC + 0.3V)Driver Output Current.....................................................±250mAContinuous Power Dissipation (T A = +70°C)8-Pin SO (derate 5.88mW/°C above +70°C).................471mW 8-Pin Plastic DIP (derate 9.09mW/°C above +70°C).....727mW 14-Pin SO (derate 8.33mW/°C above +70°C)...............667mW 14-Pin Plastic DIP (derate 10.0mW/°C above +70°C)...800mW Operating Temperature RangesMAX1308_EC_ _.................................................0°C to +75°C MAX1308_EE_ _..............................................-40°C to +85°C MAX1308_EA_ _............................................-40°C to +125°C Junction Temperature......................................................+150°C Storage Temperature Range.............................-65°C to +150°C Lead Temperature (soldering, 10s).................................+300°CMAX13080E–MAX13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers_______________________________________________________________________________________3DC ELECTRICAL CHARACTERISTICS (continued)(V CC = +5.0V ±10%, T A = T MIN to T MAX , unless otherwise noted. Typical values are at V CC = +5.0V and T A = +25°C.) (Note 1)M A X 13080E –M A X 13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers 4_______________________________________________________________________________________DRIVER SWITCHING CHARACTERISTICSMAX13080E/MAX13081E/MAX13082E/MAX13089E WITH SRL = UNCONNECTED (250kbps)(V CC = +5.0V ±10%, T A = T MIN to T MAX , unless otherwise noted. Typical values are at V CC = +5.0V and T A = +25°C.)RECEIVER SWITCHING CHARACTERISTICSMAX13080E/MAX13081E/MAX13082E/MAX13089E WITH SRL = UNCONNECTED (250kbps)(V CC = +5.0V ±10%, T A = T MIN to T MAX , unless otherwise noted. Typical values are at V CC = +5.0V and T A = +25°C.)MAX13080E–MAX13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers_______________________________________________________________________________________5DRIVER SWITCHING CHARACTERISTICSMAX13083E/MAX13084E/MAX13085E/MAX13089E WITH SRL = V CC (500kbps)(V CC = +5.0V ±10%, T A = T MIN to T MAX , unless otherwise noted. Typical values are at V CC = +5.0V and T A = +25°C.)RECEIVER SWITCHING CHARACTERISTICSMAX13083E/MAX13084E/MAX13085E/MAX13089E WITH SRL = V CC (500kbps)(V CC = +5.0V ±10%, T A = T MIN to T MAX , unless otherwise noted. Typical values are at V CC = +5.0V and T A = +25°C.)M A X 13080E –M A X 13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers 6_______________________________________________________________________________________DRIVER SWITCHING CHARACTERISTICSMAX13086E/MAX13087E/MAX13088E/MAX13089E WITH SRL = GND (16Mbps)(V CC = +5.0V ±10%, T A = T MIN to T MAX , unless otherwise noted. Typical values are at V CC = +5.0V and T A = +25°C.)RECEIVER SWITCHING CHARACTERISTICSMAX13086E/MAX13087E/MAX13088E/MAX13089E WITH SRL = GND (16Mbps)(V CC = +5.0V ±10%, T A = T MIN to T MAX , unless otherwise noted. Typical values are at V CC = +5.0V and T A = +25°C.)Note 2:∆V OD and ∆V OC are the changes in V OD and V OC , respectively, when the DI input changes state.Note 3:The short-circuit output current applies to peak current just prior to foldback current limiting. The short-circuit foldback outputcurrent applies during current limiting to allow a recovery from bus contention.MAX13080E–MAX13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers_______________________________________________________________________________________70.800.901.501.101.001.201.301.401.60-40-10520-253550958011065125SUPPLY CURRENT vs. TEMPERATURETEMPERATURE (°C)S U P P L Y C U R R E N T (m A )0201040305060021345OUTPUT CURRENTvs. RECEIVER OUTPUT-HIGH VOLTAGEM A X 13080E -89E t o c 02OUTPUT HIGH VOLTAGE (V)O U T P U T C U R R E N T (m A )20104030605070021345OUTPUT CURRENTvs. RECEIVER OUTPUT-LOW VOLTAGEM A X 13080E -89E t o c 03OUTPUT LOW VOLTAGE (V)O U T P U T C U R R E N T (m A )4.04.44.24.84.65.25.05.4RECEIVER OUTPUT-HIGH VOLTAGEvs. TEMPERATURETEMPERATURE (°C)O U T P U T H I G H V O L T A G E (V )-40-10520-2535509580110651250.10.70.30.20.40.50.60.8RECEIVER OUTPUT-LOW VOLTAGEvs. TEMPERATURETEMPERATURE (°C)O U T P U T L O W V O L T A G E (V )-40-10520-25355095801106512502040608010012014016012345DRIVER DIFFERENTIAL OUTPUT CURRENT vs. DIFFERENTIAL OUTPUT VOLTAGEDIFFERENTIAL OUTPUT VOLTAGE (V)D I F FE R E N T I A L O U T P U T C U R R E N T (m A )2.02.82.43.63.24.44.04.8DRIVER DIFFERENTIAL OUTPUT VOLTAGE vs. TEMPERATURED I F FE R E N T I A L O U T P U T V O L T A G E (V )-40-10520-253550958011065125TEMPERATURE (°C)40201008060120140180160200-7-5-4-6-3-2-1012354OUTPUT CURRENT vs. TRANSMITTEROUTPUT-HIGH VOLTAGEOUTPUT HIGH VOLTAGE (V)O U T P U T C U R R E N T (m A )60402080100120140160180200042681012OUTPUT CURRENT vs. TRANSMITTEROUTPUT-LOW VOLTAGEOUTPUT-LOW VOLTAGE (V)O U T P U T C U R R E N T (m A )Typical Operating Characteristics(V CC = +5.0V, T A = +25°C, unless otherwise noted.)M A X 13080E –M A X 13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers 8_______________________________________________________________________________________21543679810SHUTDOWN CURRENT vs. TEMPERATUREM A X 13080E -89E t o c 10S H U T D O W N C U R R E N T (µA )-40-10520-253550958011065125TEMPERATURE (°C)600800700100090011001200DRIVER PROPAGATION DELAY vs. TEMPERATURE (250kbps)D R I VE R P R O P A G A T I O N D E L A Y (n s )-40-10520-253550958011065125TEMPERATURE (°C)300400350500450550600DRIVER PROPAGATION DELAY vs. TEMPERATURE (500kbps)D R I VE R P R O P A G A T I O N D E L A Y (n s )-40-10520-253550958011065125TEMPERATURE (°C)1070302040506080DRIVER PROPAGATION DELAY vs. TEMPERATURE (16Mbps)D R I VE R P R O P A G A T I O N D E L A Y (n s )-40-10520-253550958011065125TEMPERATURE (°C)40201008060120140160180RECEIVER PROPAGATION DELAYvs. TEMPERATURE (250kpbs AND 500kbps)R E C E I V E R P R O P A G A T I O N D E L A Y (n s )-40-10520-253550958011065125TEMPERATURE (°C)40201008060120140160180RECEIVER PROPAGATION DELAYvs. TEMPERATURE (16Mbps)R EC E I V E R P R O P A G AT I O N D E L A Y (n s )-40-10520-253550958011065125TEMPERATURE (°C)2µs/div DRIVER PROPAGATION DELAY (250kbps)DI 2V/divV Y - V Z 5V/divR L = 100Ω200ns/divRECEIVER PROPAGATION DELAY(250kbps AND 500kbps)V A - V B 5V/divRO 2V/divTypical Operating Characteristics (continued)(V CC = +5.0V, T A = +25°C, unless otherwise noted.)MAX13080E–MAX13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers_______________________________________________________________________________________9Test Circuits and Waveforms400ns/divDRIVER PROPAGATION DELAY (500kbps)DI 2V/divR L = 100ΩV Y - V Z 5V/div10ns/div DRIVER PROPAGATION DELAY (16Mbps)DI 2V/divR L = 100ΩV Y 2V/divV Z 2V/div40ns/divRECEIVER PROPAGATION DELAY (16Mbps)V B 2V/divR L = 100ΩRO 2V/divV A 2V/divTypical Operating Characteristics (continued)(V CC = +5.0V, T A = +25°C, unless otherwise noted.)Figure 2. Driver Timing Test CircuitM A X 13080E –M A X 13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers 10______________________________________________________________________________________Test Circuits and Waveforms (continued)Figure 4. Driver Enable and Disable Times (t DHZ , t DZH , t DZH(SHDN))DZL DLZ DLZ(SHDN)MAX13080E–MAX13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 TransceiversTest Circuits and Waveforms (continued)Figure 6. Receiver Propagation Delay Test CircuitM A X 13080E –M A X 13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 TransceiversMAX13080E–MAX13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 TransceiversMAX13080E/MAX13083E/MAX13086EMAX13081E/MAX13084E/MAX13086E/MAX13087EFunction TablesM A X 13080E –M A X 13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers MAX13082E/MAX13085E/MAX13088EFunction Tables (continued)MAX13089EDetailed Description The MAX13080E–MAX13089E high-speed transceivers for RS-485/RS-422 communication contain one driver and one receiver. These devices feature fail-safe circuit-ry, which guarantees a logic-high receiver output when the receiver inputs are open or shorted, or when they are connected to a terminated transmission line with all dri-vers disabled (see the Fail-Safe section). The MAX13080E/MAX13082E/MAX13083E/MAX13085E/ MAX13086E/MAX13088E/MAX13089E also feature a hot-swap capability allowing line insertion without erroneous data transfer (see the Hot Swap Capability section). The MAX13080E/MAX13081E/MAX13082E feature reduced slew-rate drivers that minimize EMI and reduce reflec-tions caused by improperly terminated cables, allowing error-free data transmission up to 250kbps. The MAX13083E/MAX13084E/MAX13085E also offer slew-rate limits allowing transmit speeds up to 500kbps. The MAX13086E/MAX13087E/MAX13088Es’ driver slew rates are not limited, making transmit speeds up to 16Mbps possible. The MAX13089E’s slew rate is selectable between 250kbps, 500kbps, and 16Mbps by driving a selector pin with a three-state driver.The MAX13082E/MAX13085E/MAX13088E are half-duplex transceivers, while the MAX13080E/MAX13081E/ MAX13083E/MAX13084E/MAX13086E/MAX13087E are full-duplex transceivers. The MAX13089E is selectable between half- and full-duplex communication by driving a selector pin (H/F) high or low, respectively.All devices operate from a single +5.0V supply. Drivers are output short-circuit current limited. Thermal-shutdown circuitry protects drivers against excessive power dissi-pation. When activated, the thermal-shutdown circuitry places the driver outputs into a high-impedance state.Receiver Input Filtering The receivers of the MAX13080E–MAX13085E, and the MAX13089E when operating in 250kbps or 500kbps mode, incorporate input filtering in addition to input hysteresis. This filtering enhances noise immunity with differential signals that have very slow rise and fall times. Receiver propagation delay increases by 25% due to this filtering.Fail-Safe The MAX13080E family guarantees a logic-high receiver output when the receiver inputs are shorted or open, or when they are connected to a terminated transmission line with all drivers disabled. This is done by setting the receiver input threshold between -50mV and -200mV. If the differential receiver input voltage (A - B) is greater than or equal to -50mV, RO is logic-high. If (A - B) is less than or equal to -200mV, RO is logic-low. In the case of a terminated bus with all transmitters disabled, the receiv-er’s differential input voltage is pulled to 0V by the termi-nation. With the receiver thresholds of the MAX13080E family, this results in a logic-high with a 50mV minimumnoise margin. Unlike previous fail-safe devices, the-50mV to -200mV threshold complies with the ±200mVEIA/TIA-485 standard.Hot-Swap Capability (Except MAX13081E/MAX13084E/MAX13087E)Hot-Swap InputsWhen circuit boards are inserted into a hot or powered backplane, differential disturbances to the data buscan lead to data errors. Upon initial circuit board inser-tion, the data communication processor undergoes itsown power-up sequence. During this period, the processor’s logic-output drivers are high impedanceand are unable to drive the DE and RE inputs of these devices to a defined logic level. Leakage currents up to±10µA from the high-impedance state of the proces-sor’s logic drivers could cause standard CMOS enableinputs of a transceiver to drift to an incorrect logic level. Additionally, parasitic circuit board capacitance couldcause coupling of V CC or GND to the enable inputs. Without the hot-swap capability, these factors could improperly enable the transceiver’s driver or receiver.When V CC rises, an internal pulldown circuit holds DElow and RE high. After the initial power-up sequence,the pulldown circuit becomes transparent, resetting thehot-swap tolerable input.Hot-Swap Input CircuitryThe enable inputs feature hot-swap capability. At theinput there are two NMOS devices, M1 and M2 (Figure 9). When V CC ramps from zero, an internal 7µstimer turns on M2 and sets the SR latch, which alsoturns on M1. Transistors M2, a 1.5mA current sink, andM1, a 500µA current sink, pull DE to GND through a5kΩresistor. M2 is designed to pull DE to the disabledstate against an external parasitic capacitance up to100pF that can drive DE high. After 7µs, the timer deactivates M2 while M1 remains on, holding DE low against three-state leakages that can drive DE high. M1 remains on until an external source overcomes the required input current. At this time, the SR latch resetsand M1 turns off. When M1 turns off, DE reverts to a standard, high-impedance CMOS input. Whenever V CCdrops below 1V, the hot-swap input is reset.For RE there is a complementary circuit employing two PMOS devices pulling RE to V CC. MAX13080E–MAX13089E+5.0V, ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 TransceiversM A X 13080E –M A X 13089EMAX13089E ProgrammingThe MAX13089E has several programmable operating modes. Transmitter rise and fall times are programma-ble, resulting in maximum data rates of 250kbps,500kbps, and 16Mbps. To select the desired data rate,drive SRL to one of three possible states by using a three-state driver: V CC , GND, or unconnected. F or 250kbps operation, set the three-state device in high-impedance mode or leave SRL unconnected. F or 500kbps operation, drive SRL high or connect it to V CC .F or 16Mbps operation, drive SRL low or connect it to GND. SRL can be changed during operation without interrupting data communications.Occasionally, twisted-pair lines are connected backward from normal orientation. The MAX13089E has two pins that invert the phase of the driver and the receiver to cor-rect this problem. F or normal operation, drive TXP and RXP low, connect them to ground, or leave them uncon-nected (internal pulldown). To invert the driver phase,drive TXP high or connect it to V CC . To invert the receiver phase, drive RXP high or connect it to V CC . Note that the receiver threshold is positive when RXP is high.The MAX13089E can operate in full- or half-duplex mode. Drive H/F low, leave it unconnected (internal pulldown), or connect it to GND for full-duplex opera-tion. Drive H/F high for half-duplex operation. In full-duplex mode, the pin configuration of the driver and receiver is the same as that of a MAX13080E. In half-duplex mode, the receiver inputs are internally connect-ed to the driver outputs through a resistor-divider. This effectively changes the function of the device’s outputs.Y becomes the noninverting driver output and receiver input, Z becomes the inverting driver output and receiver input. In half-duplex mode, A and B are still connected to ground through an internal resistor-divider but they are not internally connected to the receiver.±15kV ESD ProtectionAs with all Maxim devices, ESD-protection structures are incorporated on all pins to protect against electro-static discharges encountered during handling and assembly. The driver outputs and receiver inputs of the MAX13080E family of devices have extra protection against static electricity. Maxim’s engineers have devel-oped state-of-the-art structures to protect these pins against ESD of ±15kV without damage. The ESD struc-tures withstand high ESD in all states: normal operation,shutdown, and powered down. After an ESD event, the MAX13080E–MAX13089E keep working without latchup or damage.ESD protection can be tested in various ways. The transmitter outputs and receiver inputs of the MAX13080E–MAX13089E are characterized for protec-tion to the following limits:•±15kV using the Human Body Model•±6kV using the Contact Discharge method specified in IEC 61000-4-2ESD Test ConditionsESD performance depends on a variety of conditions.Contact Maxim for a reliability report that documents test setup, test methodology, and test results.Human Body ModelFigure 10a shows the Human Body Model, and Figure 10b shows the current waveform it generates when dis-charged into a low impedance. This model consists of a 100pF capacitor charged to the ESD voltage of interest,which is then discharged into the test device through a 1.5k Ωresistor.IEC 61000-4-2The IEC 61000-4-2 standard covers ESD testing and performance of finished equipment. However, it does not specifically refer to integrated circuits. The MAX13080E family of devices helps you design equip-ment to meet IEC 61000-4-2, without the need for addi-tional ESD-protection components.+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 TransceiversThe major difference between tests done using the Human Body Model and IEC 61000-4-2 is higher peak current in IEC 61000-4-2 because series resistance is lower in the IEC 61000-4-2 model. Hence, the ESD with-stand voltage measured to IEC 61000-4-2 is generally lower than that measured using the Human Body Model. Figure 10c shows the IEC 61000-4-2 model, and Figure 10d shows the current waveform for IEC 61000-4-2 ESD Contact Discharge test.Machine Model The machine model for ESD tests all pins using a 200pF storage capacitor and zero discharge resis-tance. The objective is to emulate the stress caused when I/O pins are contacted by handling equipment during test and assembly. Of course, all pins require this protection, not just RS-485 inputs and outputs.Applications Information256 Transceivers on the BusThe standard RS-485 receiver input impedance is 12kΩ(1-unit load), and the standard driver can drive up to 32-unit loads. The MAX13080E family of transceivers has a1/8-unit load receiver input impedance (96kΩ), allowingup to 256 transceivers to be connected in parallel on one communication line. Any combination of these devices,as well as other RS-485 transceivers with a total of 32-unit loads or fewer, can be connected to the line.Reduced EMI and ReflectionsThe MAX13080E/MAX13081E/MAX13082E feature reduced slew-rate drivers that minimize EMI and reduce reflections caused by improperly terminated cables, allowing error-free data transmission up to250kbps. The MAX13083E/MAX13084E/MAX13085Eoffer higher driver output slew-rate limits, allowing transmit speeds up to 500kbps. The MAX13089E withSRL = V CC or unconnected are slew-rate limited. WithSRL unconnected, the MAX13089E error-free data transmission is up to 250kbps. With SRL connected toV CC,the data transmit speeds up to 500kbps. MAX13080E–MAX13089E+5.0V, ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 TransceiversM A X 13080E –M A X 13089ELow-Power Shutdown Mode (Except MAX13081E/MAX13084E/MAX13087E)Low-power shutdown mode is initiated by bringing both RE high and DE low. In shutdown, the devices typically draw only 2.8µA of supply current.RE and DE can be driven simultaneously; the devices are guaranteed not to enter shutdown if RE is high and DE is low for less than 50ns. If the inputs are in this state for at least 700ns, the devices are guaranteed to enter shutdown.Enable times t ZH and t ZL (see the Switching Characteristics section) assume the devices were not in a low-power shutdown state. Enable times t ZH(SHDN)and t ZL(SHDN)assume the devices were in shutdown state. It takes drivers and receivers longer to become enabled from low-power shutdown mode (t ZH(SHDN), t ZL(SHDN))than from driver/receiver-disable mode (t ZH , t ZL ).Driver Output ProtectionTwo mechanisms prevent excessive output current and power dissipation caused by faults or by bus contention.The first, a foldback current limit on the output stage,provides immediate protection against short circuits over the whole common-mode voltage range (see the Typical Operating Characteristics ). The second, a thermal-shut-down circuit, forces the driver outputs into a high-imped-ance state if the die temperature exceeds +175°C (typ).Line LengthThe RS-485/RS-422 standard covers line lengths up to 4000ft. F or line lengths greater than 4000ft, use the repeater application shown in Figure 11.Typical ApplicationsThe MAX13082E/MAX13085E/MAX13088E/MAX13089E transceivers are designed for bidirectional data commu-nications on multipoint bus transmission lines. F igures 12 and 13 show typical network applications circuits. To minimize reflections, terminate the line at both ends in its characteristic impedance, and keep stub lengths off the main line as short as possible. The slew-rate-lim-ited MAX13082E/MAX13085E and the two modes of the MAX13089E are more tolerant of imperfect termination.Chip InformationTRANSISTOR COUNT: 1228PROCESS: BiCMOS+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 TransceiversFigure 11. Line Repeater for MAX13080E/MAX13081E/MAX13083E/MAX13084E/MAX13086E/MAX13087E/MAX13089E in Full-Duplex Mode+5.0V, ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 TransceiversMAX13080E–MAX13089EM A X 13080E –M A X 13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 TransceiversPin Configurations and Typical Operating CircuitsMAX13080E–MAX13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers______________________________________________________________________________________21Pin Configurations and Typical Operating Circuits (continued)M A X 13080E –M A X 13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers 22______________________________________________________________________________________Ordering Information (continued)MAX13080E–MAX13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers______________________________________________________________________________________23Package Information (continued)(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,go to /packages .)。
MAX1722EZK-T中文资料
MAX1722
FB 3
4
OUT
THIN SOT23-5
Pin Configurations are continued at end of data sheet.
________________________________________________________________ Maxim Integrated Products
元器件交易网
19-1735; Rev 0; 7/01
1.5µA IQ, Step-Up DC-DC Converters in Thin SOT23-5
General Description
The MAX1722/MAX1723/MAX1724 compact, high-efficiency, step-up DC-DC converters are available in tiny, 5pin thin SOT23 packages. They feature an extremely low 1.5µA quiescent supply current to ensure the highest possible light-load efficiency. Optimized for operation from one to two alkaline or nickel-metal-hydride (NiMH) cells, or a single Li+ cell, these devices are ideal for applications where extremely low quiescent current and ultra-small size are critical. Built-in synchronous rectification significantly improves efficiency and reduces size and cost by eliminating the need for an external Schottky diode. All three devices feature a 0.5Ω N-channel power switch. The MAX1722/ MAX1724 also feature proprietary noise-reduction circuitry, which suppresses electromagnetic interference (EMI) caused by the inductor in many step-up applications. The family offers different combinations of fixed or adjustable outputs, shutdown, and EMI reduction (see Selector Guide). o o o o o o o o o o o
MAX2632EUK-T中文资料
ISM Radios
Wireless Local Loops
TV Tuners
Land Mobile Radios
Set-Top Boxes
__________Typical Operating Circuit
ON OFF
SHDN BIAS GND
CBLOCK
IN
IN
BIAS RBIAS
OUT
OUT
1.25:1
RBIAS = 40kΩ
1.3
1.5
VCC = 3V, TA = +25°C
5.5
6.5
8.0
Supply Current
RBIAS =10kΩ VCC = 3V, TA = TMIN to TMAX (Note1) 4.2
6.5
9.2
mA
VCC = 2.7V to 5.5V, TA = +25°C
PINPACKAGE
SOT TOP MARK*
MAX2630EUS-T -40°C to +85°C 4 SOT143
DG_ _
MAX2631EUK-T -40°C to +85°C 5 SOT23-5 AABK
MAX2632EUK-T -40°C to +85°C 5 SOT23-5 AABL
MAX2633EUT-T -40°C to +85°C 6 SOT23-6 AAAA
The MAX2630 comes in a 4-pin SOT143 package, requiring minimal board space. The MAX2631/MAX2632 come in small 5-pin SOT23 packages. The MAX2633 comes in a 6-pin SOT23 package.
MAXIM 化数字电位器MAX5481, MAX5482, MAX5483, MAX548 说明书
ENGLISH•简体中文•日本語•概述状况状况:生产中。
下载Notes MAX5481Linear13-WireSerial SPINon-Volatile102410253519.6$1.95@1kMAX548250$1.95 @1kMAX548310$1.95 @1kMAX548450$1.95 @1k查看所有Digital Potentiometers (128)引脚配置相关产品MAX5494,MAX5495,MAX5496, ...10位、双路、非易失、线性变化数字电位器类似产品:浏览其它类似产品线查看所有Digital Potentiometers (128产品)顶标MAX5481顶标MAX5482顶标MAX5483顶标MAX5484新品发布[ 2005-08-03 ]应用工程师帮助选型,下个工作日回复参数搜索应用帮助概述技术文档定购信息概述关键特性应用/使用关键指标图表注释、注解相关产品数据资料应用笔记评估板设计指南可靠性报告软件/模型价格与供货样品在线订购封装信息无铅信息参考文献: 19-3708 Rev. 4; 2008-03-12本页最后一次更新: 2008-03-27联络我们:信息反馈、提出问题 • 对该网页的评价 • 发送本网页 • 隐私权政策 • 法律声明 © 2010 Maxim Integrated Products版权所有General DescriptionThe MAX5481–MAX5484 10-bit (1024-tap) nonvolatile,linear-taper, programmable voltage-dividers and vari-able resistors perform the function of a mechanical potentiometer, but replace the mechanics with a pin-configurable 3-wire serial SPI™-compatible interface or up/down digital interface. The MAX5481/MAX5482 are 3-terminal voltage-dividers and the MAX5483/MAX5484are 2-terminal variable resistors.The MAX5481–MAX5484 feature an internal, non-volatile, electrically erasable programmable read-only memory (EEPROM) that stores the wiper position for ini-tialization during power-up. The 3-wire SPI-compatible serial interface allows communication at data rates up to 7MHz. A pin-selectable up/down digital interface is also available.The MAX5481–MAX5484 are ideal for applications requiring digitally controlled potentiometers. Two end-to-end resistance values are available (10k Ωand 50k Ω) in a voltage-divider or a variable-resistor configuration (see the Selector G uide ). The nominal resistor temperature coefficient is 35ppm/°C end-to-end, and only 5ppm/°C ratiometric, making these devices ideal for applications requiring low-temperature-coefficient voltage-dividers,such as low-drift, programmable gain-amplifiers.The MAX5481–MAX5484 operate with either a +2.7V to +5.25V single power supply or ±2.5V dual power sup-plies. These devices consume 400µA (max) of supply current when writing data to the nonvolatile memory and 1.0µA (max) of standby supply current. The MAX5481–MAX5484 are available in a space-saving (3mm x 3mm), 16-pin TQFN, or a 14-pin TSSOP pack-age and are specified over the extended (-40°C to +85°C) temperature range.ApplicationsFeatures♦1024 Tap Positions♦Power-On Recall of Wiper Position from Nonvolatile Memory♦16-Pin (3mm x 3mm x 0.8mm) TQFN or 14-Pin TSSOP Package♦35ppm/°C End-to-End Resistance Temperature Coefficient♦5ppm/°C Ratiometric Temperature Coefficient ♦10kΩand 50kΩEnd-to-End Resistor Values♦Pin-Selectable SPI-Compatible Serial Interface or Up/Down Digital Interface ♦1µA (max) Standby Current♦Single +2.7V to +5.25V Supply Operation ♦Dual ±2.5V Supply OperationMAX5481–MAX548410-Bit, Nonvolatile, Linear-Taper DigitalPotentiometers________________________________________________________________Maxim Integrated Products1Ordering InformationPin Configurations19-3708; Rev 5; 4/10For pricing delivery, and ordering information please contact Maxim Direct at 1-888-629-4642,or visit Maxim’s website at .Selector Guide appears at end of data sheet.SPI is a trademark of Motorola, Inc.temperature range.+Denotes a lead(Pb)-free/RoHS-compliant package.*EP = Exposed pad.Ordering Information continued at end of data sheet.Gain and Offset AdjustmentLCD Contrast Adjustment Pressure SensorsLow-Drift Programmable Gain AmplifiersMechanical Potentiometer ReplacementM A X 5481–M A X 548410-Bit, Nonvolatile, Linear-Taper Digital PotentiometersABSOLUTE MAXIMUM RATINGSStresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.V DD to GND...........................................................-0.3V to +6.0V V SS to GND............................................................-3.5V to +0.3V V DD to V SS .............................................................-0.3V to +6.0V H, L, W to V SS ..................................(V SS - 0.3V) to (V DD + 0.3V)CS , SCLK(INC ), DIN(U/D ), SPI/UD to GND..-0.3V to (V DD + 0.3V)Maximum Continuous Current into H, L, and WMAX5481/MAX5483.........................................................±5mA MAX5482/MAX5484......................................................±1.0mA Maximum Current into Any Other Pin...............................±50mAContinuous Power Dissipation (T A = +70°C)16-Pin TQFN (derate 17.5mW/°C above +70°C).....1398.6mW 14-Pin TSSOP (derate 9.1mW/°C above +70°C)..........727mW Operating Temperature Range ...........................-40°C to +85°C Junction Temperature......................................................+150°C Storage Temperature Range.............................-60°C to +150°C Lead Temperature (soldering, 10s).................................+300°C Soldering Temperature (reflow).......................................+260°CELECTRICAL CHARACTERISTICSMAX5481–MAX548410-Bit, Nonvolatile, Linear-Taper DigitalPotentiometers_______________________________________________________________________________________3ELECTRICAL CHARACTERISTICS (continued)(V DD = +2.7V to +5.25V, V SS = V GND = 0V, V H = V DD , V L = 0V, T A = -40°C to +85°C, unless otherwise noted. Typical values are at V DD = +5.0V, T A = +25°C, unless otherwise noted.) (Note 1)M A X 5481–M A X 548410-Bit, Nonvolatile, Linear-Taper Digital Potentiometers 4_______________________________________________________________________________________TIMING CHARACTERISTICSNote 2:The DNL and INL are measured with the device configured as a voltage-divider with H = V DD and L = V SS . The wiper termi-nal (W) is unloaded and measured with a high-input-impedance voltmeter.Note 3:The DNL_R and INL_R are measured with D.N.C. unconnected and L = V SS = 0V. For V DD = +5V, the wiper terminal is dri-ven with a source current of I W = 80µA for the 50k Ωdevice and 400µA for the 10k Ωdevice. For V DD = +3V, the wiper termi-nal is driven with a source current of 40µA for the 50k Ωdevice and 200µA for the 10k Ωdevice.Note 4:The wiper resistance is measured using the source currents given in Note 3.Note 5:The device draws higher supply current when the digital inputs are driven with voltages between (V DD - 0.5V) and (V GND +0.5V). See Supply Current vs. Digital Input Voltage in the Typical Operating Characteristics .Note 6:Wiper settling test condition uses the voltage-divider configuration with a 10pF load on W. Transition code from 00000 00000to 01111 01111 and measure the time from CS going high to the wiper voltage settling to within 0.5% of its final value.MAX5481–MAX548410-Bit, Nonvolatile, Linear-Taper DigitalPotentiometers_______________________________________________________________________________________5-1.0-0.6-0.8-0.2-0.40.200.40.80.61.002563841285126407688961024DNL vs. CODE (MAX5483)CODED N L (L S B )V DD = 2.7V-1.0-0.6-0.8-0.2-0.40.200.40.80.61.002563841285126407688961024DNL vs. CODE (MAX5483)CODED N L (L S B )V DD = 5V-2.0-1.0-1.50-0.50.51.01.5 2.0INL vs. CODE (MAX5483)I N L (L S B )V DD = 2.7V02563841285126407688961024CODE-2.0-1.0-1.50-0.50.51.01.5 2.0INL vs. CODE (MAX5483)I N L (L S B )V DD = 3V2563841285126407688961024CODE-2.0-1.0-1.50-0.50.51.01.5 2.0INL vs. CODE (MAX5483)I N L (L S B )V DD = 5V02563841285126407688961024CODE-1.0-0.6-0.8-0.2-0.40.200.40.80.61.002563841285126407688961024DNL vs. CODE (MAX5481)CODED N L (L S B )-1.0-0.6-0.8-0.2-0.40.200.40.80.61.002563841285126407688961024DNL vs. CODE (MAX5481)CODED N L (L S B )V DD = 5V-1.0-0.6-0.8-0.2-0.40.200.40.80.61.002563841285126407688961024INL vs. CODE (MAX5481)CODEI N L (L S B )-1.0-0.6-0.8-0.2-0.40.200.40.80.61.002563841285126407688961024INL vs. CODE (MAX5481)CODEI N L (L S B )Typical Operating Characteristics(V DD = 5.0V, V SS = 0V, T A = +25°C, unless otherwise noted.)M A X 5481–M A X 548410-Bit, Nonvolatile, Linear-Taper Digital Potentiometers 6_______________________________________________________________________________________-1.0-0.6-0.8-0.2-0.40.200.40.80.61.002563841285126407688961024DNL vs. CODE (MAX5484)CODED N L (L S B )-1.0-0.6-0.8-0.2-0.40.200.40.80.61.002563841285126407688961024DNL vs. CODE (MAX5484)CODED N L (L S B )-1.0-0.6-0.8-0.2-0.40.200.40.80.61.002563841285126407688961024INL vs. CODE (MAX5484)CODEI N L (L S B )-1.0-0.6-0.8-0.2-0.40.200.40.80.61.002563841285126407688961024INL vs. CODE (MAX5484)CODEI N L (L S B )-1.0-0.6-0.8-0.2-0.40.200.40.80.61.002563841285126407688961024DNL vs. CODE (MAX5482)CODED N L (L S B )-1.0-0.6-0.8-0.2-0.40.200.40.80.61.002563841285126407688961024DNL vs. CODE (MAX5482)CODED N L (L S B )-1.0-0.6-0.8-0.2-0.40.200.40.80.61.002563841285126407688961024INL vs. CODE (MAX5482)CODEI N L (L S B )V DD = 2.7V-1.0-0.6-0.8-0.2-0.40.200.40.80.61.02563841285126407688961024INL vs. CODE (MAX5482)CODEI N L (L S B )V DD = 5V02010403050607080WIPER RESISTANCE vs. CODE (VARIABLE RESISTOR, T A = -40°C)M A X 5481 t o c 18R W (Ω)2563841285126407688961024CODETypical Operating Characteristics (continued)(V DD = 5.0V, V SS = 0V, T A = +25°C, unless otherwise noted.)MAX5481–MAX5484Typical Operating Characteristics (continued)(V DD = 5.0V, V SS = 0V, T A = +25°C, unless otherwise noted.)10-Bit, Nonvolatile, Linear-Taper DigitalPotentiometers_______________________________________________________________________________________702010403050607080WIPER RESISTANCE vs. CODE (VARIABLE RESISTOR, T A = +25°C)M A X 5481 t oc 19R W (Ω)2563841285126407688961024CODE2010403050607080WIPER RESISTANCE vs. CODE (VARIABLE RESISTOR, T A = +85°C)M A X 5481 t o c 20R W (Ω)2563841285126407688961024CODE10302050604070W-TO-L RESISTANCE vs. CODE(MAX5484)R W L (k Ω)02563841285126407688961024CODE02641012814W-TO-L RESISTANCE vs. CODE(MAX5483)R W L (k Ω)2563841285126407688961024CODE18.018.519.019.520.020.521.021.522.0012345WIPER RESISTANCE vs. WIPER VOLTAGE(VARIABLE RESISTOR)WIPER VOLTAGE (V)R W (Ω)-2.0-1.5-1.0-0.500.51.01.52.0-40-1510356085END-TO-END (R HL ) % CHANGE vs. TEMPERATURE (VOLTAGE-DIVIDER)M A X 5481 t o c 24TEMPERATURE (°C)E N D -T O -E N D R E S I S T A N C E C H A N G E (%)-2.0-1.5-1.0-0.500.51.01.52.0-40-1510356085WIPER-TO-END RESISTANCE (R WL ) % CHANGE vs. TEMPERATURE (VARIABLE RESISTOR)TEMPERATURE (°C)W I P E R -T O -E N D R E S I S T A N C E C H A N G E (%)00.30.90.61.21.5-4010-15356085STANDBY SUPPLY CURRENTvs. TEMPERATURETEMPERATURE (°C)I D D (μA )DIGITAL SUPPLY CURRENT vs. DIGITAL INPUT VOLTAGEDIGITAL INPUT VOLTAGE (V)I D D (μA )4.54.03.53.02.52.01.51.00.5110100100010,0000.15.0M A X 5481–M A X 548410-Bit, Nonvolatile, Linear-Taper Digital Potentiometers Typical Operating Characteristics (continued)(Circuit of Figure 1, T A = +25°C, unless otherwise noted.)1μs/divTAP-TO-TAP SWITCHING TRANSIENTRESPONSE (MAX5481)V W(AC-COUPLED)20mV/divCS 2V/divH = V DD , L = GND C W = 10pFFROM CODE 01 1111 1111TO CODE 10 0000 00004μs/divTAP-TO-TAP SWITCHING TRANSIENTRESPONSE (MAX5482)V W(AC-COUPLED)20mV/divCS 2V/divH = V DD , L = GND C W = 10pFFROM CODE 01 1111 1111TO CODE 10 0000 0000WIPER RESPONSE vs. FREQUENCY(MAX5481)FREQUENCY (kHz)G A I N (d B )100101-20-15-10-5-250.11000WIPER RESPONSE vs. FREQUENCY(MAX5482)FREQUENCY (kHz)G A I N (d B )100101-20-15-10-50-250.11000THD+N vs. FREQUENCY(MAX5481)FREQUENCY (kHz)T H D +N (%)1010.10.0010.010.11100.00010.01100THD+N vs. FREQUENCY(MAX5482)FREQUENCY (kHz)T H D +N (%)1010.10.0010.010.11100.00010.0110004020806012010014018016020002563841285126407688961024RATIOMETRIC TEMPERATURE COEFFICIENT vs. CODECODER A T I O M E T R I C T E M P C O (p p m )100300200500600400700VARIABLE-RESISTOR TEMPERATURECOEFFICIENT vs. CODET C V R (p p m )02563841285126407688961024CODE10-Bit, Nonvolatile, Linear-Taper DigitalPotentiometersPin DescriptionMAX5481–MAX5484M A X 5481–M A X 548410-Bit, Nonvolatile, Linear-Taper Digital Potentiometers Pin Description (continued)(MAX5483/MAX5484 Variable Resistors)MAX5481–MAX548410-Bit, Nonvolatile, Linear-Taper DigitalPotentiometersFunctional DiagramsM A X 5481–M A X 548410-Bit, Nonvolatile, Linear-Taper Digital Potentiometers Detailed DescriptionThe MAX5481/MAX5482 linear programmable voltage-dividers and the MAX5483/MAX5484 variable resistors feature 1024 tap points (10-bit resolution) (see the Functional Diagrams ). These devices consist of multi-ple strings of equal resistor segments with a wiper con-tact that moves among the 1024 points through a pin-selectable 3-wire SPI-compatible serial interface or up/down interface. The MAX5481/MAX5483 provide a total end-to-end resistance of 10k Ω, and the MAX5482/MAX5484 have an end-to-end resistance of 50k Ω. The MAX5481/MAX5482 allow access to the high, low, and wiper terminals for a standard voltage-divider configuration.MAX5481/MAX5482 ProgrammableVoltage-DividersThe MAX5481/MAX5482 programmable voltage-dividers provide a weighted average of the voltage between the H and L inputs at the W output. Both devices feature 10-bit resolution and provide up to 1024 tap points between the H and L voltages. Ideally,the V L voltage occurs at the wiper terminal (W) when all data bits are zero and the V H voltage occurs at the wiper terminal when all data bits are one. The step size (1 LSB) voltage is equal to the voltage applied across terminals H and L divided by 210. Calculate the wiper voltage V Was follows:Functional Diagrams (continued)MAX5481–MAX548410-Bit, Nonvolatile, Linear-Taper DigitalPotentiometerswhere D is the decimal equivalent of the 10 data bits writ-ten (0 to 1023), V HL is the voltage difference between the H and L terminals:The MAX5481 includes a total end-to-end resistance value of 10k Ωwhile the MAX5482 features an end-to-end resistance value of 50k Ω. These devices are not intended to be used as a variable resistor . Wiper cur-rent creates a nonlinear voltage drop in series with the wiper. To ensure temperature drift remains within speci-fications, do not pull current through the voltage-divider wiper. Connect the wiper to a high-impedance node.Figures 1 and 2 show the behavior of the MAX5481’s resistance from W to H and from W to L. This does not apply to the variable-resistor devicesMAX5483/MAX5484 Variable ResistorsThe MAX5483/MAX5484 provide a programmable resistance between W and L. The MAX5483 features a total end-to-end resistance value of 10k Ω, while the MAX5484 provides an end-to-end resistance value of 50k Ω. The programmable resolution of this resistance is equal to the nominal end-to-end resistance divided by 1024 (10-bit resolution). For example, each nominal segment resistance is 9.8Ωand 48.8Ωfor the MAX5483and the MAX5484, respectively.wiper position from the 1024 possible positions, result-ing in 1024 values for the resistance from W to L.Calculate the resistance from W to L (R WL ) by using the where D is decimal equivalent of the 10 data bits writ-ten, R W-L is the nominal end-to-end resistance, and R Z is the zero-scale error. Table 1 shows the values of R WL at selected codes for the MAX5483/MAX5484.Digital InterfaceConfigure the MAX5481–MAX5484 by a pin-selectable,3-wire, SPI-compatible serial data interface or an up/down interface. Drive SPI/UD high to select the 3-wire SPI-compatible interface. Pull SPI/UD low to select the up/down interface.V FSE V andV ZSE V FSE HL ZSE HL =⎡⎣⎢⎤⎦⎥=⎡⎣⎢⎤⎦⎥10241024,Figure 1. Resistance from W to H vs. Code (10k ΩVoltage-Divider)Figure 2. Resistance from W to L vs. Code (10k ΩVoltage-Divider)M A X 5481–M A X 548410-Bit, Nonvolatile, Linear-Taper Digital Potentiometers SPI-Compatible Serial InterfaceDrive SPI/UD high to enable the 3-wire SPI-compatible serial interface (see Figure 3). This write-only interface contains three inputs: chip select (CS ), data in (DIN(U/D )), and data clock (SCLK(INC )). Drive CS low to load the data at DIN(U/D ) synchronously into the shift register on each SCLK(INC ) rising edge.The WRITE command (C1, C0 = 00) requires 24 clock cycles to transfer the command and data (Figure 4a).The COPY commands (C1, C0 = 10 or 11) use either eight clock cycles to transfer the command bits (Figure 4b) or 24 clock cycles with the last 16 data bits disre-garded by the device.After loading the data into the shift register, drive CS high to latch the data into the appropriate control regis-ter. Keep CS low during the entire serial data stream to avoid corruption of the data. Table 2 shows the com-mand decoding.Write Wiper RegisterData written to this register (C1, C0 = 00) controls the wiper position. The 10 data bits (D9–D0) indicate the position of the wiper. For example, if DIN(U/D ) = 00 00000000, the wiper moves to the position closest to L. If DIN(U/D ) = 11 1111 1111, the wiper moves closest to H.This command writes data to the volatile random access memory (RAM), leaving the NV register unchanged. When the device powers up, the data stored in the NV register transfers to the wiper register,moving the wiper to the stored position. Figure 5 shows how to write data to the wiper register.Table 2. Command Decoding*X = Don’t care.Figure 3. SPI-Compatible Serial-Interface Timing Diagram (SPI/UD = 1)10-Bit, Nonvolatile, Linear-Taper DigitalPotentiometers ArrayMAX5481–MAX5484Figure4. Serial SPI-Compatible Interface FormatFigure5. Write Wiper Register OperationM A X 5481–M A X 548410-Bit, Nonvolatile, Linear-Taper Digital Potentiometers Copy Wiper Register to NV RegisterThe copy wiper register to NV register command (C1,C0 = 10) stores the current position of the wiper to the NV register for use at power-up. Figure 6 shows how to copy data from wiper register to NV register. The oper-ation takes up to 12ms (max) after CS goes high to complete and no other operation should be performed until completion.Copy NV Register to Wiper RegisterThe copy NV register to wiper register (C1, C0 = 11)restores the wiper position to the current value stored in the NV register. Figure 7 shows how to copy data from the NV register to the wiper register.Digital Up/Down InterfaceFigure 8 illustrates an up/down serial-interface timing diagram. In digital up/down interface mode (SPI/UD =0), the logic inputs CS , DIN(U/D ), and SCLK(INC ) con-trol the wiper position and store it in nonvolatile memory (see Table 3). The chip-select (CS ) input enables the serial interface when low and disables the interface when high. The position of the wiper is stored in the nonvolatile register when CS transitions from low to high while SCLK(INC ) is high.When the serial interface is active (CS low), a high-to-low (falling edge) transition on SCLK(INC ) increments or decrements the internal 10-bit counter depending on the state of DIN(U/D ). If DIN(U/D ) is high, the wiper increments. If DIN(U/D ) is low, the wiper decrements.The device stores the value of the wiper position in the nonvolatile memory when CS transitions from low to high while SCLK(INC ) is high. The host system can disablethe serial interface and deselect the device without stor-ing the latest wiper position in the nonvolatile memory by keeping SCLK(INC ) low while taking CS high.Upon power-up, the MAX5481–MAX5484 load the value of nonvolatile memory into the wiper register, and set the wiper position to the value last stored.Figure 6. Copy Wiper Register to NV Register OperationFigure 7. Copy NV Register to Wiper Register OperationMAX5481–MAX548410-Bit, Nonvolatile, Linear-Taper DigitalPotentiometersStandby ModeThe MAX5481–MAX5484 feature a low-power standby mode. When the device is not being programmed, it enters into standby mode and supply current drops to 0.5µA (typ).Nonvolatile MemoryThe internal EEPROM consists of a nonvolatile register that retains the last value stored prior to power-down.The nonvolatile register is programmed to midscale at the factory. The nonvolatile memory is guaranteed for 50 years of wiper data retention and up to 200,000wiper write cycles.Power-UpUpon power-up, the MAX5481–MAX5484 load the data stored in the nonvolatile wiper register into the volatile wiper register, updating the wiper position with the data stored in the nonvolatile wiper register.Applications InformationThe MAX5481–MAX5484 are ideal for circuits requiring digitally controlled adjustable resistance, such as LCD contrast control (where voltage biasing adjusts the dis-play contrast), or programmable filters with adjustable gain and/or cutoff frequency.Positive LCD Bias ControlFigures 9 and 10 show an application where a voltage-divider or a variable resistor is used to make an adjustable, positive LCD-bias voltage. The op amp pro-vides buffering and gain to the voltage-divider network made by the programmable voltage-divider (Figure 9) or to a fixed resistor and a variable resistor (see Figure 10).Programmable Gain and Offset AdjustmentFigure 11 shows an application where a voltage-divider and a variable resistor are used to make a programma-ble gain and offset adjustment.Figure 8. Up/Down Serial-Interface Timing Diagram (SPI/UD = 0)M A X 5481–M A X 548410-Bit, Nonvolatile, Linear-Taper Digital Potentiometers 18______________________________________________________________________________________Programmable FilterFigure 12 shows the configuration for a 1st-order pro-grammable filter using two variable resistors. Adjust R2for the gain and adjust R3 for the cutoff frequency. Use the following equations to estimate the gain (G) and the 3dB cutoff frequency (f C):Figure 10. Positive LCD Bias Control Using a Variable ResistorFigure 12. Programmable FilterFigure 11. Programmable Gain/Offset AdjustmentFigure 9. Positive LCD Bias Control Using a Voltage-DividerMAX5481–MAX548410-Bit, Nonvolatile, Linear-Taper DigitalPotentiometers______________________________________________________________________________________19Chip InformationPROCESS: BiCMOSSelector GuidePin Configurations (continued)Ordering Information (continued)Note: All devices are specified over the -40°C to +85°C operating temperature range.+Denotes a lead(Pb)-free/RoHS-compliant package.*EP = Exposed pad.Package InformationFor the latest package outline information and land patterns, go to /packages . Note that a “+”, “#”, or “-” in the package code indicates RoHS status only. Package draw-ings may show a different suffix character, but the drawing per-tains to the package regardless of RoHS status.M A X 5481–M A X 548410-Bit, Nonvolatile, Linear-Taper Digital Potentiometers Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.20____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600©2010 Maxim Integrated ProductsMaxim is a registered trademark of Maxim Integrated Products, Inc.。
MAX5921AEVKIT中文资料
19-2971; Rev 0; 8/03
MAX5921A Evaluation Kit
General Description
The MAX5921A evaluation kit (EV kit) is a fully assembled and tested surface-mount circuit board that provides current-limiting and multilevel fault protection using the MAX5921A hot-swap controller. The EV kit demonstrates the autoretry, configurable input undervoltage, overvoltage, and overcurrent monitoring features of the MAX5921A. The MAX5921A controls an external N-channel MOSFET to provide load-current regulation. The EV kit circuit undervoltage and overvoltage thresholds are configured to -32V and -80V, respectively, which makes the EV kit well suited for -48V telecom systems. The input operating voltage range is -20V to -80V (-48V rail systems). The EV kit is designed to withstand -100V input transients. The current-limiting threshold is configured for 1.8A output current. The EV kit can also be used to evaluate different versions of the MAX5920, MAX5921, or MAX5939 hotswap controllers after removing the MAX5921A. The MAX5920A/B are pin- and function-compatible with the LT4250 hot-swap controllers and pin-compatible with LT1640. Warning: The MAX5921A EV kit is designed to operate with high voltages. Dangerous voltages are present on this EV kit and on equipment connected to it. Users who power up this EV kit or power the sources connected to it must be careful to follow safety procedures appropriate to working with high-voltage electrical equipment. Under severe fault or failure conditions, this EV kit may dissipate large amounts of power, which could result in the mechanical ejection of a component or of component debris at high velocity. Operate this kit with care to avoid possible personal injury. The EV kit user should not probe the circuit with an oscilloscope probe and ground clip unless they have “high-voltage, hot-swap experience.”
SF5928S_规格书_v1.1
Confidential SiFirst_规格书_5928S_V1.1
工作温度范围 储存温度范围 ESD 人体模型 ESD 机器模型
推荐工作条件(注释 5)
VDD 工作范围 环境工作温度范围 最高工作开关频率
参数
SF5928S
-40 to 85
oC
-65 to 150
oC
3
kV
250
V
参数范围
Vth_OC
最大峰值电流
TD_OC
电流比较器关断延迟
功率 MOSFET 部分(注释 7)
BVdss
内部功率管 Drain 耐
压
Rdson
内部功率管阻抗
Idss Td(on)
内部功率管关断漏电 流 开通延迟
注释 6 I(Drain)=1A
©SiFirst Technology
-4-
最小 典型 最大 单位
DIP8
2
7
3
6
4
5
GND GND Drain Drain
VDD NC FB CS
1
7
DIP7 2
3
6
4
5
GND
Drain Drain
订购信息
订购型号
SF5928SDP SF5928SEP
IC 打印
SF5928SDP SF5928SEP
DIP8 DIP7
封装
RoHs RoHs
包装编带
最大输出功率 (1) 料号
输出电压 Vo
PFM 模式
PWM+PFM 模式
±5%
恒压模式
恒压CV模式
恒恒流流模C式C模式
自自动动恢重复启保护
电子元器件芯片
深圳市明烽威电子有限公司HCPL-4506-300E AVAGO HCPL-0600-500E AVAGOHCPL-4506-500E AVAGO HEDS-9701#C54AVAGOHCPL-4534-000E AVAGO TLC04CP TIHCPL-4534-300E AVAGO X9313WSZ-3T1INTERSILHCPL-4534-500E AVAGO TMS320LF2402APGA TIHCPL-4562-000E AVAGO TMS320LF2406APZA TIHCPL-4562-300E AVAGO AD9910BSVZ ADIHCPL-4562-500E AVAGO AD9957BSVZ ADIHCPL-4661-000E AVAGO TLV320AIC33IRGZ TIHCPL-4661-300E AVAGO TLV320AIC33IZQER TIHCPL-4661-500E AVAGO TPS54616PWPR TIHCPL-4731-000E AVAGO OPA551PA TIHCPL-4731-300E AVAGO DS1813R-15+DALLASHCPL-4731-500E AVAGO TPS7333QDR TIHCPL-7510-000E AVAGO OPA277UA TIHCPL-7510-300E AVAGO LM1877MX-9NSHCPL-7510-500E AVAGO ISO7221BDR TIHCPL-7520-000E AVAGO TL16C550CIPTR TIHCPL-7520-300E AVAGO MAX9324EUP+MAXIMHCPL-7520-500E AVAGO MAX1706EEE-T MAXIMHCPL-7560-000E AVAGO TPS75733KTTR TIHCPL-7560-300E AVAGO LM2674MX-ADJ NSHCPL-7560-500E AVAGO ADS8321EB TIHCPL-7611-000E AVAGO ADS8320EB TIHCPL-7611-300E AVAGO W29C040T-90B WINBONDHCPL-7611-500E AVAGO ISO124U TIHCPL-7710-000E AVAGO FM25L04B-GTR RAMTRONHCPL-7710-300E AVAGO TLE2084CN TIHCPL-7710-500E AVAGO TL317CDR TIHCPL-7720-000E AVAGO MAX354CPE+MAXIMHCPL-7720-300E AVAGO MAX354EPE+MAXIMHCPL-7720-500E AVAGO DEI0429-WMB DEIHCPL-7721-000E AVAGO AT91SAM7SE512-AU atmelHCPL-7721-300E AVAGO EL1881CSZ-T7INTERSILHCPL-7721-500E AVAGO SN74ACT2440FNR TIHCPL-7723-000E AVAGO MT4LC8M8C2P-5MICRONHCPL-7723-300E AVAGOHCPL-7800-000E AVAGOHCPL-7800-300E AVAGOHCPL-7800-500E AVAGOHCPL-7800A-000E AVAGOHCPL-7800A-300E AVAGOHCPL-7800A-500E AVAGOHCPL-7840-000E AVAGOHCPL-7840-300E AVAGOHCPL-7840-500E AVAGOHCPL786J-000E AVAGO HCPL-786J-000E AVAGO HCPL786J-300E AVAGO HCPL-786J-300E AVAGO HCPL786J-500E AVAGO HCPL-786J-500E AVAGO HCPL788J-000E AVAGO HCPL-788J-000E AVAGO HCPL788J-300E AVAGO HCPL-788J-300E AVAGO HCPL788J-500E AVAGO HCPL-788J-500EHCPL-817-000EHCPL-817-00AEHCPL-817-00BEHCPL-817-00CEHCPL-817-00DEHCPL-817-00LEHCPL-817-060EHCPL-817-06AEHCPL-817-06BEHCPL-817-06CEHCPL-817-06DEHCPL-817-06LEHCPL-817-300EHCPL-817-30AEHCPL-817-30BEHCPL-817-30CEHCPL-817-30DEHCPL-817-30LEHCPL-817-360EHCPL-817-36AEHCPL-817-36BEHCPL-817-36CEHCPL-817-36DEHCPL-817-36LEHCPL-817-500EHCPL-817-50AEHCPL-817-50BEHCPL-817-50CEHCPL-817-50DEHCPL-817-50LEHCPL-817-560EHCPL-817-56AEHCPL-817-56BEHCPL-817-56CEHCPL-817-56DEHCPL-817-56LEHCPL-9000-000E AVAGO DRV101FKTWT TIHCPL-9000-300E AVAGO DRV101F TIHCPL-9000-500E AVAGO UCC5638FQPR TIHCPL-902J-000E AVAGO TLV320AIC3204IRHBT TIHCPL-902J-300E AVAGO TLV320AIC3204IRHBR TIHCPL-902J-500E AVAGO TLV5625CDR TIHCPL-J312-000E AVAGO TLV5625IDR TIHCPL-J312-300E AVAGO TLV320AIC3104IRHBT TIHCPL-J312-500E AVAGO TLV320AIC3104IRHBR TIHCPL-J456-000E AVAGO AT45DB041D-SU ATMEL HCPL-J456-300E AVAGO MAX6657MSA+T MAXIM HCPL-J456-500E AVAGO HCPL-J454-000E AVAGO HCPL-M453-000E AVAGO HCPL-J454-300E AVAGO HCPL-M453-300E AVAGO HCPL-J454-400E AVAGO HCPL-M453-500E AVAGO HCPL-J454-500E AVAGO HCPL-M454-000E AVAGO HCPL-J454-600E AVAGO HCPL-M454-300E AVAGO TC7660IJA MICROCHIP HCPL-M454-500E AVAGO TC7660MJA MICROCHIP HCPL-M456-000E AVAGO ADT7460ARQZ ADIHCPL-M456-300E AVAGO ADSP-21065LKCA264ADIHCPL-M456-500E AVAGO ADSP-21065LKCAZ264ADI HCPL-M600-000E AVAGO AD7859ASZ ADI HCPL-M600-300E AVAGO MJD45H11G ONHCPL-M600-500E AVAGO TPD3E001DRLR TIHCPL-M601-000E AVAGO XTR116U TIHCPL-M601-300E AVAGO DS1233-5+DALLAS HCPL-M601-500E AVAGO TRU050GALGA32.0000/16.00Vectron HCPL-M611-000E AVAGO TRU050GACCA28.7040/14.35Vectron HCPL-M611-300E AVAGO AD9516-3BCPZ ADI HCPL-M611-500E AVAGO REF3125AIDBZT TIHCPL-M700-000E AVAGO REF3125AIDBZR TIHCPL-M700-300E AVAGO AD8592ARMZ ADI HCPL-M700-500E AVAGO QCPL-034H-500E AVAGOHD6413079F18HIT AD9865BCPZ ADI HDMP1636A AVAGO QCPL-312H-500E AVAGO HDMP-1636A AVAGO M74VHC1G135DFT1G ONHDMP-1637A AVAGO HSMD-A100-J00J1AVAGO HDMP1638AVAGO LT1587CT LTHDMP-1638AVAGO AD827JRZ-16ADI HEDS9710-R50AVAGO HSMP-389F-BLKG AVAGO HEDS-9710-R50AVAGO HSMP-389F-TR1G AVAGO HEL22MICREL HSMP-389F-TR2G AVAGO HEL23MICREL XC3064A-7PC84C XILINX HFBR-1414Z AVAGO XC3064A-7PC84I XILINX HFBR-1414TZ AVAGO Si7703EDN-T1-E3VISHAY HFBR-1521Z AVAGO Si7703EDN-T1-GE3VISHAYT-1521Z AVAGO Si7703EDN-T1-GE3ADIT-1521ETZ AVAGO AD605ARZ ADIHFBR-1521ETZ AVAGO MACH110-15JC AMDT-1522Z AVAGO MACH210-20JC AMDT-1522ETZ AVAGO LTC4213IDDB LINEAR HFBR-1522ETZ AVAGO DS1233-15+DALLAS HFBR1522Z AVAGO LTC3412EFE LINEAR HFBR-1522Z AVAGO MAX513ESD+T MAXIM HFBR1523Z AVAGO MAX3681EAG+MAXIM HFBR-1523Z AVAGO ICS1893CKILF IDT HFBR1528Z AVAGO TMS32C6416DGLZA5E0TI HFBR-1528Z AVAGO TMS32C6416EGLZ5E0TI HFBR-1531Z AVAGO TMS32C6416EGLZ6E3TI HFBR-1531ETZ AVAGO TMS32C6416EGLZ7E3TI HFBR-2531ETZ AVAGO TMS32C6416EGLZA5E0TI 1531ETZ AVAGO TMS32C6416EGLZA6E3TI 2531ETZ AVAGO AD829JRZ ADI HFBR1532Z AVAGO MAX14830ETM+MAXIM HFBR-1532Z AVAGO MX69GL128EAXGW-90G MXIC HFBR-1532ETZ AVAGO AD7811YRUZ ADI HFBR1533Z AVAGO TPS76318DBVR TI HFBR-1533Z AVAGO ADMP421ACEZ ADI HFBR-2412TZHFBR-2412ZHFBR2416TZHFBR-2416TZHFBR-2521Z AVAGO LT1304CS8Linear R-2521Z AVAGO MAX16801BEUA+T maxim R-2521ETZ AVAGO ACPL-M61L-500E AVAGO HFBR-2521ETZ AVAGO DS26503LN+DALLAS HFBR-2522Z AVAGO MAX9205EAI+T MAXIM R-2522Z AVAGO TMP105YZCT TIR-2522ETZ AVAGO TMP105YZCR TI HFBR-2522ETZ AVAGO AD5821BCBZ ADI HFBR-2523Z AVAGO PM5347-RI PMC HFBR-2528Z AVAGO PM73121-RI PMC HFBR-2531Z AVAGO TPA4411RTJT TI HFBR-2532Z AVAGO TPA4411RTJR TI HFBR-2532ETZ AVAGO LTC1438CG-ADJ Linear HFBR-2533Z AVAGO LTC1438IG-ADJ Linear HFBR-4501Z AVAGO DS1318E+DALLAS HFBR-4503Z AVAGO TMS320DM643AGDK5TI HFBR-4506Z AVAGO ACPL-M75L-000E AVAGO HFBR-4511Z AVAGO ACPL-M75L-060E AVAGO HFBR-4513Z AVAGO ACPL-M75L-500E AVAGO HFBR-4516Z AVAGO ACPL-M75L-560E AVAGO HFBR-4525Z AVAGO ACPL-T350-000E AVAGO HFBR-4526Z AVAGO ACPL-T350-060E AVAGO HFBR-4531Z AVAGO ACPL-T350-300E AVAGO HFBR-4532Z AVAGO ACPL-T350-360E AVAGOHFBR-4533Z AVAGO ACPL-T350-500E AVAGO HFBR-4535Z AVAGO ACPL-T350-560E AVAGO HFBR-4593Z AVAGO ADXRS620BBGZ ADI HFBR-4597Z AVAGO LT1521CS8Linear HFBR-EUD100Z AVAGO LT1521CS8-3.3Linear HFBR-EUD500Z AVAGO LT1521IS8Linear HFBR-EUS100Z AVAGO LT1521IS8-3.3Linear HFBR-EUS500Z AVAGO MAX6835VXSD3+T MAXIM HFBR-RUD100Z AVAGO AD9059BRSZ ADI HFBR-RUD500Z AVAGO HFBR-4515Z AVAGO HFBR-RUS100Z AVAGO HFBR-57E0PZ AVAGO HFBR-RUS500Z AVAGO HFCT-53D5EMZ AVAGO HG88510MITEL HFCT-5611AVAGOHI1-508-5HAR LT1242CS8Linear HI1-509-5HAR LT1242IS8Linear HM628512ALFP-5日立LT1140ACSW LinearHM628512BLFP-5日立AFBR-2419TZ AVAGO HS1101HUMIREL AD7156BCPZ ADIHS6118MACONICS ADP151ACBZ-2.8ADI HSDL-3201#021AVAGO DS1805Z-010+MAXIM HSDL-3201#001AVAGO TLP285-4GB TOSHIBA HSDL-3209-021AVAGO AD421BRZ ADI HSDL-7001#100AVAGO OPA2336PA TI HSDL-7002AVAGO ADUC812BSZ ADI HSMP-3814-BLKG AVAGO STPS6045CW ST HSMP-3814-TR1G AVAGO SG-3030JF EPSON HSMP-3814-TR2G AVAGO MPC8313VRAFFB FREESCAL HSMP-3822-BLKG AVAGO MAX1617AMEE+T maxim HSMP-3822-TR1G AVAGO MCP809M3X-4.63NS HSMP-3822-TR2G AVAGO MCP809M3X-4.38NS HSMP-3823-BLKG AVAGO MCP809M3X-4.00NS HSMP-3823-TR1G AVAGO MCP809M3X-3.08NS HSMP-3823-TR2G AVAGO MCP809M3X-2.93NS HSMP-3824-BLKG AVAGO MCP809M3X-2.63NS HSMP-3824-TR1G AVAGO MCP810M3X-4.63NS HSMP-3824-TR2G AVAGO MCP810M3X-4.38NS HSMP-3832-BLKG AVAGO MCP810M3X-4.00NS HSMP-3832-TR1G AVAGO MCP810M3X-3.08NS HSMP-3832-TR2G AVAGO MCP810M3X-2.93NS HSMP-3860-BLKG AVAGO MCP810M3X-2.63NS HSMP-3860-TR1G AVAGO LT1317BCS8Linear HSMP-3860-TR2G AVAGO LT1317BIS8Linear HSMP-3862-BLKG AVAGO LTC1757A-1EMS8Linear HSMP-3862-TR1G AVAGO ACPL-K342-000E AVAGO HSMP-3862-TR2G AVAGO ACPL-K342-500E AVAGO HSMP-3880-BLKG AVAGO AFBR-57M5APZ AVAGO HSMP-3880-TR1G AVAGO CY7C144AV-25AIT CY HSMP-3880-TR2G AVAGO CY7C144AV-25ACT CYHSMP-3892-BLKG AVAGO CY7C144AV-25AXIT CY HSMP-3892-TR1G AVAGO CY7C144AV-25AXCT CY HSMP-3892-TR2G AVAGO ABA-54563-TR1G AVAGO HSMP-389L-BLKG AVAGO ABA-54563-TR2G AVAGO HSMP-389L-TR1G AVAGO ABA-54563-BLKG AVAGO HSMP-389L-TR2G AVAGO LT1138ACG Linear HSMS-2812-BLKG AVAGO LT1138AIG Linear HSMS-2812-TR1G AVAGO ISL8120IRZ INTERSIL HSMS-2812-TR2G AVAGO ISL8120CRZ INTERSIL HSMS-2817-BLKG AVAGO LTC1421IG-2.5Linear HSMS-2817-TR1G AVAGO LTC1421CG-2.5Linear HSMS-2817-TR2G AVAGO MSC1212Y5PAGT TI HSMS-282K-BLKG AVAGO MSC1212Y5PAGR TI HSMS-282K-TR1G AVAGO TPS7330QDR TI HSMS-282K-TR2G AVAGO ADP3110KRZ ADI HSMS-2850-BLKG AVAGO MAX3263CAG MAXIM HSMS-2850-TR1G AVAGO MAX1729EUB MAXIM HSMS-2850-TR2G AVAGO MAX1651CSA MAXIM HSMS-8202-BLKG AVAGO AD876JR ADI HSMS-8202-TR1G AVAGO MAX1701EEE MAXIM HSMS-8202-TR2G AVAGO Si4201-BMR silicon HT2012-PL SMAR DS12C887+DALLAS HY62256ALT1-70HY LM236DR-2.5TIHY628100BLLG-70HY DS1722U DALLAS HY628100BLLG-70I HY LM7372MRX NSHY628400ALLG-55HY MAX490ESA+T MAXIM HY628400ALLG-70HY HSMS-2822-TR1G AVAGO HY62WT08081E-DG70C HY HSMP-389C-TR1G AVAGO HY62WT08081E-DG70I HY HSMP-389C-BLKG AVAGO ICL232IPE HAR HSMP-389C-TR2G AVAGO ICS8432DY-101ICS MC33375D-3.3R2G ONICS85322AM ICS AFBR-1529Z AVAGO ICS9112M-16ICS AFBR-2529Z AVAGO IDT75K62134S200BB IDT AFBR-1629Z AVAGO ILX139K SONY HSMS-2828-TR1G AVAGO IMP560ESA IMP TPS7101QDR TIIMP809JEUR-T IMP AFBR-57R5APZ AVAGO IMP809LEUR-T IMP UC3875DWPTR TIIMP809MEUR-T IMP ASSR-1510-503E AVAGO IMP809REUR-T IMP ASSR-1510-003E AVAGO IMP809SEUR-T IMP CY7B9514V-AC CYIMP809TEUR-T IMP MAX4450EXK+T MAXIM IMP810JEUR-T IMP SN75976A1DLR TIIMP810LEUR-T IMP ADUC831BSZ ADIIMP810MEUR-T IMP LTC1348IG LINEAR IMP810REUR-T IMP MSA-2111-TR1G AVAGO IMP810SEUR-T IMP DS1621S+T DALLAS IMP810TEUR-T IMP MAX485EESA+T MAXIMIMP811JEUS-T IMP MAX9669ETI+T MAXIM IMP811LEUS-T IMP MSA-0711-TR1G AVAGO IMP811MEUS-T IMP ACPL-P480-500E AVAGO IMP811REUS-T IMP HSMS-2800-TR1G AVAGO IMP811SEUS-T IMP LTC1622IS8LINEAR IMP811TEUS-T IMP MAX2102CWI MAXIM ACPL-312T-500E AVAGO X24165S-2.7T1XICOR ACPL-H342-560E AVAGO X84129SI-2.5T1XICOR ACPL-H342-500E AVAGO HCNW4502-500E AVAGO ACPL-H342-060E AVAGO HCNW4502-300E AVAGO ACPL-H342-000E AVAGO AD811ARZ-16ADI ACPL-K63L-500E AVAGO TOCP155TOSHIBA ACPL-K63L-560E AVAGO TOCP200TOSHIBA ACPL-K63L-000E AVAGO HFBR-14E4Z AVAGO AFBR-5803AQZ AVAGO HFBR-24E2Z AVAGO ASSR-4128-502E AVAGO ALM-2412-TR1G AVAGO HSMH-C680AVAGO TLV320DAC23GQER TIWS1403-TR1AVAGO CY2509ZXC-1T CYLST2825-T-SC AGILENT ACPL-312T-300E AVAGO MAX853ESA+T MAXIM MAX3814CHJ+T MAXIM。
MAX5945EVKIT中文资料
General DescriptionThe MAX5945 evaluation kit (EV kit) is a fully assembled and tested surface-mount circuit board featuring an Ethernet four-port network power controller circuit for -48V supply rail systems. The MAX5945 IEEE 802.3af-compliant network power controller is available in a 36-pin SSOP package. The circuit includes four n-channel power MOSFETs used to form the main power-sourcing equipment (PSE) circuit on the EV kit. The MAX5945 is used in power-over-ethernet (POE) applications requiring DC power over four Ethernet network ports. The EV kit provides optical isolation for the I 2C-compliant 3-wire interface. The isolated interface connects to a PC parallel port (LPT) through a MAXSMBus interface board. The EV kit can easily be reconfigured for interfacing to a user’s stand-alone microcontroller for isolated or nonisolated operation.The MAX5945 EV kit requires a -32V to -60V power sup-ply (-48V supply rail) capable of supplying 2A or more to the EV kit for powering the power device (PD) through the four 10/100 base-TX Ethernet network ports. The EV kit demonstrates PD discovery, classification, current-limit control and other functions of an IEEE 802.3af-com-pliant PSE. The user must also supply two separate 3.3V power supplies capable of supplying 100mA for the EV kit’s digital logic and 3.3V (V CC ) optically isolated 3-wire interface. The MAXSMBus interface board requires a dedicated 9V power supply capable of supplying 250mA. The +9V power supply is not required for noniso-lated operation.The MAX5945 controls the -48V DC power to each of the four Ethernet network ports by controlling each port’s power MOSFET and sensing current through the respec-tive port’s current-sense resistor. The current is fed to a 10/100 base-TX Voice-over-IP (VoIP) magnetic module at each Ethernet network output port. The MAX5945 EV kit provides a separate independent power channel for each of the four Ethernet network output ports.The EV kit demonstrates the full functionality of the MAX5945 for each power channel such as configurable operational modes, PD detection, PD classification, over-current protection, current foldback, under/overvoltage protection, and AC disconnect monitoring. All of these features are configurable on the EV kit and additional test points for voltage probing and current measurements have been provided.The MAX5945 EV kit software is Windows® 95/98/2000-compatible and provides a user-friendly interface to demonstrate the features of the MAX5945 while provid-ing access to each register at the bit level. The program is menu-driven and offers a graphic interface with control buttons. The program also includes a macro engine to allow automated evaluation and testing of the MAX5945at the system level. The program’s macro output files can be automatically saved.Order the MAX5945EVSYS for a complete PC-based evaluation of the MAX5945. Order the MAX5945EVKIT if you already have a MAXSMBus interface board or do not require PC-based evaluation of the MAX5945.Features♦IEEE 802.3af-Compliant Power-Sourcing Equipment (PSE) Circuit ♦Input Voltages-32V to -60V Providing 2A (-48V Power Circuit, 350mA/Port)+3.3V Providing 100mA (Digital Logic Power)V CC (+3.3V) Provides 100mA (Optical Interface)+9V Provides 250mA (SMBus LPT Interface Board)♦Ethernet Network PortsFour RJ-45 10/100 Base-TX Ethernet Network Input PortsFour RJ-45 10/100 Base-TX Ethernet Network Output Power-Over-Ethernet Ports♦Demonstrates Four Separate Independent Power Switch Controllers♦Provides PD Detection and Classification♦Configurable DC/AC Load Removal Detection and Disconnect Monitoring♦Configurable Current Sensing♦Convenient Voltage and Current Test Points ♦Four Output-Port LED Status Indicators ♦Optically Isolated 3-Wire I 2C-Compliant PC Interface♦Reconfigurable for Stand-Alone Operation or with External Microcontroller♦Windows 95/98/2000-Compatible Software ♦Fully Assembled and TestedEvaluate: MAX5945MAX5945 Evaluation Kit/Evaluation System________________________________________________________________Maxim Integrated Products119-3832; Rev 0; 9/05For pricing, delivery, and ordering information,please contact Maxim/Dallas Direct!at 1-888-629-4642, or visit Maxim’s website at .Windows is a registered trademark of Microsoft Corp.Ordering InformationE v a l u a t e : M A X 5945MAX5945 Evaluation Kit/Evaluation System 2_______________________________________________________________________________________MAX5945EVSYS(MAX5945 EV System)Evaluate: MAX5945MAX5945 Evaluation Kit/Evaluation System_______________________________________________________________________________________3EconOscillator is a trademark of Dallas Semiconductor.E v a l u a t e : M A X 5945MAX5945 Evaluation Kit/Evaluation System 4_______________________________________________________________________________________Quick StartThe MAX5945 EV kit is fully assembled and tested.Follow these steps to verify board operation. Do not turn on the power supplies until all connections are completed.Required Equipment:•One -32V to -60V, 2A-capable DC power supply•Two separate +3.3V, 100mA-capable DC power supplies•One +9V, 250mA-capable DC power supply•Maxim MAX5945 EV kit and MAXSMBus interface board•Windows 95/98/2000 computer with a spare parallel (printer) port•25-pin I/O extension cable, straight-through, male-to-female cable•One voltmeter for confirming output voltagesHardware Connections1)Connect the MAXSMBus interface board to theMAX5945 EV kit’s interface connector J1.2)Verify that a shunt is installed on pins 2 and 3 ofjumpers JU1 (A0, low), JU2 (A1, low), JU3 (A2,low), and JU4 (A4, low) to set the MAX5945 I 2C-compliant slave address to 0x40 hexadecimal.3)Verify that a shunt is installed on pins 2 and 3 ofjumpers JU5 (signal mode).4)Verify that a shunt is installed on pins 1 and 2 ofjumpers JU6 (automatic mode) and JU8 (on-board 100Hz oscillator running).5)Verify that a shunt is installed on pins 2 and 3 ofjumper JU7 (OSC_IN, 100Hz oscillator).6)Verify that no shunt is installed on jumpersJU15–JU18 (AC disconnect).7)Verify that shunts are installed on jumpersJU19–JU22 (RC filter).8)Connect one of the +3.3V DC power supplies to themetal VDIG banana jack or PC board pad and the supply ground to the metal DGND banana jack or PC board pad.9)Connect the -32V to -60V DC power supply to themetal VEE banana jack and the supply ground to the metal GND banana jack.10)Connect the second +3.3V DC power supply to theoptically isolated VCC pad and the supply ground to the OPTO_GND pad.Note: The GND is more positive than the VEE jacks.11)Connect the +9V DC power supply to theMAXSMBus interface board’s POS9 pad and the supply ground to the GND pad on the MAXSMBus Interface board.12)Connect a PD to the desired Ethernet network out-put port’s RJ-45 connector on the MAX5945 EV kit as listed below:•PORT1_OUT at J7•PORT2_OUT at J8•PORT3_OUT at J9•PORT4_OUT at J10This step is optional if network connectivity is not required.Component Suppliers13) Connect the MAX5945 EV kit’s network input LAN port to the corresponding PD LAN connection as listed below:•PORT1_IN at J3•PORT2_IN at J4•PORT3_IN at J5•PORT4_IN at J614)Connect the computer’s parallel port to theMAXSMBus interface board. Use the straight-through 25-pin female-to-male cable. The EV kit software uses a loopback connection to confirm that the correct port is selected.15)Install the MAX5945 evaluation software on your com-puter by running the INSTALL.EXE program on the CD-ROM disk. The program files are copied and icons are created for them in the Windows Start Menu.Restart the computer when prompted. For Windows 2000, you may need administrator privileges.16)Turn on all four power supplies.17)Start the MAX5945 program by opening its icon inthe Start Menu.18)Observe as the program automatically detects theparallel port connected to the MAXSMBus, starts the main program, and then automatically detects the I2C-compliant address configured for the MAX5945.19)Load and run the Power_on.smb macro programfrom the File|Open|Run Macro menu. The script automatically runs after selecting open.20)All four network port green status LEDs should light.21)Four other example macros allow quick testing of themanual mode, auto mode, semiauto mode, and with DC and/or AC load disconnect detection. These macros are:•test#1_manual_mode.smb•test#2_auto_mode_dc.smb•test#3_auto_mode_dc.smb•test#4_semiauto_mode.smbPlease read the embedded comments in each macro for detailed descriptions using a plain text editor.22)Pressing pushbutton switches S1 through S4 shutsdown PORT1_OUT through PORT4_OUT’s respec-tive DC power.23)Test points TP3 (U1 V EE pin) and GND test points areprovided throughout the PC board to observe desiredsignals with an oscilloscope or voltage meter.24)Header J2 is provided to monitor the SHDN pin sig-nals. These signals are not isolated and are refer-enced to the DGND. DGND and GND are shortedby a PC board trace between the pads of resis-tor R72.25)Pressing the RESET pushbutton turns off power toall ports and returns the MAX5945 IC to the power-up condition.Note:An uninstall program is included with the soft-ware. Click on the UNINSTALL icon to remove the EVkit software from the hard drive.Detailed Descriptionof HardwareThe MAX5945 EV kit features a 10/100 base-TX Ethernet four-port network power controller circuit for-48V supply rail systems. The EV kit’s PSE circuit usesthe IEEE 802.3af-compliant MAX5945 network power controller, four n-channel power MOSFETs in SOT-223 surface-mount packages, four surface-mount current-sensing resistors and two 10/100 base-TX VoIP mag-netic modules to form the basic portion of a PSE circuit.The MAX5945 EV kit has been designed as an IEEE802.3af-compliant PSE and demonstrates all the required functions such as PD discovery, classification, current-limit control of a connected PD at each Ethernet output port, and DC/AC disconnect detection. The EVkit also has a separate on-board, 100H z sine-wave oscillator circuit for the AC disconnect detection fea-tures. An IBM-compatible PC is used to communicatewith the slave MAX5945 over an I2C-compliant 3-wire interface, optically coupled logic, and a 2-wire to parallel port (LPT) MAXSMBus interface board.The MAX5945 EV kit PSE circuit requires a -32V to -60V power supply (-48V supply rail) capable of supplying2A to the EV kit’s GND and VEE steel banana jacks orPC board pads. Two separate +3.3V power supplies capable of supplying 100mA are also required for theMAX5945 digital logic (VDIG, DGND) and optically iso-lated I2C-compliant 3-wire interface. Note that DGNDand GND are shorted by a PC board trace betweenthe pads of resistor R72.The MAX5945 controls the -48V DC power to each ofthe four 10/100 base-TX Ethernet network output portsby regulating the respective port’s n-channel powerEvaluate: MAX5945MAX5945 Evaluation Kit/Evaluation System _______________________________________________________________________________________5E v a l u a t e : M A X 5945MOSFET and sensing current through the respective port’s current-sense resistor. The current is fed to a 10/100 base-TX VoIP magnetic module connected to the respective Ethernet network output port’s RJ-45jack. An IEEE 802.3af-compliant PD connects to the respective Ethernet network output port on the EV kit.The PD can be located up to 350ft from the EV kit when connected with Category 5 Ethernet cable. The MAX5945 EV kit provides separate and independent power control for each of the four Ethernet network out-put ports. The 10/100 base-TX VoIP magnetic module is decoupled to the EV kit’s chassis ground by system chassis capacitors C19–C22, C24, and C25. The EV kit’s isolated chassis ground (Chassis_GND) PC board pad connects to the network system ground.The MAX5945 EV kit features configurable operational modes, PD detection, PD classification, overcurrent protection, current foldback, under/overvoltage protec-tion, DC and AC disconnect monitoring. The overcur-rent protection can be programmed through software and/or changing current-sense resistors R1–R4 for the desired output port. Each of the four modes of opera-tion (auto, semi, manual, shutdown) can be evaluated after configuring jumper JU6 and configuring the appropriate MAX5945 register (see Table 3). PD detec-tion diodes D1–D4 can be bypassed to reduce power dissipation when AC disconnect monitoring is not required, using jumpers JU15–JU18. Each port’s AC detection circuit resistor-capacitor diode (RCD) net-work can be reconfigured with a jumper also. See Tables 4, 8, and 9 for various AC detection-disconnect and oscillator configurations. Each port features a 600W bidirectional overvoltage transient suppressor diode (D9–D12) and decoupling capacitor (C26–C29)for transient protection at the port.Test points and jumpers have been provided for volt-age probing and current measurements of each chan-nel’s power circuit. Additionally, a 6-pin 0.100in center header is also provided for monitoring the SHDN1,SHDN2, SHDN3, SHDN4, and RESET signals routed to the MAX5945 pins from the respective switch (S1–S5).When using the header signals, caution should be exercised since the DGND and GND are shorted by resistor R72’s PC board shorting trace. Green LEDs near each port’s RJ-45 output jack indicate when the respective port power is turned on.A 100H z oscillator circuit that meets the IEEE 802.3af PSE power interface (PI) parameters for AC disconnect detection is provided by the MAX5945 EV kit. Five ICs make up the 100Hz oscillator circuit, which consists of U5, a programmable Dallas Semiconductor 40MH z EconOscillator/divider squarewave oscillator and a MAX7491 dual universal switched-capacitor filter, U4.Voltage reference source U6 (MAX6106) provides 2.048V for the circuit and level shifts the sine wave’s output. The MAX4599, an SPDT analog switch, and U3,an LMX358 dual-output op amp, provides support func-tions for the oscillator circuit. An external sine-wave oscillator meeting the IEEE 802.3af PSE PI parameters can be connected to the EV kit’s BNC connector (OSC_INPUT) after reconfiguring jumper JU7. The EV kit’s 100H z oscillator circuit can be shut down using jumper JU8 if an external oscillator is used or AC dis-connect detection is not required.The EV kit provides the required optical isolation for the I 2C-compliant 3-wire interface so the MAX5945 can operate as a slave device. The optically isolated inter-face connects to a PC parallel port through a MAXSMBus interface board. The MAXSMBus interface board requires a dedicated 9V power supply capable of supplying 250mA. The EV kit’s I 2C-compliant 2-wire or 3-wire interface can be reconfigured for interfacing to a stand-alone microcontroller for isolated (2-wire) or nonisolated (3-wire) serial operation. Additionally, for stand-alone microcontroller operation, the MAXSMBus interface board and 9V power supply are not required.The optical isolation consists of optocoupler U7, which provides galvanic isolation for the serial interface clock line (SCL) and serial interface input data line signals.Optocoupler U8 provides galvanic isolation for the seri-al output and data line (SDAOUT) and INT signals. The SCL and SDAOUT signals’ 3-wire serial interface are combined on the isolated 2-wire side prior to feeding logic buffer U9. The SCL_IN, SDA, INT _OUT,OPTO_GND and VCC PC board pads are used for a 2-wire isolated stand-alone operation. For nonisolated stand-alone 3-wire operation, jumper JU9 must be reconfigured and then the SCL, SDAIN, SDAOUT, INT ,DGND, and VDIG PC board pads must be connected to the microcontroller circuit. Note that VDIG is at +3.3V, which is required by the EV kit. The OPTO_GND and GND, DGND planes are isolated by the optical couplers. However, when using the EV kit in a non-isolated configuration, caution should be exercised since DGND and GND are shorted by resistor R72’s PC board shorting trace.The MAX5945 slave address is configured by four jumpers (JU1–JU4) and can be configured from 0x40through 0x5F hexadecimal serial address. Global address 0x60 is accepted by the MAX5945 regardless of the jumper settings. Refer to Table 1 and the Address Inputs section in the MAX5945 data sheet for more information on setting the MAX5945 slave address.MAX5945 Evaluation Kit/Evaluation System6_______________________________________________________________________________________Evaluate: MAX5945MAX5945 Evaluation Kit/Evaluation System_______________________________________________________________________________________7*Global address calls.E v a l u a t e : M A X 5945MAX5945 Evaluation Kit/Evaluation System 8_______________________________________________________________________________________Jumper SelectionThe MAX5945 EV kit features several jumpers to recon-figure the EV kit for various PSE configurations and PD requirements. Additionally, jumpers and PC board pads are provided for connecting an external micro-controller.MAX5945 I 2C-Compatible 2-Wire or 3-Wire SlaveAddress SelectionThe MAX5945 EV kit features several 3-pin jumpers (JU1–JU4) to set the slave address of the MAX5945least significant bits (LSB) of the slave address on the I 2C-compatible 2-wire or 3-wire interface. The three most significant bits are set by the MAX5945 to 010.The EV kit’s software automatically sets the LSB for the proper read/write command. Table 1 lists the jumper addressing options.Midspan/Signal-Mode SelectionThe MAX5945 EV kit features a 3-pin jumper (JU5) to set the MAX5945 in midspan or signal mode. Table 2lists the jumper options for the two modes used to detect a valid PD connected to the PSE respective Ethernet network output port. Refer to the MAX5945data sheet for more information on the modes.Operational Modes (Automatic, Shutdown)The MAX5945 EV kit features a 3-pin jumper JU6 to set the MAX5945’s initial startup operational mode. After startup, data sent to the mode register (0x12) reconfig-ure the operational mode of the MAX5945. Table 3 lists the jumper options.AC Disconnect Monitoring Oscillator InputThe MAX5945 EV kit features a 3-pin jumper (JU7) to configure the MAX5945’s oscillator input at the OSC_IN pin. The oscillator is used for AC disconnect monitoring of the PD. Table 4 lists the jumper options for the three oscillator configurations available on the EV kit.Evaluate: MAX5945MAX5945 Evaluation Kit/Evaluation System_______________________________________________________________________________________9100Hz Oscillator ShutdownThe MAX5945 EV kit features a jumper to set the EV kit’s on-board 100H z oscillator modes of operation.Table 5 lists the selectable jumper options to configure the 100Hz oscillator.Stand-Alone Microcontroller Interface(Isolated/Nonisolated)The MAX5945 EV kit features PC board pads and a jumper to interface directly with a microcontroller. The 2 x 5-pin jumper JU9 has shorting connections on the bottom layer that must be cut open to disable the opti-cal coupler interface for nonisolated evaluation. The jumper shorting connections must be in place for evalu-ating an isolated stand-alone microcontroller interface.Table 6 lists the selectable jumper options.MAX5945 PORT DET_, OUT_, GATE_, and SENSE_Pins Signal MeasurementsThe MAX5945 EV kit features jumpers to facilitate cur-rent and voltage measuring at each port’s respective DET_, OUT_, GATE_, and SENSE_ pins on the MAX5945 IC. Several 2 x 3-pin and 2-pin jumpers are used to obtain the desired measurement for each port.Jumpers JU11 and JU23 are provided for port 1,jumpers JU12 and JU24 are provided for port 2,jumpers JU13 and JU25 are provided for port 3, and jumpers JU14 and JU26 are provided for port 4. The jumper pins are shorted by a PC board trace on the bottom layer of the EV kit by default for normal opera-tion. The shorts can be cut open for measurements.See Figure 3, the controller circuit schematic for a spe-cific ports jumper.AC Disconnect Operation (Rectifier Diodes D1–D4)The MAX5945 EV kit features jumpers JU15–JU18 to bypass each port’s respective AC disconnect rectifier diode (D1–D4), thus reducing diode power dissipation when AC disconnect is not required. Jumpers JU15–JU18 are used to bypass the respective port’s rec-tifier diode. Table 7 lists the selectable jumper options for each port.E v a l u a t e : M A X 5945MAX5945 Evaluation Kit/Evaluation System 10______________________________________________________________________________________The MAX5945 EV kit features jumpers JU19–JU22 to bypass the AC detection RC network when AC load dis-connect detection is not needed. The inclusion of this RC network does not affect other circuit parameters. Table 8lists the selectable jumper options to reconfigure each port’s AC detection network. See Table 7 above for bypassing the respective port’s AC disconnect diode.The MAX5945 EV kit includes jumpers JU27–JU30 to disconnect each port’s -48V power independently for connection to an external network interface circuit.Additionally, the respective jumper’s pins can be utilized to measure the voltage or current for the respective port.Table 9 lists the specific jumper for each port. Each jumper is shorted on the bottom layer of the PC board.*See the Bypassing AC Disconnect and the DGND-to-GND Connection (Resistor R72) section.SHDN and RESET Signals The MAX5945 EV kit features four pushbutton switches (S1, S2, S3, S4) to independently shut down each channel’s respective power circuit. A reset pushbutton (S5) is also provided to reset the MAX5945.Header J2 (6-pin 0.100in center header) is available for monitoring the SHDN1, SHDN2, SHDN3, SHDN4, and RESET signals routed to the MAX5945 pins. Digital ground is provided at the header on pin 6. See Table 10, which lists the specific switch and header pin sig-nals that can be interfaced with a ribbon cable or test leads. These signals are not isolated and are refer-enced to DGND on the EV kit.Bypassing AC Disconnect and the DGND-to-GNDConnection (Resistor R72) The AC disconnect detection function requires that the EV kit’s DGND be connected directly to the GND. If the AC disconnect detection function is not required, the PC board trace shorting DGND-to-GND at resistor R72 pads can be cut open. Cutting open the PC board shorting trace at resistor R72 allows DGND to be refer-enced to a voltage potential anywhere from V EE to (V EE + 60V). Additionally, when the PC board trace at R72 is cut open, the appropriate AC detection jumper tables must be set and the OSC_IN pin on the MAX5945 must be floating by removing jumper JU7. See Tables 4, 7, and 8 for the appropriate jumper settings to bypass the AC detection function.Refer to the AC Disconnect M onitoring Oscillator Input sec-tion in the MAX5945 data sheet for additional informa-tion. If the AC disconnect detection function is required again, install a 0Ω±5% 1206 case size surface-mount resistor at R72 pads and set the appropriate jumpers. Detailed Description of Software (Words in bold are user-selectable features in the soft-ware).Software Startup A mouse or the tab key is used to navigate various items on the Main Window. Upon starting the program, the MAX5945 EV kit software starts in the Auto Read state.The software automatically detects the Slave Addressand begins reading the contents of each register in theMAX5945. The register’s contents are placed on the appropriate line of the Register Read tables in binaryand hexadecimal format. If data changes between thenext register read, the updated register hexadecimaldata is displayed in red and blinks four times. The blinkrate can be changed in the View|Red Hex Data BlinkRate menu. The left status bar at the bottom of the main window provides the MAXSMBus interface board status.The center status bar provides the current EV kit and macro engine status.Autoread/Run Macro State ControlsWhen the Auto Read checkbox is checked, the pro-gram continuously updates the main window registersand is operating in the autoread state. In the autoread state, data can be written to the MAX5945 by enteringor selecting the desired data in the Register Addressand Hexadecimal or Binary Data combo boxes. Selecting the Write Byte button writes the combo boxdata to the MAX5945. To perform an immediate register read, enter, or choose the desired Register Address,and choose the Read Byte button. H exadecimal or binary data may be entered into the Hexadecimal or Binary Data combo boxes and then the alternate combo box displays the corresponding number in the respective number base.If the Auto Read check box is unchecked, the pro-gram’s main window displays register data from the last read. To obtain current data, a Read Byte must be per-formed after selecting the appropriate register addressfrom the Register Address combo box. The autoreadstate does not read the clear on read (COR) registers.A macro can be run after loading the file from theFile|Open Macro menu. The opened macro is dis-played in the upper half of the Macro edit box and hasan smb file extension. Selecting the Run button runsthe macro to completion and displays the output in the Macro Script Output edit box field. Each edit box canbe sized relative to the other half using the splitter bar above the Script Output text. Selecting the SingleStep button instead of the Run button causes the macro to execute a single line with each activation ofthe Single Step button. The Reset button is used toreset the macro script engine and clear the MacroScript Output edit box field. A macro can be run regardless of the Auto Read checkbox status. A macrocan be run immediately after opening by using theFile|Open/Run Macro menu, selecting the desired macro to run, and clicking on the Open button. Selectingthe Cancel button exits this feature.Evaluate: MAX5945E v a l u a t e : M A X 5945The Locate Slave button is used to search for a MAX5945 located on the I 2C-compliant 2-wire serial interface whose address has been changed while the software was running. The valid MAX5945 slave address range is 0x40 through 0x5F. The MAX5945does respond to global address 0x60, although the EV kit hardware cannot be set to this specific address.Record Macro State ControlsWhen the Record checkbox is checked, the program automatically enters the record macro state and dis-ables certain buttons and menus. Choosing the Commands|Clear Script Input menu clears any script presently in the Macro script input edit box ment lines in a macro script begin with a # / ; ‘ *character. A line of script is entered by choosing the appropriate Slave Address , Register Address and entering the desired Hexadecimal Data or Binary Data in the combo boxes. Then selecting the Write Byte orRead Byte button enters the script into the Macro input edit box field. For time delays in a macro, choose the desired delay time from the combo box on the right side of the Delay button and then select the Delay but-ton. The macro must be saved before exiting the record macro state, using the File|Save Macro menu. The macro file must have an smb file extension name.To edit a previously saved macro, open the macro using the File|Open Macro menu and make the desired edits. The modified file must be saved prior to exiting the record macro state. Uncheck the Record checkbox to exit the record macro state. Additionally, a macro can be created or edited using a plain text edi-tor in “Text Mode.” The file must be saved with an smb extension.Figure 1. The MAX5945 Evaluation Software’s Main Window for Controlling the Software State, Configuring the MAX5945 RegistersUsing the Macro Engine and Displaying All the Registers In Binary and Hexadecimal Format。
MAX5402EUA中文资料
General Description The MAX5402 µPoT™digital potentiometer is a 256-tap variable resistor with 10kΩtotal resistance in a tiny 8-pin µMAX package. This device functions as a mechan-ical potentiometer, consisting of a fixed resistor string with a digitally controlled wiper contact. It operates from +2.7V to +5.5V single-supply voltages and uses an ultra-low 0.1µA supply current. This device also pro-vides glitchless switching between resistor taps, as well as a convenient power-on reset (POR) that sets the wiper to the midscale position at power-up. A low 5ppm/°C ratiometric temperature coefficient makes it ideal for applications requiring low drift.The MAX5402 serves well in applications requiring digi-tally controlled resistors, including adjustable voltage references and programmable gain amplifiers (PGAs).A nominal end-to-end resistor temperature coefficient of 35ppm/°C makes this part suitable for use as a variable resistor in applications such as low-tempco adjustable gain and other circuit configurations. This device is guaranteed over the extended industrial temperature range (-40°C to +85°C).________________________Applications Mechanical Potentiometer ReplacementLow-Drift PGAsAdjustable Voltage ReferencesFeatures o Small Footprint, 8-Pin µMAX Packageo Ultra-Low 100nA Supply Currento+2.7V to +5.5V Single-Supply Operationo256 Tap Positionso Low Ratiometric Temperature Coefficient5ppm/°Co Low End-to-End Resistor Temperature Coefficient35ppm/°Co Power-On Reset: Wiper Goes to Midscale(Position 128)o Glitchless Switching Between the Resistor Tapso3-Wire SPI™-Interface Compatibleo10kΩResistor ValueMAX5402 256-Tap, µPoT, Low-Drift, Digital PotentiometerPin Configuration19-1896; Rev 0; 1/01Ordering InformationµPoT is a trademark of Maxim Integrated Products.SPI is a trademark of Motorola, Inc.Maxim Integrated Products1 For price, delivery, and to place orders,please contact Maxim Distribution at 1-888-629-4642, or visit Maxim’s website at .Functional DiagramM A X 5402256-Tap, µPoT, Low-Drift,Digital PotentiometerABSOLUTE MAXIMUM RATINGSELECTRICAL CHARACTERISTICS(V DD = +5V, V H = V DD , V L = 0, T A = T MIN to T MAX . Typical values are at V DD = +5V, T A = +25°C, unless otherwise noted.)Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.V DD to GND..............................................................-0.3V to +6V DIN, SCLK, CS to GND ............................................-0.3V to +6V H, L, W to GND.............................................-0.3V to (V DD + 0.3)Maximum Continuous Current into Pins H, L, and W ...........1mA Continuous Power Dissipation (T A = +70°C)8-Pin µMAX (derate 4.1mW/°C above +70°C)............330mWOperating Temperature Range ...........................-40°C to +85°C Junction Temperature......................................................+150°C Storage Temperature Range.............................-65°C to +150°C Lead Temperature (soldering, 10s).................................+300°CMAX5402256-Tap, µPoT, Low-Drift,Digital Potentiometer________________________________________________________________________________________3Note 2:The DNL and INL are measured with the potentiometer configured as a voltage-divider with H = V DD and L = 0. The wiperterminal is unloaded and measured with an ideal voltmeter.Note 3:The DNL and INL are measured with the potentiometer configured as a variable resistor. H is unconnected and L = 0. Thewiper terminal is driven with a source current of 200µA at V DD = +3V and 400µA at V DD = +5V.Note 4:The wiper resistance is the worst value measured, injecting a current, I W = V DD /R HL into terminal W.Note 5:Digital timing is guaranteed by design.ELECTRICAL CHARACTERISTICS (continued)(V DD = +5V, V H = V DD , V L = 0, T A = T MIN to T MAX . Typical values are at V DD = +5V, T A = +25°C, unless otherwise noted.)M A X 5402256-Tap, µPoT, Low-Drift,Digital Potentiometer 4_______________________________________________________________________________________Typical Operating Characteristics(T A = +25°C, unless otherwise noted.)100125150175200225250275300012345WIPER RESISTANCE vs. WIPER VOLTAGEWIPER VOLTAGE (V)W I P E R R E S I S T A N C E (Ω)-0.20-0.10-0.150.00-0.050.050.10-40-30-20-100102030405060708090END-TO-END RESISTANCE % CHANGEvs. TEMPERATUREM A X 5402 T o c 02TEMPERATURE (°C)E N D -T O -E N D R E S I S T A N C E % C H A N G E0214365798100649632128160192224256RESISTANCE vs. INPUT CODEM A X 5402 T o c 03INPUT CODE (DECIMAL)W -T O -L R E S I S T A N C E (k Ω)-0.20-0.10-0.150.050.00-0.050.200.150.100.25961283264160192224256VARIABLE RESISTOR DNLvs. INPUT CODEM A X 5402 T o c 04INPUT CODE (DECIMAL)R D N L (L S B )-0.4-0.3-0.1-0.20.10.20.00.30649632128160192224256VARIABLE RESISTOR INLvs. INPUT CODEM A X 5402 T o c 05INPUT CODE (DECIMAL)R I N L (L S B )-0.08-0.04-0.060.00-0.020.020.040.060.08649632128160192224256VOLTAGE-DIVIDER DNL vs. INPUT CODEM A X 5402 T o c 06INPUT CODE (DECIMAL)D N L (L S B )Typical Operating Characteristics (continued)(T A = +25°C, unless otherwise noted.)MAX5402256-Tap, µPoT, Low-Drift,Digital Potentiometer________________________________________________________________________________________5-0.20-0.10-0.150.00-0.050.050.100.150.20649632128160192224256VOLTAGE-DIVIDER INL vs. INPUT CODEM A X 5402 T o c 07INPUT CODE (DECIMAL)I N L (L S B )0.00.40.20.80.61.01.2-40-30-20-1001020304050607080SUPPLY CURRENT vs. TEMPERATURETEMPERATURE (°C)S U P P L Y C U R R E N T (µA )200ns/div (CODE 127 TO 128)TAP-TO-TAP SWITCHING TRANSIENT V W-L+2.49V+2.51V+5VMAX5402 toc09CS1001234510.10.010.0010.0001INPUT LOGIC VOLTAGEDIGITAL INPUT VOLTAGE (V)S U P P L Y C U R R E N T (m A )M A X 5402256-Tap, µPoT, Low-Drift,Digital Potentiometer 6_______________________________________________________________________________________Detailed DescriptionThe MAX5402 consists of 255 fixed resistors in series between pins H and L. The potentiometer wiper (pin W)can be programmed to access any one of the 256 dif-ferent tap points on the resistor string. The MAX5402has an SPI-compatible 3-wire serial data interface to control the wiper tap position. This write-only interface contains three inputs: Chip Select (CS ), Data In (DIN),and Data Clock (SCLK ). When CS is taken low, data from the DIN pin is synchronously loaded into the 8-bit serial shift register on the rising edge of each SCLK pulse (Figure 1). The MSB is shifted in first, as shown in Figure 3. Note that if CS is not kept low during the entire data stream, the data will be corrupted and the devicewill need to be reloaded. After all 8 data bits have been loaded into the shift register, they are latched into the decoder once CS is taken high. The decoder switches the potentiometer wiper to the tap position that corre-sponds to the 8-bit input data. Each resistor cell is 10k Ω/255 or 39.2Ωfor the MAX5402.The MAX5402 features POR circuitry. This sets the wiper to the midscale position at power-up by loading a binary value of 128 into the 8-bit latch. The MAX5402can be used as a variable resistor by connecting pin W to either pin H or L.Figure 1. Serial Interface Timing DiagramFigure 2. Detailed Serial Interface Timing DiagramMAX5402256-Tap, µPoT, Low-Drift,Digital Potentiometer________________________________________________________________________________________7Applications InformationThe MAX5402 is intended for a variety of circuits where accurate, fine-tuned adjustable resistance is required,such as in adjustable voltage or adjustable gain circuit configurations. The MAX5402 is used in either a poten-tiometer divider or a variable resistor configuration.Adjustable Current to Voltage ConverterFigure 4 shows the MAX5402 used with a MAX4250low-noise op amp to precisely tune a current-to-voltage converter. Pins H and W of the MAX5402 are connect-ed to the node between R3 and R2, and pin L is con-nected to ground.Adjustable Gain AmplifierThe MAX5402 is used again with the MAX4250 to make a digitally adjustable gain circuit as shown in Figure 5.The normal feedback resistor is replaced with the MAX5402 in a variable resistor configuration, so that the gain of the circuit can be digitally controlled.Adjustable Voltage ReferenceIn Figure 6, the MAX5402 is shown with the MAX6160to make an adjustable voltage reference. In this circuit,the H pin of the MAX5402 is connected to the OUT pin of the MAX6160, the L pin of the MAX5402 is connect-ed to GND, and the W pin of the MAX5402 is connect-ed to the ADJ pin of the MAX6160. The MAX5402allows precise tuning of the voltage reference output. A low 5ppm/°C ratiometric tempco allows a very stable adjustable voltage overtemperature.Figure 4. I to V ConverterFigure 5. Noninverting AmplifierFigure 3. Serial Data FormatM A X 5402256-Tap, µPoT, Low-Drift,Digital Potentiometer 8_______________________________________________________________________________________Chip InformationTRANSISTOR COUNT: 3475 PROCESS: BiCMOSFigure 6. Adjustable Voltage Reference256-Tap, µPoT, Low-Drift,Digital PotentiometerMAX5402Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embod ied in a Maxim prod uct. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 _____________________9©2001 Maxim Integrated Products Printed USAis a registered trademark of Maxim Integrated Products.。
EUP10T-1HMC-0-120商品说明书
EUP10T-1HMC-0-120 (Product No.: 104100102201)SummaryProduct FeatureDimension(mm)ELV220VAC-240VAC 50/60Hz75%@230VAC, Full load Cold start, 28A(twidth=30us measured at 50% Ipeak@230VAC 0.12Amax@230VAC, Full load110*30*22mm(L*W*H)IP20-20℃~50℃-40℃~85℃, 20-90%RH 90℃PC 50,000h@tc:75℃50V Max ±5%<3%Triac>100,000 times1120mA/9-42VDC/5.04W 260mA/9-38VDC/9.88W 150mA/9-42VDC/6.3W 290mA/9-34VDC/9.86W180mA/9-42VDC/7.56W 320mA/9-31VDC/9.92W210mA/9-42VDC/8.82W 350mA/9-28DC/9.8WEUP10T-1HMC-0-120Tc LifetimeMaterialDimensionNet weight: 90g±5%/PCS; 100PCS/Carton; 7kg±5%/Carton; Carton Size: 51.7*23.7*142cm(L*W*H) Packing(weight)IP Rating Working Temp.Storage Temp.; Humidity Dimming Mode Switch Cycle 5 years Warranty Condition No Load Output Voltage Turn On Delay Time<1s, at 230Vac Efficiency Current Inrush Current Current/Voltage/Power Ripple CurrentChannel Current Tolerance Voltage FrequencyShort Circuit Over Load When the output voltage is exceeded, decreases and, recovers automatically when the load is reduced.Close output ,recovers automatically after fault removedOthersFunction ModelOutputInputProtectionTechnical ParametersApplicationDownlight Panel Light Flood LightSpotlight Ceiling Light Floor Light Decorative Light EUP10T-1HMC-0-120 is a constant output mode LED driver. The output current can be easily set via DIP switch.The driver supports leading edge (Triac) and trailing edge (ELV) dimmer, and can be compatible with the systems of various brands (Philips, Panasonic, Lutron, Simon, ABB, Siemens,Dalitek etc.) to achieve a smooth dimming effect.·Single channel output, output current level selectable by DIP S.W.·Support Leading edge (Triac) and Trailing edge (ELV) dimmer ·Dimming range from 40VAC to 240VAC·Class Ⅱ power supply. Full protective plastic housing ·Dimming effect smooth, no flicker ·Protections: Short circuit, over load·Suitable for indoor LED lighting application, such as down light, spot light, and so onAmbient Temperature(℃)L o a d (%)20406080100120-20-101020304050600Current Selection TableRemark: Function default setting is: 120mA (@switch are all OFF state)Dimming CurveDerating Curve※ The contents of this manual are updated without prior notice. If the function of the product you are using is inconsistent with the instructions, the function of the product shall prevail.Please contact us if you have any questions .L NTRIAC DimmerLampCautions1.The product shall be installed and serviced by a qualified person.2.This product is non-waterproof. Please avoid the sun and rain. When installed outdoors please ensure it is mounted in a water proof enclosure.3.Good heat dissipation will prolong the working life of the controller. Please ensure good ventilation.4.Please check if the output voltage and current of any LED power supplies used comply with the requirement of the product.5.Please ensure that adequate sized cable is used from the controller to the LED lights to carry the current. Please also ensure that the cable is secured tightly in the connector.6.For safety consideration, PVC or rubber cord of 0.75-1.5mm2 is recommended for input and output terminal(s) . Flat power cord is not suitable. Ensure all wire connections and polarities are correct before applying power to avoid any damages to the LED lights.7.If a fault occurs please return the product to your supplier. Do not attempt to fix this product by yourself.00612182430374349556167737985919720406080100120Input (%)O u t p u t (%)EUP10T-1HMC-0-120 (产品代码: 104100102201)概述产品特点EUP10T-1HMC-0-120 是一款可以提供120/150/180/210/260/290/320/350 8档电流的LED 驱动器,输出电流可以通过DIP 拨码开关简易设置,这款驱动器支持前沿切相和后沿切相调光器,可以与多品牌系统(飞利浦,ABB ,路创,西门子,西蒙,松下,邦奇等)配合使用,调光曲线平滑。
MAX3523ETP+ 程序可调增益放大器(PGA)说明书
MAX3523ETP+General DescriptionThe MAX3523 is a programmable gain amplifier (PGA) designed to exceed the DOCSIS 3.1 upstream transmit requirements. The PGA meets the DOCSIS 3.1 spurious limits while transmitting a combined output power of 68dBmV over the RF bandwidth of 5MHz to 204MHz. The gain is controlled in 1dB steps over a 60dB range using an SPI 3-wire interface. The use of Maxim's high-voltage CMOS process enables the device to deliver high dynamic range while minimizing power dissipation under a +5V supply rail.The MAX3523 is available in a 20-pin 5mm x 5mm x 0.75mm TQFN package, and operates over temperature range of 0ºC to +70ºC.Applications●DOCSIS 3.1 Upstream (D3.1 US) ●Cable Modem (CM)●Customer Premises Equipment (CPE)Ordering Information appears at end of data sheet.19-100360; Rev 0; 6/18Benefits and Features●Delivers +68dBmV Output Power While MeetingDOCSIS 3.1 Requirements ●Covers 5MHz–204MHz Output Bandwidth ● 3.5W Power Consumption with 5V Supply Voltage ●Programmable Power Codes Allow Operation atReduced Power Dissipation ●Exceeds Spurious Requirements with Fully LoadedOFDM Allocation at +65dBmV at Modem Output ●20L 5mm x 5mm x 0.75mm TQFN Package withExposed PaddleSimplified Block DiagramClick here for production status of specific part numbers.MAX3523Low-Power DOCSIS 3.1Programmable-Gain AmplifierVDD to GND .........................................................-0.3V to +6.0V TXEN, SDA, SCLK, CSB .....................................-0.3V to +6.0V IN+, IN- .............................................................V DD - 2.1V to 6V OUT+, OUT- to GND ......................................-0.3V to V DD + 5V RF Input Power ..............................................................+10dBm Continuous Power Dissipation (T A = 70°C)(derate 54mW/°C above T A = 70°C) .........................3500mWOperating Junction Temperature (Note 4) ........-40°C to +150°C Storage Temperature Range ............................-65°C to +165°C Lead Temperature (soldering, 10s) .................................+300°C Soldering Temperature (reflow) .......................................+260°C20 TQFN-EPPACKAGE CODET2055+5Outline Number 21-0140Land Pattern Number90-0010Thermal Resistance, Four-Layer Board:Junction to Ambient (θJA )PCB must be designed for a θJA of 18.5°C/W or lower Junction to Case (θJC )2°C/W Absolute Maximum RatingsStresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to /thermal-tutorial .For the latest package outline information and land patterns (footprints), go to /packages . Note that a “+”, “#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.Package InformationMAX3523Low-Power DOCSIS 3.1 Programmable-Gain Amplifier(V DD = 4.75V to 5.25V, V GND = 0V, Z OUT = 75Ω, TXEN = high, Gain Code = 63, Power code = 3, P OUT = 68dBmV, T A = 0°C to 70°C, Typical values are at V DD = 5V, T A = +25°C, unless otherwise noted. Typical Application Circuit as shown. Note 1.)PARAMETERSYMBOLCONDITIONSMINTYPMAXUNITSDC ELECTRICAL SPECIFICATIONS Supply VoltageV DD4.755.0 5.25VSupply Current Transmit Mode I DDGain code = 63, power code = 3700730mA Gain code = 63, power code = 2635Gain code = 63, power code = 1570Supply Current Transmit Disable ModeI DD TXEN = low2.53.5mA Input High Voltage V INH 2V DD V Input Low Voltage V INL 0.7V Input High Current I BIASH 1μA Input Low CurrentI BIASL-1μAAC ELECTRICAL SPECIFICATIONSVoltage GainA VZ IN = 100Ω (Note 3), Power Code = 3, F IN = 10MHz Gain code = 6336.337.338.3dBGain code = 5326.327.328.3Gain code = 4316.317.318.3Gain code = 33 6.37.38.3Gain code = 23-3.7-2.7-1.7Gain code = 13-14-13-12Gain code = 03-23Voltage Gain Variation with PowerCode, Any Gain Code ∆AV±0.1dB Gain Rolloff Voltage gain = -16dB to +37dB, f IN = 5MHz to 204MHz-0.5dB Gain Step SizeVoltage gain = -16dB to +37dB, f IN = 10MHz0.61 1.4dB Transmit-Disable Mode Noise BW = 160kHz, 5MHz to 204MHz, TXEN = LOW -66dBmV Isolation in Transmit-Disable Mode TXEN = LOW80dB Noise Figure NF Transmit mode, voltage gain = +11dB to +37dB14dB Noise Figure SlopeTransmit mode, voltage gain = -16dB to +37dB-1dB/dB Transmit-Disable/Transmit-Enable Transient DurationTXEN input rise/fall time < 0.1µs 4μs Transmit-Disable/Transmit-Enable Transient Amplitude Gain = 37dB 20mV pp Gain = 3dB1Internal Input Impedance Differential balanced200ΩOutput Return LossS225MHz - 204MHz, TXEN = high (Note 2)13dBElectrical CharacteristicsMAX3523Low-Power DOCSIS 3.1 Programmable-Gain Amplifier(V DD = 4.75V to 5.25V, V GND = 0V, Z OUT = 75Ω, TXEN = high, Gain Code = 63, Power code = 3, P OUT = 68dBmV, T A = 0°C to 70°C, Typical values are at V DD = 5V, T A = +25°C, unless otherwise noted. Typical Application Circuit as shown. Note 1.)Note 1: Limits are tested at T A = +70°C. Limits over the operating temperature range and relevant supply voltage range are guaranteedby design and characterization.Note 2: Output return loss is measured with the LC matching network, as shown in the Typical Application Circuit .Note 3: Effective input impedance with external 200Ω resistance in parallel with internal 200Ω resistanceNote 4: The device is designed for continuous operation up to T J = +125°C for 95,000 hours plus T J = +150°C for 5,000 hours.PARAMETERSYMBOL CONDITIONSMINTYP MAXUNITS Output Return Loss in Transmit-Disable ModeS225MHz - 204MHz, TXEN = low (Note 2)14dB 2nd Harmonic Distortion HD2f IN = 100MHz, V OUT = +68dBmV -65dBc Two-Tone 2nd-Order Distortion (f 1 + f 2)IM2f 1 = 100MHz, f 2 = 105MHz, V OUT = +65dBmV/tone -62dBc 3rd Harmonic Distortion HD3f IN = 65MHz, V OUT = +68dBmV -60dBc Two-Tone 3rd-Order Distortion IM3f 1 = 195MHz, f 2 = 200MHz, V OUT = +65dBmV/tone -55dBc Output Compression at Peak Outputf = 100MHz, GC = 63, output power = +79dBmV 0.3dBModulation Error Ratio MER4k FFT, 1024QAM, f IN = 150MHz, BW = 96MHz V OUT = +67dBmV 49dBV OUT = +68dBmV 474k FFT, 1024QAM, f IN = 192MHz, BW = 24MHzV OUT = +67dBmV 51V OUT = +68dBmV46CSB to SCLK Rise Setup Time t SENS 20ns CSB to SCLK Rise Hold Time t SENH 10ns SDA to SCLK Setup Time t SDAS 20ns SDA to SCLK Hold Time t SDAH 10ns SCLK Pulse-Width High t SCLKH 50ns SCLK Pulse-Width Low t SCLKL 50ns Maximum SCLK Frequencyf SCLK20MHz Electrical Characteristics (continued)MAX3523Low-Power DOCSIS 3.1 Programmable-Gain Amplifier(T A = 25°C, P OUT = 68dBmV, TXEN = high, Gain Code = 63, Power Code = 3, V DD = 5V, unless otherwise noted.) Typical Operating CharacteristicsMAX3523Low-Power DOCSIS 3.1Programmable-Gain Amplifier(T A = 25°C, P OUT = 68dBmV, TXEN = high, Gain Code = 63, Power Code = 3, V DD = 5V, unless otherwise noted.) Typical Operating Characteristics (continued)MAX3523Low-Power DOCSIS 3.1Programmable-Gain AmplifierPIN NAME FUNCTION10, 17VDD +5V Supply. Connect a 0.1μF capacitor to GND.2IN+Positive Input 3IN-Negative Input 8CSB Chip Select. Active-low.7SDA Serial Data 6SCLK Clock9TXEN Transmit Enable/Disable4, 11, 13, 15, 19, 20N.C.Connect to PCB GND for Improved Heat Dissipation 12OUT-PA Negative Output 14OUT+PA Positive Output 1, 5, 18GND Ground 16N.C.*Leave Open PaddleGNDGroundPARAMETERCONDITIONS Ambient Temperature Range0°C to +70°CPin DescriptionRecommended Operating ConditionsMAX3523Low-Power DOCSIS 3.1 Programmable-Gain AmplifierDetailed DescriptionProgrammable-Gain AmplifierThe programmable-gain amplifier (PGA) provides 60dB of output level control in 1dB steps. The gain of the PGA is determined by a 6-bit gain code (GC5–GC0) programmed through the serial-data interface (see Register Map ). Specified performance is achieved when the input is driven differentially.Four power codes (PC1–PC0) allow the PGA to be used with reduced bias current when distortion performance can be relaxed. In addition, for each power code, bias current is automatically reduced with gain code for maximum efficiency.The PGA features a differential Class A output stage capable of driving an +68dBmV OFDMA signal from 5MHz–85MHz or two 96MHz +65dBmV OFDMA signals from 5MHz–204MHz into a 75Ω load. This architecture features a differential output that provides superior even-order distortion performance. This requires that atransformer be used to convert to a single-endedoutput. In transmit-disable mode, the output amplifiers are powered down, resulting in low output noise while maintaining the impedance match.3-Wire Serial Programmable Interface (SPI) and Control RegistersThe MAX3523 includes a user-programmable register for initializing the part and setting the gain and power consumption. The four MSBs are address bits; the eight least significant bits (LSBs) are used for register data. Data is shifted MSB first.The serial interface should only be written to when TXEN = low, as is the case between transmit bursts in a DOCSIS environment. Once a new set of register data is clocked in, the corresponding power code and/or gain code does not take effect until the 12th rising edge of SCLK.Note: The registers must be written no earlier than 100μs after the device is powered up.MAX3523Low-Power DOCSIS 3.1 Programmable-Gain AmplifierSPI ReadFigure 1 shows a single-byte read transaction. In this example, a single byte is read from the slave by the master. The master first asserts CSB, begins driving SDA with the R/Wb bit having value of 1 indicating this a read transaction and starts toggling SCLK. The slave samples the bits on SDA on the rising edge of SCLK. After the R/Wb bit, the master outputs the 3-bit register addresses starting with the most significant bit following which the master releases the SDA line. The slave then starts driving SDA and outputs the single byte that was requested by the master. After the last bit has been output, the slave three-states SDA on the rising edge of CSB that ends the transaction.SPI WriteFigure 2 shows a single-byte write transaction. In this example, a single byte is written to the slave by the master. The master first asserts CSB, begins driving SDA with the R/Wb bit having value of 0 indicating this a write transaction and starts toggling SCLK. The slave samples the bits on SDA on the rising edge of SCLK. After the R/Wb bit, the master outputs the 3-bit register addresses starting with the most significant bit and then the 8-bit data starting with the most significant bit. The internal registers are updated on the 12th rising edge of SCLK.Figure 1. SPI Read TransactionFigure 2. SPI Write TransactionMAX3523Low-Power DOCSIS 3.1 Programmable-Gain AmplifierRegister DetailsGAIN (0x0)Figure 3. SPI Timing DiagramADDRESS NAMEMSBLSBMAIN0x00GAIN[7:0]PC[1:0]GC[5:0]BIT 7654321Field PC[1:0]GC[5:0]Reset 0x00x0Access Type Write, Read Write, ReadBITFIELD BITS DESCRIPTIONDECODE PC 7:6Power Code 0x0: MIN POWER 0x3: MAX POWER GC5:0Gain Code0x0: MIN GAIN 0x3F: MAX GAINRegister MapProgrammable-Gain AmplifierApplications InformationPower CodesThe device is designed to exceed the stringent linearity requirements of DOCSIS 3.1 using power code (PC 3). Using lower power codes (PC = 2, 1 or 0) allows for operation at reduced current levels. The full range of gain codes can be used in any power code. The gain difference between power codes is typically less than 0.1dB. Transmit Disable ModeBetween bursts in a DOCSIS system, the MAX3523 can be put in transmit-disable mode by setting TXEN low. The output transient on the cable is kept well below the DOCSIS 3.1 requirement during the TXEN transitions.If a gain code or power code change is required, the new values of PC and GC should be clocked in during transmit-disable mode (TXEN low). The new operating point of the MAX3523 is set on the 12th rising edge of SCLK. This should be done between transmission bursts.Output CircuitThe output circuit is an open-drain differential amplifier. The outputs should be resistively terminated, as shown in the Typical Application Circuit. A 50:75 impedance ratio transformer should be used as the interface between the differential output of the device and the unbalanced 75Ω load.Amplifier performance depends on the value of the termination resistors. Rated performance is obtained using the R7 termination resistor as shown in the Typical Application Circuit. Increasing the value of this resistor will increase gain and improve SNR at the expense of output return loss.Transformer core inductance may vary with temperature. Adequate primary inductance must be present to sustain broadband output capability as temperatures vary.Input CircuitThe differential input impedance of the MAX3523 is 200Ω. In a typical application, however, it is driven from a 100Ω differential source, requiring an external 200Ω matching resistor, as shown in the Typical Application Circuit.The device has sufficient gain and linearity to produce an output level of +68dBmV when driven with a +31dBmV input signal. If an input level greater than +31dBmV is used, the 3rd-order distortion performance yout IssuesA well-designed printed circuit board (PCB) is an essential part of an RF circuit. For best performance, pay attention to power-supply layout issues as well as the output circuit layout. The MAX3523 evaluation (EV) board layout can be utilized as a guide during PCB design. Its electrical performance has been thoroughly tested, making it an excellent reference. Refer to the MAX3523 EV kit for additional information.Output Circuit LayoutKeep the length of the output traces as short as possible. Series inductance between the part and the transformer will degrade the performance at the higher end of the operating frequency range. To maintain the balance of the output network, match the length of the differential traces as closely as possible.Power-Supply LayoutFor minimal coupling between different sections of the IC, the ideal power-supply layout is a star configuration. This configuration has a large-value decoupling capaci t or at the central power-supply node. The power-supply traces branch out from this node, each going to a sepa r ate power-supply node in the circuit. At the end of each of these traces is a decoupling capacitor that provides a very low impedance at the frequency of interest. This arrangement provides local power-supply decoupling at each power-supply pin. The power-supply traces must be capable of carrying the maximum current without signifi-cant voltage drop.Exposed Pad Thermal ConsiderationsThe exposed pad (EP) of the MAX3523's 20-pin TQFN package provides a low thermal resistance path to the die. It is important that the PCB on which the device is mounted be designed to conduct heat from this contact. In addition, the EP should be provided with a low-induc-tance path to electrical ground. The MAX3523 EV board is an example of a layout that provides optimal thermal and electrical performance.* EP = Exposed pad.+ Denotes a lead(Pb)-free/RoHS-compliant package.T Denotes tape-and-reel.PART NUMBER TEMP RANGE PIN-PACKAGE MAX3523ETP+0°C to +70°C20 TQFN-EP* MAX3523ETP+T0°C to +70°C20 TQFN-EP* Ordering InformationProgrammable-Gain AmplifierREVISION NUMBERREVISION DATE DESCRIPTIONPAGES CHANGED6/18Initial release—Revision HistoryMaxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.Programmable-Gain AmplifierFor pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated’s website at .MAX3523ETP+。
欧普照明EUP20T-1HMC-0(104100000101) 可调光驱动器说明书
EUP20T-1HMC-0(104100000101)SummaryProduct FeatureDimension(mm)EUP20T-1HMC-0 is a constant current output mode LED driver. The output current can be easily set via DIP switch.The driver supports leading edge (Triac) and trailing edge (ELV)dimmer, and can be compatible with the systems of various brands (Philips, Panasonic, Lutron, Simon, ABB,Siemens,Dalitek etc.) to achieve a smooth dimming effect.220VAC-240VAC 50/60Hz81%@230VAC, Full load ≥0.95@230VAC,full load Cold start, 15A(twidth=30us measured at 50% Ipeak@230VAC 0.12Amax@230VAC,150*43*29mm(L*W*H)IP20-20℃~50℃-40℃~85℃, 20-90%RH 75℃PC 30,000h@tc:75℃48V Max ±5%<3%Triac/ELV>15,000 times1350mA/9-40VDC/14W 400mA/9-40VDC/16W 450mA/9-40VDC/18W 500mA/9-40VDC/20W550mA/9-36VDC/19.8W 600mA/9-33VDC/19.8W650mA/9-30VDC/19.5W 700mA/9-28VDC/19.6WEUP20T-1HMC-0TcLifetimeMaterialDimensionPacking Size IP Rating Working Temp.Storage Temp.; Humidity Dimming Mode Switch Cycle 3 years Warranty Condition No Load Output Voltage Turn On Delay Time<1s, at 230Vac Efficiency Current <20%@230VAC,full loadTHD Inrush Current Current/Voltage/Power Ripple CurrentChannel Current Tolerance Voltage FrequencyPower Factor Over temperature Short Circuit Over Load Shut down the output, recovers automatically when temp. back to normal.When the output voltage is exceeded, decreases and, recovers automatically when the load is reduced.Shut down the output automatically recovers after faulty condition is removed.OthersFunction ModelOutputInputProtectionTechnical Parameters·Single channel output, output current level selectable by DIP S.W.·Support Leading edge (Triac) and Trailing edge (ELV) dimmer ·Dimming range from 40VAC to 240VAC ·Built-in active PFC function·Class 2 power supply. Full protective plastic housing ·Dimming effect smooth, no flicker·Protections: Short circuit, over load, over temperature·Suitable for indoor LED lighting application, such as down light, spotlights, panel light, and so onNet weight: 130g±5%/PCS; 50PCS/Carton; 7kg±5%/Carton; Carton Size: 374*314*166mm(L*W*H) ApplicationDownlightPanel LightFlood LightSpotlightCeiling Light Track LightFloor LightDecorative LightWiring DiagramAmbient Temperature(℃)L o a d (%)20406080100120-20-10102030405060Dimming CurveDerating CurvePF VS Load ※ The contents of this manual are updated without prior notice. If the function of the product you are using is inconsistent with the instructions, the function of the product shall prevail.Please contact us if you have anyquestions .Cautions1.The product shall be installed and serviced by a qualified person.2.This product is non-waterproof. Please avoid the sun and rain. When installed outdoors please ensure it is mounted in a water proof enclosure.3.Good heat dissipation will prolong the working life of the controller. Please ensure good ventilation.4.Please check if the output voltage and current of any LED power supplies used comply with the requirement of the product.5.Please ensure that adequate sized cable is used from the controller to the LED lights to carry the current. Please also ensure that the cable is secured tightly in the connector.6.For safety consideration, PVC or rubber cord of 0.75-1.5mm2 is recommended for input and output terminal(s) . Flat power cord is not suitable. Ensure all wire connections and polarities are correct before applying power to avoid any damages to the LED lights.7.If a fault occurs please return the product to your supplier. Do not attempt to fix this product by yourself.20406080100120Input(%)O u t p u t (%)Current Selection TableRemark: Function default setting is: 350mA (@switch are all OFF state)0.860.880.900.920.940.960.981.00Load(%)P F。
MAX5933C中文资料
ELECTRICAL CHARACTERISTICS
(VCC = +24V (MAX5947A/B/C), VCC = +48V (MAX5933A–MAX5933F), GND = 0V, TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C.) (Note 1)
Power-Up Rate
Ordering Information
PART
TEMP RANGE PIN-PACKAGE
MAX5933_ESA*
-40°C to +85°C 8 SO
MAX5947_ESA*
-40°C to +85°C 8 SO
*Insert the desired suffix from the Selector Guide into the blank to complete the part number.
元器件交易网
MAX5933A–MAX5933F/MAX5947A/B/C
Positive High-Voltage, Hot-Swap Controllers
ABSOLUTE MAXIMUM RATINGS
(Voltages Referenced to GND) VCC .........................................................................-0.3V to +85V SENSE, FB, ON ..........................................-0.3V to (VCC + 0.3V) TIMER, PWRGD, PWRGD.......................................-0.3V to +85V GATE ......................................................................-0.3V to +95V Maximum GATE Current ....................................-50mA, +150mA Maximum Current into Any Other Pin................................±50mA
MAX3509中文资料
1000pF
5
MAX3509
IN+ OUT+
4700pF 16 4700pF 15 14 T1 1:1
OUT
VCC1 3 GND1 4 IN+ 5 IN- 6来自IN1000pF6
MAX3509
16 OUT+ 15 OUT14 VCC2 13 GND 12 GND
IN-
OUTVCC2
+9V 0.1µF
8 7 2 1 20 19 18
AC ELECTRICAL CHARACTERISTICS
(MAX3509 EV kit, VCC1 = VCC2 = 8.5V to 9.5V, TXEN = SHDN = high, D7 = 1, VINPUT = 34dBmV differential, output impedance = 75Ω through a 1:1 transformer, TA = -40°C to +85°C, unless otherwise noted. Typical parameters are at TA = +25°C.) PARAMETER SYMBOL CONDITIONS TA = +25°C, fINPUT = 42MHz, gain control word = 63 TA = +25°C, fINPUT = 42MHz, gain control word = 0 Voltage Gain AV TA = +25°C, fINPUT = 42MHz, gain control word = 50 fINPUT = 42MHz, gain control word = 63 fINPUT = 42MHz, gain control word = 0 fINPUT = 42MHz, gain control word = 50 VOUTPUT = 60dBmV, fINPUT = 5MHz to 42MHz (Note 1) VOUTPUT = 60dBmV, fINPUT = 5MHz to 65MHz (Note 1) fINPUT = 5MHz to 65MHz, AV = -20dB to +33dB 0.7 -21 20.2 24 0.1 0.3 1 25.9 0.4 dB 0.9 1.3 dB -22 22 24 25.9 31 dB MIN TYP MAX 33 UNITS
MAX3232EEUE+T中文资料
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,or visit Maxim's website at .General DescriptionThe MAX3222E/MAX3232E/MAX3237E/MAX3241E/MAX3246E +3.0V-powered EIA/TIA-232 and V.28/V.24communications interface devices feature low power con-sumption, high data-rate capabilities, and enhanced electrostatic-discharge (ESD) protection. The enhanced ESD structure protects all transmitter outputs and receiver inputs to ±15kV using IEC 1000-4-2 Air-G ap Discharge, ±8kV using IEC 1000-4-2 Contact Discharge (±9kV for MAX3246E), and ±15kV using the Human Body Model. The logic and receiver I/O pins of the MAX3237E are protected to the above standards, while the transmit-ter output pins are protected to ±15kV using the Human Body Model.A proprietary low-dropout transmitter output stage delivers true RS-232 performance from a +3.0V to +5.5V power supply, using an internal dual charge pump. The charge pump requires only four small 0.1µF capacitors for opera-tion from a +3.3V supply. Each device guarantees opera-tion at data rates of 250kbps while maintaining RS-232output levels. The MAX3237E guarantees operation at 250kbps in the normal operating mode and 1Mbps in the MegaBaud™ operating mode, while maintaining RS-232-compliant output levels.The MAX3222E/MAX3232E have two receivers and two transmitters. The MAX3222E features a 1µA shutdown mode that reduces power consumption in battery-pow-ered portable systems. The MAX3222E receivers remain active in shutdown mode, allowing monitoring of external devices while consuming only 1µA of supply current. The MAX3222E and MAX3232E are pin, package, and func-tionally compatible with the industry-standard MAX242and MAX232, respectively.The MAX3241E/MAX3246E are complete serial ports (three drivers/five receivers) designed for notebook and subnotebook computers. The MAX3237E (five drivers/three receivers) is ideal for peripheral applications that require fast data transfer. These devices feature a shut-down mode in which all receivers remain active, while consuming only 1µA (MAX3241E/MAX3246E) or 10nA (MAX3237E).The MAX3222E, MAX3232E, and MAX3241E are avail-able in space-saving SO, SSOP, TQFN and TSSOP pack-ages. The MAX3237E is offered in an SSOP package.The MAX3246E is offered in the ultra-small 6 x 6 UCSP™package.ApplicationsBattery-Powered Equipment PrintersCell PhonesSmart Phones Cell-Phone Data Cables xDSL ModemsNotebook, Subnotebook,and Palmtop ComputersNext-Generation Device Features♦For Space-Constrained ApplicationsMAX3228E/MAX3229E: ±15kV ESD-Protected, +2.5V to +5.5V, RS-232 Transceivers in UCSP ♦For Low-Voltage or Data Cable ApplicationsMAX3380E/MAX3381E: +2.35V to +5.5V, 1µA, 2Tx/2Rx, RS-232 Transceivers with ±15kV ESD-Protected I/O and Logic PinsMAX3222E/MAX3232E/MAX3237E/MAX3241E †/MAX3246E±15kV ESD-Protected, Down to 10nA, 3.0V to 5.5V ,Up to 1Mbps, True RS-232 Transceivers________________________________________________________________Maxim Integrated Products 119-1298; Rev 11; 10/07Ordering Information continued at end of data sheet.*Dice are tested at T A = +25°C, DC parameters only.**EP = Exposed paddle.Pin Configurations, Selector Guide, and Typical Operating Circuits appear at end of data sheet.MegaBaud and UCSP are trademarks of Maxim Integrated Products, Inc.†Covered by U.S. Patent numbers 4,636,930; 4,679,134;4,777,577; 4,797,899; 4,809,152; 4,897,774; 4,999,761; and other patents pending.M A X 3222E /M A X 3232E /M A X 3237E /M A X 3241E †/M A X 3246EUp to 1Mbps, True RS-232 TransceiversABSOLUTE MAXIMUM RATINGSELECTRICAL CHARACTERISTICS(V CC = +3V to +5.5V, C1–C4 = 0.1µF, T A = T MIN to T MAX , unless otherwise noted. Typical values are at T A = +25°C.) (Notes 3, 4)Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.V CC to GND..............................................................-0.3V to +6V V+ to GND (Note 1)..................................................-0.3V to +7V V- to GND (Note 1)...................................................+0.3V to -7V V+ + |V-| (Note 1).................................................................+13V Input Voltages T_IN, EN , SHDN , MBAUD to GND ........................-0.3V to +6V R_IN to GND.....................................................................±25V Output Voltages T_OUT to GND...............................................................±13.2V R_OUT, R_OUTB (MAX3241E)................-0.3V to (V CC + 0.3V)Short-Circuit Duration, T_OUT to GND.......................Continuous Continuous Power Dissipation (T A = +70°C)16-Pin SSOP (derate 7.14mW/°C above +70°C)..........571mW 16-Pin TSSOP (derate 9.4mW/°C above +70°C).......754.7mW 16-Pin TQFN (derate 20.8mW/°C above +70°C).....1666.7mW 16-Pin Wide SO (derate 9.52mW/°C above +70°C).....762mW 18-Pin Wide SO (derate 9.52mW/°C above +70°C).....762mW 18-Pin PDIP (derate 11.11mW/°C above +70°C)..........889mW 20-Pin TQFN (derate 21.3mW/°C above +70°C)........1702mW 20-Pin TSSOP (derate 10.9mW/°C above +70°C)........879mW 20-Pin SSOP (derate 8.00mW/°C above +70°C)..........640mW 28-Pin SSOP (derate 9.52mW/°C above +70°C)..........762mW 28-Pin Wide SO (derate 12.50mW/°C above +70°C).............1W 28-Pin TSSOP (derate 12.8mW/°C above +70°C)......1026mW 32-Lead Thin QFN (derate 33.3mW/°C above +70°C)..2666mW 6 x 6 UCSP (derate 12.6mW/°C above +70°C).............1010mW Operating Temperature Ranges MAX32_ _EC_ _...................................................0°C to +70°C MAX32_ _EE_ _.................................................-40°C to +85°C Storage Temperature Range.............................-65°C to +150°C Lead Temperature (soldering, 10s).................................+300°C Bump Reflow Temperature (Note 2)Infrared, 15s..................................................................+200°C Vapor Phase, 20s..........................................................+215°C Note 1:V+ and V- can have maximum magnitudes of 7V, but their absolute difference cannot exceed 13V.Note 2:This device is constructed using a unique set of packaging techniques that impose a limit on the thermal profile the devicecan be exposed to during board-level solder attach and rework. This limit permits only the use of the solder profiles recom-mended in the industry-standard specification, JEDEC 020A, paragraph 7.6, Table 3 for IR/VPR and convection reflow.Preheating is required. Hand or wave soldering is not allowed.MAX3222E/MAX3232E/MAX3237E/MAX3241E †/MAX3246EUp to 1Mbps, True RS-232 Transceivers_______________________________________________________________________________________3M A X 3222E /M A X 3232E /M A X 3237E /M A X 3241E †/M A X 3246EUp to 1Mbps, True RS-232 Transceivers4_______________________________________________________________________________________TIMING CHARACTERISTICS—MAX3237E(V CC = +3V to +5.5V, C1–C4 = 0.1µF, T A = T MIN to T MAX , unless otherwise noted. Typical values are at T A = +25°C.) (Note 3)±10%. MAX3237E: C1–C4 = 0.1µF tested at +3.3V ±5%, C1–C4 = 0.22µF tested at +3.3V ±10%; C1 = 0.047µF, C2, C3, C4 =0.33µF tested at +5.0V ±10%. MAX3246E; C1-C4 = 0.22µF tested at +3.3V ±10%; C1 = 0.22µF, C2, C3, C4 = 0.54µF tested at 5.0V ±10%.Note 4:MAX3246E devices are production tested at +25°C. All limits are guaranteed by design over the operating temperature range.Note 5:The MAX3237E logic inputs have an active positive feedback resistor. The input current goes to zero when the inputs are atthe supply rails.Note 6:MAX3241EEUI is specified at T A = +25°C.Note 7:Transmitter skew is measured at the transmitter zero crosspoints.TIMING CHARACTERISTICS—MAX3222E/MAX3232E/MAX3241E/MAX3246EMAX3222E/MAX3232E/MAX3237E/MAX3241E †/MAX3246EUp to 1Mbps, True RS-232 Transceivers_______________________________________________________________________________________5-6-4-202460MAX3237ETRANSMITTER OUTPUT VOLTAGE vs. LOAD CAPACITANCE (MBAUD = GND)LOAD CAPACITANCE (pF)T R A N S M I T T E R O U T P U T V O L T A G E (V )10001500500200025003000531-1-3-5-6-2-42046-5-31-135010001500500200025003000LOAD CAPACITANCE (pF)T R A N S M I T T E R O U T P U T V O L T A G E (V )MAX3237ETRANSMITTER OUTPUT VOLTAGEvs. LOAD CAPACITANCE-7.5-5.0-2.502.55.07.5MAX3237ETRANSMITTER OUTPUT VOLTAGE vs. LOAD CAPACITANCE (MBAUD = V CC )LOAD CAPACITANCE (pF)T R A N S M I T T E R O U T P U T V O L T A G E (V )500100015002000__________________________________________Typical Operating Characteristics(V CC = +3.3V, 250kbps data rate, 0.1µF capacitors, all transmitters loaded with 3k Ωand C L , T A = +25°C, unless otherwise noted.)-6-5-4-3-2-10123456010002000300040005000MAX3241ETRANSMITTER OUTPUT VOLTAGEvs. LOAD CAPACITANCELOAD CAPACITANCE (pF)T R A N S M I T T E R O U T P U T V O L T A G E (V)302010405060020001000300040005000MAX3241EOPERATING SUPPLY CURRENT vs. LOAD CAPACITANCELOAD CAPACITANCE (pF)S U P P L Y C U R R E N T (m A )04286121014010002000300040005000MAX3241ESLEW RATE vs. LOAD CAPACITANCEM A X 3237E t o c 05LOAD CAPACITANCE (pF)S L E W R A T E (V /μs )-6-5-4-3-2-10123456010002000300040005000MAX3222E/MAX3232ETRANSMITTER OUTPUT VOLTAGEvs. LOAD CAPACITANCELOAD CAPACITANCE (pF)T R A N S M I T T E R O U T P UT V O L T A G E (V )624108141216010002000300040005000MAX3222E/MAX3232ESLEW RATE vs. LOAD CAPACITANCELOAD CAPACITANCE (pF)S L E W R A T E (V /μs)2520155103530404520001000300040005000MAX3222E/MAX3232E OPERATING SUPPLY CURRENT vs. LOAD CAPACITANCELOAD CAPACITANCE (pF)S U P P L Y C U R R E N T (m A )M A X 3222E /M A X 3232E /M A X 3237E /M A X 3241E †/M A X 3246EUp to 1Mbps, True RS-232 Transceivers6_______________________________________________________________________________________Typical Operating Characteristics (continued)(V CC = +3.3V, 250kbps data rate, 0.1µF capacitors, all transmitters loaded with 3k Ωand C L , T A = +25°C, unless otherwise noted.)20604080100MAX3237ETRANSMITTER SKEW vs. LOAD CAPACITANCE(MBAUD = V CC )LOAD CAPACITANCE (pF)100015005002000T R A N S M I T T E R S K E W (n s )-6-2-42046-3-51-1352.03.03.52.54.04.55.0SUPPLY VOLTAGE (V)T R A N S M I T T E R O U T P U T V O L T A G E (V )MAX3237ETRANSMITTER OUTPUT VOLTAGE vs. SUPPLY VOLTAGE (MBAUD = GND)10203040502.0MAX3237E SUPPLY CURRENT vs. SUPPLY VOLTAGE (MBAUD = GND)SUPPLY VOLTAGE (V)S U P P L Y C U R R E N T (m A )3.03.52.54.04.55.0MAX3246ETRANSMITTER OUTPUT VOLTAGEvs. LOAD CAPACITANCELOAD CAPACITANCE (pF)T R A N S M I T T E R O U T P U T V O L T A G E (V )4000300010002000-5-4-3-2-101234567-65000468101214160MAX3246ESLEW RATE vs. LOAD CAPACITANCELOAD CAPACITANCE (pF)S L EW R A T E (V /μs )200030001000400050001020304050600MAX3246EOPERATING SUPPLY CURRENT vs. LOAD CAPACITANCEM A X 3237E t o c 17LOAD CAPACITANCE (pF)S U P P L Y C U R R EN T (m A )1000200030004000500055453525155024681012MAX3237ESLEW RATE vs. LOAD CAPACITANCE(MBAUD = GND)LOAD CAPACITANCE (pF)S L E W R A T E (V /μs )10001500500200025003000010203050406070MAX3237ESLEW RATE vs. LOAD CAPACITANCE(MBAUD = V CC )LOAD CAPACITANCE (pF)S L E W R A T E (V /μs )5001000150020001020304050MAX3237ESUPPLY CURRENT vs. LOAD CAPACITANCE WHEN TRANSMITTING DATA (MBAUD = GND)LOAD CAPACITANCE (pF)S U P P L Y C U R R E N T (m A )10001500500200025003000MAX3222E/MAX3232E/MAX3237E/MAX3241E †/MAX3246EUp to 1Mbps, True RS-232 Transceivers_______________________________________________________________________________________7Pin DescriptionM A X 3222E /M A X 3232E /M A X 3237E /M A X 3241E †/M A X 3246EUp to 1Mbps, True RS-232 Transceivers8_______________________________________________________________________________________MAX3222E/MAX3232E/MAX3237E/MAX3241E †/MAX3246EUp to 1Mbps, True RS-232 Transceivers_______________________________________________________________________________________9Detailed DescriptionDual Charge-Pump Voltage ConverterThe MAX3222E/MAX3232E/MAX3237E/MAX3241E/MAX3246Es’ internal power supply consists of a regu-lated dual charge pump that provides output voltages of +5.5V (doubling charge pump) and -5.5V (inverting charge pump) over the +3.0V to +5.5V V CC range. The charge pump operates in discontinuous mode; if the output voltages are less than 5.5V, the charge pump is enabled, and if the output voltages exceed 5.5V, the charge pump is disabled. Each charge pump requires a flying capacitor (C1, C2) and a reservoir capacitor (C3, C4) to generate the V+ and V- supplies (Figure 1).RS-232 TransmittersThe transmitters are inverting level translators that con-vert TTL/CMOS-logic levels to ±5V EIA/TIA-232-compli-ant levels.The MAX3222E/MAX3232E/MAX3237E/MAX3241E/MAX3246E transmitters guarantee a 250kbps data rate with worst-case loads of 3k Ωin parallel with 1000pF,providing compatibility with PC-to-PC communication software (such as LapLink™). Transmitters can be par-alleled to drive multiple receivers or mice.The MAX3222E/MAX3237E/MAX3241E/MAX3246E transmitters are disabled and the outputs are forcedinto a high-impedance state when the device is in shut-down mode (SHDN = G ND). The MAX3222E/MAX3232E/MAX3237E/MAX3241E/MAX3246E permit the outputs to be driven up to ±12V in shutdown.The MAX3222E/MAX3232E/MAX3241E/MAX3246E transmitter inputs do not have pullup resistors. Connect unused inputs to GND or V CC . The MAX3237E’s trans-mitter inputs have a 400k Ωactive positive-feedback resistor, allowing unused inputs to be left unconnected.MAX3237E MegaBaud OperationFor higher-speed serial communications, the MAX3237E features MegaBaud operation. In MegaBaud operating mode (MBAUD = V CC ), the MAX3237E transmitters guarantee a 1Mbps data rate with worst-case loads of 3k Ωin parallel with 250pF for +3.0V < V CC < +4.5V. For +5V ±10% operation, the MAX3237E transmitters guarantee a 1Mbps data rate into worst-case loads of 3k Ωin parallel with 1000pF.RS-232 ReceiversThe receivers convert RS-232 signals to CMOS-logic output levels. The MAX3222E/MAX3237E/MAX3241E/MAX3246E receivers have inverting three-state outputs.Drive EN high to place the receiver(s) into a high-impedance state. Receivers can be either active or inactive in shutdown (Table 1).Figure 1. Slew-Rate Test CircuitsLapLink is a trademark of Traveling Software.M A X 3222E /M A X 3232E /M A X 3237E /M A X 3241E †/M A X 3246EUp to 1Mbps, True RS-232 Transceivers10______________________________________________________________________________________The complementary outputs on the MAX3237E/MAX3241E (R_OUTB) are always active, regardless of the state of EN or SHDN . This allows the device to be used for ring indicator applications without forward biasing other devices connected to the receiver outputs. This is ideal for systems where V CC drops to zero in shutdown to accommodate peripherals such as UARTs (Figure 2).MAX3222E/MAX3237E/MAX3241E/MAX3246E Shutdown ModeSupply current falls to less than 1µA in shutdown mode (SHDN = low). The MAX3237E’s supply current falls to10nA (typ) when all receiver inputs are in the invalid range (-0.3V < R_IN < +0.3). When shut down, the device’s charge pumps are shut off, V+ is pulled down to V CC , V- is pulled to ground, and the transmitter out-puts are disabled (high impedance). The time required to recover from shutdown is typically 100µs, as shown in Figure 3. Connect SHDN to V CC if shutdown mode is not used. SHDN has no effect on R_OUT or R_OUTB (MAX3237E/MAX3241E).±15kV ESD ProtectionAs with all Maxim devices, ESD-protection structures are incorporated to protect against electrostatic dis-charges encountered during handling and assembly.The driver outputs and receiver inputs of the MAX3222E/MAX3232E/MAX3237E/MAX3241E/MAX3246E have extra protection against static electricity. Maxim’s engineers have developed state-of-the-art structures to protect these pins against ESD of ±15kV without damage.The ESD structures withstand high ESD in all states:normal operation, shutdown, and powered down. After an ESD event, Maxim’s E versions keep working without latchup, whereas competing RS-232 products can latch and must be powered down to remove latchup.Furthermore, the MAX3237E logic I/O pins also have ±15kV ESD protection. Protecting the logic I/O pins to ±15kV makes the MAX3237E ideal for data cable applications.SHDN T2OUTT1OUT5V/div2V/divV CC = 3.3V C1–C4 = 0.1μFFigure 3. Transmitter Outputs Recovering from Shutdown or Powering UpMAX3222E/MAX3232E/MAX3237E/MAX3241E †/MAX3246EUp to 1Mbps, True RS-232 TransceiversESD protection can be tested in various ways; the transmitter outputs and receiver inputs for the MAX3222E/MAX3232E/MAX3241E/MAX3246E are characterized for protection to the following limits:•±15kV using the Human Body Model•±8kV using the Contact Discharge method specified in IEC 1000-4-2•±9kV (MAX3246E only) using the Contact Discharge method specified in IEC 1000-4-2•±15kV using the Air-G ap Discharge method speci-fied in IEC 1000-4-2Figure 4a. Human Body ESD Test ModelFigure 4b. Human Body Model Current WaveformFigure 5a. IEC 1000-4-2 ESD Test Model Figure 5b. IEC 1000-4-2 ESD Generator Current WaveformM A X 3222E /M A X 3232E /M A X 3237E /M A X 3241E †/M A X 3246EUp to 1Mbps, True RS-232 Transceiverscharacterized for protection to ±15kV per the Human Body Model.ESD Test ConditionsESD performance depends on a variety of conditions.Contact Maxim for a reliability report that documents test setup, test methodology, and test results.Human Body ModelFigure 4a shows the Human Body Model, and Figure 4b shows the current waveform it generates when dis-charged into a low impedance. This model consists of a 100pF capacitor charged to the ESD voltage of interest,which is then discharged into the test device through a 1.5k Ωresistor.IEC 1000-4-2The IEC 1000-4-2 standard covers ESD testing and performance of finished equipment; it does not specifi-cally refer to integrated circuits. The MAX3222E/MAX3232E/MAX3237E/MAX3241E/MAX3246E help you design equipment that meets level 4 (the highest level)of IEC 1000-4-2, without the need for additional ESD-protection components.The major difference between tests done using the Human Body Model and IEC 1000-4-2 is higher peak current in IEC 1000-4-2, because series resistance is lower in the IEC 1000-4-2 model. Hence, the ESD with-stand voltage measured to IEC 1000-4-2 is generally lower than that measured using the Human Body Model. Figure 5a shows the IEC 1000-4-2 model, and Figure 5b shows the current waveform for the ±8kV IEC 1000-4-2 level 4 ESD Contact Discharge test. The Air-G ap Discharge test involves approaching the device with a charged probe. The Contact Discharge method connects the probe to the device before the probe is energized.Machine ModelThe Machine Model for ESD tests all pins using a 200pF storage capacitor and zero discharge resis-tance. Its objective is to emulate the stress caused by contact that occurs with handling and assembly during manufacturing. All pins require this protection during manufacturing, not just RS-232 inputs and outputs.Therefore, after PC board assembly, the Machine Model is less relevant to I/O ports.Table 2. Required Minimum Capacitor ValuesFigure 6a. MAX3241E Transmitter Output Voltage vs. Load Current Per TransmitterTable 3. Logic-Family Compatibility with Various Supply VoltagesMAX3222E/MAX3232E/MAX3237E/MAX3241E †/MAX3246EUp to 1Mbps, True RS-232 TransceiversApplications InformationCapacitor SelectionThe capacitor type used for C1–C4 is not critical for proper operation; polarized or nonpolarized capacitors can be used. The charge pump requires 0.1µF capaci-tors for 3.3V operation. For other supply voltages, see Table 2 for required capacitor values. Do not use val-ues smaller than those listed in Table 2. Increasing the capacitor values (e.g., by a factor of 2) reduces ripple on the transmitter outputs and slightly reduces power consumption. C2, C3, and C4 can be increased without changing C1’s value. However, do not increase C1without also increasing the values of C2, C3, C4,and C BYPASS to maintain the proper ratios (C1 to the other capacitors).When using the minimum required capacitor values,make sure the capacitor value does not degradeexcessively with temperature. If in doubt, use capaci-tors with a larger nominal value. The capacitor’s equiv-alent series resistance (ESR), which usually rises at low temperatures, influences the amount of ripple on V+and V-.Power-Supply DecouplingIn most circumstances, a 0.1µF V CC bypass capacitor is adequate. In applications sensitive to power-supply noise, use a capacitor of the same value as charge-pump capacitor C1. Connect bypass capacitors as close to the IC as possible.Operation Down to 2.7VTransmitter outputs meet EIA/TIA-562 levels of ±3.7V with supply voltages as low as 2.7V.Figure 6b. Mouse Driver Test CircuitM A X 3222E /M A X 3232E /M A X 3237E /M A X 3241E †/M A X 3246EUp to 1Mbps, True RS-232 TransceiversFigure 7. Loopback Test CircuitT1IN T1OUTR1OUT5V/div5V/div5V/divV CC = 3.3V C1–C4 = 0.1μFFigure 8. MAX3241E Loopback Test Result at 120kbps T1INT1OUTR1OUT5V/div5V/div5V/divV CC = 3.3V, C1–C4 = 0.1μFFigure 9. MAX3241E Loopback Test Result at 250kbps+5V 0+5V 0-5V +5VT_INT_OUT5k Ω + 250pFR_OUTV CC = 3.3V C1–C4 = 0.1μFFigure 10. MAX3237E Loopback Test Result at 1000kbps (MBAUD = V CC )Transmitter Outputs Recoveringfrom ShutdownFigure 3 shows two transmitter outputs recovering from shutdown mode. As they become active, the two trans-mitter outputs are shown going to opposite RS-232 levels (one transmitter input is high; the other is low). Each transmitter is loaded with 3k Ωin parallel with 2500pF.The transmitter outputs display no ringing or undesir-able transients as they come out of shutdown. Note thatthe transmitters are enabled only when the magnitude of V- exceeds approximately -3.0V.Mouse DrivabilityThe MAX3241E is designed to power serial mice while operating from low-voltage power supplies. It has been tested with leading mouse brands from manu-facturers such as Microsoft and Logitech. The MAX3241E successfully drove all serial mice tested and met their current and voltage requirements.MAX3222E/MAX3232E/MAX3237E/MAX3241E †/MAX3246EUp to 1Mbps, True RS-232 TransceiversFigure 6a shows the transmitter output voltages under increasing load current at +3.0V. Figure 6b shows a typical mouse connection using the MAX3241E.High Data RatesThe MAX3222E/MAX3232E/MAX3237E/MAX3241E/MAX3246E maintain the RS-232 ±5V minimum transmit-ter output voltage even at high data rates. Figure 7shows a transmitter loopback test circuit. Figure 8shows a loopback test result at 120kbps, and Figure 9shows the same test at 250kbps. For Figure 8, all trans-mitters were driven simultaneously at 120kbps into RS-232 loads in parallel with 1000pF. For Figure 9, a single transmitter was driven at 250kbps, and all transmitters were loaded with an RS-232 receiver in parallel with 1000pF.The MAX3237E maintains the RS-232 ±5.0V minimum transmitter output voltage at data rates up to 1Mbps.Figure 10 shows a loopback test result at 1Mbps with MBAUD = V CC . For Figure 10, all transmitters were loaded with an RS-232 receiver in parallel with 250pF.Interconnection with 3V and 5V LogicThe MAX3222E/MAX3232E/MAX3237E/MAX3241E/MAX3246E can directly interface with various 5V logic families, including ACT and HCT CMOS. See Table 3for more information on possible combinations of inter-connections.UCSP ReliabilityThe UCSP represents a unique packaging form factor that may not perform equally to a packaged product through traditional mechanical reliability tests. UCSP reliability is integrally linked to the user’s assembly methods, circuit board material, and usage environ-ment. The user should closely review these areas when considering use of a UCSP package. Performance through Operating Life Test and Moisture Resistance remains uncompromised as the wafer-fabrication process primarily determines it.Mechanical stress performance is a greater considera-tion for a UCSP package. UCSPs are attached through direct solder contact to the user’s PC board, foregoing the inherent stress relief of a packaged product lead frame. Solder joint contact integrity must be consid-ered. Table 4 shows the testing done to characterize the UCSP reliability performance. In conclusion, the UCSP is capable of performing reliably through envi-ronmental stresses as indicated by the results in the table. Additional usage data and recommendations are detailed in the UCSP application note, which can be found on Maxim’s website at .Table 4. Reliability Test DataM A X 3222E /M A X 3232E /M A X 3237E /M A X 3241E †/M A X 3246EUp to 1Mbps, True RS-232 Transceivers__________________________________________________________Pin ConfigurationsMAX3222E/MAX3232E/MAX3237E/MAX3241E †/MAX3246EUp to 1Mbps, True RS-232 TransceiversPin Configurations (continued)M A X 3222E /M A X 3232E /M A X 3237E /M A X 3241E †/M A X 3246EUp to 1Mbps, True RS-232 Transceivers__________________________________________________Typical Operating CircuitsMAX3222E/MAX3232E/MAX3237E/MAX3241E †/MAX3246EUp to 1Mbps, True RS-232 Transceivers_____________________________________Typical Operating Circuits (continued)M A X 3222E /M A X 3232E /M A X 3237E /M A X 3241E †/M A X 3246EUp to 1Mbps, True RS-232 Transceivers_____________________________________Typical Operating Circuits (continued)MAX3222E/MAX3232E/MAX3237E/MAX3241E †/MAX3246EUp to 1Mbps, True RS-232 Transceivers______________________________________________________________________________________21Selector Guide___________________Chip InformationTRANSISTOR COUNT:MAX3222E/MAX3232E: 1129MAX3237E: 2110MAX3241E: 1335MAX3246E: 842PROCESS: BICMOSOrdering Information (continued)†Requires solder temperature profile described in the AbsoluteMaximum Ratings section. UCSP Reliability is integrally linked to the user’s assembly methods, circuit board material, and environment. Refer to the UCSP Reliability Notice in the UCSP Reliability section of this datasheet for more information.**EP = Exposed paddle.。
进口原装芯片大全
深圳市明烽威电子有限公司6N136-000E AVAGO IMP812JEUS-T IMP6N136-020E AVAGO IMP812LEUS-T IMP6N136-300E AVAGO IMP812MEUS-T IMP6N136-320E AVAGO IMP812REUS-T IMP6N136-500E AVAGO IMP812SEUS-T IMP6N136-520E AVAGO6N137-000E AVAGO6N137-020E AVAGO6N137-300E AVAGO6N137-320E AVAGO6N137-500E AVAGO KA2504三星6N137-520E AVAGO KS8995KENDIN74FCT543SM HAR L8560AP AGERE74LVC74APW PHL LD8274INTERABA-32563-TR1G AVAGO LF156H-883NSLT1212CSAD8842ARZ ADI LT1431CS8LINEAR AD9066JRZ ADI LT1431IS8LINEAR AD9822JR AD LT1611CS5LINEAR AD9834BRUZ ADI LT1615ES5LINEAR AD9835BRUZ ADI LT1617ES5LINEAR AD9883AKST-110ADI LT1618EMS LINEAR ADG419BRZ ADI LT1764AEQ-1.5LINEAR ADG409BRZ ADI LT1764AEQ-1.8LINEAR ADG506AKRZ ADI LT1764EQ-2.5LINEAR ADM1032ARMZ ADI LT1783IS6LINEAR ADM211EARS ADI LT1795ISW LINEAR ADM706PAR ADI LT1795CSW LINEAR ADM706RAR ADI LT1375CS8LINEAR ADM706SAR ADI LT1375IS8LINEAR ADM706TAR ADI LT1807IMS8LINEAR ADM708PAR ADI LT1963AEQ LINEAR ADM708RAR ADI LT1982CS6LINEAR ADM708SAR ADI LT3420EMS-1LINEAR ADM708TAR ADI LT5506EUF LINEAR ADM809JARTZ-REEL ADI LT5520EUF LINEAR ADM809LARTZ-REEL ADI LT5546EUF LINEAR ADM809MARTZ-REEL ADI LT6600IS8-10LINEAR ADM809RARTZ-REEL ADI LTC1480CS8LINEAR ADM809SARTZ-REEL ADI LTC1480IS8LINEAR ADM809TARTZ-REEL ADI LTC1504CS8LINEAR ADM810JARTZ-REEL ADI LTC1504IS8LINEAR ADM810LARTZ-REEL ADI LTC1555LEGN-1.8LINEAR ADM810MARTZ-REEL ADI LTC3202EMS LINEAR ADM810RARTZ-REEL ADI LTC3405AES6-1.8LINEAR ADM810SARTZ-REEL ADI LTC3407EMSE-2LINEAR ADM810TARTZ-REEL ADI LTC3411EMS LINEAR ADM811JARTZ-REEL ADI LTC3441EDE LINEAR ADM811LARTZ-REEL ADI LTC3713EG LINEAR ADM811MARTZ-REEL ADI LTC4006EGN-4LINEARADM811RARTZ-REEL ADI LTC4006EGN-6LINEAR ADM811SARTZ-REEL ADI LTC4412ES6LINEAR ADM811TARTZ-REEL ADI LTF2S857LTFADM812JARTZ-REEL ADI LXT971ALC INTEL ADM812LARTZ-REEL ADI M27128A-2F1STADM812MARTZ-REEL ADI MAX1092ACEG MAXIM ADM812RARTZ-REEL ADI MAX1092AEEG MAXIM ADM812SARTZ-REEL ADI MAX1111CEE MAXIM ADM812TARTZ-REEL ADI MAX1111EEE MAXIM ADNS-5100AVAGO MAX1112CPP+MAXIM ADNS-5100-001AVAGO MAX1112EPP+MAXIM ADT7468ARQZ ADI MAX1232ESA+T MAXIM ADUM1300BRWZ ADI MAX1249BCEE MAXIMAM26C31CDR TI MAX1249BEEE MAXIM AM26LS32ACDR TI MAX1490ACPG MAXIMAM29F040B-70JI AMD MAX153EAP+MAXIMAM29F040B-90JC AMD MAX1544ETL MAXIMAM29F040B-90PI AMD MAX1627ESA+T MAXIMAM29LV040B-120JI AMD MAX1632AEAI MAXAM29LV040B-70JI AMD MAX1632EAI MAXIMAM29LV160DB-90EC AMD MAX1776EUA MAXIMAM29LV160DT-90EC AMD MAX1799EUP MAXIMAM29LV400BB-70EI AMD MAX1818EUT18+T MAXIM AM29LV004BB-90EC AMD MAX1858EEG MAXIM AQW214EH(DIP8)松下MAX1930ESA+MAXIM AQW214EH(SOP8)松下MAX203CPP+MAXIMAS1581T ASM MAX203CWP+MAXIMAS2815AT2.5ASM MAX203ECPP+MAXIMAS2815AU3.3ASM MAX203ECWP+MAXIM ASM706PEPA ASM MAX203EEPP+MAXIM ASM809JEUR-T ASM MAX203EEWP+MAXIMASM809LEUR-T ASMASM809MEUR-T ASMASM809REUR-T ASMASM809SEUR-T ASMASM809TEUR-T ASMASM810JEUR-T ASMASM810LEUR-T ASMASM810MEUR-T ASMASM810REUR-T ASMASM810SEUR-T ASMASM810TEUR-T ASMASM811JEUS-T ASMASM811LEUS-T ASMASM811MEUS-T ASM MAX239CNG+MAXIM ASM811REUS-T ASM MAX239ENG+MAXIM ASM811SEUS-T ASM MAX241EEAI MAXIM ASM811TEUS-T ASM MAX242CPN+MAXIMASM812JEUS-T ASM MAX242EPN+MAXIM ASM812LEUS-T ASM MAX306EPI+MAXIM ASM812MEUS-T ASM MAX3075EAPA MAXIM ASM812REUS-T ASM MAX3081CPA+MAXIM ASM812SEUS-TASM812TEUS-TAT-220AT-220RTRAT-220TRAT24C08AN-10SI2.7AT25640A-10PI18AT25640A-10PI27AT25640AN-10SU2.7AT28C64-25DMAT29C010A-12PIAT29C010A-90JIAT29C010A-90PIAT29C040A-12PIAT29C040A-12TCAT29C040A-12TIAT29C040A-90JIAT29C040A-90PIAT29C040A-90TCAT29C040A-90TIAT-30511-BLKGAT-30511-TR1GAT-30533-BLKAT-30533-BLKGAT-30533-TR1AT-30533-TR1GAT-32032-BLKGAT-32032-TR1GAT-41511-BLKGAT-41511-TR1GAT-41533-BLKAT-41533-BLKGAT-41533-TR1AT49BV1604T-90TCAT89C2051-24PIATF-34143-BLKG AVAGO MAX3087EEPA+MAXIM ATF-34143-TR1G AVAGO MAX3087EESA+T MAXIM ATF-54143-BLKG AVAGO MAX3087EPA+MAXIM ATF-54143-TR1G AVAGO MAX3087ESA+T MAXIM BQ2085DBT TIBQ27210DRKR TIBQ29311PW TIBUX48C SESBYM358DX PHLCAT25C256K CSICD4048BF3ACD4048BF3ACD4094BF3ACN8472AEPFCOM20020ILJPCOM20020IPCPC5611ACY7C1399B-15ZCCY7C185-15VITCY7C185-20VITD3797CYD44H11GD45H11G ON MAX339EPE+MAXIM DAC8408FSZ ADI MAX339CPE+MAXIM DAC8840FSZ ADI MAX3510EEP+T MAXIMDG413DY HARDG419CY+T MAXIMDG419DY VISHAYDG419DY+T MAXIMDM9000E DAVICOMDM9008F DAVICOMDM9102AF DAVICOMDM9161AE DAVICOM MAX4456CPL MAXIMDP7304BJ-MIL NS MAX4489AUA+T MAXIM DS1020S+DALLAS MAX4533CWP+MAXIM DS1020S-100+DALLAS MAX4533EWP+MAXIM DS1020S-15+DALLAS MAX456CPL+MAXIMDS1020S-200+DALLASDS1020S-25+DALLASDS1020S-50+DALLASDS1210S DALLASDS1210S+DALLASDS1220AB-100+DALLASDS1220AB-100IND+DALLASDS1220AB-120+DALLASDS1220AB-120IND+DALLASDS1220AB-150+DALLASDS1220AB-150IND+DALLASDS1220AB-200+DALLASDS1220AB-200IND+DALLASDS1220AD-100+DALLASDS1220AD-100IND+DALLASDS1220AD-120+DALLASDS1220AD-150+DALLASDS1220AD-150IND+DALLASDS1220AD-200+DALLASDS1220AD-200IND+DALLASDS1220Y-100+DALLASDS1220Y-100IND+DALLASDS1220Y-120+DALLASDS1220Y-120IND+DALLASDS1220Y-150+DALLASDS1220Y-150IND+DALLASDS1220Y-200+DALLASDS1220Y-200IND+DALLASDS1225AB-200+DALLASDS1225AB-200IND+DALLASDS1225AB-150+DALLAS MAX6692MUA+MAXIMDS1225AB-170+DALLAS MAX680CSA+T MAXIMDS1225AB-150IND DALLAS MAX680ESA+T MAXIMDS1225AB-70+DALLAS MAX690AEPA+MAXIMDS1225AB-70IND DALLAS MAX690AESA MAXIMDS1225AB-85+DALLAS MAX690TESA MAXIMDS1225AD-150+DALLAS MAX692AEPA+MAXIMDS1225AD-150IND+DALLAS MAX692AESA+T MAXIMDS1225AD-200+DALLAS MAX692EPA MAXIMDS1225AD-200IND+DALLAS MAX692ESA MAXIMDS1225AD-70+DALLAS MAX705EPA MAXIMDS1225AD-70IND+DALLAS MAX706PEPA MAXIMDS1225AD-85+DALLAS MAX706PESA MAXIMDS1225AD-85IND+DALLAS MAX706RCSA MAXIMDS1225Y-150+DALLAS MAX706RESA MAXIMDS1225Y-150IND+DALLAS MAX706SCSA MAXIMDS1230AB-100+DALLAS MAX706SESA MAXIMDS1230AB-100IND+DALLAS MAX706TESA+T MAXIMDS1230AB-120+DALLAS MAX708ESA MAXIMDS1230AB-120IND+DALLAS MAX708RESA MAXIMDS1230AB-200+DALLAS MAX708TESA MAXIMDS1230AB-200IND+DALLAS MAX708TCUA+T MAXIMDS1230AB-70+DALLAS MAX713EPE+MAXIMDS1230AB-70IND+DALLAS MAX7219CNG+MAXIMDS1230ABP-100+DALLAS MAX7219CWG+MAXIMDS1230ABP-100IND+DALLAS MAX7219ENG+MAXIMDS1230ABP-120+DALLAS MAX7219EWG+MAXIMDS1230ABP-120IND+DALLAS MAX7221CNG+MAXIMDS1230ABP-150+DALLAS MAX7221CWG+T MAXIMDS1230ABP-150IND+DALLAS MAX7221ENG+MAXIMDS1230ABP-200+DALLAS MAX7221EWG+T MAXIMDS1230ABP-200IND+DALLAS MAX726ECK MAXIMDS1230ABP-70+DALLAS MAX7310AEE MAXIMDS1230ABP-70IND+DALLAS MAX7381AXR126MAXIMDS1230Y-100+DALLAS MAX743EPE+MAXIM DS1230Y-100IND+DALLAS MAX7500MSA MAXIMDS1230Y-120+DALLAS MAX768EEE+T MAXIMDS1230Y-120IND+DALLAS MAX772ESA MAXIMDS1230Y-150+DALLAS MAX786CAI MAXIMDS1230Y-70+DALLAS MAX786EAI MAXIMDS1230Y-70IND+DALLAS MAX797CSE MAXDS1230YP-100+DALLAS MAX797ESE MAXIMDS1230YP-100IND+DALLAS MAX798ESE MAXIMDS1230YP-120+DALLAS MAX809JEUR+T MAXIMDS1230YP-120IND+DALLAS MAX809JTRG ONDS1230YP-150DALLAS MAX809LEUR+T MAXIMDS1230YP-150IND DALLAS MAX809LTRG ONDS1230YP-200DALLAS MAX809MEUR+T MAXIMDS1230YP-200IND DALLAS MAX809MTRG ONDS1230YP-70DALLAS MAX809REUR+T MAXIMDS1230YP-70IND+DALLAS MAX809RTRG ONDS1245AB-100+DALLAS MAX809SEUR+T MAXIMDS1245AB-70DALLAS MAX809STRG ONDS1245AB-70IND DALLAS MAX809TEUR+T MAXIMDS1245ABP-100+DALLAS MAX809TTRG ONDS1245ABP-100IND+DALLAS MAX810JTRG ONDS1245ABP-70+DALLAS MAX810LEUR+T MAXIMDS1245ABP-70IND+DALLAS MAX810LTRG ONDS1245Y-100+DALLAS MAX810MEUR+T MAXIMDS1245Y-70+DALLAS MAX810MTRG ONDS1245Y-70IND+DALLAS MAX810REUR+T MAXIMDS1245YP-100+DALLAS MAX810RTRG ONDS1245YP-100IND+DALLAS MAX810SEUR+T MAXIMDS1245YP-70+DALLAS MAX810STRG ONDS1245YP-70IND+DALLAS MAX810TEUR+T MAXIMDS1249AB-100DALLAS MAX810TTRG ONDS1249AB-100IND DALLAS MAX811JEUS+T MAXIMDS1249AB-70DALLAS MAX811LEUS+T MAXIMDS1249AB-70IND DALLAS MAX811MEUS+T MAXIMDS1249Y-100DALLAS MAX811REUS+T MAXIMDS1249Y-100IND DALLAS MAX811SEUS+T MAXIMDS1249Y-70DALLAS MAX811TEUS+T MAXIMDS1249Y-70IND DALLAS MAX812JEUS+T MAXIMDS1250AB-100+DALLAS MAX812LEUS+T MAXIMDS1250AB-100IND+DALLAS MAX812MEUS+T MAXIMDS1250AB-70+DALLAS MAX812REUS+T MAXIMDS1250AB-70IND+DALLAS MAX812SEUS+T MAXIMDS1250ABP-100+DALLAS MAX812TEUS+T MAXIMDS1250ABP-100IND+DALLAS MAX813LCPA+MAXIMDS1250ABP-70+DALLAS MAX813LCSA+T MAXIMDS1250ABP-70IND+DALLAS MAX813LEPA+MAXIMDS1250Y-100+DALLAS MAX813LESA+T MAXIMDS1250Y-100IND+DALLAS MAX843ISA MAXIMDS1250Y-70+DALLAS MAX850ESA MAXIMDS1250Y-70IND+DALLAS MAX856ESA+T MAXIMDS1250YP-100+DALLAS MAX873BESA+MAXIMDS1250YP-100IND+DALLAS MAX8759ETI+T MAXIMDS1250YP-70+DALLAS MAX9010EXT+MAXIM DS1250YP-70IND+DALLAS MAX907ESA MAXIMDS12CR887-33+DALLAS MAX908ESD MAXIMDS12CR887-5+DALLAS MAX931ESA+T MAXIMDS1302+DALLAS MC14051BCL MOTDS1302N+DALLAS MC1496DR2G ON DS1302Z+T DALLAS MC1558U MOTDS1302ZN+T DALLAS MC74HC125AD ONDS1302SN+DALLAS MC74HC589ADR2G ONDS1302SN-16+DALLAS MC74LCX257DTR2ONDS1302S-16+DALLAS MC74LVX245DTR2ONDS1307+DALLAS MC74LVX4245DTR2G ONDS1307N+DALLAS MC7805BTG ONDS1307Z+T DALLAS MC7806BTG ONDS1307ZN+T DALLAS MC7808BTG ON DS1338C-33+DALLAS MC7809BTG ONDS1339U-33DALLAS MC7812BTG ONDS1390U-33DALLAS MC7815BTG ONDS1624S+DALLAS MC7824BTG ONDS1682S DALLAS MC7905BTG ONDS1818R-10+DALLAS MC7912BTG ONDS1834AS DALLAS MC9S12A64CFU ONDS1866Z DALLAS MCP809M3X-2.63 NSDS18B20DALLAS MCP809M3X-2.93 NSDS2411R+DALLAS MCP809M3X-3.08 NSDS2413P+DALLAS MCP809M3X-4.00 NSDS2502-E48DALLAS MCP809M3X-4.38 NSDS25LV02R DALLAS MCP809M3X-4.63 NSDS2703U+DALLAS MCP810M3X-2.63 NSDS2711Z+DALLAS MCP810M3X-2.93 NSDS2711E+T DALLAS MCP810M3X-3.08 NSDS2780E+T DALLAS MCP810M3X-4.00 NSDS2781E+DALLAS MCP810M3X-4.38 NS DS32KHZSN+DALLAS MCP810M3X-4.63 NSDS3904U-020DALLAS MD8259A-B INTEL DS75S+DALLAS MF10ACN NS DS90CR217MTDX NS ADSP-TS101SAB1Z100ADI DS90CR218MTDX NS ADSP-TS201SYBPZ050ADI DS90LV031ATMX NS MGA-62563-BLKG AVAGO DS90LV032ATMX NS MGA-62563-TR1G AVAGO EK9840V EUREKA MGA-62563-TR2G AVAGO FDW2508P FAIRCHILD MGA-81563-BLKG AVAGOFX224J CML MGA-81563-TR1G AVAGOH22A2FSC MGA-81563-TR2G AVAGO HCNR200-000E AVAGO MGA-82563-BLKG AVAGO HCNR200-300E AVAGO MGA-82563-TR1G AVAGO HCNR200-500E AVAGO MGA-82563-TR2G AVAGO HCNR201-000E AVAGO MGA-83563-BLKG AVAGOHCPL-0466-300E AVAGO PCF8563THCPL-0466-500E AVAGO PCM1606EHCPL-0500-000E AVAGO PIC12C508A-04ISMHCPL-0500-300E AVAGO PV208630-DLHCPL-0500-500E AVAGO PV6098FHCPL-0501-000E AVAGO RTL8201BLHCPL-0501-300E AVAGO S8550HCPL-0501-500E AVAGO SAA1027HCPL-050L-000E AVAGO SAA1064HCPL-050L-300E AVAGO SAB82532H-10V3.2AHCPL-050L-500E AVAGO SB21150ACHCPL-0530-000E AVAGO SHT75HCPL-0530-300E AVAGO SIL150ACT100HCPL-0530-500E AVAGO SN54LS240JHCPL-0531-000E AVAGO SN54LS368AJHCPL-0531-300E AVAGO SN74AHC08NHCPL-0531-500E AVAGO SN74AHC1G32DBVRHCPL-0534-000E AVAGO SN74AHC245DWRHCPL-0534-300E AVAGO SN74AHC541DW TIHCPL-0534-500E AVAGO SN74AHC573N TIHCPL-053L-000E AVAGO SN74HC125DBR TI HCPL-053L-300E AVAGO SN74HC148N TIHCPL-053L-500E AVAGO SN74HC373DWR TIHCPL-0601-000E AVAGO SN74LS612N TIHCPL-0601-300E AVAGO SN74LV373APWR TIHCPL-0601-500E AVAGO SN74LVC245APWR TIHCPL-060L-000E AVAGO SN74LVC257APWR TIHCPL-060L-300E AVAGO SN74LVC573APWR TIHCPL-060L-500E AVAGO SNJ5410W TIHCPL-0611-000E AVAGO SNJ5420W TIHCPL-0611-300E AVAGO SNJ5450W TIHCPL-0611-500E AVAGO SNJ5474W TIHCPL-061A-000E AVAGO SNJ5483AW TIHCPL-061A-300E AVAGO SNJ54H102W TIHCPL-061A-500E AVAGO SNJ54LS08W TIHCPL-061N-000E AVAGO SNJ54LS123J TIHCPL-061N-300E AVAGO SNJ54LS279W TIHCPL-061N-500E AVAGO SNJ54LS86W TIHCPL-0630-000E AVAGO SPX1585AU-2.5SPHCPL-0630-300E AVAGO SPX1585AU-3.3SPHCPL-0630-500E AVAGO SRFIC08K40R2MOTOROLA HCPL-0631-000E AVAGO SSM2166SZ ADI HCPL-0631-300E AVAGO SSM2250RU-REEL ADI HCPL-0631-500E AVAGO SST39SF010-70-4C-NH sst HCPL-063A-000E AVAGO SST39VF010-70-4C-NHE SST HCPL-063A-300E AVAGO SST39VF800A-70-4C-EK SST HCPL-063A-500E AVAGO SST39VF800A-70-4C-EK SST HCPL-063L-000E AVAGO STAC9766T SIGMATELHCPL-063L-300E AVAGO STC809JEUR-T STC HCPL-063L-500E AVAGO STC809LEUR-T STC HCPL-063N-000E AVAGO STC809MEUR-T STC HCPL-063N-300E AVAGO STC809REUR-T STC HCPL-063N-500E AVAGO STC809SEUR-T STC HCPL-0661-000E AVAGO STC809TEUR-T STC HCPL-0661-300E AVAGO STC810JEUR-T STC HCPL-0661-500E AVAGO STC810LEUR-T STC HCPL-0700-000E AVAGO STC810MEUR-T STC HCPL-0700-300E AVAGO STC810REUR-T STC HCPL-0700-500E AVAGO STC810SEUR-T STC HCPL-0701-000E AVAGO STC810TEUR-T STC HCPL-0701-300E AVAGO STC811JEUS-T STC HCPL-0701-500E AVAGO STC811LEUS-T STC HCPL-0708-000E AVAGO STC811MEUS-T STC HCPL-0708-300E AVAGO STC811REUS-T STC HCPL-0708-500E AVAGO STC811SEUS-T STC HCPL-070A-000E AVAGO STC811TEUS-T STC HCPL-070A-300E AVAGO STC812JEUS-T STC HCPL-070A-500E AVAGO STC812LEUS-T STC HCPL-070L-000E AVAGO STC812MEUS-T STC HCPL-070L-300E AVAGO STC812REUS-T STC HCPL-070L-500E AVAGO STC812SEUS-T STC HCPL-0710-000E AVAGO STC812TEUS-T STC HCPL-0710-300E AVAGO STM809JWX6F ST HCPL-0710-500E AVAGO STM809LWX6F ST HCPL-0720-000E AVAGO STM809MWX6F ST HCPL-0720-300E AVAGO STM809RWX6F ST HCPL-0720-500E AVAGO STM809SWX6F ST HCPL-0721-000E AVAGO STM809TWX6F ST HCPL-0721-300E AVAGO STM810JWX6F ST HCPL-0721-500E AVAGO STM810LWX6F ST HCPL-0723-000E AVAGO STM810MWX6F ST HCPL-0723-300E AVAGO STM810RWX6F ST HCPL-0723-500E AVAGO STM810SWX6F ST HCPL-0730-000E AVAGO STM810TWX6F ST HCPL-0730-300E AVAGO STM811JW16F ST HCPL-0730-500E AVAGO STM811LW16F ST HCPL-0731-000E AVAGO STM811MW16F ST HCPL-0731-300E AVAGO STM811RW16F ST HCPL-0731-500E AVAGO STM811SW16F ST HCPL-0738-000E AVAGO STM811TW16F ST HCPL-0738-300E AVAGO STM812JW16F ST HCPL-0738-500E AVAGO STM812LW16F ST HCPL-073A-000E AVAGO STM812MW16F ST HCPL-073A-300E AVAGO STM812RW16F ST HCPL-073A-500E AVAGO STM812SW16F ST HCPL-073L-000E AVAGO STM812TW16F STHCPL-073L-300E AVAGOHCPL-073L-500E AVAGOHCPL-0900-000E AVAGOHCPL-0900-300E AVAGOHCPL-0900-500E AVAGOHCPL-090J-000E AVAGOHCPL-090J-300E AVAGOHCPL-090J-500E AVAGOHCPL-091J-000E AVAGOHCPL-091J-300E AVAGOHCPL-091J-500E AVAGOHCPL-092J-000E AVAGOHCPL-092J-300E AVAGOHCPL-092J-500E AVAGOHCPL-0930-000E AVAGOHCPL-0930-300E AVAGOHCPL-0930-500E AVAGOHCPL-0931-000E AVAGOHCPL-0931-300E AVAGOHCPL-0931-500E AVAGOHCPL-181-000E AVAGOHCPL-181-00AE AVAGO TCM810TENB713MICROCHIP HCPL-181-00BE AVAGO TCM811JERCTR MICROCHIP HCPL-181-00CE AVAGO TCM811LERCTR MICROCHIP HCPL-181-00DE AVAGO TCM811MERCTR MICROCHIP HCPL-181-060E AVAGO TCM811RERCTR MICROCHIP HCPL-181-06AE AVAGO TCM811SERCTR MICROCHIP HCPL-181-06BE AVAGO TCM811TERCTR MICROCHIP HCPL-181-06CE AVAGO TCM812JERCTR MICROCHIP HCPL-181-06DE AVAGO TCM812LERCTR MICROCHIP HCPL2200-000E AVAGO TCM812MERCTR MICROCHIP HCPL-2200-000E AVAGO TCM812RERCTR MICROCHIP HCPL2200-300E AVAGO TCM812SERCTR MICROCHIP HCPL-2200-300E AVAGO TCM812TERCTR MICROCHIP HCPL2200-500E AVAGO TD1605C wearnes HCPL-2200-500E AVAGO TFDU2201-TR1VISHAY HCPL2201-000E AVAGO TFDU2201-TR3VISHAY HCPL-2201-000E AVAGO TFDU4100-TR3VISHAY HCPL2201-300E AVAGO TFDU4100-TT3VISHAY HCPL-2201-300E AVAGO TFDU4201-TR1VISHAY HCPL2201-500E AVAGO TFDU4201-TR3VISHAY HCPL-2201-500E AVAGO TFDU4202-TR1VISHAY HCPL-2202-000E AVAGO TFDU4202-TR3VISHAY HCPL-2202-300E AVAGO TFDU4203-TR1VISHAY HCPL-2202-500E AVAGO TFDU4203-TR3VISHAY HCPL-2211-000E AVAGO TISP4350H3BJR BOURNS HCPL-2211-300E AVAGO TJA1020T PHI HCPL-2211-500E AVAGO TJA1040TD PHIHCPL2212-000E AVAGO TL062IDR TI HCPL-2212-000E AVAGO TL064IDR TI HCPL2212-300E AVAGO TL071IDR TI HCPL-2212-300E AVAGO TL072IDR TI HCPL2212-500E AVAGO TL074IDR TI HCPL-2212-500E AVAGO TL081IP TIHCPL-2219-000E AVAGO TL082IDR TI HCPL-2219-300E AVAGO TL084IDR TI HCPL-2219-500E AVAGO TL431AIDR TI HCPL2231-000E AVAGO TL431BCLP TI HCPL-2231-000E AVAGO TL431IPK TI HCPL2231-300E AVAGO TLC0820AIDWR TI HCPL-2231-300E AVAGO TLC2254CD TIHCPL2231-500E AVAGO TLC27L2IDR TI HCPL-2231-500E AVAGO TLC3702CDR TI HCPL2232-000E AVAGO TLC542IDW TI HCPL-2232-000E AVAGO TLC5615CDR TI HCPL2232-300E AVAGO TLC5615IDR TI HCPL-2232-300E AVAGO TLE2062CDR TI HCPL-2232-500E AVAGO TLE2062IDR TI HCPL-2300-000E AVAGO TLV2211CDBVR TI HCPL-2300-300E AVAGO TLV2211IDBVR TI HCPL-2300-500E AVAGO TLV2231CDBVR TI HCPL-2400-000E AVAGO TLV2451IDBVR TI HCPL-2400-300E AVAGO TLV2471CDBVR TI HCPL-2400-500E AVAGO TLV2711IDBVR TI HCPL-2430-000E AVAGO TLV27L1IDBVR TI HCPL-2430-300E AVAGO TLV431AIDR TI HCPL-2430-500E AVAGO TMP82C79M-2TOSHIBA HCPL-2502-000E AVAGO TOIM4232-TR1VISHAY HCPL-2502-300E AVAGO TPA3008D2PHPRG4TI HCPL-2502-500E AVAGO TPS61042DRBR TI HCPL-2503-000E AVAGO UC2833N TI HCPL-2503-300E AVAGO UC2846DW TI HCPL-2503-500E AVAGO UC2846N TI HCPL-2530-000E AVAGO UC3833N TI HCPL-2530-300E AVAGO UC3846DWTR TI HCPL-2530-500E AVAGO UC3846N TI HCPL-2531-000E AVAGO UCC2818AADTRG4TI HCPL-2531-300E AVAGO UCC2818ADG4TI HCPL-2531-500E AVAGO UCC2818DG4TI HCPL-2601-000E AVAGO UCC2818DTRG4TI HCPL-2601-300E AVAGO UCC2895DWR TI HCPL-2601-500E AVAGO UCC3895DWR TI HCPL-2602-000E AVAGO UPC2758T-E3NEC HCPL-2602-300E AVAGO uPD6453GT101NEC HCPL-2602-500E AVAGO uPD6464AGT101NEC HCPL-260L-000E AVAGO W78LE516-24WINBONDHCPL-260L-300E AVAGO W78LE516P-24WINBOND HCPL-260L-500E AVAGO W78LE52P-24WINBOND HCPL-2611-000E AVAGO W89C92WINBOND HCPL-2611-300E AVAGO X1227S8I XICOR HCPL-2611-500E AVAGO X25650S8I2.5XICOR HCPL-2612-000E AVAGO XEL22MICREL HCPL-2612-300E AVAGO XEL22L MICREL HCPL-2612-500E AVAGO XEL23MICREL HCPL-261A-000E AVAGO XEL23L MICREL HCPL-261A-300E AVAGO XPC850DSLZT50BU MOTOROLA HCPL-261A-500E AVAGO XR17C158CV MOTOROLA HCPL-261N-000E AVAGO TPS62220DDCR TIHCPL-261N-300E AVAGO TPS62222DDCR TIHCPL-261N-500E AVAGO HCPL-J314-000E AVAGO HCPL-2630-000E AVAGO HCPL-J314-300E AVAGO HCPL-2630-300E AVAGO HCPL-J314-500E AVAGO HCPL-2630-500E AVAGO HCPL-7860-300E AVAGO HCPL-2631-000E AVAGO HCPL-7860-500E AVAGO HCPL-2631-300E AVAGO MGA-87563-BLKG AVAGO HCPL-2631-500E AVAGO MGA-87563-TR1G AVAGO HCPL-263A-000E AVAGO MGA-87563-TR2G AVAGO HCPL-263A-300E AVAGO HLMP-6000AVAGO HCPL-263A-500E AVAGO OP42GSZ ADI HCPL-263N-000E AVAGO TLV5620IDR TI HCPL-263N-300E AVAGO DS1306EN+T DALLAS HCPL-263N-500E AVAGO TMS320F206PZA TI HCPL-2730-000E AVAGO AD8323ARUZ-REEL ADI HCPL-2730-300E AVAGO HCPL-3101-000E AVAGO HCPL-2730-500E AVAGO HCPL-3101-300E AVAGO HCPL-2731-000E AVAGO HCPL-3101-500E AVAGO HCPL-2731-300E AVAGO DS1338Z-33+DALLAS HCPL-2731-500E AVAGO DS1817R-10+TR DALLAS HCPL-273L-000E AVAGO HSMS-2825-TR2G AVAGO HCPL-273L-300E AVAGO HSMS-2825-TR1G AVAGO HCPL-273L-500E AVAGO HSMS-282C-TR1G AVAGO HCPL-3020-000E AVAGO HSMS-282C-BLKG AVAGO HCPL-3020-300E AVAGO HSMS-282C-TR2G AVAGO HCPL-3020-500E AVAGO HSMS-2820-TR1G AVAGO HCPL-3100-000E AVAGO HSMS-2820-BLKG AVAGO HCPL-3100-300E AVAGO HSMS-2820-TR2G AVAGO HCPL-3120-000E AVAGO HSMS-282F-TR1G AVAGO HCPL-3120-300E AVAGO HSMS-282F-BLKG AVAGO HCPL-3120-500E AVAGO HSMS-282F-TR2G AVAGO HCPL-3140-000E AVAGO AD712SQ/883B ADIHCPL-3140-300E AVAGO OPA2277PA TIHCPL-3140-500E AVAGO OPA2277UA TIHCPL-314J-000E AVAGO LM2675MX-ADJ NSHCPL-314J-300E AVAGO LTC1265CS LinearHCPL-314J-500E AVAGO LTC1265IS Linear HCPL-3150-000E AVAGO HSMS-2805-TR1G AVAGO HCPL-3150-300E AVAGO HSMS-2805-TR2G AVAGO HCPL-3150-500E AVAGO HSMP-3894-TR1G AVAGO HCPL-316J-000E AVAGO HSMP-3894-TR2G AVAGO HCPL-316J-300E AVAGO AT89C4051-24PU ATMEL HCPL-316J-500E AVAGO AT89C55WD-24JU ATMEL HCPL-3180-000E AVAGO MAX487ESA+T MAXIM HCPL-3180-300E AVAGO MAX487EEPA+MAXIM HCPL-3180-500E AVAGO MSP430F149IPMR TI HCPL-3700-000E AVAGO TPS65021RHAR TI HCPL-3700-300E AVAGO SSM2211SZ ADI HCPL-3700-500E AVAGO TLC3578IDW TI HCPL-3760-000E AVAGO AD9048SQ/883B ADI HCPL-3760-300E AVAGO AD9048TQ/883B ADI HCPL-3760-500E AVAGO AT89S52-24JU ATMEL HCPL-4100-000E AVAGO XC9536XL-7VQ64C XILINX HCPL-4100-300E AVAGO XTR101BG TI HCPL-4100-500E AVAGO MSC1210Y4PAGT TI HCPL-4200-000E AVAGO MSC1210Y4PAGR TI HCPL-4200-300E AVAGO ADS1178IPAPT TI HCPL-4200-500E AVAGO ACNW3190-300E AVAGO HCPL-4502-000E AVAGO MSP430F2418TPNR TI HCPL-4502-300E AVAGO MSP430F2418TPMR TI HCPL-4502-500E AVAGO XC95288XL-7TQ144C XILINX HCPL-4503-000E AVAGO TPS5100IPWR TI HCPL-4503-300E AVAGO EPM7128AETC144-10ALTERA HCPL-4503-500E AVAGO TMS320DM6446AZWTA TI HCPL-4504-000E AVAGO TMS320DM6446ZWT TI HCPL-4504-300E AVAGO UC3906N TI HCPL-4504-500E AVAGO UC3906DW TI HCPL-4506-000E AVAGO TPS54614PWPR TI HCPL-4506-300E AVAGO HCPL-0600-500E AVAGO HCPL-4506-500E AVAGO HEDS-9701#C54AVAGO HCPL-4534-000E AVAGO TLC04CP TI HCPL-4534-300E AVAGO X9313WSZ-3T1INTERSIL HCPL-4534-500E AVAGO TMS320LF2402APGA TI HCPL-4562-000E AVAGO TMS320LF2406APZA TI HCPL-4562-300E AVAGO AD9910BSVZ ADI HCPL-4562-500E AVAGO AD9957BSVZ ADI HCPL-4661-000E AVAGO TLV320AIC33IRGZ TI HCPL-4661-300E AVAGO TLV320AIC33IZQER TI HCPL-4661-500E AVAGO TPS54616PWPR TI HCPL-4731-000E AVAGO OPA551PA TI HCPL-4731-300E AVAGO DS1813R-15+DALLAS HCPL-4731-500E AVAGO TPS7333QDR TI HCPL-7510-000E AVAGO OPA277UA TI HCPL-7510-300E AVAGO LM1877MX-9NSHCPL-7510-500E AVAGO ISO7221BDR TIHCPL-7520-000E AVAGO TL16C550CIPTR TIHCPL-7520-300E AVAGO MAX9324EUP+MAXIM HCPL-7520-500E AVAGO MAX1706EEE-T MAXIM HCPL-7560-000E AVAGO TPS75733KTTR TIHCPL-7560-300E AVAGO LM2674MX-ADJ NSHCPL-7560-500E AVAGO ADS8321EB TIHCPL-7611-000E AVAGO ADS8320EB TIHCPL-7611-300E AVAGO W29C040T-90B WINBOND HCPL-7611-500E AVAGO ISO124U TIHCPL-7710-000E AVAGO FM25L04B-GTR RAMTRON HCPL-7710-300E AVAGO TLE2084CN TIHCPL-7710-500E AVAGO TL317CDR TIHCPL-7720-000E AVAGO MAX354CPE+MAXIM HCPL-7720-300E AVAGO MAX354EPE+MAXIM HCPL-7720-500E AVAGO DEI0429-WMB DEI HCPL-7721-000E AVAGO AT91SAM7SE512-AU atmel HCPL-7721-300E AVAGO EL1881CSZ-T7INTERSIL HCPL-7721-500E AVAGO SN74ACT2440FNR TIHCPL-7723-000E AVAGO MT4LC8M8C2P-5MICRON HCPL-7723-300E AVAGOHCPL-7723-500E AVAGOHCPL-7800-000E AVAGOHCPL-7800-300E AVAGOHCPL-7800-500E AVAGOHCPL-7800A-000E AVAGOHCPL-7800A-300E AVAGOHCPL-7800A-500E AVAGOHCPL-7840-000E AVAGOHCPL-7840-300E AVAGOHCPL-7840-500E AVAGOHCPL786J-000E AVAGOHCPL-786J-000E AVAGOHCPL786J-300E AVAGOHCPL-786J-300E AVAGOHCPL786J-500E AVAGOHCPL-786J-500E AVAGOHCPL788J-000E AVAGOHCPL-788J-000E AVAGOHCPL788J-300E AVAGOHCPL-788J-300E AVAGOHCPL788J-500E AVAGOHCPL-788J-500E AVAGOHCPL-817-000E AVAGO TLV5613IDWR TIHCPL-817-00AE AVAGO PIC24F16KA102-I/SS MICROCHIP HCPL-817-00BE AVAGO ADC0834CCWMX NSHCPL-817-00CE AVAGO LM2675MX-5.0NSHCPL-817-00DE AVAGO FM25640B-GTR RAMTRONHCPL-817-060EHCPL-817-06AEHCPL-817-06BEHCPL-817-06CEHCPL-817-06DEHCPL-817-06LEHCPL-817-300EHCPL-817-30AEHCPL-817-30BEHCPL-817-30CEHCPL-817-30DEHCPL-817-30LEHCPL-817-360EHCPL-817-36AEHCPL-817-36BEHCPL-817-36CEHCPL-817-36DEHCPL-817-36LEHCPL-817-500EHCPL-817-50AEHCPL-817-50BEHCPL-817-50CEHCPL-817-50DEHCPL-817-50LEHCPL-817-560EHCPL-817-56AEHCPL-817-56BEHCPL-817-56CEHCPL-817-56DEHCPL-817-56LEHCPL-9000-000EHCPL-9000-300EHCPL-9000-500EHCPL-902J-000EHCPL-902J-300E AVAGO TLV320AIC3204IRHBR TIHCPL-902J-500E AVAGO TLV5625CDR TIHCPL-J312-000E AVAGO TLV5625IDR TIHCPL-J312-300E AVAGO TLV320AIC3104IRHBT TIHCPL-J312-500E AVAGO TLV320AIC3104IRHBR TIHCPL-J456-000E AVAGO AT45DB041D-SU ATMEL HCPL-J456-300E AVAGO MAX6657MSA+T MAXIM HCPL-J456-500E AVAGO HCPL-J454-000E AVAGO HCPL-M453-000E AVAGO HCPL-J454-300E AVAGO HCPL-M453-300E AVAGO HCPL-J454-400E AVAGO HCPL-M453-500E AVAGO HCPL-J454-500E AVAGO HCPL-M454-000E AVAGO HCPL-J454-600E AVAGOHCPL-M454-300E AVAGO TC7660IJA MICROCHIPHCPL-M454-500E AVAGO TC7660MJA MICROCHIP HCPL-M456-000E AVAGO ADT7460ARQZ ADIHCPL-M456-300E AVAGO ADSP-21065LKCA264ADIHCPL-M456-500E AVAGO ADSP-21065LKCAZ264ADI HCPL-M600-000E AVAGO AD7859ASZ ADI HCPL-M600-300E AVAGO MJD45H11G ONHCPL-M600-500E AVAGO TPD3E001DRLR TIHCPL-M601-000E AVAGO XTR116U TIHCPL-M601-300E AVAGO DS1233-5+DALLAS HCPL-M601-500E AVAGO TRU050GALGA32.0000/16.0000V ectron HCPL-M611-000E AVAGO TRU050GACCA28.7040/14.3520V ectron HCPL-M611-300E AVAGO AD9516-3BCPZ ADI HCPL-M611-500E AVAGO REF3125AIDBZT TIHCPL-M700-000E AVAGO REF3125AIDBZR TIHCPL-M700-300E AVAGO AD8592ARMZ ADI HCPL-M700-500E AVAGO QCPL-034H-500E AVAGOHD6413079F18HIT AD9865BCPZ ADI HDMP1636A AVAGO QCPL-312H-500E AVAGO HDMP-1636A AVAGO M74VHC1G135DFT1G ONHDMP-1637A AVAGO HSMD-A100-J00J1AVAGO HDMP1638AVAGO LT1587CT LTHDMP-1638AVAGO AD827JRZ-16ADI HEDS9710-R50AVAGO HSMP-389F-BLKG AVAGO HEDS-9710-R50AVAGO HSMP-389F-TR1G AVAGO HEL22MICREL HSMP-389F-TR2G AVAGO HEL23MICREL XC3064A-7PC84C XILINX HFBR-1414Z AVAGO XC3064A-7PC84I XILINX HFBR-1414TZ AVAGO Si7703EDN-T1-E3VISHAY HFBR-1521Z AVAGO Si7703EDN-T1-GE3VISHAYT-1521Z AVAGO Si7703EDN-T1-GE3ADIT-1521ETZ AVAGO AD605ARZ ADI HFBR-1521ETZ AVAGO MACH110-15JC AMDT-1522Z AVAGO MACH210-20JC AMDT-1522ETZ AVAGO LTC4213IDDB LINEAR HFBR-1522ETZ AVAGO DS1233-15+DALLAS HFBR1522Z AVAGO LTC3412EFE LINEAR HFBR-1522Z AVAGO MAX513ESD+T MAXIM HFBR1523Z AVAGO MAX3681EAG+MAXIM HFBR-1523Z AVAGO ICS1893CKILF IDT HFBR1528Z AVAGO TMS32C6416DGLZA5E0TIHFBR-1528Z AVAGO TMS32C6416EGLZ5E0TIHFBR-1531Z AVAGO TMS32C6416EGLZ6E3TIHFBR-1531ETZ AVAGO TMS32C6416EGLZ7E3TIHFBR-2531ETZ AVAGO TMS32C6416EGLZA5E0TI1531ETZ AVAGO TMS32C6416EGLZA6E3TI2531ETZ AVAGO AD829JRZ ADI HFBR1532Z AVAGO MAX14830ETM+MAXIM HFBR-1532Z AVAGO MX69GL128EAXGW-90G MXICHFBR-1532ETZ AVAGO AD7811YRUZ ADI HFBR1533Z AVAGO TPS76318DBVR TI HFBR-1533Z AVAGO ADMP421ACEZ ADI HFBR-2412TZHFBR-2412ZHFBR2416TZHFBR-2416TZHFBR-2521Z AVAGO LT1304CS8Linear R-2521Z AVAGO MAX16801BEUA+T maxim R-2521ETZ AVAGO ACPL-M61L-500E AVAGO HFBR-2521ETZ AVAGO DS26503LN+DALLAS HFBR-2522Z AVAGO MAX9205EAI+T MAXIM R-2522Z AVAGO TMP105YZCT TIR-2522ETZ AVAGO TMP105YZCR TI HFBR-2522ETZ AVAGO AD5821BCBZ ADI HFBR-2523Z AVAGO PM5347-RI PMC HFBR-2528Z AVAGO PM73121-RI PMC HFBR-2531Z AVAGO TPA4411RTJT TI HFBR-2532Z AVAGO TPA4411RTJR TI HFBR-2532ETZ AVAGO LTC1438CG-ADJ Linear HFBR-2533Z AVAGO LTC1438IG-ADJ Linear HFBR-4501Z AVAGO DS1318E+DALLAS HFBR-4503Z AVAGO TMS320DM643AGDK5TI HFBR-4506Z AVAGO ACPL-M75L-000E AVAGO HFBR-4511Z AVAGO ACPL-M75L-060E AVAGO HFBR-4513Z AVAGO ACPL-M75L-500E AVAGO HFBR-4516Z AVAGO ACPL-M75L-560E AVAGO HFBR-4525Z AVAGO ACPL-T350-000E AVAGO HFBR-4526Z AVAGO ACPL-T350-060E AVAGO HFBR-4531Z AVAGO ACPL-T350-300E AVAGO HFBR-4532Z AVAGO ACPL-T350-360E AVAGO HFBR-4533Z AVAGO ACPL-T350-500E AVAGO HFBR-4535Z AVAGO ACPL-T350-560E AVAGO HFBR-4593Z AVAGO ADXRS620BBGZ ADI HFBR-4597Z AVAGO LT1521CS8Linear HFBR-EUD100Z AVAGO LT1521CS8-3.3Linear HFBR-EUD500Z AVAGO LT1521IS8Linear HFBR-EUS100Z AVAGO LT1521IS8-3.3Linear HFBR-EUS500Z AVAGO MAX6835VXSD3+T MAXIM HFBR-RUD100Z AVAGO AD9059BRSZ ADI HFBR-RUD500Z AVAGO HFBR-4515Z AVAGO HFBR-RUS100Z AVAGO HFBR-57E0PZ AVAGO HFBR-RUS500Z AVAGO HFCT-53D5EMZ AVAGO HG88510MITEL HFCT-5611AVAGO HI1-508-5HAR LT1242CS8Linear HI1-509-5HAR LT1242IS8Linear HM628512ALFP-5日立LT1140ACSW Linear HM628512BLFP-5日立AFBR-2419TZ AVAGOHS1101HUMIREL AD7156BCPZ ADIHS6118MACONICS ADP151ACBZ-2.8ADI HSDL-3201#021AVAGO DS1805Z-010+MAXIM HSDL-3201#001AVAGO TLP285-4GB TOSHIBA HSDL-3209-021AVAGO AD421BRZ ADI HSDL-7001#100AVAGO OPA2336PA TI HSDL-7002AVAGO ADUC812BSZ ADI HSMP-3814-BLKG AVAGO STPS6045CW ST HSMP-3814-TR1G AVAGO SG-3030JF EPSON HSMP-3814-TR2G AVAGO MPC8313VRAFFB FREESCAL HSMP-3822-BLKG AVAGO MAX1617AMEE+T maxim HSMP-3822-TR1G AVAGO MCP809M3X-4.63NS HSMP-3822-TR2G AVAGO MCP809M3X-4.38NS HSMP-3823-BLKG AVAGO MCP809M3X-4.00NS HSMP-3823-TR1G AVAGO MCP809M3X-3.08NS HSMP-3823-TR2G AVAGO MCP809M3X-2.93NS HSMP-3824-BLKG AVAGO MCP809M3X-2.63NS HSMP-3824-TR1G AVAGO MCP810M3X-4.63NS HSMP-3824-TR2G AVAGO MCP810M3X-4.38NS HSMP-3832-BLKG AVAGO MCP810M3X-4.00NS HSMP-3832-TR1G AVAGO MCP810M3X-3.08NS HSMP-3832-TR2G AVAGO MCP810M3X-2.93NS HSMP-3860-BLKG AVAGO MCP810M3X-2.63NS HSMP-3860-TR1G AVAGO LT1317BCS8Linear HSMP-3860-TR2G AVAGO LT1317BIS8Linear HSMP-3862-BLKG AVAGO LTC1757A-1EMS8Linear HSMP-3862-TR1G AVAGO ACPL-K342-000E AVAGO HSMP-3862-TR2G AVAGO ACPL-K342-500E AVAGO HSMP-3880-BLKG AVAGO AFBR-57M5APZ AVAGO HSMP-3880-TR1G AVAGO CY7C144AV-25AIT CY HSMP-3880-TR2G AVAGO CY7C144AV-25ACT CY HSMP-3892-BLKG AVAGO CY7C144AV-25AXIT CY HSMP-3892-TR1G AVAGO CY7C144AV-25AXCT CY HSMP-3892-TR2G AVAGO ABA-54563-TR1G AVAGO HSMP-389L-BLKG AVAGO ABA-54563-TR2G AVAGO HSMP-389L-TR1G AVAGO ABA-54563-BLKG AVAGO HSMP-389L-TR2G AVAGO LT1138ACG Linear HSMS-2812-BLKG AVAGO LT1138AIG Linear HSMS-2812-TR1G AVAGO ISL8120IRZ INTERSIL HSMS-2812-TR2G AVAGO ISL8120CRZ INTERSIL HSMS-2817-BLKG AVAGO LTC1421IG-2.5Linear HSMS-2817-TR1G AVAGO LTC1421CG-2.5Linear HSMS-2817-TR2G AVAGO MSC1212Y5PAGT TI HSMS-282K-BLKG AVAGO MSC1212Y5PAGR TI HSMS-282K-TR1G AVAGO TPS7330QDR TI HSMS-282K-TR2G AVAGO ADP3110KRZ ADI HSMS-2850-BLKG AVAGO MAX3263CAG MAXIM HSMS-2850-TR1G AVAGO MAX1729EUB MAXIM。
28130;中文规格书,Datasheet资料
METALIZATION DIAGRAM
TEMPERATURE SCALE CONVERSION EQUATIONS
+2.0 +1.5 +1.0 +0.5
0 –0.5 –1.0 –1.5 –2.0
–25
0
+25
+70
TEMPERATURE – oC
+105
AD592BN Accuracy Over Temperature
TOTAL ERROR – oC TOTAL ERROR – oC
+2.0 +1.5 +1.0 +0.5
+1.0
+0.5
MAXIMUM ERROR OVER TEMPERATURE
TYPICAL ERROR
0 CALIBRATION ERROR LIMIT
–0.5
TOTAL ERROR – oC
IOUT – µA
378
+105oC
298
+25oC
–25oC 248
UP TO 30V
0
1
2
3
4
5
6
SUPPLY VOLTAGE – Volts
66MILS
V+
V–
/
Model
AD592CN AD592BN AD592AN
42MILS
؇C = 5 (؇F –32) 9
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
+60V Simple Swapper Hot-Swap Switch
General Description
The MAX5923 is a fully integrated Simple Swapper™ hot-swap switch for positive supply rails. The device allows the safe insertion and removal of circuit cards into live backplanes or ports without causing glitches on the power-supply rail. The device also monitors various circuit parameters and disconnects the load if a fault condition occurs, alerting the host with a logiclevel FAULT output. The MAX5923 operates over the +16V to +60V input voltage range. During startup, an integrated 0.45Ω power MOSFET regulates the current and voltage between the backplane power source and the load. After startup, the MOSFET is fully enhanced to reduce its on-resistance. To ensure robust operation, the MAX5923 contains built-in safety features that monitor fault conditions and prevent damage to the internal MOSFET. The MAX5923 monitors three parameters for fault conditions: zero current, overcurrent, and thermal overload. The output overcurrent limit counts the time the MAX5923 spends in an overcurrent condition and shuts down the pass transistor if the current limit is exceeded for the overcurrent time limit. The zero-current detection counts the time the output current is below the zero-current threshold and shuts down the pass transistor if the counter reaches the zero-current time limit. The thermal monitoring feature shuts down the pass transistor if the die temperature reaches the overtemperature limit. A fault logic output indicates when an overtemperature or an overcurrent condition has occurred and a zero-current logic output indicates if there is a zero-current condition. An undervoltage detection circuitry keeps the pass transistor off until the input voltage is above the undervoltage lockout (UVLO) threshold, which is internally set or can be set externally with a resistive divider. A power-OK (POK) output is provided to signal when the output voltage has reached to within 0.75V of the input voltage. An Enable input allows the host system to disconnect the system from the load and/or reset a fault condition by toggling Enable. The MAX5923 is available in a 20-pin TSSOP package and operates in the extended -40°C to +85°C temperature range. o 0.45Ω Integrated Power Switch o Programmable Output Current Up to 800mA o Over/Undercurrent-Limit Detection o Input Logic Signals Compatible with 1.8V to 5V CMOS Logic o Separate Analog and Digital Grounds with Up to ±4V Offset o Power-OK Status Output o Overcurrent Protection with Status Outputs o Built-In Thermal Shutdown o Internal Switch Protection Circuitry o Current-Limit Foldback with Timeout and DutyCycle Control o Latch or Autorestart Fault Management
+16V TO +60V IN RSENSE DRAIN VDIG RPU OUT D1 +1.65V TO +5.5V
MAX5923
UVLO LATCH RPU
ON OFF EN
ZC_EN RPU ZC FAULT POK AGND_S DGND
Applications
Network Routers/Switches Current Limiter Servers Industrial Equipment
ALL SIGNAL AND DIGITAL INPUTS/OUTPUTS ARE REFERENCED TO DGND. DGND CAN BE ±4V FROM AGND_S.
Simple Swapper is a trademark of Maxim Integrated Products, Inc.
Features
o Wide Operating Input Range: +16V to +60V
MAX5923
Ordering Information
PART MAX5923EUP TEMP RANGE -40°C to +85°C PIN-PACKAGE 20 TSSOP
Hale Waihona Puke Typical Operating Circuit
Pin Configuration appears at end of data sheet. 1
________________________________________________________________ Maxim Integrated Products
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim’s website at .
/
+60V Simple Swapper Hot-Swap Switch MAX5923
ABSOLUTE MAXIMUM RATINGS
All Voltages with Respect to AGND_S, Unless Otherwise Noted IN ............................................................................-0.3V to +76V UVLO ........................................................................-0.3V to +6V VDIG to DGND .........................................................-0.3V to +6V OUT .......................................................-0.3V to (VDRAIN + 0.3V) DRAIN ..........................................................-0.3V to (VIN + 0.3V) EN, ZC_EN, ZC, FAULT, POK and LATCH to DGND ...............................................-0.3V to +6V DGND ..........................................................................-5V to +5V Maximum Current into DRAIN...............................................0.8A Maximum Current into POK, ZC, FAULT (sinking)..............20mA Continuous Power Dissipation (TA = +70°C) 20-Pin TSSOP (derate 11.1mW/°C above +70°C) .......879mW Operating Temperature Range ...........................-40°C to +85°C Junction Temperature ......................................................+150°C Storage Temperature Range .............................-65°C to +160°C Lead Temperature (soldering, 10s) .................................+300°C