培优专题9_分式方程及其应用(含答案)

合集下载

2021年中考数学 尖子生培优训练 分式方程及其应用(含答案)

2021年中考数学 尖子生培优训练 分式方程及其应用(含答案)

2021中考数学 尖子生培优训练 分式方程及其应用一、选择题(本大题共10道小题)1. 若1=-4x ,则x 的值是 ( )A.4B.41C.41- D.﹣42. 分式方程=1的解是 ( ) A .x=1 B .x=-1 C .x=2D .x=-23. (2020·广西北部湾经济区)甲、乙两地相距600km ,提速前动车的速度为vkm /h ,提速后动车的速度是提速前的1.2倍,提速后行车时间比提速前减少20min ,则可列方程为( ) A . B . C .20D .204. (2020·福建)我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,倩人去买几株椽.每株脚钱三文足,无钱准与一株椽.“其大意为:现请人代买一批椽,这批椽的价钱为6210文.如果每件椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x 株,则符合题意的方程是( ) A.62103(1)-=x xB.621031=-x C.621031-=x xD.62103=x5. (2020·牡丹江)若关于x 的分式方程xmx =-12有正整数解,则整数m 的值是( ) A. 3 B. 5 C. 3或5 D. 3或46. (2020·长沙)随着5G 网络技术的发展,市场对5G 产品的需求越来越大,为满足市场需求,某大型5G 产品生产厂家更新技术后,加快了生产速度,现在平均每天比更新技术前多生产30万件产品,现在生产500万件产品所需的时间与更新技术前生产400万件产品所需时间相同,设更新技术前每天生产x 万件,依据题意得 ·············································································· ( ) A .xx 50030400=- B .30500400+=x x C .30500400-=x x D .xx 50030400=+7. (2020·宜宾)学校为了丰富学生知识,需要购买一批图书,其中科普类图书平均每本的价格比文学类图书平均每本的价格多8元,已知学校用15000元购买科普类图书的本数与用12000元购买文学类图书的本数相等.设文学类图书平均每本x 元,则列方程正确的是( )A .150008x -=12000xB .150008x +=12000xC .15000x =120008x -D . 15000x =12000x +88. (2020自贡)某工程队承接了80万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了35%,结果提前40天完成了这一任务.设实际工作时每天绿化的面积为x 万平方米,则下面所列方程中正确的是( ) A .40 B .40 C .40D .409. (2020•遂宁)关于x 的分式方程﹣=1有增根,则m 的值( ) A .m =2 B .m =1C .m =3D .m =﹣310. (2020·湖北荆州)八年级学生去距学校10千米的荆州博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.若设骑车学生的速度为/xkm h ,则可列方程为( ) A. 1010202x x B. 1010202x x C.1010123x x D. 1010123x x二、填空题(本大题共10道小题)11. 方程 12x =2x -3的解是________.12. (2020·广州)方程3122x x x 的解是 .13. 2019·铜仁分式方程5y -2=3y的解为________.14. (2020·菏泽)方程111-+=-x x x x 的解是______.15. (2020·江苏徐州)方程981x x =-的解为 .16. (2020·绥化)某工厂计划加工一批零件240个,实际每天加工零件的个数是原计划的1.5倍,结果比原计划少用2天,设原计划每天加工零件x 个,可列方程______.17. 若关于x 的分式方程+=2m 有增根,则m 的值为 .18. 若分式方程x -ax +1=a 无解,则a 的值为________.19.(2020·湘潭)若37y x =,则x yx-=________.20. (2020·内江)若数a使关于x 的分式方程2311x ax x++=--的解为非负数,且使关于y 的不等式组()3113431220y y y a -+⎧-≥-⎪⎨⎪-<⎩的解集为0y ≤,则符合条件的所有整数a 的积为_____________三、解答题(本大题共6道小题)21. (2019·上海)解方程:228122x x x x-=--22. (2020·襄阳)(6分)在襄阳市创建全国文明城市的工作中,市政部门绿化队改进了对某块绿地的灌浇方式.改进后,现在每天用水量是原来每天用水量的45,这样120吨水可多用3天,求现在每天用水量是多少吨?23. (2020·泰安)中国是最早发现并利用茶的国家,形成了具有独特魅力的茶文化.2020年5月21日以“茶和世界共品共享”为主题的第一届国际茶日在中国召开.某茶店用4 000元购进了A种茶叶若干盒,用8 400元购进了B种茶叶若干盒,所购B种茶叶比A种茶叶多10盒,且B种茶叶每盒进价是A种茶叶每盒进价的1.4倍.(1)A,B两种茶叶每盒进价分别为多少元?(2)第一次所购茶叶全部售完后,第二次购进A,B两种茶叶共100盒(进价不变),A种茶叶的售价是每盒300元,B种茶叶的售价是每盒400元.两种茶叶各售出一半后,为庆祝国际茶日,两种茶叶均打七折销售,全部售出后,第二次所购茶叶的利润为5 800元(不考虑其他因素),求本次购进A,B两种茶叶各多少盒?24. (2020·毕节)某学校拟购进甲、乙两种规格的书柜放置新购买的图书.已知每个甲种书柜的进价比每个乙种书柜的进价高20%,用5400元购进的甲种书柜的数量比用6300元购进乙种书柜的数量少6个.(2)若该校拟购进这两种规格的书柜共60个,其中乙种书柜的数量不大于甲种书柜数量的2倍.该校应如何进货使得购进书柜所需费用最少?25. (2020·黔西南州)随着人们“节能环保,绿色出行”意识的增强,越来越多的人喜欢骑自行车出行,也给自行车商家带来商机.某自行车行经营的A型自行车去年销售总额为8万元.今年该型自行车每辆售价预计比去年降低200元.若该型车的销售数量与去年相同,那么今年的销售总额将比去年减少10%,求: (1)A型自行车去年每辆售价多少元?(2)该车行今年计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍.已知,A型车和B型车的进货价格分别为1500元和1800元,计划B型车销售价格为2 400元,应如何组织进货才能使这批自行车销售获利最多?26. (12分)小刚去超市买画笔,第一次花60元买了若干支A型画笔,第二次超市推荐了B型画笔,但B型画笔比A型画笔的单价贵2元,他又花100元买了相同支数的B型画笔.(1)超市B型画笔单价多少元?(2)小刚使用两种画笔后,决定以后使用B型画笔,但感觉其价格稍贵,和超市沟通后,超市给出以下优惠方案:一次性购买不超过20支,则每支B型画笔打九折;若一次购买超过20支,则前20支打九折,超过的部分打八折,设小刚购买的B 型画笔x 支,购买费用为y 元,请写出y 关于x 的函数关系式. (3)在(2)的优惠方案下,若小刚计划用270元购买B 型画笔,则能购买多少支B 型画笔?2021中考数学 尖子生培优训练 分式方程及其应用-答案一、选择题(本大题共10道小题) 1. 【答案】C【解析】去分母得-4x =1,解得x =-14.因为x =-14≠0,则方程的解为x =-14.故选C .2. 【答案】B[解析]去分母得,1=x +2,移项,合并同类项,得:x=-1,经检验,x=-1是原分式方程的解,∴x=-1,故选B .3. 【答案】 A【解析】因为提速前动车的速度为vkm /h ,提速后动车的速度是提速前的1.2倍,所以提速后动车的速度为1.2vkm /h , 根据题意可得:.因此本题选A .4. 【答案】A【解析】本题考查了列分式方程解应用题,根据少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱列分式方程A ,因此本题选A .5. 【答案】D 【解析】首先化分式方程为整式方程,然后解整式方程,最后讨论整数解即可求解.原方程xm x =-12可化为整式方程2x =m (x -1),∴x =2212-+=-m m m ,而分式方程有正整数解,∴m ﹣2=1,m ﹣2=2,∴m =3,m =4,经检验,符合题意,故选D.6. 【答案】B【解析】本题考查了分式方程应用,根据题意可知生产时间=数量÷效率,而且生产500万件产品所需的时间与更新技术前生产400万件产品所需时间相同,所以30500400+=x x ,因此本题选B .7. 【答案】B【解析】设文学类图书平均每本x 元,则科普类图书平均每本(x +8)元,根据“用15000元购买科普类图书的本数与用12000元购买文学类图书的本数相等”得:150008x =12000x .8. 【答案】 A .【解析】本题考查了分式方程在实际问题中的应用,本题数量关系清晰,难度不大,解:设实际工作时每天绿化的面积为x 万平方米,则原计划每天绿化的面积为万平方米,依题意,得:40,即40.因此本题选A .9. 【答案】去分母得:m +3=x ﹣2,由分式方程有增根,得到x ﹣2=0,即x =2, 把x =2代入整式方程得:m +3=0, 解得:m =﹣3, 故选:D .10. 【答案】C【解析】本题考查了分式方程在实际问题中的应用,本题数量关系清晰,难度不大.解:设骑车学生速度为x /km h ,则汽车的速度是2 x /km h ,依题意,得:1010123x x. 因此本题选C .二、填空题(本大题共10道小题)11. 【答案】x =-1 【解析】化简12x =2x -3得x -3=4x ,则-3x =3,所以x =-1,经检验x =-1是原方程的根.12. 【答案】32x【解析】本题考查了分式方程的解法,过程如下:解:3121x x x两边同乘21x ,得23x 32x检验:当32x时,21x ≠0 ∴ 原分式方程的解为32x ,因此本题答案是32x.13. 【答案】y =-3 [解析] 去分母,得5y =3y -6,解得y =-3.经检验,y =-3是分式方程的解. 则分式方程的解为y =-3.14. 【答案】 x =31【解析】解分式方程的基本思路是通过去分母化为整式方程求解,解分式方程必须验根,把可能产生的增根舍去.方程两边同乘x (x -1),得(x -1)2=x (x +1),化简,得3x =1.∴x =31.经检验,x =31是原分式方程的根.15. 【答案】x =9【解析】把分式方程转化为整式方程,求出整式方程的根再进行验根确定 .∵981x x =-,把两边同时乘以x (x -1),得9x -9=8x ,∴x =9,经检验x =9是原方程的根.16. 【答案】240x =2401.5x +2 【解析】实际每天加工零件1.5x 个.原计划的工作时间=240x (天),实际的工作时间=2401.5x (天),根据“结果比原计划少用2天”可列方程240x =2401.5x +2.17. 【答案】1[解析]分式方程去分母,得:x -2m=2m ·(x -2),若原分式方程有增根,则x=2,得2-2m=2m (2-2),解得m=1.18. 【答案】17 [解析] 由方程x -4x=3得x -4=3x.解得x =-2.当x =-2时,x≠0.所以x =-2是方程x -4x =3的解.又因为方程ax a -1-2x -1=1的解与方程x -4x =3的解相同,因此x =-2也是方程ax a -1-2x -1=1的解.这时-2a a -1-2-2-1=1.解得a =17.当a =17时,a -1≠0,故a =17满足条件.19. 【答案】47【解析】本题主要考查了比的基本性质,准确利用性质变形是解题的关键. 根据比例的基本性质变形,代入求职即可; 由37y x =可设3y k =,7x k =,k 是非零整数, 则7344777--===x y k k k x k k . 故答案为:47.20. 【答案】40【解析】本题考查了分式方程的解以及解一元一次不等式,根据分式方程的解为正数结合不等式组的解集为0y ≤,找出a 的取值范围是解题的关键.根据分式方程的解为正数即可得出a ≤5且a ≠3,根据不等式组的解集为0y ≤,即可得出a >0,找出0<a ≤5且a ≠3中所有的整数,将其相乘即可得出结论.分式方程2311x a x x ++=--的解为x =52a -且x ≠1,∵分式方程2311x ax x++=--的解为非负数,∴502a -≥且52a -≠1.∴a ≤5且a ≠3.()3113431220y y y a -+⎧-≥-⎪⎨⎪-<⎩①②解不等式①,得0y ≤.解不等式②,得y <a .∵关于y 的不等式组()3113431220y y y a -+⎧-≥-⎪⎨⎪-<⎩的解集为0y ≤,∴a >0. ∴0<a ≤5且a ≠3.又a 为整数,则a 的值为1,2,4,5.符合条件的所有整数a 的积为124540⨯⨯⨯=.因此本题答案为:40.三、解答题(本大题共6道小题)21. 【答案】x =-4 【解析】去分母得:2x 2-8=x 2-2x ,即x 2+2x -8=0,分解因式得:(x -2)(x +4)=0,解得:x =2或x =-4,经检验x =2是增根,所以原分式方程的解为x =-4.22. 【答案】设原来每天用水量为x 吨,则现在每天用水量是45x 吨,根据题意,得120120345x x -=,即1501203x x -=,解得x =10. 经检验,x =10是原方程的解且符合实际,则45x =8.答:现在每天用水量是8吨.23. 【答案】(1)设A 种茶叶每盒进价为x 元,则B 种茶叶每盒进价为1.4x 元. 根据题意,得:4000x +10﹦84001.4x . 解得x ﹦200.经检验:x ﹦200是原方程的根. ∴1.4x ﹦1.4×200﹦280(元).∴A ,B 两种茶叶每盒进价分别为200元,280元.(2)设第二次A 种茶叶购进m 盒,则B 种茶叶购进(100—m )盒.打折前A 种茶叶的利润为m2 ×100﹦50m .B 种茶叶的利润为100—m2 ×120﹦6 000—60m .打折后A 种茶叶的利润为m2 ×10﹦5m . B 种茶叶的利润为0.由题意得:50m +6 000—60m +5m ﹦5800. 解方程,得:m ﹦40.∴100—m ﹦100—40﹦60(盒).∴第二次购进A 种茶叶40盒,B 种茶叶60盒.24. 【答案】解:(1)设每个乙种书柜的进价是x 元,则每个甲种书柜的进价是(1+20%)x 元 . 根据题意,得5400120%x +()=6300x-6.解得x =300.经检验x =300是原方程的解. 当x =300时,(1+20%)x =360.所以每个乙种书柜的进价是300元,每个甲种书柜的进价是360元 .(2)设购进乙种书柜a 个,则购进甲种书柜(60-a )个.设购进书柜所需费用w 元.根据题意,得w =360(60-a )+300a =-60+21600. ∵2(60-a )≥a ,∴a ≤40.所以该校应购进乙种书柜40个,购进甲种书柜20个时,购进书柜所需费用最少.25. 【答案】解:(1)设去年A型车每辆售价x元,则今年售价每辆为(x-200)元,由题意得80000x=80000(110%)200x--,解得:x=2 000.经检验,x=2 000是原方程的根.答:去年A型车每辆售价为2 000元;(2)设今年新进A型车a辆,则B型车(60-a)辆,获利y元.由题意得y=(1800-1500)a+(2400-1800)(60-a).整理,得y=-300a+36000.∵B型车的进货数量不超过A型车数量的两倍,∴60-a≤2a,∴a≥20.∵y=-300a+36000中k=-300<0,∴y随a的增大而减小.∴当a=20时,y有最大值,∴B型车的数量为:60-20=40辆.∴当新进A型车20辆,B型车40辆时,这批车获利最大.26. 【答案】解:(1)设超市B型画笔单价a元,则A型画笔单价为(a-2)元,由题意列方程,得601002a a=-,解得,5a=.经检验5a=是原分式方程的根.答:超市B型画笔单价是5元.(2)由题意知,当小刚购买的B型画笔支数x≤20时,费用为y=0.9×5x=4.5x;当小刚购买的B型画笔支数x>20时,费用为y=20×0.9+(x-20)×0.8×5=4x+10.所以4.5,(20)410,()x xyx x≤⎧=⎨+⎩>20,其中x为正整数.(3)当4.5x=270(x≤20)时,解得x=60,因为60>20不符合题意,舍去. 当4x+10=270(x>20)时,解得x=65.答:小刚能购买65支B型画笔.。

初中数学分式方程的应用培优训练(精选40道习题 附答案详解)

初中数学分式方程的应用培优训练(精选40道习题  附答案详解)
(1)求第一批采购的书包的单价是多少元?
(2)若商店按售价为每个书包 元,销售完这两批书包,总共获利多少元?
15.某服装加工厂计划加工4000套运动服,在加工完1600套后,采用了新技术,工作效率比原计划提高 ,结果共用了18天完成全部任务.求原计划每天加工多少套运动服.
16.为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的 倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.
13.科幻小说《流浪地球》的销量急剧上升.为应对这种变化,某网店分别花20000元和30000元先后两次购进该小说,第二次的数量比第一次多500套,且两次进价相同.
(1)该科幻小说第一次购进多少套?每套进价多少元?
(2)根据以往经验:当销售单价是25元时,每天的销售量是250套;销售单价每上涨1元,每天的销售量就减少10套.网店要求每套书的利润不低于10元且不高于18元.
11.小明家用 元网购的 型口罩与小磊家用 元在药店购买的 型口罩的数量相同, 型与 型口罩的单价之和为 元,求 两种口罩的单价各是多少元?
12.某市为治理污水,需要铺设一段全长为 的污水排放管道,为了尽量减少施工对城市交通所造成的影响,实际施工时每天的工效比原计划增加 ,结果提前 天完成这一任务,实际每天铺设多长管道?
(1)甲,乙两公司单独完成此项工程,各需多少天?
(2)若让一个公司单独完成这项工程,哪个公司的施工费较少?
6.甲、乙两人做某种机械零件,已知甲每小时比乙多做5个,甲做80个所用的时间与乙做60个所用的时间相等,问甲、乙两人每小时各做多少个零件?(用列方程的方法解答)
7.某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.那么第一批饮料进货单价多少元?

分式方程及其应用精讲精练

分式方程及其应用精讲精练
分式方程及其应用精讲精练
1.分式方程的概念
分母中含有未知数的方程叫做分式方程.
2.分式方程的解法
解分式方程的关键是去分母,即方程两边都乘以最简公分母将分式方程转化为整式方程.
3.分式方程的增根问题
验根:因为解分式方程可能出现增根,所以解分式方程必须验根.验根的方法是将所得的根带入到最简公分母中,看它是否为0,如果为0,即为增根,不为0,就是原方程的解.
(2)请从出现错误的步骤开始继续进行该分式的化简;
(3)除纠正上述错误外,请你根据平时的学习经验,就分式化简时还需注意的事项给其他同学提一条建议.
A. = B. +80=C. = ﹣ Nhomakorabea0 D. =
1.解分式方程注意事项
(1)去分母化成整式方程时不要与通分运算混淆;
(2)解完分式方程必须进行检验,验根的方法是将所得的根带入到最简公分母中,看它是否为0,如果为0,即为增根,不为0,就是原方程的解.
2.列分式方程解应用题的基本步骤
(1)审——仔细审题,找出等量关系;
A. B. C. D.
4.分式方程 =1的解是( )
A.x=1B.x=﹣1C.x=3D.x=﹣3
5.关于x的方程 有增根,则a的值为( )
A.-4B.-6C.0D.3
6.已知实数 , 满足 ,那么 的值为( )
A. B. C.1D.2
7.已知关于x的方程 无解,则m的值是___.
8.已知关于 的分式方程 的解为非负数,则 的取值范围为______.
(2)设——合理设未知数;
(3)列——根据等量关系列出方程;
(4)解——解出方程;
(5)验——检验增根;
(6)答——答题.
课后练习

新北师大版-分式方程及其应用(知识点+例题+课堂练习+课后练习完整版)

新北师大版-分式方程及其应用(知识点+例题+课堂练习+课后练习完整版)

分式方程及其应用【知识要点】1.分式方程的概念:字母里面有未知数的方程.2.分式方程的解法:(1)去分母:将分式方程两边都乘以最简公分母,化分式方程为整式方程;(2)解整式方程;(3)验根3.增根:使分式方程中分母为0的根,叫做方程的增根,应舍去.【典型例题】例1 解方程(1)2235211787x x x x x x x ----=----+ (2)x x x x -=-+-3231例2 解方程(1)22416222-+=--+-x x x x x (2)()()365212222-=+----x x x x x x x(3)96999624822222+--=-++++x x x x x x x x (4)61514171-+-=-+-x x x x例3 (1)a 为何值时,方程323-+=-x a x x 会产生增根?例4 .甲、乙两地相距50千米,A 骑自行车,B 乘汽车同时从甲城出发去乙城,已知汽车的速度是自行车速度的2.5倍,B 中途休息了半个小时,还比A 早到2小时,求A 和B 两人的速度?例5.轮船顺水航行100千米所需的时间和逆水航行80千米所需的时间相同,已知水流速度 为2千米/小时,求船在静水中的速度。

例6.某工程甲、乙两队合做2天完成全工程的31,甲队独做所需天数是乙队独做所需天数的2倍,现由甲队先做4天后,甲、乙合做2天,余下的由乙队独做,共需几天完工?课堂练习1.下列方程:①153=-x ;②23=x ;③2151=++x x ;④522=+xx 是分式方程的有( ) A 、①② B 、②③ C 、③④ D 、②③④2.已知x x --424与54--x x 的值互为倒数,x 的值为( ) A 、-1 B 、0 C 、21 D 、1 3.方程xx x +-=+333的解的情况为( ) A 、3=x B 、3-=x C 、解为除-3以外的任意数 D 、无解4.方程51222-=x x 的解是 . 5.分式方程0332=--x x x 的增根是 . 6.若分式方程424-+=-x a x x 有增根,则=a . 7.解方程(1)91232312-=--+x x x (2)6273232+=-+x x(3)41441441222-=++-+-x x x x x (4) 81614121---=---x x x x8 .当a 取何值时,方程359342+=-+-x x ax x 会产生增根.9.一个十位数字是6的两位数,若把个位数字与十位数字对调,所得数与原数之比为7:4求原数。

分式方程及其应用(含答案)

分式方程及其应用(含答案)

分式方程及其应用【中考真题】【2019葫芦岛】某工厂计划生产300个零件,由于采用新技术,实际每天生产零件的数量是原计划的2倍,因此提前5天完成任务.设原计划每天生产零件x个,根据题意,所列方程正确的是()A.300x−300x+2=5B.3002x−300x=5C.300x−3002x=5D.300x+2−300x=5基础知识过关1.___________的方程叫做分式方程;2.解分式方程的基本思想是把分式方程化为______;3.分式方程的增根是使______为零的未知数的值,增根是在___的过程中产生的;4.因为可能有增根的产生,因此分式方程的相关问题一定要注意______.透析考纲分式方程及其应用是中考的必考内容之一,一般着重考查解分式方程及列分式方程解应用题,并要求会用增根的意义解题,考题常以解答题的形式出现,有时也会出现在选择题和填空题中.精选好题【考向01】分式方程的相关概念【试题】【2019鸡西】已知关于x 的分式方程2x−m x−3=1的解是非正数,则m 的取值范围是( )A .m ≤3B .m <3C .m >–3D .m ≥–3【好题变式练】1.下列各式中是分式方程的是( )A .1xB .x 2+1=yC .x2+1=0D .1x−1=22.【2019宿迁】关于x 的分式方程1x−2+a−22−x=1的解为正数,则a 的取值范围是_____.【考向02】分式方程的解法【试题】【2019益阳】解分式方程x2x−1+21−2x=3时,去分母化为一元一次方程,正确的是( ) A .x +2=3B .x –2=3C .x –2=3(2x –1)D .x +2=3(2x –1)解题关键本考点主要考查分式方程的相关概念:分式方程的定义及特征、分式方程的解,均为基础知识的考查,难度不大,一般以选择题或填空题的形式出现.要点归纳分式方程的特征:(1)方程中含有分母;(2)分母中含有未知数.分式方程的解:使分式方程左右两边相等的未知数的值叫做分式方程的解(也叫做分式方程的根).【好题变式练】1.【2019淄博】解分式方程1−x x−2=12−x−2时,去分母变形正确的是( )A .–1+x =–1–2(x –2)B .1–x =1–2(x –2)C .–1+x =1+2(2–x )D .1–x =–1–2(x –2)2.【2019宁夏】解方程:2x+2+1=xx−1.【考向03】分式方程的增根【试题】【2019烟台】若关于x 的分式方程3xx−2−1=m+3x−2有增根,则m 的值为_____.解题技巧代数式的书写规范属于基础知识的考查,解题的关键是掌握相关的书写规则并在日常书写代数式时引起足够重视,严格按规则书写即可.要点归纳解分式方程的步骤:(1)去分母:在方程的两边同时乘以最简公分母,把分式方法转化为整式方程; (2)解这个整式方程;(3)检验:把一元一次方程的根代入所乘的最简公分母中,看结果是否为0; (4)写出原分式方程的解.【好题变式练】1.若分式方程3x−ax 2−2x+1x−2=2x有增根,则实数a 的取值是( )A .0或2B .4C .8D .4或82.当m =_____时,解分式方程x−5x−3=m 3−x会出现增根.【考向04】分式方程的应用【试题】【2019湘潭】现代互联网技术的广泛应用,催生了快递行业的高速发展.据调查,湘潭某家小型快递公司的分拣工小李和小江,在分拣同一类物件时,小李分拣120个物件所用的时间与小江分拣90个物件所用的时间相同,已知小李每小时比小江多分拣20个物件.若设小江每小时分拣x 个物件,则可列方程为( )A .120x−20=90x B .120x+20=90xC .120x=90x−20D .120x=90x+20解题技巧分式方程的增根问题属于分式方程中的重点、难点问题,在涉及到分式方程的相关问题时,一定要注意检验,同时要清楚分式方程增根产生的原因,从而解决与增根有关的问题.要点归纳分式方程的增根:在去分母,将分式方程转化为整式方程的过程中出现的不适合于原方程的根. 增根产生的原因:分式方程两边同乘以一个零因式后,所得的根是整式方程的根,而不是分式方程的根.【好题变式练】1.【2019辽阳】某施工队承接了60公里的修路任务,为了提前完成任务,实际每天的工作效率比原计划提高了25%,结果提前60天完成了这项任务.设原计划每天修路x 公里,根据题意列出的方程正确的是( )A .60×(1+25%)x −60x=60 B .60x −60×(1+25%)x =60C .60(1+25%)x−60x=60 D .60x−60(1+25%)x=602.【2019朝阳】佳佳文具店购进A ,B 两种款式的笔袋,其中A 种笔袋的单价比B 种袋的单价低10%.已知店主购进A 种笔袋用了810元,购进B 种笔袋用了600元,且所购进的A 种笔袋的数量比B 种笔袋多20个.请问:文具店购进A ,B 两种款式的笔袋各多少个?解题技巧分式方程的应用的属于高频考点,常以解答题形式出现,且经常和其它知识点(如不等式等)结合进行综合考查,一般难度为中等.列分式方程解应用题的关键是用分式表示一些基本的数量关系,列分式方程解应用题一定要验根,还要保证其结果符号实际意义.要点归纳列分式方程解应用题的一般步骤(1)审:即审题:根据题意找出已知量和未知量,并找出等量关系.(2)设:即设未知数,设未知数的方法有直接设和间接设,注意单位要统一,选择一个未知量用未知数表示,并用含未知数的代数式表示相关量. (3)列:即列方程,根据等量关系列出分式方程. (4)解:即解所列的分式方程,求出未知数的值.(5)验:即验根,要检验所求的未知数的值是否适合分式方程,还要检验此解是否符合实际意义. (6)答:即写出答案,注意答案完整.过关斩将1.下列关于x的方程中,是分式方程的是()A.3x=12B.1x=2C.x+25=3+x4D.3x–2y=12.【2019•遂宁】关于x的方程k2x−4−1=x x−2的解为正数,则k的取值范围是()A.k>–4B.k<4C.k>–4且k≠4D.k<4且k≠–43.【2019•哈尔滨】方程23x−1=3x的解为()A.x=311B.x=113C.x=37D.x=734.如果解关于x的分式方程mx−2−2x2−x=1时出现增根,那么m的值为()A.–2B.2C.4D.–45.【2019•永州】方程2x−1=1x的解为x=_____.6.【2019•巴中】若关于x的分式方程xx−2+2m2−x=2m有增根,则m的值为_____.7.【2019•盘锦】某班学生从学校出发前往科技馆参观,学校距离科技馆15 km,一部分学生骑自行车先走,过了15 min后,其余学生乘公交车出发,结果同时到达科技馆.已知公交车的速度是自行车速度的1.5倍,那么学生骑自行车的速度是_____km/h.8.【2019•济南】为提高学生的阅读兴趣,某学校建立了共享书架,并购买了一批书籍.其中购买A种图书花费了3000元,购买B种图书花费了1600元,A种图书的单价是B种图书的1.5倍,购买A种图书的数量比B种图书多20本.(1)求A和B两种图书的单价;(2)书店在“世界读书日”进行打折促销活动,所有图书都按8折销售.若学校当天再购买A种图书20本和B种图书25本,共需花费多少元?参考答案过关斩将1.B 【解析】A 、C 、D 项中的方程分母中不含未知数,故不是分式方程,故选B .2.C 【解析】分式方程去分母得:k –(2x –4)=2x ,即k +4=4x ,解得:x =k+44, 根据题意得:k+44>0,且k+44≠2,解得:k >–4,且k ≠4.故选C .3.C 【解析】方程两边同时乘以x(3x −1)得:2x =9x –3,∴x =37;经检验x =37是方程的根,∴方程的解为x =37,故选C .4.D 【解析】去分母,方程两边同时乘以x –2,得:m +2x =x –2,由分母可知,分式方程的增根是2, 当x =2时,m +4=2–2,m =–4,故选D .5.–1【解析】去分母得:2x =x –1,解得:x =–1,经检验x =–1是分式方程的解,故答案为:–1. 6.1【解析】方程两边都乘x –2,得x –2m =2m (x –2)∵原方程有增根,∴最简公分母x –2=0, 解得x =2,当x =2时,2–2m =0,即m =1,故m 的值是1,故答案为1. 7.20【解析】设学生骑自行车的速度是x km/h ,则公交车的速度是1.5 x km/h ,由题意得:15x−151.5x=1560,解得:x =20,经检验x =20是原方程的解, 答:骑车学生每小时行20千米.8.(1)A 种图书的单价为30元,B 种图书的单价为20元.(2)共花费880元. 【解析】(1)设B 种图书的单价为x 元,则A 种图书的单价为1.5x 元,依题意,得:30001.5x−1600x=20,解得:x =20,经检验,x =20是所列分式方程的解,且符合题意,∴1.5x =30.答:A种图书的单价为30元,B种图书的单价为20元.(2)30×0.8×20+20×0.8×25=880(元).答:共需花费880元.。

中考数学总复习《分式方程及其应用》专题训练(附带答案)

中考数学总复习《分式方程及其应用》专题训练(附带答案)

中考数学总复习《分式方程及其应用》专题训练(附带答案) 学校:___________班级:___________姓名:___________考号:___________知识梳理分式方程的应用列分式方程解应用题的一般步骤,与列整式方程解应用题的步骤一样,都是按照审、设、列、解、验、答六步进行.(1)在利用分式方程解实际问题时,必须进行“双检验”,既要检验去分母化成整式方程的解是否为分式方程的解,又要检验分式方程的解是否符合实际意义.(2)分式方程应用题常见类型有行程问题、工作问题、销售问题等,其中行程问题中又出现逆水、顺水航行这一类型.同步练习一、选择题1.为响应“绿色出行”的号召,小李上班由自驾车改为乘坐公交车.已知小李家距上班地点20km,他乘公交车平均每小时行驶的路程比他自驾车平均每小时行驶的路程少12km.他从家出发到上班地点,乘公交车所用的时间是自驾车所用时间的43,小李乘公交车上班平均每小时行驶()A.30km B.36km C.40km D.46km2.某服装店用4.5万元购进某种品牌的服装,由于销售状况良好,服装店又调拨11万元资金购进该种服装,但这次的单价比第一次的单价贵20元,购进服装的数量比第一次的2倍还多50件,求该服装第一次的单价.为解决此问题,设该服装第一次的单价为x元,根据题意列出方程,其中正确的是()A.11 4.525020x x=⨯++B.1100004500025020x x=⨯++C.1100004500025020x x=⨯+-D.1100004500025020x x=⨯-+3.甲、乙两地相距160千米,一辆汽车从甲地到乙地的速度比原来提高了25%,结果比原来提前0.4小时到达,那么这辆汽车原来的速度为()A.80千米/小时B.90千米/小时C.100千米/小时D.110千米/小时4.《九章算术》是我国古代重要的数学专著之一,其中记录的一道题译为;把一份文件用慢马送到900里外的城市,需要的时间比规定时间多1天;如果用快马送,所需的时间比规定时间少3天.已知快马的速度是慢马的2倍.根据题意列方程为900900213x x⨯=+-,其中x表示()A.快马的速度B.慢马的速度C.规定的时间D.以上都不对5.为扎实推进“五育”并举工作,加强劳动教育,某校投入2万元购进了一批劳动工具.开展课后服务后,学生的劳动实践需求明显增强,需再次采购一批相同的劳动工具,已知采购数量与第一次相同,但采购单6.一个圆柱形容器的容积为3Vm,开始用一根小水管向容器内注水,水面高度达到容器高度一半后,改用t则大,小两根水管的注水速一根口径为小水管2倍的大水管注水,向容器中注满水的全过程共用时间min.7.八年级学生去距学校10千米的荆州博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.若设骑车A.实际工作时每天铺设的管道比原计划降低了20%,结果延误3天完成了这一任务B.实际工作时每天铺设的管道比原计划降低了20%,结果提前3天完成了这一任务C.实际工作时每天铺设的管道比原计划提高了20%,结果延误3天完成了这一任务D.实际工作时每天铺设的管道比原计划提高了20%,结果提前3天完成了这一任务二、填空题数称为调和数,如15,5,3也是一组调和数.现有一组调和数:x ,3,2(3)x >,则x = . 12.甲、乙两船从相距150km 的A ,B 两地同时匀速沿江出发相向而行,甲船从A 地顺流航行90km 时与从B 地逆流航行的乙船相遇.甲、乙两船在静水中的航速均为30km/h ,则江水的流速为 km/h . 13.甲、乙、丙三名工人共承担装搭一批零件.已知甲乙丙丁四人聊天时的对话信息如表,如果每小时只安排1名工人,那么按照甲、乙、丙的轮流顺序至完成工作任务,共需 小时. 甲说:我单独完成任务所需时间比乙单独完成任务所需时间多5小时;乙说:我3小时完成的工作量与甲4小时完成的工作量相等;丙说:我工作效率不高,我的工作效率是乙的工作效率的12;丁说:我没参加此项工作,但我可以计算你们的工作效率,知道工程问题三者关系是:工作效率⨯工作时间=工作总量.三、解答题14.为深刻践行习近平总书记的“绿水青山就是金山银山”重要思想,某单位积极开展植树活动,准备购买甲、乙两种树苗、已知用800元购买甲种树苗的棵数与用680元购买乙种树苗的棵数相同,乙种树苗每棵比甲种树苗便宜6元.(1)求甲种树苗的单价;(请根据题意列方程解答)(2)若购买这两种树苗共100棵,且费用不超过3800元,则至少购买乙种树苗多少棵?15.科学中,经常需要把两种物质混合制作成混合物,研究混合物的物理性质和化学性质.现将甲、乙两种密度分别为ρ甲,ρ乙的液体混合(ρρ<甲乙),研究混合物的密度(=物体的质量物体的密度物体的体积),假设混合前后液体的总体积不变,令等体积的甲乙两种液体的混合溶液密度为1ρ,等质量的甲乙两种液体的混合溶液的密度为2ρ.(1)请用含ρ甲,ρ乙式子表示1ρ;(2)比较1ρ,2ρ的大小,并通过运算说明理由:(3)现有密度为31.2g /cm 的盐水600g ,加适量的水(密度为31.0g /cm )进行稀释,问:需要加水多少g ,才能使密度为31.1g /cm 的鸡蛋悬浮在稀释后的盐水中?16.某危险品工厂采用甲型、乙型两种机器人代替人力搬运产品.甲型机器人比乙型机器人每小时多搬运10kg 产品,甲型机器人搬运800kg 产品所用时间与乙型机器人搬运600kg 产品所用时间相等.根据以上信息,解答下列问题.(1)小华同学设乙型机器人每小时搬运kg x 产品,可列方程为__________.小惠同学设甲型机器人搬运800kg 产品所用时间为y 小时,可列方程为__________.(2)求乙型机器人每小时搬运多少千克产品.17.某大型品牌书城购买了A B 、两种新出版书籍,商家用1600元购买A 书籍,1200元购买B 书籍,A B 、两种书籍的进价之和为40元,且购买A 书籍的数量是B 书籍的2倍.(1)求商家购买A 书籍和B 书籍的进价;(2)商家在销售过程中发现,当A 书籍的售价为每本25元,B 书籍的售价为每本33元时,平均每天可卖出50本A 书籍,25本 B 书籍.据统计,B 书籍的售价每降低0.5元平均每天可多卖出5本.商家在保证A 书籍的售价和销量不变且不考虑其他因素的情况下,为了促进B 的销量,想使A 书籍和B 书籍平均每天的总获利为775元,则每本B 书籍的售价为多少元?18.为更好地满足市民休闲、健身需求,提升群众的幸福感获得感,丰都县从年初开始对滨江公园进行“微改造”、“精提升”,将原有的边坡地带改造为观景平台,同时增设多处具有体育、文化、智慧元素的文体场所和设施,把3.5公里滨江健身长廊打造成智慧休闲乐园.施工过程中共有5000吨渣土要运走,现计划由甲、乙两个工程队运走渣土,已知甲、乙两个工程队,原计划乙平均每天运走的渣土比甲平均每天运走的渣土多13,这样乙运走2600吨渣土的时间比甲运走剩下渣土的时间少3天. (1)求原计划乙平均每天运渣土多少吨?(2)实际施工时,甲平均每天运走的渣土比原计划增加了m 吨,乙平均每天运走的渣土比原计划增加了200m ,甲、乙合作10天后,乙临时有其他任务;剩下的渣土由甲再单独工作5天完成.若运走每吨渣土的运输费用为30元,请求出乙工程队的运输费用.答案第1页,共1页 参考答案 1.【答案】B2.【答案】B3.【答案】A4.【答案】C5.【答案】B6.【答案】A7.【答案】C8.【答案】A9.【答案】810.【答案】1260012600251.5x x-= 11.【答案】612.【答案】613.【答案】319414.【答案】(1)40元(2)34棵15.【答案】(1)12ρρρ+=乙甲(2)12ρρ>(3)需要加水50g 16.【答案】(1)80060010x x=+ 80060010y y -=(2)乙型机器人每小时搬运30kg 产品 17.【答案】(1)商家购买A 书籍的进价为16元/本,购买B 书籍的进价为24元/本;(2)29元. 18.【答案】(1)200(2)6900。

培优专题9 分式方程及其应用(含答案)

培优专题9 分式方程及其应用(含答案)

12、分式方程及其应用【知识精读】1. 解分式方程的基本思想:把分式方程转化为整式方程。

2. 解分式方程的一般步骤:(1)在方程的两边都乘以最简公分母,约去分母,化成整式方程;(2)解这个整式方程;(3)验根:把整式方程的根代入最简公分母,看结果是否等于零,使最简公分母等于零的根是原方程的增根,必须舍去,但对于含有字母系数的分式方程,一般不要求检验。

3. 列分式方程解应用题和列整式方程解应用题步骤基本相同,但必须注意,要检验求得的解是否为原方程的根,以及是否符合题意。

下面我们来学习可化为一元一次方程的分式方程的解法及其应用。

【分类解析】例1. 解方程:分析:首先要确定各分式分母的最简公分母,在方程两边乘这个公分母时不要漏乘,解完后记着要验根解:方程两边都乘以,得例2. 解方程分析:直接去分母,可能出现高次方程,给求解造成困难,观察四个分式的分母发现的值相差1,而分子也有这个特点,因此,可将分母的值相差1的两个分式结合,然后再通分,把原方程两边化为分子相等的两个分式,利用分式的等值性质求值。

解:原方程变形为:方程两边通分,得经检验:原方程的根是例3. 解方程:分析:方程中的每个分式都相当于一个假分数,因此,可化为一个整数与一个简单的分数式之和。

解:由原方程得:即例4. 解方程:分析:此题若用一般解法,则计算量较大。

当把分子、分母分解因式后,会发现分子与分母有相同的因式,于是可先约分。

解:原方程变形为:约分,得方程两边都乘以注:分式方程命题中一般渗透不等式,恒等变形,因式分解等知识。

因此要学会根据方程结构特点,用特殊方法解分式方程。

5、中考题解:例1.若解分式方程产生增根,则m的值是()A. B.C. D.分析:分式方程产生的增根,是使分母为零的未知数的值。

由题意得增根是:化简原方程为:把代入解得,故选择D。

例2. 甲、乙两班同学参加“绿化祖国”活动,已知乙班每小时比甲班多种2棵树,甲班种60棵所用的时间与乙班种66棵树所用的时间相等,求甲、乙两班每小时各种多少棵树?分析:利用所用时间相等这一等量关系列出方程。

(完整)分式方程的解法及应用(基础)导学案+习题【含答案】,推荐文档

(完整)分式方程的解法及应用(基础)导学案+习题【含答案】,推荐文档

分式方程的解法及应用(基础)学习目标】 1. 了解分式方程的概念和检验根的意义,会解可化为一元一次方程的分式方程.2. 会列出分式方程解简单的应用问题.【要点梳理】要点一、分式方程的概念分母中含有未知数的方程叫分式方程.要点诠释:(1)分式方程的重要特征:①是等式;②方程里含有分母;③分母中含有未知数(2)分式方程和整式方程的区别就在于分母中是否有未知数(不是一般的字母系数).分母中含有未知数的方程是分式方程,分母中不含有未知数的方程是整式方程.(3)分式方程和整式方程的联系:分式方程可以转化为整式方程.要点二、分式方程的解法解分式方程的基本思想:将分式方程转化为整式方程.转化方法是方程两边都乘以最简公分母,去掉分母.在去分母这一步变形时,有时可能产生使最简公分母为零的根,这种根叫做原方程的增根.因为解分式方程时可能产生增根,所以解分式方程时必须验根.解分式方程的一般步骤:( 1 )方程两边都乘以最简公分母,去掉分母,化成整式方程(注意:当分母是多项式时,先分解因式,再找出最简公分母);(2)解这个整式方程,求出整式方程的解;(3)检验:将求得的解代入最简公分母,若最简公分母不等于0,则这个解是原分式方程的解,若最简公分母等于0,则这个解不是原分式方程的解,原分式方程无解.要点三、解分式方程产生增根的原因方程变形时,可能产生不适合原方程的根,这种根叫做原方程的增根.产生增根的原因:去分母时,方程两边同乘的最简公分母是含有字母的式子,这个式子有可能为零,对于整式方程来说,求出的根成立,而对于原分式方程来说,分式无意义,所以这个根是原分式方程的增根.要点诠释:(1 )增根是在解分式方程的第一步“去分母”时产生的 •根据方程的同解原理,方程的两边都乘以(或除以)同一个不为 0的数,所得方程是原方程的同解方程•如果方程的两边都乘以的数是0,那么所得方程与原方程不是同解方程,这时求得的根就是原方程的增根(2)解分式方程一定要检验根, 这种检验与整式方程不同, 不是检查解方程过程中是否有错误, 而是检验是否出现增根,它是在解方程的过程中没有错误的前提下进行的要点四、分式方程的应用分式方程的应用主要就是列方程解应用题 列分式方程解应用题按下列步骤进行: (1) 审题了解已知数与所求各量所表示的意义,弄清它们之间的数量关系; (2) 设未知数;(3) 找出能够表示题中全部含义的相等关系,列出分式方程; (4) 解这个分式方程; (5) 验根,检验是否是增根; (6) 写出答案.【典型例题】 类型一、判别分式方程【总结升华】 要判断一个方程是否为分式方程,就看其有无分母,并且分母中是否含有未知数. 类型二、解分式方程【答案与解析】解:(1)』2x 1 1 2x10 ( 5) 2(2 x 1).解方程,得x 7 .A .x 3x21 x 1 x 24B4312x 1 x 1 x 1C.3x 23 0 D. x ax ,(a ,b 为非零常数)5a b【答案】 B【解析】 A 、C 两项中的方程尽管有分母,但分母都是常数;D 项中的方程尽管含有分母,但分母中不含未知数,由定义知这三个方程都不是分式方程,只有 B 项中的方程符合分式方程的定义.)•10 2x 11 2x(2)将方程两边同乘(2x1),得F 列方程中,是分式方程的是(解分式方程(1)47 5检验:将x 代入2x 1,得2x 1 0.4 2• •• x 7是原方程的解.4 5 1(2)于 L0,x 3x x x方程两边同乘以x(x 3)(x 1),得5(x 1) (x 3) 0 .解这个方程,得x 2 .检验:把x 2代入最简公分母,得 2x 5X 1= 10工0. • 原方程的解是x 2.【总结升华】 将分式方程化为整式方程时,乘最简公分母时应乘原分式方程的每一项,不要漏乘常数项.特别提 醒:解分式方程时,一定要检验方程的根. 举一反三: 【变式】解方程: 【答案】 解:方程两边都乘x 3,得2 x 12(x 3),解这个方程,得x 3, 检验:当x 3时,x 3 0, •x 3是增根,• 原方程无解. 类型三、分式方程的增根【高清课堂 分式方程的解法及应用例3 (1 )】 所以当m 4或m 6时,方程会产生增根.【总结升华】 处理这类问题时,通常先将分式方程转化为整式方程,再将求出的增根代入整式方程,即可求解. 举一反三:【变式】如果方程 1 1 x3 有增根,那么增根是【答案】x 2; 提示:因为增根是使分式的分母为零的根, 由分母x 2 0或2 x 0可得x 2 •所以增根是x 2 . 类型四、分式方程的应用C 4、甲、乙两班参加绿化校园植树活动,已知乙班每小时比甲班多种2棵树,甲班种60棵树所用的时间与x 的方程上一x 2mx x 2 4会产生增根?【思路点拨】2)(x 2) 0,即x 2或x 2,然后把x2代入由分式方程转化得的整式方程求出 【答案与解析】m 的值.方程两边同乘(X 2)(x2)约去分母,得 2(x 2) mx 3(x 2).整理得(m1)x •-原方程有增根,(x 2)(x 2),把x 2代入(m1)x10 ,解得m4.把x2代入(m 1)x 10,解得m 6. 10.m 为何值时,关于 解:乙班种66棵树所用的时间相等•求甲、乙两班每小时各种多少棵树?【思路点拨】本题的等量关系为:甲班种60棵树所用的时间与乙班种66棵树所用的时间相等.【答案与解析】解:设甲班每小时种x棵树,则乙班每小时种x 2棵树.由题意可得60西,解这个方程,得x 20 •x x 2经检验x 20是原方程的根且符合题意.所以x 2 22(棵).答:甲班每小时种20棵树,乙班每小时种22棵树.【总结升华】解此题的关键是设出未知数后,用含x的分式表示甲、乙两班种树所用的时间.举一反三:1【变式】两个工程队共同参与一个建筑工程,甲队单独施工1个月完成总工程的-,这时增加了乙队,两队又共3同工作了半个月,总工程全部完成.哪个队的施工速度快?【答案】1解:设乙队单独施工1个月能完成工程的 -,总工程量为1.x1 1 1根据工程的实际进度,得 1 .3 6 2x方程两边同时乘以6x,得2x x 3 6x .解这个方程得x 1 .检验:当x 1时,6x = 6工0,所以x 1是原分式方程的解.1由上可知,若乙队单独工作1个月可以完成全部任务,对比甲队1个月完成任务的1,可知乙队施工速度快.3答:乙队施工速度快.【巩固练习】一.选择题1 .下列关于x的方程中,不是分式方程的是()A . 1x 1B. 3A24 x x1C .x3x 2 D . x53 4 516x 61 22 .解分式方程——,可得结果()x 1 x 1A. x 1B.x 1C. x 3D.无解x3 .要使—4 4的值和2x的值互为倒数,则x的值为().x 5 4xC.丄A.0B.-1 D.124 •已知,若用含x 的代数式表示y ,则以下结果正确的是()x 2 y 4x 1010 xA. yB . yx 2C . yD. y 7x 2335.若关于3x 的方程31 - k k有增根,则k 的值为().x 11 xA.3B.1C.0D. — 16 •完成某项工作,甲独做需a 小时,乙独做需b 小时,则两人合作完成这项工作的 80%,所需要的时间是()二. 填空题3 27. ____________ 当X = ---------------- 时分式一与 的值互为相反数.x 6 x8 .仓库贮存水果a 吨,原计划每天供应市场 m 吨,若每天多供应 2吨,则要少供应 ___________ 天.时,两分式与丄的值相等.x 4 x 12ax 3 5—时,关于x 的方程3 5的根是1.a x 4三. 解答题【答案与解析】 一.选择题 1. 【答案】 C ;【解析】 C 选项中分母不含有未知数,故不是分式方程.2. 【答案】D ;【解析】 x 1是原方程的增根. 3. 【答案】B ;x 4 4 2x 2x 4 ”口 【解由题意 1,化简得:1解得x1x 54 xx 54. 【答案】C ;4A. (a b)小时5C.4ab小时5(a b)4.1 1. , B.( )小时 5 a bD. 小时a b10.当 a =x 111.若方程—x 1 12 .关于x 的方程42xa 1-1有增根,则增根是11的解是负数,则 a 的取值范围为13. 解下列分式方程:(1)丄・x 2 2 x14. 甲、乙两地相距(2)5x 7 x 2 3x 2A 骑自行车, x 1B 乘汽车,同时从甲城出发去乙城.已知汽车的速度是自行车速度的2.5倍,B 中途休息了 0.5小时还比A 早到2小时,求自行车和汽车的速度.15.有一个两位数,它的个位数字比十位数字大1,这个两位数被个位数字除时,商是8,余数是2,求这个两位数.50km ,【解析】由题意x 1 y 4 x 2 y 3,化简得:3y 10 x,所以选C.5.【答案】A;【解析】将x 1代入3 x 1 k,得k 3.6.【答案】C;【解析】由题意—1(-1)—ab,所以选C 5a b5 a b二.填空题7.【答案】18 ;【解析】320,解得x18. x 6x8.【答案】十m 2ma a 2 a【解析】原计划能供应天,现在能供应天,则少供应 r 天.m m2m 2m9.【答案】—8;【解析】—33,解得x 8. x—x 110.【答案】173 '【解析】将x1代入原方程,得8a 55a12,解得a1731 1 .【答案】x 1 ;【解析】原方程化为: 2 2x 1 —x21,解得x1,经检验x 1是增根1 2【答案】a 1且a M 0 ;【解析】原方程化为a x 1, x a 10,解得a 1 .x M-1,解得a M 0.三-'解答题13【解析】解:(1)方程的两边都乘x2,得1 x 13(x 2).解这个整式方程,得x = 2.检验:当X = 2时,X —2= 0,所以2是增根,所以原方程无解.⑵方程两边同乘(x 2)(x 1)约去分母,得5x 7 2(x 2) 3(x 1).整理,得5x 7 5x 7 .这个式子为恒等式. 检验:当x1, x 2时,(x 2)(x 1) 0,所以x 1和x 2是增根.因此,原方程的解是x 1且x 2的任何实数.⑶方程两边同乘(x 2)(x 1)(x 1),得x(x 2) 2(x 1)(x 1) (x 2)(x 1) 0 .4解此方程,得x 4.54检验:把x—代入(x 2)( x 1)(x 1)5得-254 4 -1 - 1 0,55所以原方程的解是 4 x—.514【解析】解:设自行车的速度为 xkm/ h ,汽车的速度为 2.5xkm/ h ,5050由题意,0.5 2 ,x 2.5x解方程得:125 50 6.25x 经检验,x 12是原方程的根,2.5x 30.所以自行车的速度为 I2km/h ,汽车的速度是 答:自行车的速度为 12km/h ,汽车的速度是 30km/h .15.【解析】解:设十位上的数字为 x ,则个位上的数字为 x 1,解方程得:x 3.经检验:x 3是原方程的根. 所以个位上的数字为:x 1 = 3+ 1 = 4.所以这个两位数是:3X 10 + 4= 34 . 答:这个两位数是 34 .则:10x (x 1) 2x 130 km/h .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

9、分式方程及其应用【知识精读】1. 解分式方程的基本思想:把分式方程转化为整式方程。

2. 解分式方程的一般步骤:(1)在方程的两边都乘以最简公分母,约去分母,化成整式方程; (2)解这个整式方程;(3)验根:把整式方程的根代入最简公分母,看结果是否等于零,使最简公分母等于零的根是原方程的增根,必须舍去,但对于含有字母系数的分式方程,一般不要求检验。

3. 列分式方程解应用题和列整式方程解应用题步骤基本相同,但必须注意,要检验求得的解是否为原方程的根,以及是否符合题意。

下面我们来学习可化为一元一次方程的分式方程的解法及其应用。

【分类解析】 例1. 解方程:x x x --+=1211分析:首先要确定各分式分母的最简公分母,在方程两边乘这个公分母时不要漏乘,解完后记着要验根解:方程两边都乘以()()x x +-11,得x x x x x x xx x 22221112123232--=+---=--∴==()()(),即,经检验:是原方程的根。

例2. 解方程x x x x x x x x +++++=+++++12672356分析:直接去分母,可能出现高次方程,给求解造成困难,观察四个分式的分母发现()()()()x x x x ++++6723与、与的值相差1,而分子也有这个特点,因此,可将分母的值相差1的两个分式结合,然后再通分,把原方程两边化为分子相等的两个分式,利用分式的等值性质求值。

解:原方程变形为:x x x x x x x x ++-++=++-++67562312方程两边通分,得167123672383692()()()()()()()()x x x x x x x x x x ++=++++=++=-∴=-所以即经检验:原方程的根是x =-92。

例3. 解方程:121043323489242387161945x x x x x x x x --+--=--+--分析:方程中的每个分式都相当于一个假分数,因此,可化为一个整数与一个简单的分数式之和。

解:由原方程得:3143428932874145--++-=--++-x x x x即2892862810287x x x x ---=---于是,所以解得:经检验:是原方程的根。

1898618108789868108711()()()()()()()()x x x x x x x x x x --=----=--==例4. 解方程:61244444402222y y y y y y yy +++---++-=2分析:此题若用一般解法,则计算量较大。

当把分子、分母分解因式后,会发现分子与分母有相同的因式,于是可先约分。

解:原方程变形为:622222220222()()()()()()()y y y y y yy y ++-+--++-=约分,得62222202y y y yy y +-+-++-=()()方程两边都乘以()()y y +-22,得 622022()()y y y --++=整理,得经检验:是原方程的根。

21688y y y =∴==注:分式方程命题中一般渗透不等式,恒等变形,因式分解等知识。

因此要学会根据方程结构特点,用特殊方法解分式方程。

5、中考题解:例1.若解分式方程2111x x m x xx x+-++=+产生增根,则m 的值是( )A. --12或B. -12或C. 12或D. 12或-分析:分式方程产生的增根,是使分母为零的未知数的值。

由题意得增根是:x x ==-01或,化简原方程为:21122x m x -+=+()(),把x x ==-01或代入解得m =-12或,故选择D 。

例2. 甲、乙两班同学参加“绿化祖国”活动,已知乙班每小时比甲班多种2棵树,甲班种60棵所用的时间与乙班种66棵树所用的时间相等,求甲、乙两班每小时各种多少棵树? 分析:利用所用时间相等这一等量关系列出方程。

解:设甲班每小时种x 棵树,则乙班每小时种(x+2)棵树, 由题意得:60662x x =+60120662020222x xx x x +=∴==∴+=经检验:是原方程的根答:甲班每小时种树20棵,乙班每小时种树22棵。

说明:在解分式方程应用题时一定要检验方程的根。

6、题型展示:例1. 轮船在一次航行中顺流航行80千米,逆流航行42千米,共用了7小时;在另一次航行中,用相同的时间,顺流航行40千米,逆流航行70千米。

求这艘轮船在静水中的速度和水流速度分析:在航行问题中的等量关系是“船实际速度=水速+静水速度”,有顺水、逆水,取水速正、负值,两次航行提供了两个等量关系。

解:设船在静水中的速度为x 千米/小时,水流速度为y 千米/小时由题意,得8042740707x y x y x y x y ++-=++-=⎧⎨⎪⎪⎩⎪⎪解得:经检验:是原方程的根x y x y ==⎧⎨⎩==⎧⎨⎩173173答:水流速度为3千米/小时,船在静水中的速度为17千米/小时。

例2. m 为何值时,关于x 的方程22432x m x xx -+-=+2会产生增根?解:方程两边都乘以x 24-,得2436x mx x ++=- 整理,得()m x -=-110当时,如果方程产生增根,那么,即或()若,则()若,则()综上所述,当或时,原方程产生增根m x m x x x x m m x m m m ≠=---===-=--=∴=-=---=-∴==-11014022121012422101263462说明:分式方程的增根,一定是使最简公分母为零的根【实战模拟】1. 甲、乙两地相距S 千米,某人从甲地出发,以v 千米/小时的速度步行,走了a 小时后改乘汽车,又过b 小时到达乙地,则汽车的速度( )A.S a b+B.S av b - C.S av a b-+ D.2S a b+2. 如果关于x 的方程2313x m x m -=--有增根,则的值等于()A. -3B. -2C. -1D. 33. 解方程:()…111011212319102x x x x x x x ++++++++++=()()()()()()()2112141024x xx xx xx x-++++++=4. 求x 为何值时,代数式293132x x x x++---的值等于2?5. 甲、乙两个工程队共同完成一项工程,乙队先单独做1天后,再由两队合作2天就完成了全部工程。

已知甲队单独完成工程所需的天数是乙队单独完成所需天数的23,求甲、乙两队单独完成各需多少天?【试题答案】1. 由已知,此人步行的路程为av 千米,所以乘车的路程为()S av -千米。

又已知乘车的时间为b 小时,故汽车的速度为S av bB -千米小时,应选。

/2. 把方程两边都乘以x x mx m -=--∴=+3235,得.若方程有增根,则x m m B =+=∴=-3532,即应选。

3. (1)分析:方程左边很特殊,从第二项起各分式的分母为两因式之积,两因式的值都相差1,且相邻两项的分母中都有相同的因式。

因此,可利用11111n n n n ()+=-+裂项,即用“互为相反数的和为0”将原方程化简 解:原方程可变为11011121213191102x x x x x x x +++-+++-+++-+=…∴+=+==-=-1122211212x x x x 即经检验:原方程的根是(2)分析:用因式分解(提公因式法)简化解法 解:x xx x x()11112141024-++++++= 因为其中的1111214124-++++++xxxx=++--++++=-++++=-++=-≠∴=11121412121414141810224224448x x x x xx x x xxxx经检验:x =0是原方程的根。

4. 解:由已知得2931322x x x x ++---=即解得经检验:是原方程的根。

23313223313203232++---=∴+---===x x xx x xx x∴=++---当时,代数式x x x x x32293132的值等于2。

5. 设:乙队单独完成所需天数x 天,则甲队单独完成需23x 天。

由题意,得1211231x x x ++=()即解得:12316xxxx ++==经检验x =6是原方程的根 x x ==6234时,答:甲、乙两队单独完成分别需4天,6天。

相关文档
最新文档