微积分与三角函数公式合集
完整word高数微积分公式三角函数公式考研
高等数学微积分公式大全一、基本导数公式⑴ c⑵ x x1⑶ sin x cos x⑷ cosx sin x⑸ tan xsec 2 x⑹ cot xcsc 2 x⑺ sec x sec x tan x⑻ csc xcsc x cot x⑼ e xe x⑽ a xa x ln a⑾ ln x1x⑿ log a x1 ⒀ arcsin x1 x2 ⒁ arccos x1x ln a11 x 2⒂ arctan x1 ⒃ arccot x1 2⒄x1⒅x1 1 x 21 x2 x二、导数的四则运算法规u vuvuvu v uvu u v uvvv2三、高阶导数的运算法规( 1) u x v xnnv x nncu n xu x(2) cu xnnn( 3) u ax ba n u n ax b( 4) u x v xc n k u n k x v ( k ) xk 0四、基本初等函数的 n 阶导数公式( 1) xnnn!( 2) eaxbnaneax b (3) axna x ln na(4) sin ax bna nsin axb n(5)cos axb naxb n2a n cos21nna nn!nn 1a n n 1 !(6)(7)1 ax b1ax n 1ln ax baxnbb五、微分公式与微分运算法规⑴ d c 0⑵ d xx1dx⑶ d sin x cosxdx⑷ d cosx sin xdx ⑸ d tan xsec 2 xdx⑹ dcot xcsc 2 xdx⑺ d secx secx tan xdx⑻ d cscx cscx cot xdx⑼ dexe xdx⑽ daxa xln adx⑾ d ln x1dxx⑿ dlog a x1 dx ⒀ d arcsin x1 dx ⒁ d arccos x1 dxx ln a1 x 21 x 2⒂ d arctan x12 dx⒃ darccot x1dx1x 1 x 2六、微分运算法规⑴ du v du dv⑵d cu cdu⑶ duv vdu udv⑷ d uvdu udvvv 2七、基本积分公式⑴kdx kx c⑵ x dxx 1c⑶dx ln xc1x⑷a xdx a xc⑸ e x dxe x c⑹ cosxdxsin x cln a⑺sin xdxcosx c⑻1 dxsec 2 xdx tan x ccos 2 x ⑼ 12xdxcot xc⑽ 1 2 dx arctan x csin 2xcsc x1⑾1dxarcsin x c1x 2八、补充积分公式tan xdx ln cos x ccot xdx ln sin x csecxdx ln secx tan x ccscxdx ln cscx cot x c11x1 a 2dx1 x aa2x 2 dx a arctan a cx22a l n x ac1dx arcsinxc1dx ln xx 2 a 2ca 2 x 2ax 2 a 2九、以下常用凑微分公式积分型换元公式f axb dx1 f ax b d ax bu ax baf x x 1dx 1 f x d xu xf ln x1dxfln x d ln xu ln xxf e x e x dx f e x d e xf a x a x dx 1 f a x d a xln af sin x cosxdx f sin x d sin x f cos x sin xdx f cosx d cosx f tan x sec2 xdx f tan x d tan x f cot x csc2 xdx f cot x d cot xf12 dx f arcta n x d arc ta n x arctan xx1f arcsin x 1 dx f arcsin x d arcsin x1 x2十、分部积分法公式⑴形如x n e ax dx ,令u x n, dv e ax dx形如x n sin xdx 令u x n,dv sin xdx形如x n cos xdx 令u x n,dv cosxdx⑵形如x n arctanxdx ,令 u arctan x ,dv x n dx形如x n ln xdx ,令 u ln x ,dv x n dx⑶形如e ax sin xdx,e ax cos xdx令u e ax ,sin x,cos x 均可。
(完整word)高数微积分公式+三角函数公式考研
高等数学微积分公式大全一、基本导数公式⑴()0c '= ⑵1x xμμμ-= ⑶()sin cos x x '=⑷()cos sin x x '=- ⑸()2tan sec x x '= ⑹()2cot csc x x '=- ⑺()sec sec tan x x x '=⋅ ⑻()csc csc cot x x x '=-⋅⑼()xxee'= ⑽()ln xxaaa '= ⑾()1ln x x'=⑿()1log ln xax a'= ⒀()arcsin x '= ⒁()arccos x '=⒂()21arctan 1x x '=+ ⒃()21arccot 1x x '=-+⒄()1x '=⒅'=二、导数的四则运算法则()u v u v '''±=± ()uv u v uv '''=+ 2u u v uv v v '''-⎛⎫= ⎪⎝⎭三、高阶导数的运算法则 (1)()()()()()()()n n n u x v x u x v x ±=±⎡⎤⎣⎦ (2)()()()()n n cu x cu x =⎡⎤⎣⎦(3)()()()()n n nu ax b a uax b +=+⎡⎤⎣⎦(4)()()()()()()()0nn n k k k n k u x v x c u x v x -=⋅=⎡⎤⎣⎦∑ 四、基本初等函数的n 阶导数公式 (1)()()!n nxn = (2)()()n ax b n ax b e a e ++=⋅ (3)()()ln n x x n a a a =(4)()()sin sin 2n n ax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭ (5) ()()cos cos 2n nax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭ (6)()()()11!1n n nn a n ax b ax b +⋅⎛⎫=- ⎪+⎝⎭+ (7) ()()()()()11!ln 1n n n na n axb ax b -⋅-+=-⎡⎤⎣⎦+五、微分公式与微分运算法则 ⑴()0d c = ⑵()1d xxdx μμμ-= ⑶()sin cos d x xdx =⑷()cos sin d x xdx =- ⑸()2tan sec d x xdx = ⑹()2cot csc d x xdx =- ⑺()sec sec tan d x x xdx =⋅ ⑻()csc csc cot d x x xdx =-⋅ ⑼()xxd ee dx = ⑽()ln xxd a aadx = ⑾()1ln d x dx x=⑿()1logln xad dx x a =⒀()arcsin d x =⒁()arccos d x = ⒂()21arctan 1d x dx x =+ ⒃()21arccot 1d x dx x=-+ 六、微分运算法则⑴()d u v du dv ±=± ⑵()d cu cdu = ⑶()d uv vdu udv =+ ⑷2u vdu udvd v v -⎛⎫= ⎪⎝⎭七、基本积分公式⑴kdx kx c =+⎰ ⑵11x x dx c μμμ+=++⎰ ⑶ln dxx c x=+⎰ ⑷ln xxa a dx c a=+⎰ ⑸x x e dx e c =+⎰ ⑹cos sin xdx x c =+⎰ ⑺sin cos xdx x c =-+⎰⑻221sec tan cos dx xdx x c x ==+⎰⎰ ⑼221csc cot sin xdx x c x ==-+⎰⎰⑽21arctan 1dx x c x =++⎰ ⑾arcsin x c =+八、补充积分公式tan ln cos xdx x c =-+⎰ cot ln sin xdx x c =+⎰ sec ln sec tan xdx x x c =++⎰ csc ln csc cot xdx x x c =-+⎰2211arctan xdx c a x a a=++⎰ 2211ln 2x adx c x a a x a-=+-+⎰arcsinxc a=+ ln x c =+十、分部积分法公式⑴形如n ax x e dx ⎰,令nu x =,axdv e dx =形如sin n x xdx ⎰令nu x =,sin dv xdx =形如cos n x xdx ⎰令nu x =,cos dv xdx = ⑵形如arctan n x xdx ⎰,令arctan u x =,ndv x dx =形如ln n x xdx ⎰,令ln u x =,ndv x dx =⑶形如sin ax e xdx ⎰,cos ax e xdx ⎰令,sin ,cos axu e x x =均可。
整理高数微积分公式+三角函数公式考研
高数微积分公式三角函数公式考研整理表姓名:职业工种:申请级别:受理机构:填报日期:A4打印/ 修订/ 内容可编辑高等数学公式导数公式:基本积分表:三角函数的有理式积分:一些初等函数:两个重要极限:三角函数公式:·诱导公式:·和差角公式:·和差化积公式:·倍角公式:·半角公式:·正弦定理:·余弦定理:·反三角函数性质:高阶导数公式——莱布尼兹(Leibniz)公式:中值定理与导数应用:曲率:定积分的近似计算:定积分应用相关公式:空间解析几何和向量代数:文件编号:F8-65-23-08-CC 多元函数微分法及应用微分法在几何上的应用:文件编号:F8-65-23-08-CC 方向导数与梯度:多元函数的极值及其求法:重积分及其应用:柱面坐标和球面坐标:曲线积分:曲面积分:高斯公式:斯托克斯公式——曲线积分与曲面积分的关系:常数项级数:级数审敛法:绝对收敛与条件收敛:幂级数:函数展开成幂级数:一些函数展开成幂级数:欧拉公式:三角级数:傅立叶级数:周期为的周期函数的傅立叶级数:微分方程的相关概念:一阶线性微分方程:全微分方程:二阶微分方程:二阶常系数齐次线性微分方程及其解法:二阶常系数非齐次线性微分方程整理丨尼克本文档信息来自于网络,如您发现内容不准确或不完善,欢迎您联系我修正;如您发现内容涉嫌侵权,请与我们联系,我们将按照相关法律规定及时处理。
微积分及三角函数公式
微积分及三角函数基本公式sin (α±β)=sin α cos β ± cos α sin β cos (α±β)=cos α cos β μsin α sin β 2 sin α cos β = sin (α+β) + sin (α-β) 2 cos α sin β = sin (α+β) - sin (α-β) 2 cos α cos β = cos (α-β) + cos (α+β) 2 sin α sin β = cos (α-β) - cos (α+β)sin α + sin β = 2 sin ½(α+β) cos ½(α-β) sin α - sin β = 2 cos ½(α+β) sin ½(α-β) cos α + cos β = 2 cos ½(α+β) cos ½(α-β) cos α - cos β = -2 sin ½(α+β) sin ½(α-β) tan (α±β)=βαβαtan tan tan tan μ±, cot (α±β)=βαβαcot cot cot cot ±μe x =1+x+!22x +!33x +…+!n x n+ … sin x = x-!33x +!55x -!77x +…+)!12()1(12+-+n x n n + …cos x = 1-!22x +!44x -!66x +…+)!2()1(2n x n n -+ …ln (1+x) = x-22x +33x -44x +…+)!1()1(1+-+n x n n + …tan -1 x = x-33x +55x -77x+…+)12()1(12+-+n x n n + …(1+x)r =1+r x+!2)1(-r r x 2+!3)2)(1(--r r r x 3+… -1<x<1∑=ni 11= n∑=ni i 1= ½n (n +1)∑=ni i 12=61n (n +1)(2n +1) ∑=ni i13= [½n (n +1)]2Γ(x) = ⎰∞t x-1e -t d t = 2⎰∞t 2x-12t e -d t =⎰∞)1(ln tx-1 d tβ(m , n ) =⎰10xm -1(1-x)n -1 d x =2⎰2sin π2m -1xcos 2n -1x d x =⎰∞+-+01)1(nm m x x d x希臘字母 (Greek Alphabets)大寫 小寫讀音 大寫 小寫讀音 大寫 小寫 讀音 Α α alpha Ι ι iota Ρ ρrhoΒβbetaΚκkappaΣσ, ς sigma倒數關係: sin θcsc θ=1; tan θcot θ=1; cos θsec θ=1 商數關係: tan θ=θθcos sin ; cot θ= θθsin cos 平方關係: cos 2θ+ sin 2θ=1; tan 2θ+ 1= sec 2θ; 1+ cot 2θ= csc 2θ順位低順位高; ⎰ 順位高d 順位低 ;1 000 000 000 000 000 000 000 000 1024 yotta Y 1 000 000 000 000 000 000 000 1021 zetta Z1 000 000 000 000 000 000 1018 exa E1 000 000 000 000 000 1015 peta P1 000 000 000 000 1012 tera T 兆1 000 000 000 109 giga G 十億1 000 000 106 mega M 百萬1 000 103 kilo K 千100 102 hecto H 百10 101 deca D 十0.1 10-1 deci d 分,十分之一0.01 10-2 centi c 厘(或寫作「厘」),百分之一0.001 10-3 milli m 毫,千分之一0.000 001 10-6 micro ? 微,百萬分之一0.000 000 001 10-9 nano n 奈,十億分之一0.000 000 000 001 10-12 pico p 皮,兆分之一0.000 000 000 000 001 10-15 femto f 飛(或作「費」),千兆分之一0.000 000 000 000 000 001 10-18 atto a 阿0.000 000 000 000 000 000 001 10-21 zepto z0.000 000 000 000 000 000 000 001 10-24 yocto y感谢下载!欢迎您的下载,资料仅供参考。
三角函数导数积分公式大全
下面是一些常见的三角函数的导数和积分公式:
1. 正弦函数(sine):
- 导数公式:d/dx(sin(x)) = cos(x)
- 积分公式:∫(sin(x)) dx = -cos(x) + C
2. 余弦函数(cosine):
- 导数公式:d/dx(cos(x)) = -sin(x)
- 积分公式:∫(cos(x)) dx = sin(x) + C
3. 正切函数(tangent):
- 导数公式:d/dx(tan(x)) = sec^2(x)
- 积分公式:∫(tan(x)) dx = -ln|cos(x)| + C
4. 余切函数(cotangent):
- 导数公式:d/dx(cot(x)) = -csc^2(x)
- 积分公式:∫(cot(x)) dx = ln|sin(x)| + C
5. 正割函数(secant):
- 导数公式:d/dx(sec(x)) = sec(x) * tan(x)
- 积分公式:∫(sec(x)) dx = ln|sec(x) + tan(x)| + C
6. 余割函数(cosecant):
- 导数公式:d/dx(csc(x)) = -csc(x) * cot(x)
- 积分公式:∫(csc(x)) dx = -ln|csc(x) + cot(x)| + C
这些是基本的三角函数的导数和积分公式,它们在微积分和数学分析中经常被使用。
需要注意的是,这些公式适用于常规的角度值,而非弧度制。
微分积分及常用三角函数公式集锦
微分积分及常用三角函数公式集锦微分和积分是微积分的两个基本概念,它们在数学和物理学中具有广泛的应用。
常用的三角函数是在三角学中常见的函数,它们具有周期性和性质丰富,也是求解微积分问题中常用的工具之一、下面是微分、积分和常用三角函数的一些公式集锦。
微分公式:1.导数的定义:\[ f'(x) = \lim_{{dx \to 0}} \frac{{f(x+dx) - f(x)}}{{dx}} \]其中,\(f'(x)\)表示函数f(x)的导数。
2.基本导数法则:(1)常数法则:\((c)'=0\),其中c是常数。
(2)幂法则:\( (x^n)' = n \cdot x^{n-1} \),其中 n 是实数。
(3)和差法则:\( (f(x) \pm g(x))' = f'(x) \pm g'(x) \)。
(4)乘法法则:\( (f(x) \cdot g(x))' = f'(x) \cdot g(x) +f(x) \cdot g'(x) \)。
(5)除法法则:\( \left(\frac{{f(x)}}{{g(x)}}\right)' =\frac{{f'(x) \cdot g(x) - f(x) \cdot g'(x)}}{{(g(x))^2}} \)。
(6)复合函数法则:\( (f(g(x)))' = f'(g(x)) \cdot g'(x) \)。
积分公式:1.不定积分的定义:\[ \int f(x)dx = F(x) + C \]其中,\( \int \) 表示积分,f(x) 是被积函数,F(x) 是 f(x) 的一个原函数,C 是常数。
2.基本积分法则:(1)幂法则:\( \int x^n dx = \frac{{x^{n+1}}}{{n+1}}+C \),其中 n 不等于 -1(2)常数倍法则:\( \int cf(x)dx = c \int f(x)dx \),其中 c 是常数。
微积分三角函数公式
微积分三角函数公式微积分是现代数学的重要分支之一,它研究的是变化和运动的规律性。
三角函数也是微积分中的一个重要内容,它们描述了角度与长度之间的关系。
在微积分中,我们经常会用到三角函数的各种公式来解决问题。
接下来,我将为你详细介绍微积分中常用的三角函数公式。
首先,我们先来回顾一下最基本的三角函数:正弦函数(sin)、余弦函数(cos)、正切函数(tan)。
这三个函数是周期性的,其周期都为2π。
1.正弦函数的公式:sin(x) = (e^ix - e^-ix) / (2i)其中,e是自然常数,i是虚数单位。
2.余弦函数的公式:cos(x) = (e^ix + e^-ix) / 23.正切函数的公式:tan(x) = sin(x) / cos(x)接下来,我们来看一下三角函数的一些重要性质和公式。
1.三角函数的周期性正弦函数、余弦函数、正切函数的周期都是2π,即对于任意实数x,有sin(x+2π) = sin(x),cos(x+2π) = cos(x),tan(x+2π) = tan(x)。
2.基本关系式sin²(x) + cos²(x) = 1这个关系式被称为三角恒等式(三角恒等式可以通过欧拉公式得出)。
3.余切函数cot(x) = 1 / tan(x) = cos(x) / sin(x)4.反三角函数反三角函数是指将三角函数的值代入逆函数中得到的角度。
反正弦函数:arcsin(x)反余弦函数:arccos(x)反正切函数:arctan(x)反三角函数和三角函数互为反函数,满足以下关系式:sin(arcsin(x)) = xcos(arccos(x)) = xtan(arctan(x)) = x还有一些常见的三角函数公式需要特别注意:1.和差公式sin(x ± y) = sin(x) cos(y) ± cos(x) sin(y)cos(x ± y) = cos(x) cos(y) ∓ sin(x) sin(y)tan(x ± y) = (tan(x) ± tan(y)) / (1 ∓ tan(x) tan(y))2.二倍角公式sin(2x) = 2sin(x) cos(x)cos(2x) = cos²(x) - sin²(x) = 2cos²(x) - 1 = 1 - 2sin²(x)tan(2x) = (2tan(x)) / (1 - tan²(x))3.半角公式sin(x / 2) = ±√[(1 - cos(x)) / 2]cos(x / 2) = ±√[(1 + cos(x)) / 2]tan(x / 2) = ±√[(1 - cos(x)) / (1 + cos(x))]4.三倍角公式sin(3x) = 3sin(x) - 4sin³(x)cos(3x) = 4cos³(x) - 3cos(x)5.万能公式sin(x) = 2tan(x / 2) / (1 + tan²(x / 2))cos(x) = (1 - tan²(x / 2)) / (1 + tan²(x / 2))tan(x) = (2tan(x / 2)) / (1 - tan²(x / 2))以上是微积分中常用的三角函数公式,能够帮助我们解决各种三角函数相关的问题。
凑微分公式_微分积分三角函数数学公式大全
凑微分公式_微分积分三角函数数学公式大全一、基本微分公式1.常数微分公式:如果f(x)是一个常数c,则它的导数为f'(x)=0。
2. 幂函数微分公式:对于任何实数n,有f(x) = x^n,则它的导数为f'(x) = nx^(n-1)。
3.幂函数特殊情况微分公式:如果n=-1,则有f(x)=1/x,它的导数为f'(x)=-1/x^24.反比例函数微分公式:对于f(x)=1/x,则它的导数为f'(x)=-1/x^25. 指数函数微分公式:对于f(x) = a^x,其中a > 0, a ≠ 1,则它的导数为f'(x) = a^x * ln(a)。
6. 对数函数微分公式:对于f(x) = loga(x),其中a > 0, a ≠ 1,则它的导数为f'(x) = 1 / (x * ln(a))。
7. 三角函数微分公式:对于sin(x),它的导数为cos(x);对于cos(x),它的导数为-sin(x);对于tan(x),它的导数为sec^2(x)。
8. 反三角函数微分公式:对于arcsin(x),它的导数为1 / sqrt(1- x^2);对于arccos(x),它的导数为-1 / sqrt(1 - x^2);对于arctan(x),它的导数为1 / (1 + x^2)。
二、复合函数微分公式1.复合函数微分法则:如果f(x)和g(x)是连续可微的函数,则有以下公式。
-(f(g(x)))'=f'(g(x))*g'(x)(链式法则)-(f(g(x)))''=f''(g(x))*g'(x)^2+f'(g(x))*g''(x)(链式法则的二阶导数形式)2.反函数微分公式:如果y=f(x)的反函数是x=g(y),则有以下公式。
-g'(y)=1/f'(x),其中x=g(y)三、积分公式1.基本积分公式:对于常数c和实数n(n≠-1),有以下公式。
微积分及三角函数公式合集共7页文档
第一部分:常用积分公式基本积分公式:1 kdx kx c =+⎰2 11x x dx c μμμ+=++⎰ 3 ln dxx c x=+⎰4 ln xxa a dx c a=+⎰ 5 x x e dx e c =+⎰ 6 cos sin xdx x c =+⎰7 sin cos xdx x c =-+⎰8 221sec tan cos dx xdx x c x ==+⎰⎰ 9 221csc cot sin xdx x c x ==-+⎰⎰10 21arctan 1dx x c x=++⎰ 11arcsin x c =+12 tan ln cos xdx x c =-+⎰ 13 cot ln sin xdx x c =+⎰14 sec ln sec tan xdx x x c =++⎰ 15 csc ln csc cot xdx x x c =-+⎰ 16 2211arctan xdx c a x a a=++⎰ 17 2211ln 2x adx c x a a x a -=+-+⎰18arcsinxc a=+19ln x c =++分部积分法公式1 形如n ax x e dx ⎰,令n u x =,ax dv e dx =2 形如sin n x xdx ⎰令n u x =,sin dv xdx =3 形如cos n x xdx ⎰令n u x =,cos dv xdx =4 形如arctan n x xdx ⎰,令arctan u x =,n dv x dx =5 形如ln n x xdx ⎰,令ln u x =,n dv x dx =6 形如sin ax e xdx ⎰,cos ax e xdx ⎰令,sin ,cos ax u e x x =均可。
常用凑微分公式 1. ()()()1f ax b dx f ax b d ax b a +=++⎰⎰2. ()()()11f x x dx f x d x μμμμμ-=⎰⎰3. ()()()1ln ln ln f x dx f x d x x⋅=⎰⎰ 4. ()()()x x x x f e e dx f e d e ⋅=⎰⎰ 5. ()()()1ln x x x xf a a dx f a d a a⋅=⎰⎰ 6. ()()()sin cos sin sin f x xdx f x d x ⋅=⎰⎰ 7. ()()()cos sin cos cos f x xdx f x d x ⋅=-⎰⎰ 8. ()()()2tan sec tan tan f x xdx f x d x ⋅=⎰⎰9. 2dx f d=⎰ 10.21111()()()f dx f d x xx x =-⎰⎰ 11.()()()2cot csc cot cot f x xdx f x d x ⋅=⎰⎰第二部分:常用微分、导数公式(c=常数)1、极限(1)0sin lim 1x xx→= (2)()10lim 1x x x e →+= (3))1n a o >=(4)1n = (5)limarctan 2x x π→∞=(6)lim tan 2x arc x π→-∞=-(7)limarccot 0x x →∞= (8)lim arccot x x π→-∞= (9)lim 0x x e →-∞= (10)lim x x e →+∞=∞ (11)0lim 1x x x +→=(12)0101101lim 0n n n m m x m a n mb a x a x a n m b x b x b n m--→∞⎧=⎪⎪+++⎪=<⎨+++⎪∞>⎪⎪⎩L L (系数不为0的情况) (13)000()()limx x x xf x f x y x →+∆-∆=∆∆2、常用等价无穷小关系(0x →)sin ~x x tan ~x x arcsin ~x x arctan ~x x 211cos ~2x x - ()ln 1~x x + 1~x e x - 1~ln x a x a -()11~x x ∂+-∂ 21sec 1~2x x -211~2x2~x 33sin ~()x x3、导数的四则运算法则()u v u v '''±=± ()uv u v uv '''=+ 2u u v uv v v '''-⎛⎫= ⎪⎝⎭4、基本导数公式⑴()0c '= ⑵1x x μμμ-= ⑶()sin cos x x '=⑷()cos sin x x '=- ⑸()2tan sec x x '= ⑹()2cot csc x x '=- ⑺()sec sec tan x x x '=⋅ ⑻()csc csc cot x x x '=-⋅ ⑼()x x e e '= ⑽()ln x x a a a '= ⑾()1ln x x'= ⑿()1log ln x a x a '=⒀()arcsin x '= ⒁()arccos x '=⒂()21arctan 1x x '=+ ⒃()21arccot 1x x '=-+⒄()1x '=⒅'=5、高阶导数的运算法则 (1)()()()()()()()n n n u x v x u x v x ±=±⎡⎤⎣⎦ (2)()()()()n n cu x cu x =⎡⎤⎣⎦(3)()()()()n n nu ax b a uax b +=+⎡⎤⎣⎦(4)()()()()()()()0nn n k k k n k u x v x c u x v x -=⋅=⎡⎤⎣⎦∑ 6、基本初等函数的n 阶导数公式 (1)()()!n n x n = (2)()()n ax b n ax b e a e ++=⋅ (3)()()ln n x x n a a a =(4)()()sin sin 2n n ax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭(5) ()()cos cos 2n n ax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭(6)()()()11!1n n nn a n ax b ax b +⋅⎛⎫=- ⎪+⎝⎭+ (7)()()()()()11!ln 1n n n na n axb ax b -⋅-+=-⎡⎤⎣⎦+7、微分公式与微分运算法则⑴()0d c = ⑵()1d x x dx μμμ-= ⑶()sin cos d x xdx = ⑷()cos sin d x xdx =- ⑸()2tan sec d x xdx = ⑹()2cot csc d x xdx =- ⑺()sec sec tan d x x xdx =⋅ ⑻()csc csc cot d x x xdx =-⋅⑼()x x d e e dx = ⑽()ln x x d a a adx = ⑾()1ln d x dx x= ⑿()1logln x a d dx x a =⒀()arcsin d x =⒁()arccos d x =⒂()21arctan 1d x dx x =+ ⒃()21arccot 1d x dx x=-+ 8、微分运算法则⑴()d u v du dv ±=± ⑵()d cu cdu = ⑶()d uv vdu udv =+ ⑷2u vdu udvd v v-⎛⎫=⎪⎝⎭第三部分:常用三角函数公式1.和差公式sin()sin cos cos sin A B A B A B +=+ sin()sin cos cos sin A B A B A B -=- cos()cos cos sin sin A B A B A B +=- cos()cos cos sin sin A B A B A B -=+tan tan tan()1tan tan A B A B A B ++=- tan tan tan()1tan tan A BA B A B --=+cot cot 1cot()cot cot A B A B B A ⋅-+=+ cot cot 1cot()cot cot A B A B B A ⋅+-=- 2.倍角公式sin 22sin cos A A A=2222cos 2cos sin 12sin 2cos 1A A A A A =-=-=-22tan tan 21tan AA A=-3.半角公式sin2A =cos 2A =sin tan21cos A A A ==+ sin cot 21cos A A A==-4.和差化积公式sin sin 2sincos 22a b a b a b +-+=⋅ sin sin 2cos sin22a b a ba b +--=⋅ cos cos 2cos cos 22a b a b a b +-+=⋅ cos cos 2sin sin22a b a ba b +--=-⋅ ()sin tan tan cos cos a b a b a b++=⋅5.积化和差公式()()1sin sin cos cos 2a b a b a b =-+--⎡⎤⎣⎦ ()()1cos cos cos cos 2a b a b a b =++-⎡⎤⎣⎦ ()()1sin cos sin sin 2a b a b a b =++-⎡⎤⎣⎦ ()()1cos sin sin sin 2a b a b a b =+--⎡⎤⎣⎦ 6.万能公式22tan2sin 1tan 2aa a=+ 221tan 2cos 1tan 2a a a -=+ 22tan2tan 1tan 2aa a=- 7.平方关系22sin cos 1x x += 22sec n 1x ta x -= 22csc cot 1x x -=8.倒数关系tan cot 1x x ⋅= sec cos 1x x ⋅= c sin 1cs x x ⋅=9.商数关系sin tan cos x x x =cos cot sin xx x=10.正弦定理:R C cB b A a 2sin sin sin ===11.余弦定理:C ab b a c cos 2222-+= 12.反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ希望以上资料对你有所帮助,附励志名言3条:1、有志者自有千计万计,无志者只感千难万难。
史上最全的数学微积分公式+三角函数+定理
sin 3 3sin 4sin3
cos 3 4 cos3 3cos
tg 3
3tg tg 3 1 3tg 2
·半角公式:
sin 1 cos cos 1 cos
2
2
2
2
tg 1 cos 1 cos sin ctg 1 cos 1 cos sin
x p};参数方程: y
x0 y0
mt nt
z z0 pt
二次曲面:
1、椭球面:x a
2 2
y2 b2
z2 c2
1
2、抛物面:x2 y 2 z(, p, q同号) 2 p 2q
3、双曲面:
单叶双曲面:x 2 a2
y2 b2
z2 c2
1
双叶双曲面:x 2 a2
拉格朗日中值定理:f (b) f (a) f ( )(b a) 柯西中值定理:f (b) f (a) f ( )
F(b) F(a) F( ) 当F(x) x时,柯西中值定理就是拉格朗日中值定理。
曲率:
弧微分公式:ds 1 y2 dx,其中y tg
csc2
xdx
ctgx
C
sec x tgxdx sec x C
csc x ctgxdx csc x C a xdx a x C
ln a
shxdx chx C
chxdx shx C dx ln(x
x2 a2
x2 a2 )C
(arctgx) 1 1 x2
(arcctgx
高等数学公式汇总
高等数学公式汇总高等数学公式汇总如下:1. 幂函数:指数函数:f(x) = cos(x) + i*sin(x)f(x) = exp(x) - 1/(2*exp(2x))f(x) = frac{1}{1-x^2}f(x) = sqrt(x)/x2. 三角函数:正弦函数:s(x) = sin(x)/cos(x)s(x) = frac{1}{sqrt{1-x^2}}s(x) = frac{cos(x) - x*sin(x)}{sqrt{1-x^2}}s(x) = frac{2*cos(x)/2}{sqrt{1-x^2}}3. 余弦函数:c(x) = cos(x)c(x) = cos(x)/s(x)c(x) = frac{1}{sqrt{1-x^2}}c(x) = frac{2*cos(x) - x*sin(x)}{sqrt{1-x^2}}4. 正切函数:tan(x) = sin(x)/cos(x)tan(x) = frac{sin(x) + cos(x)}{2*cos(x)/sin(x) -sin(x)/cos(x)}tan(x) = frac{1}{sqrt{1-sin^2(x)/cos^2(x)}}5. 指数函数和三角函数的组合:e^x = cos(x) + i*sin(x)e^x = exp(x) - 1/(2*exp(2x))e^x = frac{1}{1-x^2}e^x = sqrt(x)/x6. 对数函数:log(x) = ln(x/e) + i*π/2log(x) = ln(x) - ln(2*sqrt(x))log(x) = ln(1+x)7. 微积分中的基本公式:导数:f"(x) = lim(Δx->0)*frac{f(x+Δx) - f(x)}{Δx}f"(x) = lim(Δx->0)*frac{f(x+Δx) + f(x-Δx)}{2Δx}f"(x) = lim(Δx->0)*frac{f(x)/(x+Δx) - f(x)/(x-Δx)}{Δx/(x+Δx) + Δx/(x-Δx)}f"(x) = lim(Δx->0)*frac{f(x)/x}{1 + frac{f(x)}{x/2}} 微分中的基本公式:d/dx (a^x) = a^x*ln(a)d/dx (e^x) = e^x*ln(e)d/dx (1/x) = 1/x*ln(x)d/dx (a^x) * a^(-x) = e^xd/dx (x^n) = nx^(n-1)d/dx (sin(x)) = cos(x)d/dx (cos(x)) = -sin(x)d/dx (tan(x)) = sin(x)/cos(x)8. 积分基本公式:积分一:∫dx = x + C∫dx = 1/2*ln(|x| + 1) + C∫dx = 1/(2*sqrt(x^2 + 1)) + C∫dx = 1/(2*sqrt(x)) + C积分二:∫dx/dx = 1/x∫dx/(2x) = 1/(2*x^2)∫dx/(x^2 + z) = -1/(x^3 + z^2) + C积分三:∫e^x dx = e^x + C∫e^x dx = 1/(2*sqrt(e)*ln(e)) + C∫e^x dx = 1/(2*sqrt(e)*sin(x)) + C积分四:∫a^x dx = a^x + C∫a^x dx = 1/(2*sqrt(a^2 + 1)) + C∫a^x dx = 1/(2*sqrt(a)) + C9. 链式法则:链式法则:∫[(x+a)^2 - (x-a)^2] dx = x^3 + 3x^2*a + 3x*a^2 - (a^3 + a^2*a + a*a^2)= x^3 + 3x^2*a + 3x*a^2 - a^3 - a^2*a + a*a^2= (x-a)(x^2 + 3x*a + 3a^2) - a^310. 微积分中的常数和极限:常数:C = lim(n->无穷大)*sum(1/n)C = lim(n->无穷大)*sqrt(1+4n^2)C = lim(n->无穷大)*frac{1}{2*(1-2n^2) }C = lim(x->正无穷大)*log(1+x)C = lim(x->负无穷大)*log(1-x)极限:趋于1:s(n) = frac{1}{n} + 1/(n^2 + 2)趋于0:s(n) = frac{1}{n} + 1/(n^2)趋于正无穷:s(n) = frac{1}{n} + O(1/n^3)趋于负无穷:s(n) = frac{1}{n} + O(1/n^2)。
微积分公式大全范文
微积分公式大全范文微积分是高等数学的一个分支,是研究函数的变化规律的数学工具。
在微积分中有许多重要的公式,下面就给大家介绍一些常见的微积分公式。
一、导数公式1.三角函数的导数公式:- sin(x)' = cos(x)- cos(x)' = -sin(x)- tan(x)' = sec^2(x)- cot(x)' = -csc^2(x)- sec(x)' = sec(x)tan(x)- csc(x)' = -csc(x)cot(x)2.指数函数的导数公式:- (a^x)' = ln(a) * a^x (其中a是常数且a>0)3.对数函数的导数公式:- (ln(x))' = 1/x- (loga(x))' = 1/(xln(a)) (其中a是底数且a>0)4.幂函数的导数公式:- (x^n)' = nx^(n-1) (n为常数)5.乘法法则和除法法则:- (uv)' = u'v + uv' (乘法法则)- (u/v)' = (u'v - uv')/v^2 (除法法则)6.链式法则:-若y=f(u)和u=g(x)都是可微的函数,则y=f(g(x))可微,并且有:- dy/dx = (dy/du) * (du/dx)二、积分公式1.基本积分公式:- ∫x^n dx = (1/(n+1)) * x^(n+1) (其中n不等于-1)- ∫1/x dx = ln,x, + C- ∫e^x dx = e^x + C- ∫a^x dx = (1/ln(a)) * a^x + C (其中a>0且a≠1)2.三角函数的积分公式:- ∫sin(x) dx = -cos(x) + C- ∫cos(x) dx = sin(x) + C- ∫sec^2(x) dx = tan(x) + C- ∫csc^2(x) dx = -cot(x) + C- ∫sec(x)tan(x) dx = sec(x) + C- ∫csc(x)cot(x) dx = -csc(x) + C3.分部积分法:- ∫u dv = uv - ∫v du4.替换积分法:- 若y=f(u)和u=g(x)都是连续函数,则∫f(g(x))g'(x) dx = ∫f(u) du5.常用代换:- 倒代换:令x=1/t,dx=-1/t^2 dt- 根式代换:令u=f(x),du=f'(x) dx- 三角代换:令x=sin(t)或x=cos(t),dx=cos(t) dt或-dt此外,微积分还有一些重要的定理和公式,如牛顿-莱布尼茨公式、泰勒展开公式、拉格朗日中值定理、柯西中值定理等。
微积分三角函数公式
微积分三角函数公式微积分是数学的一个重要分支,涉及到函数的极限、导数、积分等内容。
而三角函数是微积分中一个重要的概念,它是在单位圆上定义的函数。
下面,将介绍一些与微积分相关的三角函数公式。
1.弧度制与角度制转换公式:弧度是涉及到圆的角度的一种单位,用rad表示。
角度制是指以度为单位的表示角度的方式。
两者之间的转换关系如下:角度制=弧度*180/π弧度=角度制*π/1802.基本三角函数公式:(1)正弦函数公式:sin(x) = 对边 / 斜边(2)余弦函数公式:cos(x) = 邻边 / 斜边(3)正切函数公式:tan(x) = 对边 / 邻边这三个函数在单位圆上的定义如下:对边(opposite)指的是角度 x 对应的点在单位圆上的 y 坐标邻边(adjacent)指的是角度 x 对应的点在单位圆上的 x 坐标斜边(hypotenuse)指的是单位圆的半径3.反三角函数公式:(1)常用反三角函数:反正弦函数:arcsin(x) = sin^(-1)(x),其中 -1 表示反函数其定义域为[-1,1],值域为[-π/2,π/2]反余弦函数:arccos(x) = cos^(-1)(x)其定义域为[-1,1],值域为[0,π]反正切函数:arctan(x) = tan^(-1)(x)其定义域为(-∞,+∞),值域为(-π/2,π/2)(2)反三角函数性质:-反正弦函数、反余弦函数和反正切函数的值域都是一个区间- 反三角函数是三角函数的反函数,即 sin(arcsin(x))=x,cos(arccos(x))=x,tan(arctan(x))=x4.三角函数的运算公式:(1)三角函数的和差化积公式:sin(A ± B) = sin(A)cos(B)± cos(A)sin(B)cos(A ± B) = cos(A)cos(B) ∓ sin(A)sin(B)tan(A ± B) = (tan(A)±tan(B)) / (1∓tan(A)tan(B))(2)三角函数的倍角公式:sin(2A) = 2sin(A)cos(A)cos(2A) = cos^2(A) - sin^2(A) = 2cos^2(A) - 1 = 1 - 2sin^2(A) tan(2A) = 2tan(A) / (1 - tan^2(A))(3)三角函数的半角公式:si n(A/2) = ±√[(1 - cos(A)) / 2]cos(A/2) = ±√[(1 + cos(A)) / 2]tan(A/2) = sin(A) / (1 + cos(A))这些公式都是三角函数在微积分中非常重要的工具,可以帮助我们进行复杂的三角函数运算和求解问题。
高等数学公式(定积分 微积分 三角函数 导函数 等等 应有尽有)
高等数学公式基本积分表(1)kdx kx C =+⎰ (k 是常数)(2)1,1x x dx C μμμ+=++⎰ (1)u ≠- (3)1ln ||dx x C x =+⎰(4)2tan 1dxarl x C x =++⎰ (5)arcsin x C =+⎰(6)cos sin xdx x C =+⎰ (7)sin cos xdx x C =-+⎰(8)21tan cos dx x C x =+⎰(9)21cot sin dx x C x =-+⎰(10)sec tan sec x xdx x C =+⎰ (11)csc cot csc x xdx x C =-+⎰ (12)x x e dx e C =+⎰(13)ln xxa a dx C a=+⎰,(0,1)a a >≠且 (14)shxdx chx C =+⎰ (15)chxdx shx C =+⎰(16)2211tan xdx arc C a x a a =++⎰ (17)2211ln ||2x adx C x a a x a -=+-+⎰ (18)sinxarc C a=+(19)ln(x C =++(20)ln |x C =++(21)tan ln |cos |xdx x C =-+⎰ (22)cot ln |sin |xdx x C =+⎰ (23)sec ln |sec tan |xdx x x C =++⎰ (24)csc ln |csc cot |xdx x x C =-+⎰注:1、从导数基本公式可得前15个积分公式,(16)-(24)式后几节证。
2、以上公式把x 换成u 仍成立,u 是以x 为自变量的函数。
3、复习三角函数公式:2222sin cos 1,tan 1sec ,sin 22sin cos ,x x x x x x x +=+==21cos 2cos 2xx +=, 21cos 2sin 2xx -=。
微积分及三角函数公式合集.docx
第一部分:常用积分公式基本积分公式:kdx = kx + c庠m+c J Xf a x dx -———F c J lno [e x dx = e x + c cos xdx = sinx + c sin xdx = 一 cosx + c—\—dx - f sec 1 2 xdx = tan x + c cos x J —\— = f esc 2 xdx = -cotx + c sin" x 」 1 ]----- 7 dx = arctan x + c 1 + x 21^ = arcsinx + ctan xdx = - In cos x +c cot xdx = In sinx + c sec xdx = In sec x + tan x + c esc xdx = In esc x 一 cot x\ + c 1 , 1 X-- ----- -ax =—arctan —+ c a" + a ax-a x^a1 . • X i ・ ax = arcsin — + cj x p dx-+ c“+1形如 x n e ax dx ,令 u = x n , dv = e ax dx 形如 x n sin xdx 令 u 二 x n , dv = sin xdx 形如 x" cos xdx 令 u = x", dv = cos xdx 形如 x" arctan xdx ,令” =arctan x, dv = x n dx 形如 x n In xdx ,令 u =\nx, dv = xdx形如 j e ax sin xdx , j e ax cos xdx 令 u = e ax ,sin x,cos x 均可。
常用凑微分公式1. J/(tzx + b^lx = ~\f {ax + (^ax + Z?)J.f(lnx)・一d = ” (lnx”(lnx)f /dx = In x + \Jx 2 ±a 2JVx 2±a 219 分部积分法公式: + c2.3. 4.\f(e x \e x d x\f(e x )d(e x ) 5. 6."㈤心宀/“(刁㈤7. j f (cos x) • sin xd = (cos(cos x)”0 an %)• sec 2 xd =|jf (tanx)J(tanx) -[/(-)</(-)JX X11. j/(cot x)- esc 2 xd = j / (cot x^d (cot x)8.=^|/(\/7x(Vx)第二部分:常用微分、导数公式(C 二常数)(3) limV^(d 〉o) = ln-»ooJI(6) lim arc tanx =xty 2(9) lim e x = 0X-»-co(13) ]im 型+—/(兀)AxA2、常用等价无穷小关系(XTO )3、导数的四则运算法则(10)lim e x = ooX->+00(11)lim x v = 1x-»0+(12) limX —>00ci^x n+ i — • + ci n b^x m+ byX mi 4 ----- b mb°=< 000(系数不为0的情况)1、极限(1) lim^ = lXT O %(4) hmyfn = 1 (7) limarccotx = 0X —>CC(5) limarctanx = —XTOO2(8) lim arc cot x = TI A —sinx 〜x tan 兀〜兀 1cosx 〜—xln(l + x)〜xarcsin 兀〜x e x _ ]〜牙arctan x 〜x a x 一 1 〜丄 9—jr2Jl + xsinx -1\ll + x 2 - Vl-x 2 〜x 2(W ± v) =u±v f4、基本导数公式 ⑴(c/=0 (4) (cosx) = -sinx(5)(tanx) = sec 2x①_心一 s'V 2(3)(sinx) = cosx(6)(cot x) = - esc 2 % (7) (secx) = sec % • tan x(8) (cscx) =-cscx-cotx22sec x -1sin 3 x 〜(x)3(11)(in %)6、基本初等函数的n 阶导数公式 (1) (x w )W =n!(2)(严学)=(5) [cos @=a n(4) d (cos x) = - sin xdx(5)(1 (tan x) = sec 2xdx⑻ d (esc x) = - esc x • cot xdx(11) J (lnx) = —rfxXdx (13) d (arcsin 兀)=/ 】 dx (14) d (arccos x)=——,dx(16) d (arccot 兀)=一]】° d 兀、⑷a n -n\> \"+l ax + b)[1心+对~(-]厂目害yax + b)7、微分公式与微分运算法则 (l)d(c) = 0(2)d(x") = jLix^~l dx(-1)[ (3) cl (sin x) = cos xdx(15)(arctanx/ ='l + x 25、高阶导数的运算法则 (1)(14)( arccos 兀丫 = -- !——V 71-x 2(16)(arccot%y = _〔丨,(17)(兀)=1(18)(V^)丄2y[x)⑴土 ”⑴丫) ”⑴⑷土吩严(2)cu (兀)丁") =cd")(兀)(3) u^ax + b)⑷=a'u^ (ax + b) (4)w(x)-v(x)⑷严之”sin9 +方+ m 兰712>(6)d (cotx) = -csc 2 xdx(15) d (arctan x) = 厶 8、微分运算法则 ⑴ d ("士 u) = du ± du⑵ d (cw) = cdu第三部分:常用三角函数公式1 •和差公式sin(A + B)二 sin A cos B + cos A sin Bsin(A 一 B) = sin A cos B 一 cos A sin Bcos(A + B) = cos A cos B-s\nA sin B cos(A一 B) = cos A cos B + sin A sin Btan(A + B)= tan A + tan B1 - tan A tan Bcot(A + B)= cot A • cot B - 1 cot B + cotA2•倍角公式cos24 = cos 2 A-sin 2 A = l-2sin 2 A = 2cos 2 A-\sin (<7 +ft) cos a • cos b5•积化和差公式sin a sin b =——cos(d + b) -cos(d-/?) 2 cos a cosh = — cos(d + b) + cos(d-b) 21「・ -icos tz sin/? = — sin(a + /?)-sin(d-b)6•万能公式(3) d (wv) = vdu + uclvvdu 一 udvv 2tan(A-B)=tan A - tan B 1 + tan A tan B cot(A-B) = COtA>COtg + 1cot B - cot Asin2A = 2sin Acos Atan 2A = 2 tan A1 一伽2A3 •半角公式 .A /1-cosASin 7_V~2-A /1 + cos A cos — = J ------------------------2 V 2A11 - cos A tan7~ Vl + cosAsin A 1 + cosAA /1 + cosA sin Acot — = J -------------- = -------------2 V 1 - cos A 1-cos A4•和差化积公式• ・, r ・ ci + b a-b sin a + sin b = 2 sin ----------- cos --------2 2. c a + b a-b cos a + cos b =2 cos —— 2•cos. ・ f r a+b ・ a-bsin (7-sin/? = 2 cos ------------ s in --------2 2f c . a+h • a -bcos a 一 cos b =-2 sin --------- sin --------2 2tan a + tan /?=2 tan2 sin a = ------- —1 + tarr27 •平方关系- ? CIl-tarr —2 cos a = ----------- -1 +tarr2小 a 2 tan —2tan a = ---------- —1 一 tarr2• 22isin x + cos x = l sec 2 x-tan 2 x = 1csc 2x-cot 2x = l8 •倒数关系tan x • cot 兀=1 9 •商数关系 sinxtan x = --------cosx 10•正弦定理:—sec x • cos x = 1 cosxcot x = --------sinx c11•余弦定理:c 2 =a 2 +h 2 -2abcosC12•反三角函数性质: arcsin x = ---- arccosx2=2Rsin A sin B sin C71arctgx = ------- a rcctgx(7) d (sec 兀)= secx ・ tan xdx1 厂. -i sin <7 cos/? = — sin(d+b) + sin(d-b)。